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ABSTRACT
We present results on modelling magnetic flux tubes in an unstably stratified medium and
the flows around them using 2D axisymmetric magnetohydrodynamic (MHD) simulations.
The study is motivated by the formation of magnetic field concentrations at the solar surface
in sunspots and magnetic pores and the large-scale flow patterns associated with them. The
simulations provide consistent, self-maintained models of concentrated magnetic field in a
convective environment, although they are not fully realistic or directly applicable to the solar
case. In this paper, we explore under which conditions the associated flows near the surface
are converging (towards the spot centre) or diverging (away from the axis) in nature. It is
found that, depending on the parameters of the problem, the results can depend on the initial
conditions, in particular for zero or low rotation rates and Prandtl numbers smaller than unity.
The solutions with a converging flow generally produce more strongly confined magnetic flux
tubes.
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1 MOTI VATI O N A N D O B J E C T I V E S

The mechanisms of how magnetic pores and sunspots form on
the Sun are still poorly understood. Observations and numerical
simulations suggest that their structure is intimately linked with
characteristic surface and subsurface flows in and around the region
of magnetic field concentration. Fully developed sunspots exhibit
a surface outflow in their penumbra, the so-called Evershed flow,
presumed to be caused by interaction between the near-surface
granular convection and the highly inclined penumbral magnetic
field as suggested by Hurlburt, Matthews & Proctor (1996) and
the numerical simulations of Kitiashvili et al. (2009). Observation
(e.g. Zhao, Kosovichev & Sekii 2010) have revealed downflows
in the central region of the sunspot and subsurface converging
flows (inflows) below the granulation layer, as well as outflows
further below. The inflows around magnetic structures without
penumbra were also obtained in the realistic magnetohydrodynamic
(MHD) simulations of Rempel, Schüssler & Knölker (2009) and
Kitiashvili et al. (2010). On the other hand, the simulations of
Rempel (2011) found outflows even below the Evershed flow. Ei-
ther way, it is conjectured that the structure of the flow plays a
fundamental role for maintaining the integrity of the magnetic field
concentration.

�E-mail: thartlep@stanford.edu

These problems are the motivation for the present study. As im-
pressive and sophisticated as the best current numerical simulations
are, they still are not fully realistic, and as in the case of Rempel
(2011) rely on specialized boundary conditions to hold the magnetic
field in place and keep it from dispersing. In this study, instead of try-
ing to improve on these high-fidelity simulations, we chose to study
the problem in a more simplified setting that still captures important
aspects of the physics. We study the subsurface magnetoconvection
of magnetic flux concentrations in an axisymmetric configuration
and model convection in a parametrized way. The transport coeffi-
cients used here do not describe the molecular transport, but rather
can be thought of as the aggregate effect of the small-scale flow
that is not modelled here. We specifically exclude the complicated
convection at the photosphere (where the Evershed flow forms in
penumbrae), which is primarily driven by radiation effects. In our
approach, many small-scale details will be lost and quantitative
comparisons with the actual Sun may be difficult. None the less,
this provides us with a tool for studying the qualitative behaviour
and whether inflows are necessary to keep magnetic structures con-
fined. Similar simulations by Hurlburt & Rucklidge (2000), Botha,
Rucklidge & Hurlburt (2006) and Botha et al. (2008) have been able
to reproduce flow structures similar to those discussed above, and
Botha et al. (2008) did, for instance, find magnetic flux concentra-
tions with both diverging surface flow over a converging flow and
vice versa. The present paper extends their work, exploring in more
detail the conditions under which diverging or converging flows can
hold a magnetic flux concentration in place.

