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ABSTRACT

This paper presents a study of kinematic axisymmetric mean-field dynamo models for the case of meridional
circulation with a deep-seated stagnation point and a strong return flow at the bottom of the convection zone. This
kind of circulation follows from mean-field models of the angular momentum balance in the solar convection zone.
The dynamo models include turbulent sources of the large-scale poloidal magnetic field production due to kinetic
helicity and a combined effect due to the Coriolis force and large-scale electric current. In these models the toroidal
magnetic field, which is responsible for sunspot production, is concentrated at the bottom of the convection zone
and is transported to low-latitude regions by a meridional flow. The meridional component of the poloidal field is
also concentrated at the bottom of the convection zone, while the radial component is concentrated in near-polar
regions. We show that it is possible for this type of meridional circulation to construct kinematic dynamo models
that resemble in some aspects the sunspot magnetic activity cycle. However, in the near-equatorial regions the phase
relation between the toroidal and poloidal components disagrees with observations. We also show that the period of
the magnetic cycle may not always monotonically decrease with the increase of the meridional flow speed. Thus,
for further progress it is important to determine the structure of the meridional circulation, which is one of the
critical properties, from helioseismology observations.
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1. INTRODUCTION

The widely accepted paradigm about the nature of global
magnetic activity of the Sun assumes that meridional circulation
is an important part of the dynamo processes operating in the
solar convection zone (Choudhuri et al. 1995; Durney 1995;
Choudhuri & Dikpati 1999; Miesch et al. 2010). The current
flux-transport and mean-field dynamo models (e.g., Dikpati &
Charbonneau 1999; Guerrero & Muñoz 2004; Bonanno et al.
2002) typically employ an analytical profile of the meridional
circulation pattern, which has to satisfy a mass conservation
equation and the relevant boundary conditions. One of the basic
features of this profile is that the circulation stagnation point is
close to the middle of the convection zone (e.g., Bonanno et al.
2002; Dikpati et al. 2004). However, such ad hoc models of the
meridional flow have no support from the mean-field theory of
the angular momentum distribution in the solar convection zone
(Kitchatinov & Rüdiger 1999; Kitchatinov & Olemskoy 2011;
also see Garaud & Acevedo Arreguin 2009). This theory predicts
a meridional circulation pattern with nearly equal amplitudes
of the flow velocity at the bottom and top of the convection
zone. The stagnation point of this flow is close to the bottom
of the convection zone, near 0.75 R�, and the circulation is
concentrated near the convection zone boundaries. Rempel
(2005, 2006) obtained a similar meridional circulation profile
with a deep stagnation point and used it to construct a nonlinear
dynamo model.

The physical mechanisms of the strong deviation of the
meridional circulation pattern from simple analytical models
are discussed in the recent paper by Kitchatinov & Olem-
skoy (2011). Here, we briefly summarize their main argu-
ments. The distribution of large-scale flows in the bulk of
the convection zone is close to the Taylor–Proudman bal-

ance. However, this balance is violated near the boundaries.
This results in a concentration of the circulation velocity in
the Eckman layers near the bottom and top of the convec-
tion zone (Durney 1999; Miesch et al. 2006; Brun et al.
2010).

Our goal is to investigate how the meridional circulation with
a fast return flow at the bottom of the convection zone can affect
solar dynamo models. We construct a series of kinematic mean-
field dynamo models that employ the meridional circulation
pattern suggested by Kitchatinov & Olemskoy (2011). These
dynamo models include the turbulent generation of the magnetic
field due to the kinetic helicity (α-effect), the combined effect of
the Coriolis force and large-scale current (Ω×J -effect), and the
toroidal magnetic field generation due to the differential rotation
(Ω-effect). Following Krause & Rädler (1980), these models
can be classified as α2δΩ dynamo models. Our approach is to
investigate conditions of the dynamo instability for this type of
meridional circulation and determine the basic properties of the
dynamo solution at the instability threshold. This is a kinematic
dynamo problem. The next section describes the formulation of
the mean-field dynamo model, including the basic assumptions,
the reference model of the solar convection zone, and input
parameters of the large-scale flows. Section 3 presents the
results and discussion. The main findings are summarized in
Section 4.

