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ABSTRACT

The paper presents a study of a solar dynamo model operating in the bulk of the convection zone with the toroidal
magnetic field flux concentrated in the subsurface rotational shear layer. We explore how this type of dynamo may
depend on spatial variations of turbulent parameters and on the differential rotation near the surface. The mean-field
dynamo model takes into account the evolution of magnetic helicity and describes its nonlinear feedback on the
generation of large-scale magnetic field by the α-effect. We compare the magnetic cycle characteristics predicted by
the model, including the cycle asymmetry (associated with the growth and decay times) and the duration–amplitude
relation (Waldmeier’s effects), with the observed sunspot cycle properties. We show that the model qualitatively
reproduces the basic properties of the solar cycles.
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1. INTRODUCTION

Sunspot activity is organized on large scales, forming the
Maunder butterfly diagram. It is believed to represent the
time–latitude pattern of the large-scale toroidal magnetic field
generated in the convection zone. Another component of solar
activity is represented by the global poloidal magnetic field
extending outside the Sun and shaping the solar corona. Both
components synchronously evolve as the solar 11 year cycle
progresses. The global poloidal field reverses the sign in the
polar regions near the time of maxima of sunspot activity. Most
of the current solar dynamo models suggest that the toroidal
magnetic field that emerges on the surface and forms sunspots
is generated near the bottom of the convection zone, in the
tachocline or just beneath it in a convection overshoot layer
(see, e.g., Ruediger & Brandenburg 1995; Choudhuri et al. 1995;
Tobias & Weiss 2007; Parker 1993). The belief in a deep-seated
solar dynamo comes from the fact that this region is sufficiently
stable to store magnetic flux despite the magnetic flux-tube
buoyancy effect. However, observations of rotation rates of
emerging magnetic flux within the latitude bands ±30◦ support
a concept of relatively shallow sunspots (Benevolenskaya et al.
1999) possibly rooted within the subsurface rotational shear
layer. This concept has support from local helioseismology as
well (Birch 2011).

There are further theoretical arguments that the subsurface
angular velocity shear can play an important role in the dy-
namo process distributed in the convection zone (Brandenburg
2005). In our previous paper (Pipin & Kosovichev 2011, here-
after PK11) we proposed a model of a subsurface-shear shaped
solar αΩ dynamo. Our model shows that allowing the large-
scale toroidal magnetic field to penetrate into the surface layers
of the Sun changes the direction of the latitudinal migration
of the toroidal field belts and produces the magnetic butterfly
diagram in a good qualitative agreement with the solar-cycle
observations. The dynamo wave penetrates close to the sur-
face and propagates along isosurfaces of the angular velocity
in the subsurface rotational shear layer in agreement with the

Parker–Yoshimura rule (Yoshimura 1975). The standard bound-
ary condition typically used in dynamo theories is to match the
internal solution to the potential magnetic field extending out-
side of the dynamo region. This boundary condition does not
allow to the toroidal component to penetrate to the surface.

In our previous model the penetration of toroidal magnetic
fields to the surface was modeled by a special boundary
condition at the top of the dynamo region. This boundary
condition was formulated as a linear combination of vacuum
(potential field) and perfectly conducting plasma conditions.
The perfectly conducting part results in an increase of the
toroidal component of the large-scale magnetic field at the
boundary. Such boundary condition, used in PK11, models a
partial penetration of the toroidal field into the solar atmosphere,
but from the physical point of view such formulation is rather
artificial. The penetration to the surface can be modeled more
physically by extending the computational domain close to the
surface and using the magnetic diffusivity profile that follows
from the standard solar interior model. This diffusivity decreases
toward to the surface and results in increasing of the toroidal
magnetic field in that direction (and an increase of the gradient
of the toroidal magnetic field as well). The decrease of the
turbulent diffusivity, ηT ∼ 1

3u′�, (where u′ is the convective
rms velocity and � is the mixing length) is predicted by the
mixing-length theory of the solar interior. This motivates us
to extend the integration domain from (0.71 ÷ 0.97) R�, used
in PK11, to (0.71 ÷ 0.99) R�. The convection model of Stix
(2002) predicts that toward to the surface the mixing length,
�, decreases much faster than u′ increases. Figure 1(c) shows
the radial profile of the turbulent diffusivity in the convection
zone model. In this paper we study how the sharp decrease of
the magnetic diffusivity influences the strength and distribution
of the toroidal field in the upper layers of the convection zone.