C© 2011 The Authors
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



2 T. Hartlep et al.

2 N U M E R I C A L M E T H O D

We study magnetoconvection in an axisymmetric cylindrical geom-
etry using a code originally developed by Hurlburt & Rucklidge
(2000) for the 2D case and later extended by Botha et al. (2008)
to include azimuthal components of velocity and magnetic fields.
The model considers a layer of electrically conducting, perfect
monatomic gas subject to uniform gravitational acceleration, with
constant shear viscosity, magnetic diffusivity and magnetic perme-
ability, rotating with constant angular velocity � about the vertical.
The model approximates the conditions in the upper part of the so-
lar convection zone but excludes the granulation layer, the very top
few hundred kilometres below the photosphere where the plasma
is only partially ionized and radiation would need to be modelled
accurately.

The equations in non-dimensional form read

∂tρ = −∇ · (uρ) , (1)

∂tu = −u · ∇u − 2� ẑ × u + �2( ẑ × r) × ẑ
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∂tAφ = (u × B)φ − ζ0 Kjφ, (4)

∂tBφ = [∇ × (u × B)]φ + ζ0 K

(
∇2Bφ − Bφ

r2

)
, (5)

where ρ, T , u and B are the density, temperature, velocity and
magnetic field, B = ∇ × (φ̂Aφ) + φ̂Bφ , respectively. j and τ stand
for the current density and the rate of strain tensor. We have used
cylindrical coordinates with ẑ being the vertical direction pointing
downwards, r̂ being the radial direction and φ̂ the azimuthal direc-
tion. The quantities are non-dimensionlized using the depth d of the
domain as a scale for length, the sound speed at the top of the domain
as a scale for velocities, and initial temperature, density, pressure
and magnetic field at the top of the domain as scales for their re-
spective quantities. The equations are solved numerically using a
finite-difference scheme accurate to sixth-order and a fourth-order
time marching scheme.

The control parameters in the simulation are the Rayleigh number
at the mid-plane, R, defined as

R = θ 2(m + 1)

[
1 − (m + 1)(γ − 1)

γ

]
(1 + θ/2)2m−1

σK2
; (6)

the Prandtl number, σ ; the temperature contrast between the top
and the bottom of the domain, θ ; the rotation rate, �; the aspect
ratio, the ratio between height and radius of the cylindrical domain,
�; and the Chandrasekhar number, Q, a measure of the magnetic
flux in the system defined as

Q = (B0 d)2

μρην
, (7)

where μ, η, ν and B0 are the magnetic permeability, magnetic
diffusivity, kinematic viscosity and the scale of the initial magnetic

field, respectively. The ratio between specific heats is chosen to
be γ = 5/3, appropriate for a monoatomic ideal gas. The initial
temperature and density profiles in the simulations take the form of
a polytrope, in non-dimensional form T(z) = 1 + θz, ρ(z) = (1 +
θz)m, where z and m are the non-dimensional depth (ranging from 0
at the top of the domain to 1 at the bottom) and the polytropic index,
respectively. Simulations are started with an initial uniform vertical
magnetic field B = ẑ (in non-dimensional units), and are run until
the system reaches steady state, if such a state can be obtained for
the given set of parameters.

For thermal boundary conditions, we prescribe a constant heat
flux at the bottom and Stefans law at the top. The side wall is
perfectly electrically conducting and does not allow for a heat flux
across it. Top, bottom and outside walls are impenetrable and stress
free. The magnetic field is vertical at the bottom and matched to a
potential field at the top. The results presented in this paper are for
aspect ratio � = 3.

3 R ESULTS

This work is an extension of Botha et al. (2006 ,2008), in which
we are exploring under which conditions a stable magnetic flux
concentration forms with an outflow (away from the centre) over
an inflow or vice versa. Unless otherwise specified, the simulation
parameters for the results presented here are Q = 32, m = 1, � =
3, ζ 0 = 0.2, � = 0.1, σ = 1, θ = 10 and R = 105, referred to
as the reference case in the text below. This is a case in which
a diverging (away from the rotation axis) over a converging flow
forms. Simulation results for the same parameters were originally
presented in fig. 17 of Botha et al. (2008). In both cases, a small
converging flow was prescribed as initial condition. A visualization
of the flow and the magnetic field is shown here in Fig. 1. Note that
the magnetic field is confined to the region near the axis where the
convection flow is mostly suppressed. A stationary diverging flow
exists outside of the strong magnetic field region.