2. BASIC EQUATIONS

2.1. Formulation of Model

The dynamo model is based on the standard mean-field
induction equation in turbulent perfectly conducting media
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(Krause & Rädler 1980):

∂B
∂t

= ∇ × (E + U × B) , (1)

where E = u × b is the mean electromotive force, with u and
b being the turbulent fluctuating velocity and magnetic field,
respectively; U is the mean velocity. A general expression for
E was computed by Pipin (2008). Following Krause & Rädler
(1980) we write the expression for the mean electromotive force
as follows:

Ei = (αij + γij )B − ηijk∇jBk, (2)

where the tensor αi,j represents the turbulent α-effect, the tensor
γi,j describes the turbulent pumping, and the term ηijk describes
the anisotropic diffusion due to the Coriolis force and the Ω×J -
effect (Rädler 1969). It is known that a solar-type dynamo
model cannot be constructed only with the α-effect as the prime
turbulent source of the poloidal magnetic field generation (Stix
1976; Pipin & Seehafer 2009; Seehafer & Pipin 2009). The exact
mechanism of the large-scale poloidal magnetic field production
on the Sun is not known. After Parker (1955), it is believed
that the α-effect (associated with cyclonic convection) is the
most important turbulent source of the poloidal magnetic field
generation on the Sun. In addition, the mean-field theory predicts
the magnetic field generation effects due to the interaction of
the Coriolis force (Ω × J -effect) with a large-scale electric
current (see Rädler 1969; Krause & Rädler 1980; Rogachevskii
& Kleeorin 2003).

We consider a large-scale axisymmetric magnetic field, B̄ =
eφB + ∇ × Aeφ

r sin θ
, where B(r, θ, t) is the azimuthal component

of the magnetic field, A(r, θ, t) is proportional to the azimuthal
component of the vector potential, r is the radial coordinate,
and θ is the polar angle. The mean flow is given by the velocity
vector U = erUr + eθUθ + eφr sin θΩ, where Ω (r, θ ) is the
angular velocity of the solar differential rotation, and Ur (r, θ )
and Uθ (r, θ ) represent the velocity components of the meridional
circulation. The mean-field magnetic field evolution is governed
by the dynamo equations, which follow from Equation (1):

∂A

∂t
= r sin θEφ +

Uθ sin θ

r

∂A

∂μ
− Ur

∂A

∂r
(3)

∂B

∂t
= − sin θ

r

(
∂Ω
∂r

∂A

∂μ
− ∂Ω

∂μ

∂A

∂r

)
− ∂ (rUrB)

∂r

+
sin θ

r

∂UθB

∂μ
+

1

r

∂rEθ

∂r
+

sin θ

r

∂Er

∂μ
. (4)

We introduce the free parameter Cη to control the turbulent
diffusion coefficient (see the Appendix) and the free parameters
Cα and C

(Ω)
δ to control the strengths of the α- and Ω×J -effects.

We use the solar convection zone model computed by Stix
(2002) for the mixing-length parameter αMLT ≡ 	|�(p)| = 2,
where 	 is the mixing length and �(p) = ∇ log p is the
inverse pressure scale height. We confine the integration domain
between 0.712 R� and 0.972 R� in radius. It extends from
pole to pole in latitude. The differential rotation profile, Ω =
Ω0fΩ (x, μ), where x = r/R� and μ = cos θ , is a modified
version of the analytical approximation of helioseismology data
proposed by Antia et al. (1998). The model includes part of
the rotational shear layer at the bottom of the convection zone,
the so-called tachocline (Figure 1(a)). The turbulent diffusivity,

Table 1
The Coefficients for the Meridional Circulation Profile Components

Given by Equations (5) and (6)

n 0 1 2 3

c
(n)
θ −0.13432(5) −0.40473(6) −0.02170(3) −0.10718(5)

c
(n)
r −0.0681469(4) −0.006839(4) −0.032516(1) −0.0027(4)

η
(0)
T , has a large gradient in this layer (Figure 1(d)). The

bottom boundary condition is set where the turbulent diffusivity
vanishes according to Stix’s model. The convective overshoot
region is not included in our model. The dynamo does not
operate in this region, but magnetic flux tubes can be stored
there until they reach the necessary amplification to become
buoyantly unstable (Guerrero & de Gouveia Dal Pino 2007).
This instability is beyond the scope of our paper.