There is another reason for extending the integration domain
closer to the surface. In the near-surface layers the density
stratification gradient is very strong compared with the bulk
of the convection zone. The mean-field theory predicts a
downward turbulent drift of the large-scale magnetic field in
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Figure 1. Parameters of the solar convection zone: (a) contours of the constant angular velocity plotted in the range (0.75–1.05)Ω0 with a step of 0.025Ω0,
Ω0 = 2.86 × 10−7 s−1; (b) turnover convection time τc and the rms convective velocity u′

c; (c) the background turbulent diffusivity η
(0)
T profiles: the solid curve shows

the profile of the Stix (2002) model, and the dashed and dotted curves show models with the reduced and increased subsurface diffusivities discussed in Section 3.1;
(d) the radial (thick lines) and the latitudinal (thin lines) turbulent pumping velocities at θ = 45◦ for models P1 (solid curves) and P2 (dashed curves), see Table 1.

the presence of the density stratification gradient (Kitchatinov
1991; similar results were obtained by Pipin 2008). The effective
downward drift of large-scale magnetic field results from
magnetic fluctuations in the stratified turbulence. It can be
interpreted as follows (see Kitchatinov 1991). The intensity of
the magnetic fluctuations b2 = μ0ρ̄u′2 (ρ is the mean density)
rises in the direction of the density gradient because the turbulent
rms velocity varies slower than ρ. Random Lorenz forces, which
are induced by small-scale magnetic fields b and large-scale
field B, produce fluctuating flows u′ ≈ (∇×b)×B

μρ
τc. The resulted

electromotive force u′ × b is perpendicular to the large-scale
field. This can be interpreted as an effective downward velocity
drift of the large-scale magnetic field (Kitchatinov 1991). The
theory also predicts that this kind of turbulent pumping is
quenched by the influence of the Coriolis force, which results in
the velocity of the effective drift to be greatest near the surface
where the density stratification is strong. Thus, qualitatively,
this effect works similarly to so-called topological pumping
(Drobyshevski & Yuferev 1974).

Our study includes an equation of the magnetic helicity
evolution, proposed by Kleeorin & Ruzmaikin (1982) and
Kleeorin & Rogachevskii (1999). This equation describes the
balance between the small-scale turbulent magnetic helicity and
the large-scale magnetic helicity generated by the dynamo pro-
cess, and has been used in many previous dynamo studies (e.g.,
Brandenburg & Subramanian 2005, and references therein). One
of our goals is to explore nonlinear feedback of the magnetic he-
licity on the basic properties of sunspot cycles, e.g., the relation-
ship between the rise and decay times, and between the length
and strength of the cycles. The results for a dynamo model in

a single-mode approximation (Kitiashvili & Kosovichev 2009,
2010) have suggested the importance of the nonlinear magnetic
helicity effects for the solar-cycle behavior. The next section
describes the formulation of the two-dimensional mean-field
dynamo model, including the basic assumptions, the reference
model of the solar convection zone, and input parameters of the
large-scale flows. Section 3 presents the results and discussion.
The main findings are discussed in Section 4.