Starting from this reference case, we performed a parameter study
varying Prandtl number, rotation rate and, for a limited number of
cases, the Chandrasekhar number. We have found that in many
cases the initial conditions are important. For most parameter sets
we therefore performed both a simulation with a weak converging
circulation (flow towards the rotation axis near the top boundary and
away from the axis below) and with a weak diverging flow as initial
conditions. The resulting flow configurations for Chandrasekhar
number Q = 32 and varying Prandtl number and rotation rate are
presented in Table 1. The resulting configurations are classified
as either a well confined flux tube with a diverging flow at the
top, a flux tube with a converging flow near top, or as not well

Figure 1. Flow velocities (arrows), magnetic field strength (grey-scale,
with dark indicating stronger magnetic field) and magnetic field lines for the
reference case, a case that forms a diverging flow over a converging flow.
See text for parameters. The rotation axis is on the left at r = 0.
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Table 1. Resulting flow configurations as a function
of Prandtl number σ and rotation rate �. C: well-
confined magnetic flux concentration with a converg-
ing flow around it; D: a well-confined magnetic flux
concentration with a diverging flow around it; and X:
a configuration with poor confinement of the magnetic
field according to the criterion described in the text,
respectively. The top part of the table is for the cases
with an initial weak converging flow, and the bottom
part is for an initially diverging flow. The other sim-
ulation parameters in all cases are Q = 32, R = 105,
θ = 10, γ = 5/3, m = 1, ζ 0 = 0.2 and � = 3.

Converging flow Prandtl number σ

initial condition: 0.1 0.3 1.0 2.0

0.00 C C C D
0.02 C C D D

Rotation rate �
0.05 C C D D
0.10 C D D D

Diverging flow Prandtl number σ

initial condition: 0.03 0.1 0.3 1.0

0.00 X D D D
0.02 X D D D

Rotation rate �
0.05 X D D D
0.10 X X D D

Figure 2. Same parameters as the reference case (Fig. 1) except for θ = 20
and R = 4 × 105.

Figure 3. Same parameters as the reference case (Fig. 1) except for rotation
rate � = 0.

confined. Examples for these three cases are shown in Figs 1, 2 and
3, respectively.

Of course, the definition of what is a well-confined magnetic
structure is somewhat arbitrary. Here, we used the following quan-
titative definition to determine the diameter of the magnetic field
concentration around the centre of the domain at the top boundary:

D = 2

√
2 log 2

∫ rl
0 ‖B(z = 0, r)‖r2 dr∫ rl

0 ‖B(z = 0, r)‖dr
, (8)

where rl is the smallest radius that fulfils the condition:

‖B(z = 0, rl)‖ <
5

100
max
r<rl

‖B(z = 0, r)‖. (9)
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Figure 4. Horizontal diameter, D, of the magnetic field concentration (top
panel) and ratio between mean magnetic field strength inside the field con-
centration and outside (bottom panel) as a function of the rotation rate �.
The symbols correspond to Prandtl number 0.03 (diamonds), 0.1 (upward
triangles), 0.3 (squares), 1.0 (circles) and 2.0 (downward triangles). Open
symbols are for resulting converging flows and solid symbols for diverging
flows, respectively.

This conditions makes sure that only the innermost magnetic struc-
ture is taken into account in cases where there is additional magnetic
field somewhere outside. The threshold of 5/100 is quite arbitrary
but seems to work well for our purposes. We then compute the
average magnetic field inside the radius r � D/2 and outside:

|B|r<D/2 =
∫ D/2

0
‖B(z = 0, r)‖rdr/

∫ �

D/2
rdr, (10)

|B|r>D/2 =
∫ �

D/2
‖B(z = 0, r)‖rdr/

∫ �

D/2
rdr. (11)

We consider the magnetic field region as well confined if the ratio
|B|r<D/2/|B|r>D/2 is larger than 4, meaning the magnetic field inside
the region is at least four times larger than the ambient field outside.
Both quantities, the field strength ratio and the diameter, are plot-
ted in Figs 4 and 5 for the cases forming well-confined magnetic
structures.