The meridional flow is modeled in the form of two stationary
circulation cells, one in the northern and one in the southern
hemisphere, with a poleward motion in the upper and an equa-
torward motion in the lower part of the convection zone. Fol-
lowing Kitchatinov & Olemskoy (2011), the meridional circu-
lation velocity components are approximated via the orthogonal
Chebyshev polynomial decompositions:

Uθ = 3U0 sin θ cos θ

3∑
n=0

c
(n)
θ Tn (ξ ) , (5)

Ur = U0(3 cos2 θ − 1)(1 − ξ 2)
3∑

n=0

c(n)
r Tn(ξ ), (6)

where

ξ = 2x − xe − xb

xe − xb

. (7)

Here, xb,e are the radial boundaries of the integration domain. In
our case, xb = 0.712 and xe = 0.972. The coefficients c

(n)
θ and

c(n)
r are given in Table 1. The parameter U0 controls the speed

of the meridional circulation. Kitchatinov & Olemskoy (2011)
obtain U0 ≈ 16 m s−1.

The geometry of the meridional flow is illustrated in
Figure 1(b). Figure 1(c) shows the latitudinal component of
the circulation in units of U0.

The boundary conditions represent a perfect conductor at the
bottom and the potential magnetic field configuration outside
the domain.

2.2. Method of Solution

We investigate the linear stability of the dynamo equations (3)
and (4) and determine unstable dynamo modes. Then we
construct linear dynamo solutions using the corresponding
eigenfunctions. Our approach to solving the linear problem was
described in detail by Pipin & Seehafer (2009) and Seehafer
& Pipin (2009). We use a Galerkin method, expanding the
magnetic field in terms of a basis that satisfies the boundary
conditions (Boyd 2001; Livermore & Jackson 2005). The system
of Equations (3) and (4) has exponentially growing or decaying
solutions, which we represent in the form

A(x, θ, t) = eσ t
∑

n

∑
m

Anm sin θ S(A)
nm (ξ )P 1

m(cos θ ), (8)
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(a)

(d) (e)

(b) (c)

Figure 1. Internal parameters of the solar convection zone: (a) the contours of angular velocity are plotted for the levels (0.75–1.05)Ω0 with a step of 0.025Ω0,
Ω0 = 2.86 × 10−7 s−1; (b) the vector field of the meridional circulation with |U| measured in units of U0; (c) the meridional component of circulation at θ = 45◦;
(d) turnover convection time τc , the background turbulent diffusivity η

(0)
T , and rms convective velocity U ′

c; and (e) the radial profiles of the α-effect components at
θ = 45◦.

B(x, θ, t) = eσ t
∑

n

∑
m

BnmS(B)
n (ξ )P 1

m(cos θ ), (9)

where S(A)
nm (ξ ) and S(B)

n (ξ ) are linear combinations of Legen-
dre polynomials, and P 1

m is the associated Legendre function of
degree m and order 1. These expansions ensure the regularity
of the solutions at the poles θ = 0 and θ = π . The integra-
tions in radius and latitude, which are needed for calculating the
expansion coefficients Anm and Bnm, are done by means of the
Gauss–Legendre procedure. The eigenvalue problem for deter-
mining the eigenvalues, σ , and the associated eigenfunctions is
solved by using the LAPACK software. There are two types of
dynamo eigenmodes: (1) modes with a symmetric distribution
of the toroidal component B and antisymmetric distribution of
the poloidal component A, relative to the equator, called here
“S-modes,” and (2) vice versa, modes with antisymmetric A and
symmetric B, called “A-modes.” We define the eigenvalues of
the S- and A-modes as σ (S) = λ(S)+iω(S) and σ (A) = λ(A)+iω(A),
respectively. The spectral resolution of our calculations was 16
radial and 25 latitudinal basis functions. The results are quali-
tatively confirmed by a number of runs with a larger number of
basis functions.

3. RESULTS

We calculate the dynamo solutions for a relatively low level
of the background turbulent diffusivity, choosing Cη = 0.1,
in order to approximately match the period of the eigenmodes

with the solar cycle period. This corresponds to the maximum
background diffusivity ∼108 m2 s−1. Figure 2 (left column)
shows the linear stability diagrams for the dynamo models
with meridional circulation speed values equal to U0 = 8, 12,
and 16 m s−1. The growth rate λ(A) = Re(σ (A)) of the first,
most unstable, dynamo mode (A-mode) is shown by the gray-
scale plots in the (Cα,Cδ) plane, where Cα and Cδ are the free
parameters that control the strength of the α- and Ω×J -effects.
We find that the dynamo instability region (represented by white
color) changes significantly with the increase in the meridional
circulation speed. For the slow meridional circulation, it is
found that the first A-mode is stable and steady in the absence
of the α-effect (Cα = 0). It has an excitation threshold of
Cδ ≈ 0.013. In the opposite limit, when Cδ = 0, the first
mode is stable and oscillating. Its oscillation frequency grows
with the increase in the α-effect parameter Cα . The excitation
threshold is Cα ≈ 0.025. The oscillation frequency of the mode
at the threshold is about 8η