2. BASIC EQUATIONS

The dynamo model is based on the standard mean-field
induction equation in turbulent perfectly conducting media
(Krause & Rädler 1980):

∂B
∂t

= ∇ × (E+U × B),

where E = u × b is the mean electromotive force, with u, b
being the turbulent fluctuating velocity and magnetic field,
respectively; U is the mean velocity. General expression for
E was obtained by Pipin (2008, hereafter P08). Following
Krause & Rädler (1980), we write the expression for the mean
electromotive force as follows:

Ei = (
αij + γij

)
Bj − ηijk∇jBk. (1)

Tensor αi,j represents the alpha effect, including the hy-
drodynamic and magnetic helicity contributions, αij =
Cαψα(β) sin2 θα

(H )
ij + α

(M)
ij , where the hydrodynamical part of

the α-effect, α
(H )
ij , and the quenching function, ψα , are given

in the Appendix (see also in Pipin & Kosovichev 2011) and
the parameter Cα controls the amplitude of the α-effect. The
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Table 1
Parameters and Characteristics of the Dynamo Models

Model Cα Rχ
ηT |0.99 R�
max(ηT ) r�(ρ)

min

〈
Bφ

〉
SL, (G) BPolar

r , AW Period
(G) (yr)

P1 −160 1000 7.2 0.74 13.4
P2 0.03 . . . 0.245 −30 450 3.5 0.94 11.4
P3 0 60 0.15 0.89 8.6

D1 0.645 450 3.6 0.78 10.7
0.03 . . . −160

D2 0.091 1600 14.4 0.68 15.2

CQ1 5·104 Catastrophic Quenching

CQ2 0.03 103 0.245 −160 66 0.3 0.71 11.74
CQ3 102 152 3.6 0.59 11.17

0.03, 0.04 203, 294 1.1, 1.8 0.68, 0.54 11.35, 10.60
WR1 50 0.245 −160

0.05, 0.06 351, 396 2.3, 2.6 0.5, 0.42 10.15, 9.67

0.03, 0.04 152, 220 0.8, 1.3 0.59, 0.53 11.17, 10.44
WR2 100 0.245 −160

0.05, 0.06 266, 302 1.8, 2.0 0.49, 0.39 9.80, 9.33

0.03, 0.04 102, 150 0.5, 0.9 0.57, 0.50 11.10, 10.40
WR3 200 0.245 −160

0.05, 0.06 182, 206 1.2, 1.4 0.44, 0.38 9.80, 9.27

Notes. The α-effect parameter Cα ; parameter Rχ controls the helicity dissipation rate;
ηT |0.99 R�
max(ηT ) is the ratio between the maximum background turbulent diffusivity

and the value at the top boundary (in the reference model of Stix 2002, this value is 0.245); r�(ρ)
min is the minimum of the density gradient height at the top;

〈
Bφ

〉
SL

is the maximum strength of the toroidal magnetic field averaged in the range of 0.95–0.99 R�; BPolar
r is the maximum strength of the radial polar magnetic field at

0.99 R�; CW is a calibration coefficient used for calculation of the sunspot number parameter; AW is the sunspot number asymmetry parameter obtained in the models;
Period is the period of sunspot cycles from the dynamo models.

hydrodynamic α-effect term is multiplied by sin2 θ (θ is colati-
tude) to prevent the turbulent generation of magnetic field at the
poles. The contribution of the small-scale magnetic helicity χ =
a·b (a is a fluctuating vector-potential of magnetic field) to the
α-effect is defined as α

(M)
ij = C

(χ)
ij χ , where coefficient C

(χ)
ij de-

pends on the turbulent properties and rotation, and is given in the
Appendix. The other parts of Equation (1) represent the effects
of turbulent pumping, γij , and turbulent diffusion, ηijk . They are
the same as in PK11 and are also described in the Appendix.