The results in Table 1 show that diverging flow configurations
are preferred at higher values of the rotation rate as well as of the
Prandtl number. At lower Prandtl numbers and/or lower rotation
rate, the results depend on the initial conditions, i.e. the resulting
flow is diverging if a weak diverging flow was prescribed as initial
condition and vice versa. Of course, the strength and size of the
magnetic field concentration varies depending on the parameters of
the problem. For instance, it seems intuitive that the magnetic field
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Figure 5. Same quantities as in Fig. 4 but as a function of Prandtl number
σ . Here, the different symbols represent rotation rates 0.0 (diamonds), 0.02
(upward triangles), 0.05 (squares) and 0.1 (circles), respectively. Again, open
symbols are for resulting converging flows and solid symbols for diverging
flows, respectively.

strength would decrease and the size would increase with increasing
rotation rate, and this is indeed the case as seen in Fig. 4. Although
the changes are not very large, the size D does increase and the
field strength ratio decreases in most cases. The dependence on the
Prandtl number is shown in Fig. 5. Field strength ratio decreases
and structure size increases quite strongly with increasing Prandtl
number. It is important to note that in all but one case converging
flows produce better confined magnetic structures with smaller D
and larger field strength ratio.

For a small number of cases, we have also varied the value of
Q which defines how much magnetic flux is in the system. The
parameters for these cases are �= 0, σ = 0.03 and Q = 8, 16, 32, 64,
128. All other parameters are the same as in the reference case. With
increasing Chandrasekhar number Q, the field strength ratio broadly
increases, but the ratio is close to or above 4 only for the highest
two values of Q, i.e. a strongly confined magnetic field region is
realized.

Lastly, it should be noted that other parameters of the problem
can also effect the results, e.g. the Rayleigh number R that governs
the strength of the convection. An example in which we increased
the strength of the convection compared to the reference case is
shown in Fig. 2. There, a converging over diverging flow forms
instead of the diverging flow in the reference case. Instead of a
single circulation, a weak secondary convective cell is formed in

this case further away from the axis. The horizontal size of the
magnetic field strength concentration is significantly smaller and
the field strength ratio higher than in the reference case.

4 C O N C L U S I O N S

Our simulations were motivated by the problem of how structures
such as magnetic pores or sunspots form at the solar surface and
what types of flow are associated with them. The simulations were
performed in a restricted, axisymmetric geometry and employ sig-
nificant simplifications. We therefore have to be careful when trying
to draw conclusion for the solar case. Nevertheless, the simulation
can provide insight into the mechanisms that are involved in main-
taining a tightly concentrated magnetic field in a stratified medium.
The quantitative results of this study are effected by all these sim-
plifications as well as by the finite aspect ratio and the boundary
conditions chosen. Therefore, our primary interest was the qualita-
tive behaviour, in particular the direction of the flow inside or very
close to the flux concentration, i.e. the flow direction of innermost
convection cell. Due to the simplicity of these simulations, we were
able to explore a range of parameters. The simulations have shown
that, depending on the parameters, stable, well-concentrated mag-
netic structures can exist with both types of flow configurations:
an inflow (towards the axis of the flux concentration) above and an
outflow deeper below or vice versa. In many of the studied cases, the
initial conditions turned out to be important, although such a strong
sensitivity to the initial conditions is probably due to the confined
geometry and may disappear, e.g. if non-rotationally symmetric dis-
turbances were allowed. But, this does not affect one of the main
results of this study which is that, in general, converging flows over
diverging flows are associated with more strongly confined mag-
netic field configuration and the opposite flow configuration. For
parameter sets that allowed for both types of solutions, the solution
with the converging flow at the top almost always exhibited higher
magnetic field strengths and a smaller structure size.
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