(0)
T /R2

�.
The right column in Figure 2 shows the growth rate

of the first A-mode relative to the first S-mode. The rela-
tive difference is characterized by the parameter Δλ/λ =
(|λ(A)| − |λ(S)|)/(|λ(A)| + |λ(S)|). This helps to identify the re-
gions in the parameter space (Cα,Cδ) where the A-mode domi-
nates the S-mode. We find that in the case of U0 = 8 m s−1 the
A-mode is dominant for Cα � Cδ . In this regime we look for
a solar-type dynamo solution, because in the solar dynamo the
toroidal magnetic field is of A-type (antisymmetric relative to
the equator).
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Figure 2. Left column shows the linear stability diagrams for the dynamo models with meridional circulation speed U0 = 8, 12, and 16 m s−1, from the top to the
bottom panel. The gray scale shows the growth rate of the most unstable A-mode, λ(A). The contours show the oscillation frequency, ω(A), of this mode in units of

η
(0)
T /R2�. Right column shows the relative growth rates of the corresponding A- and S-modes: Δλ

λ
= |λ(A)|−|λ(S)|

|λ(A)|+|λ(S)| , where the S-mode represents a dynamo solution with

the toroidal field symmetrical relative to the equator, and the A-mode has the antisymmetric toroidal field. The A-mode dominates in the regions colored in white.

As an example, we examine the case of Cδ = 0, Cα ≈ 0.025
when the first A-mode has frequency ≈ 8η

(0)
T /R2

�. Figure 3
shows the snapshots of the magnetic field variation inside
the convection zone (top) and the time–latitude “butterfly”
diagram for this mode (bottom). The snapshots show that
the toroidal magnetic field is concentrated at the bottom
of the convection zone, and the poloidal field is concentrated
in the polar regions. Also, the toroidal magnetic field is globally
distributed in the bulk of the convection zone. The maximum
of the toroidal field distribution drifts to the equator at the bot-
tom of the convection zone and moves to the pole near the
surface. The bottom panel of Figure 3 shows the butterfly dia-
grams of the toroidal field at the bottom of the convection zone
(gray-scale background) and of the radial magnetic fields at the
surface (contour lines). The toroidal magnetic field evolution

pattern has the polar and equatorial branches. The equatorial
branch is strongly concentrated in the equator. The phase re-
lation between the radial magnetic field in the polar regions
and the toroidal field in the equatorial regions is in agreement
with observations of the polar magnetic field and the sunspot
butterfly diagram, assuming that sunspots are formed by the
emerging toroidal magnetic field. However, this dynamo mode
lacks the equatorial branch of the large-scale radial magnetic
field, which is also found in observations. The period of the
dynamo is about 12 years. This is half the period of the solar
magnetic cycle. The period can be increased by further decreas-
ing the diffusivity parameter Cη by a factor of two (Cη ≈ 0.05).
However, this leads to a decrease of the excitation thresh-
old and an increase of the effective magnetic Reynolds num-
ber (RM = U0R�/ηT ). This means that the S-mode becomes

4



The Astrophysical Journal, 738:104 (8pp), 2011 September 1 Pipin & Kosovichev

TIME, [YR]

Figure 3. Evolution of the magnetic field (shown in non-dimensional units) in the dynamo model with meridional flow speed U0 = 8 m s−1 and Cα = 0.025 and
Cδ = 0. Top: the snapshots for the magnetic field variations inside the convection zone. The gray-scale background shows distributions of the large-scale toroidal
field and contours show the poloidal field lines. Bottom: the time–latitude (“butterfly”) diagram for the toroidal magnetic field at the bottom of the convection zone is
shown by the gray-scale density plot. The radial field that varies within ±0.08 (in non-dimensional units) is shown by contours.

dominant, and the solution no longer corresponds to the solar
dynamo. Figure 2 shows that for the case of U0 = 16 m s−1 the
S-mode dominates.