The nonlinear feedback of the large-scale magnetic field to
the α-effect is described as a combination of an “algebraic”
quenching by function ψα (β) (see the Appendix and PK11), and
a dynamical quenching due to the magnetic helicity conservation
constraint. The magnetic helicity, χ , subject to a conservation
law, is described by the following anzatz (Kleeorin & Ruzmaikin
1982; Kleeorin & Rogachevskii 1999):

∂χ

∂t
= −2

(
E·B

) − χ

Rχτc

, (2)

where τc is a typical convection turnover time. Parameter Rχ

controls the helicity dissipation rate without specifying the
nature of the loss. Generally, we can expect that the formulation
of the helicity loss term in Equation (2) affects properties of
the dynamo solutions. This is suggested by results that can be
found in the literature (Brandenburg et al. 2007; Mitra et al.
2010; Guerrero et al. 2010; Mitra et al. 2011). The physics
of helicity loss is poorly understood, and the influence of the
various processes of the helicity flux loss on the properties of
magnetic cycles deserves a separate study. To reduce the number
of free parameters in the model, we consider the simplest form
of helicity flux loss. The parameter Rχ controls the amount of
the magnetic flux generated by the dynamo. This amount can be

roughly estimated from observations. We use the range of Rχ

that gives the total magnetic flux of the order of ≈1024–1025 Mx
in agreement with observations (Schrijver & Harvey 1994).
Another parameter controlling the helicity dissipation in our
model is τc. It is given by the solar interior model. It seems to
be reasonable that the helicity dissipation is most efficient in
the near-surface layers because of the strong decrease of τc (see
Figure 1(b)).

We use the solar convection zone model computed by
Stix (2002), in which the mixing length is defined as � =
αMLT|Λ(p)|−1, where �(p) = ∇ log p is the pressure variation
scale and αMLT = 2. The turbulent diffusivity is parameterized
in the form, ηT = Cηη

(0)
T , where η

(0)
T = u′�

3 is the characteristic
mixing-length turbulent diffusivity, � and u′ are the typical
correlation length and rms convective velocity of turbulent
flows, respectively, and Cη is a constant to control the intensity
of turbulent mixing. In the paper we use Cη = 0.05. The
differential rotation profile, Ω = Ω0fΩ(x, μ), x = r/R�,
μ = cos θ is a modified version of an analytical approximation
to helioseismology data, proposed by Antia et al. (1998), see
Figure 1(a).

We use the standard boundary conditions to match the
potential field outside and the perfect conductivity at the bottom
boundary. As discussed above, the penetration of the toroidal
magnetic field in to the near-surface layers is controlled by
the turbulent diffusivity and pumping effect (see Figures 1(c)
and (d)).

3. RESULTS

We summarize the parameters and characteristics of the
dynamo models in Table 1. For simulating the sunspot number
obtained from solar observations we use the relation suggested

3



The Astrophysical Journal, 741:1 (9pp), 2011 November 1 Pipin & Kosovichev
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Figure 2. Illustration of the influence of the magnetic pumping effect (models P1, P2, and P3 in Table 1). Time–latitude diagrams of the toroidal magnetic field
averaged over the depth range 0.95–0.99 R� (gray scale) and the radial field at r = 0.99 R� (shown by contours), for three cases of turbulent pumping: (a) model
P1: the density gradient profile provided by the Stix (2002) model, the radial field varies in range ±21 G; (b) model P2: the density gradient effect is restricted as
suggested by Kitchatinov et al. (2000), the radial field varies in range ±14.5 G; and (c) model P3: the pumping effect due to the density gradient is neglected, the
radial field varies in range ±1.4 G.

by Bracewell (1988):

W (t) = CW max
(∣∣〈B(r, θ, t)〉0.95−0.99R

∣∣ , 0 < θ < 180
)3/2

,
(3)

where B is the toroidal magnetic field strength and CW
is the calibration coefficient, we use CW = 1/40. We de-
fine the asymmetry parameter of the cycle as the ratio be-
tween the modulus of the mean decay rate and mean rise rate,

AW = ∂tW |∂t W>0

|∂tW ||∂t W<0
. The simulations were started from initial states

with zero toroidal magnetic field and weak poloidal field that is
symmetric about the equator. The solution is found by a semi-
implicit method using a finite-difference approximation in ra-
dius and a pseudospectral decomposition in terms of Legendre
polynomials in latitude. The numerical scheme conserves the
parity of solution with respect to the equator. The characteris-
tics of the dynamo models were determined from the stationary
periodic solutions.

3.1. Effects of the Near-surface Diffusion
and Turbulent Pumping

In this part of the paper we fix the α-effect parameter
Cα = 0.03 (the dynamo instability threshold is Cα ≈ 0.02).
In the near-surface layers the Coriolis number is rather small.
Therefore, the turbulent pumping primarily depends on the
density gradient �(ρ) and diffusion coefficient ηT . The gradient
parameter r�(ρ) varies from ≈−7 at r = 0.71 R� to ≈−160
at r = 0.99 R�. To illustrate the influence of the pumping
effect on the dynamo model solution we examine three different

cases (P1, P2, and P3 in Table 1). Model P1 employs the
density gradient profile provided by the Stix (2002) model.
In model P2, we introduce an artificial limit on the level of
rΛ(ρ) = −30 suggested by Kitchatinov et al. (2000). In model
P3, we completely neglect the pumping effect. Profiles of the
radial and the latitudinal pumping velocities at θ = 45◦ for
models P1 and P2 are shown in Figure 1(d). Note that compared
with the plotted values the amplitude of the velocities in the
models is reduced by factor Cη = 0.05.

The time–latitude toroidal magnetic field “butterfly” dia-
grams, which were averaged over the depths from r = 0.95 R�
to r = 0.99 R�, and the radial magnetic field evolution
at r = 0.99 R� for models P1, P2, and P3 are shown in
Figure 2. We find that the larger amplitude of the downward tur-
bulent pumping results in the greater strength of the near-surface
toroidal magnetic field. The turbulent pumping increases the ef-
ficiency of the subsurface shear generation effect. This leads
to a faster migration rate of the toroidal magnetic field to the
equator (see Yoshimura 1975).

A similar effect can be produced by changing the turbulent
diffusivity profile near the surface. In Figure 3 we show the
results for two cases of the increased (D1) and decreased (D2)
turbulent diffusivity (Figure 1(c)). The diagrams for these two
cases can be compared with the reference Stix’s model P1 in
Figure 2(a). The smaller the surface turbulent diffusivity level,
the greater toroidal magnetic field strength. In the reference
case the typical magnetic field strength is ∼1 kG. If the surface
turbulent diffusivity is three times smaller, the field strength
increases to ∼1.6 kG; if the diffusivity is two times larger,
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(a) (b)

(c) (d)

Figure 3. Left column: the same as in Figure 2 for the larger (top) and smaller (bottom) subsurface turbulent diffusivity, models D1 and D2 respectively. Right column:
the simulated sunspot number, see definition in the text.

then the field strength is only about ∼450 G. The inclination
of the toroidal field patterns migrating toward the equator
(latitudinal migration speed) does not change considerably with
the changes of the turbulent diffusivity profile. However, when
the surface turbulent diffusivity is smaller, the toroidal magnetic
field migrates closer to the equator, and the cycle becomes
longer.

For simulating the sunspot number obtained from solar
observations, we use the relation motivated by Bracewell (1988),
see Equation (3). The estimated sunspot number for the models
with the increased and decreased subsurface turbulent diffusivity
is shown in Figure 3 (right panels). The asymmetry between
the rise and decay phases is clearly seen for the model with
the decreased surface turbulent diffusivity. In the mean-field
dynamo concept the decay phase of the large-scale toroidal
magnetic field is defined by turbulent diffusion (Parker 1979).
The decrease of the surface turbulent diffusivity increases the
decay time when the toroidal field is located closer to the surface.