Inspecting the results in Figure 3, we can conclude that the
increase in the meridional circulation speed has two main effects
on the dynamo instability. First, the larger the U0, the larger the
unstable area in the (Cα,Cδ) space, occupied by the first unstable
A-mode (associated with a non-oscillating dynamo solution).
Second, the S-mode becomes dominant near the instability
threshold everywhere, both for the case of Cδ = 0 and arbitrary
Cα and for the case of arbitrary Cδ and Cα = 0. The combination
of the α- and Ω×J -effects can make the A-mode dominant, but
it represents a non-oscillating dynamo solution.

In another example, we examine the model when the poloidal
field is generated both by the α-effect and the Ω × J -effect,
e.g., Cα = Cδ = 0.015 and U0 = 8 m s−1. The oscillation
frequency of the first unstable A-mode is about 4η

(0)
T /R2

�. Near
the excitation threshold, the A-mode is highly dominant over
the first S-mode. Figure 4 shows the snapshots of the magnetic
field variations inside the convection zone (top) and the butterfly
diagram for this mode (bottom). The snapshots of the magnetic
field evolution inside the convection zone are similar to those in
the previous case. However, the toroidal magnetic field is more
strongly concentrated at the bottom of the convection zone,
and the polar branch of the toroidal magnetic field evolution
is weaker near the surface. The period of the dynamo wave is
about 24 years, close to the solar cycle. Generally, we see a
significantly better agreement with observations here than seen
in the previous case.

In Figure 5 the dependence of the dynamo wave period on
the speed of the meridional flow along the stability threshold
is shown. Contrary to previous results (e.g., Bonanno et al.
2002; Seehafer & Pipin 2009) the period is not a monotonic
function of the flow velocity. The main reason is that here we
use the meridional circulation with a different depth dependence.
We confirm how the results presented may depend on the
distribution of the α-effect. For this, we switched off the

effects of the turbulent mixing stratification, making Λ(u) = 0
in Equation (A1). The dynamo period as a function of the
meridional flow speed for this case is shown in Figure 5 (right).
We find that the dependence of the dynamo period on the flow
speed is much stronger in the case Λ(u) = 0 for both types of
dynamos.

4. DISCUSSION AND CONCLUSIONS

We have studied kinematic axisymmetric mean-field dynamo
models for a meridional circulation pattern with a deep-seated
stagnation point. This kind of circulation is suggested by the
mean-field models of the angular momentum balance in the
solar convection zone. We show that by adjusting the turbulent
sources of the poloidal magnetic field generation and the
turbulent diffusion strength, it is possible to construct a mean-
field dynamo model that resembles in some aspects the solar
magnetic cycle. The most important features of the investigated
models are the following.

The maximum strength of the toroidal magnetic field, which
is believed to be responsible for sunspot production, is con-
centrated near the bottom of the convection zone. This field is
transported to the equatorial regions by the meridional flow. The
meridional component of the poloidal field is also concentrated
at the bottom of the convection zone. The large-scale radial
field is concentrated near the poles. It reverses sign when the
maximum of the toroidal field gets close to the equator. This
is not quite consistent with solar observations, which show that
the polar field reversals happen earlier in the cycle. A similar
result is demonstrated in the kinematic flux-transport model by
Rempel (2006). His model has a qualitatively similar meridional
circulation pattern, and the speed at the bottom of the convection
zone is half that in our case. We believe that this feature (the
phase relation) is inherent for this type of meridional flow, which
produced a conveyor-belt-like circulation of the magnetic field
(Dikpati et al. 2004). The equatorward and poleward conveyor
bands are not well connected in our case because circulation is
quite weak in the bulk of the convection zone.
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TIME, [YR]

Figure 4. Same as Figure 3 for a dynamo with Cα = Cδ = 0.015. In the butterfly diagram, the radial magnetic field at the surface varies within ±0.035, and the
toroidal field varies within ±2 (in non-dimensional units).

Figure 5. Dependence of the dynamo period on the meridional flow speed U0 along the stability boundary of the most unstable dipolar mode for the dynamo models
with the Ω × J -effect (solid line) and without it (dashed line). Left: results for a complete α-effect. Right: results for the α-effect without turbulence stratification,
Λ(u) = 0 (see Equation (A1)).