3.2. Magnetic Helicity Effect and the Waldmeier’s Relations

The evolution of magnetic helicity based on the conservation
law is described by Equation (2). Without helicity fluxes from
the dynamo domain (Kleeorin et al. 2000; Vishniac & Cho
2001) or in the absence of helicity dissipation, the generation of
magnetic helicity by dynamo leads to “catastrophic quenching”
of the α-effect, which stops the dynamo process (see, e.g.,
Vainshtein & Cattaneo 1992; Kleeorin et al. 2000; Brandenburg
& Subramanian 2005). In our model the dissipation of magnetic
helicity is described by a decay term: − χ

Rχτc
. We illustrate the

catastrophic quenching in dynamo model CQ1 in Figure 4,
which shows the results for Rχ = 5 × 104. In this case,
the rate of the helicity loss from the Sun is small, and the
dynamo process stops after 3–4 periods (two magnetic cycles).
The time–latitude diagram for the current helicity, which is
estimated as hC = b·∇ × b ≈ χ/�2, is shown together with
the magnetic butterfly diagram. We see that the total magnetic
helicity generated by the dynamo is decaying much slower than
the dynamo waves. Figure 4 also shows the evolution of the
sunspot parameter, the total magnetic flux, the total turbulent
magnetic helicity, and total large-scale magnetic helicity. For
comparison with case Rχ = 5 × 104 (model CQ1), we show

the results for Rχ = 103, 102 (models CQ2 and CQ3). In the
case of Rχ = 103 (model CQ2) the dynamo is stabilized at
a quite low level with the maximum toroidal magnetic field
strength of about 50 G and the total magnetic flux of about
1024 Mx. For the high dissipation rate of the magnetic helicity,
Rχ = 102 (model CQ3), the maximum of the toroidal magnetic
field strength inside the convection zone is about 450 G, and in
the surface layer it reaches about 150 G. In model CQ3, the total
magnetic flux is about 4 × 1024 Mx. This roughly agrees with
observational results of Schrijver & Harvey (1994). Taking into
account the results shown in Figure 4(d), we can estimate the
amount of the helicity loss from the Sun per cycle. In the model
CQ3 it is about 1.26 × 1045 Mx2.

Model CQ3 is most relevant for comparison with obser-
vations. This case qualitatively reproduces the basic features
of the solar cycle. Figure 5 shows snapshots of toroidal and
poloidal fields, the time–latitude diagram of the near-surface
toroidal magnetic field, the current helicity evolution, and the
time–radius diagrams for the magnetic field and current helicity
for this model. The time–latitude diagrams illustrate the mi-
gration of the toroidal and poloidal fields and polarity reversal.
The time–radius diagrams show migration of the magnetic field
with radius at 30◦ latitude, and an interesting concentration of
the field at r/R� ∼ 0.9–0.92, or 60–70 Mm below the sur-
face. This concentration is related to the second maximum of
the dynamo wave when it propagates from the bottom of the
convection zone to the surface.

Our results show that the current helicity changes the sign in
the near-surface layers at the beginning of the cycle. A similar
behavior was found in observations of Zhang et al. (2010, see
their Figure 2). Our initial comparison of the current helicity
pattern produced by the model reveals some disagreements with
observations, e.g., the model does not show the change of the
current helicity sign near the equator at the end of sunspot cycle.
This problem needs a separate study, which should include
a more sophisticated description of the helicity fluxes. The
time–radius diagram at latitude 30◦ for the toroidal magnetic
field and the current helicity (Figure 5(e)) shows that in the
bulk of the convection zone the current helicity does not change
much with time, and that the helicity is nearly constant near
the bottom of the convection zone. In the north hemisphere the
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(a)

(c)(b)

(e)(d)

Figure 4. Illustration of the dynamo models with the catastrophic quenching (model CQ1) and without it (models CQ2 and CQ3): (a) toroidal field (gray scale) and
current helicity (contours, in range ±3 × 10−5 G2 m−1) for model CQ1; evolution of global characteristics: (b) the sunspot number parameter W, (c) the total magnetic
flux, (d) total large-scale magnetic helicity; (e) total small-scale magnetic helicity for models CQ1(dots), CQ2(dashed curves), CQ3(solid curves).

(A color version of this figure is available in the online journal.)

magnetic helicity is positive at the bottom of the convection
zone because the kinetic part of the α-effect is negative there
(see also Pipin & Kosovichev 2011, and their Figure 1). In
the near-surface layer the sign of the current helicity changes
at the rising phase of the cycle.

Model CQ3 clearly shows asymmetry between the growth
and decay phases of the sunspot number parameter W (t). We
find that the asymmetry increases with increase of the amplitude
of the cycle, i.e., with increase of α-effect parameter Cα (see
Figure 6). It is expected that, for the higher Cα , the dynamo
period is shorter (see, e.g., Parker 1979). This motivates us to
look at the period–amplitude relationship for our model and
also at the amplitude dependence of the growth/decay rate by
computing a series of models WR1, WR2, WR3 for various
values of Cα and Rχ . The results for the asymmetry parameter
as well as the cycle period are summarized in Table 1. We
compare the model results with the asymmetry estimated from
the monthly smoothed sunspot number provided by the SIDC.
The data set was additionally smoothed by means of the Wiener
filter. After this, we divided the whole data set covering the time
period from 1749 to 2010 into separate sunspot cycles. The
cycles were divided by a program that catches the sequences of
the sunspot minima. For each cycle we estimate the growth rate
by a ratio of the cycle amplitude to the growth time. Similarly,
the decay rate was defined.

Figure 7 compares the model with these estimates in the
form of the Waldmeier’s (1935) relations: (a) amplitude–rise
rate, (b) amplitude–decay rate, (c) period–amplitude, (d)
rise time–amplitude, and (e) rise versus decay rates. The

results obtained from the experimental data set con-
firm the findings of other authors (see Vitinsky et al.
1986; Hathaway et al. 2002; Cameron & Schüssler 2007;
Kitiashvili & Kosovichev 2009; Karak & Choudhuri 2011). The
computed dynamo models (WR1, WR2, and WR3) for a given
range of the α-effect parameter Cα = 0.03–0.06 and magnetic
helicity dissipation rate Rχ = 50–200) correspond reasonably
well to the data points. However, there are differences. One pos-
sible source of the difference between the model and the data
is clarified in Figure 7(e), which shows correlation between the
rise and decay rates in the solar cycles. We find that for most
solar cycles the rise rate is higher than the decay rate. The mean
asymmetry parameter is AW ≈ 0.68±0.31. As seen in Figure 7,
our models have smaller AW . Thus, our dynamo models produce
more asymmetric W profiles than the observed sunspot number.
Increasing or decreasing the helicity dissipation by changing Rχ

did not improve the agreement with the observations.
It is clear that more studies of the turbulent properties of

the Sun are necessarily. Nevertheless, the initial results of
the dynamo models shaped by the subsurface shear layer are
encouraging.

4. DISCUSSION AND CONCLUSION

The paper presents a study of a solar dynamo model op-
erating in the bulk of the convection zone with the toroidal
magnetic field flux shaped into the time–latitude “butterfly”
diagram in the subsurface rotational shear layer. We explore
how this type of dynamo may depend on the radial variations
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(a)

(b)

(c)

(d)

(e)

Figure 5. Illustration of dynamo model CQ3: (a) snapshots of the toroidal (gray scale) and poloidal (contours) magnetic field evolution for a half of the magnetic
cycle; (b) the time–latitude diagram for the toroidal magnetic field averaged over the depth range 0.95–0.99 R� (gray scale) and the poloidal field (contours, in range
±3 G); (c) the time–latitude diagram for the toroidal magnetic field (gray scale) and the current helicity (contours, in range ±2 × 10−4 G2 m−1); (d) the time–radius
diagram at latitude 30◦ for the toroidal magnetic field (gray scale) and the poloidal field (contours, in range ±3 G); and (e) the time–radius diagram at latitude 30◦ for
the toroidal magnetic field (gray scale) and the current helicity (contours, in range −2 × 10−4 ÷ 2 × 10−3 G2 m−1).

of turbulent parameters and the differential rotation near the
surface. The mean-field dynamo model takes into account the
evolution of the magnetic helicity and describes its nonlinear
feedback on the generation of the large-scale magnetic field
by the α-effect. We compare the magnetic cycle characteris-
tics predicted by the model, including the cycle asymmetry
and the duration–amplitude relation (Waldmeier’s effects) with
the observed sunspot cycle properties. We show that the model
qualitatively reproduces the basic properties of the solar cycles.
However, the model cycles are systematically more asymmetric
than the observed cycles.