We find that including the combined action of the α- and
Ω × J -effects for the poloidal magnetic field generation im-
proves the agreement of the basic properties of the model with
observations. Compared to the standard αΩ dynamo, the inclu-
sion of the Ω × J -effect increases the cycle period and the ratio
between the maximum of the toroidal magnetic field strength
and the strength of the large-scale radial magnetic field in the
polar regions. Furthermore, in the model with the Ω × J -effect,
the large-scale toroidal field comes closer to the equator. The
toroidal magnetic field in the equatorial branch of the “butter-
fly” diagram is much stronger than the toroidal field in the polar
branch. These properties bring the models with the Ω×J -effect
into better agreement with observations. The linear stability di-
agrams show that for unstable modes the growth rate of the
A-mode (antisymmetric toroidal field relative to the equator)
over the S-mode (symmetric mode) is generally higher when
the Ω × J -effect is included. This fact can be invoked to ex-
plain the dominance of the antisymmetric toroidal fields in the
solar cycle.

Our models show a strong concentration of the toroidal
field in the bottom of the convection zone. How this type of
dynamo can operate with regard to the magnetic buoyancy

effects (Parker 1984) and nonlinear effects due to magnetic
helicity conservation (Brandenburg & Subramanian 2005) must
be checked by nonlinear model calculations. In our linear
models, we cannot give the amplitude of the magnetic field
strength in Gauss but we can estimate the ratio between the
strength of the toroidal and poloidal components of the large-
scale magnetic field. In the model with the Ω × J -effect (case
Cα = Cδ = 0.015), we found that this ratio is about 60.

Contrary to the usual expectations that come from the results
of the flux-transport dynamo model, we find that the period of
the dynamo cycle does not always become shorter when the
speed of the meridional circulation increases. In our model, this
rule works for flow amplitude greater than 3 m s−1 in the case
of the α2Ω dynamo with the α-effect dependent on the density
stratification, and for flow amplitude greater than 8 m s−1 in
the case of the α2δΩ dynamo (which includes the Ω ×J -effect)
with the α-effect dependent on both the density and the turbulent
diffusivity stratification. The dependence of the dynamo period
on the flow amplitude is much stronger if the α-effect does not
depend on the turbulence intensity stratification (Λ(u) = 0).

Thus, by measuring the distributions of the magnetic activ-
ity and meridional circulation characteristics on the Sun and
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possibly on other cool stars, we may get indirect information
about the contribution of the Ω×J -effect to the dynamo as well
as about the relative contributions to the α-effect due to density
and turbulent diffusivity stratifications.

We conclude that the meridional flow pattern and speed
have to be considered among the most important constraints
on the stellar dynamo. Our results show the possibility of using
helioseismic observations of the meridional circulation for the
diagnostics of the solar dynamo, because the dynamo properties
depend significantly on the depth of the flow stagnation point.

This work was supported by NASA LWS TR&T grants
NNX09AJ85G and NNX09AT36G, and partially by RFBR
grant 10-02-00148-a.

APPENDIX

Here we describe the components of the mean electromotive
force that are used in the model. The tensor αi,j represents the
turbulent α-effect, and in accordance with Pipin (2008) it is
given by

αij = δij

{
3ηT

(
f

(a)
10 (e · �(ρ)) + f

(a)
11 (e · �(u))

)}
+ eiej

{
3ηT

(
f

(a)
5 (e · �(ρ)) + f

(a)
4 (e · �(u))

)}
+ 3ηT

{(
eiΛ(ρ)

j + ej Λ(ρ)
i

)
f

(a)
6 + (eiΛ(u)

j + ej Λ(u)
i )f (a)

8

}
.

(A1)

The tensor γi,j describes the turbulent pumping

γij = 3ηT

{
f

(a)
3 Λ(ρ)

n + f
(a)
1 (e · �(ρ))en

}
× εinj − 3ηT f

(a)
1 ej εinmenΛ(ρ)

m , (A2)

and the term ηijk describes the anisotropic diffusion due to the
Coriolis force and the Ω × J -effect (Rädler 1969),

ηijk = 3ηT

{(
2f

(a)
1 − f

(d)
1

)
εijk − 2f

(a)
1 eienεnjk + f

(d)
4 δij ek

}
.

(A3)
The functions f

(a,d)
{1–11} (given below) depend on the Coriolis

number Ω∗ = 2τcΩ0, and the typical convective turnover
time in the mixing-length approximation is τc = 	/u′. The
turbulent diffusivity is parameterized in the form ηT = Cηη

(0)
T ,

where η
(0)
T = u′	

3 is the characteristic mixing-length turbulent
diffusivity, u′ is the rms convective velocity, 	 is the mixing
length, and Cη is a constant to control the intensity of turbulent
mixing. The background turbulence is a state of turbulent
flows in the absence of the mean magnetic fields and global
rotation. The other quantities in Equations (A1), (A2), and (A3)
are as follows: �(ρ) = ∇ log ρ is the density stratification
scale, �(u) = ∇ log(η(0)

T ) is the scale of turbulent diffusivity,
and e = �/|Ω| is a unit vector along the axis of rotation.
Equations (A1), (A2), and (A3) take into account the influence of
the fluctuating small-scale magnetic fields which can be present
in the background turbulence (see discussions in Frisch et al.
1975; Moffatt 1978; Vainshtein & Kitchatinov 1983; Kleeorin
et al. 1996; Brandenburg & Subramanian 2005). In our paper,
the parameter ε = b2

μ0ρu2
, which measures the ratio between the

magnetic and kinetic energies of fluctuations in the background
turbulence, is assumed to be equal to 1. This corresponds to
energy equipartition.

Below, we give the functions of the Coriolis number defin-
ing the dependence of the turbulent transport generation and
diffusivities on the angular velocity:

f
(a)
1 = 1

4Ω∗ 2

(
(Ω∗ 2 + 3)

arctan Ω∗

Ω∗ − 3

)
,

f
(a)
3 = 1

4Ω∗ 2

(
((ε − 1)Ω∗ 2 + ε − 3)

arctan Ω∗

Ω∗ + 3 − ε

)
,

f
(a)
4 = 1

6Ω∗ 3

(
3(Ω∗4 + 6εΩ∗2 + 10ε − 5)

arctan Ω∗

Ω∗

−((8ε + 5)Ω∗2 + 30ε − 15)

)
,

f
(a)
5 = 1

3Ω∗ 3

(
3(Ω∗4 + 3εΩ∗2 + 5(ε − 1))

arctan Ω∗

Ω∗

−((4ε + 5)Ω∗2 + 15(ε − 1))

)
,

f
(a)
6 = − 1

48Ω∗ 3

(
3((3ε − 11)Ω∗2 + 5ε − 21)

arctan Ω∗

Ω∗

−(4(ε − 3)Ω∗2 + 15ε − 63)

)
,

f
(a)
8 = − 1

12Ω∗ 3

(
3((3ε + 1)Ω∗2 + 4ε − 2)

arctan Ω∗

Ω∗

−(5(ε + 1)Ω∗2 + 12ε − 6)

)
,

f
(a)
10 = − 1

3Ω∗ 3

(
3(Ω∗2 + 1)(Ω∗2 + ε − 1)

arctan Ω∗

Ω∗

−((2ε + 1)Ω∗2 + 3ε − 3)

)
,

f
(a)
11 = − 1

6Ω∗ 3

(
3(Ω∗2 + 1)(Ω∗2 + 2ε − 1)

arctan Ω∗

Ω∗

−((4ε + 1)Ω∗2 + 6ε − 3)

)
.

f
(d)
1 = 1

2Ω∗ 3

×
(

(ε + 1)Ω∗ 2 + 3ε − ((2ε + 1)Ω∗ 2 + 3ε)
arctan(Ω∗)
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)
,

f
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)
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Krause, F., & Rädler, K.-H. 1980, Mean-Field Magnetohydrodynamics and

Dynamo Theory (Berlin: Akademie-Verlag)
Livermore, P. W., & Jackson, A. 2005, Geophys. Astrophys. Fluid Dyn., 99,

467
Miesch, M. S., Brown, B. P., Browning, M. K., Brun, A. S., & Toomre, J. 2010,

arXiv:1009.6184
Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ, 641, 618
Moffatt, H. K. 1978, Magnetic Field Generation in Electrically Conducting

Fluids (Cambridge: Cambridge Univ. Press)

Parker, E. N. 1955, ApJ, 122, 293
Parker, E. N. 1984, ApJ, 281, 839
Pipin, V. V. 2008, Geophys. Astrophys. Fluid Dyn., 102, 21
Pipin, V. V., & Seehafer, N. 2009, A&A, 493, 819
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