In Section 3.1, it was shown that the radial profiles of the
turbulent diffusivity and the density stratification scale in the
subsurface layer (between 0.95 and 0.99 R�) may significantly
influence the dynamo properties. In particular, the surface-

shear shaped dynamo model favors the negative gradient of
turbulent diffusivity in the subsurface layer as follows from the
standard solar model. This is contrary to the positive gradient
of turbulent diffusivity often used in flux-transport dynamo
models (e.g., Karak & Choudhuri 2011). In our model, a steeper
gradient of the magnetic diffusivity results in a stronger toroidal
magnetic field, a higher latitudinal migration speed, and a longer
magnetic field decay time in the surface layer. We found that the
downward turbulent pumping of the horizontal magnetic field
(associated with either toroidal or meridional magnetic field
components) brings the dynamo properties in better agreement
with observations, increasing the period of the magnetic cycle
for a given turbulent diffusivity profile. The model shows the
asymmetry between the rise and decay rates (and duration
phases) of the toroidal magnetic field. The asymmetry increases

7
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Figure 6. Illustration of asymmetry of sunspot number parameter W in the
series of dynamo models WR2 (Table 1) calculated for various values of Cα :
0.03(dots), 0.04 (dot-dashed curve), 0.05 (dashed curve), and 0.06 (solid curve).

(A color version of this figure is available in the online journal.)

with the increase of the turbulent diffusivity gradient in the
subsurface layer.

The models shows a clear dependence of the asymmetry pa-
rameter (the ratio between the cycle’s decay and rise rates) on the

magnetic cycle strength. We compared a sunspot number param-
eter previously suggested by Bracewell (1988) with statistical
properties of the solar cycle. Our model qualitatively reproduces
the known properties, such as the Waldmeier’s relations and the
period–amplitude dependence. In particular, Figure 7(e) shows
that the asymmetry is one of the basic features of the sunspot
cycle activity (see also Vitinsky et al. 1986).

In our model this asymmetry depends on the parameters
of the turbulent diffusivity in the near-surface layer and on
the rate of the magnetic helicity dissipation. If the magnetic
helicity dissipation rate is higher, the asymmetry is smaller. The
magnetic helicity dissipation rate influences the amount of the
total magnetic flux produced in the Sun. According to Schrijver
& Harvey (1994) the total magnetic flux produced during a
solar cycle is about 1024 Mx. The models presented in this
paper satisfy this constraint. The estimated amount of magnetic
helicity loss in the dynamo model is about 1045 Mx2 per cycle.

Thus, we conclude that the dynamo models with the subsur-
face shear layer can satisfy the global constraints on the total
magnetic flux produced by the dynamo and are able to quali-
tatively reproduce the known statistical properties of the solar

(b)(a)

(e)

(c) (d)

Figure 7. Waldmeier’s (1935) relations in the models WR1 (dashed line), WR2 (solid line), and WR3 (dot-dashed line): (a) amplitude–rise rate, (b) amplitude–decay
rate, (c) period–amplitude, (d) rise time–amplitude, and (e) rise–decay rates. The results from the SIDC sunspot data are shown by circles.

(A color version of this figure is available in the online journal.)
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cycle, such as the Waldmeier’s effects and the period–amplitude
relation. We expect that the model can be further developed
taking into account more accurately the turbulent properties
of the subsurface shear layer. The accurate description of the
magnetic helicity dissipation is also important for the future
progress. Direct numerical simulations of the convective turbu-
lence and helioseismological data analysis techniques should
help to improve our knowledge of the subsurface shear layer
and the physics of solar dynamo.

This work was supported by NASA LWS NNX09AJ85G
grant and partially by RFBR grant 10-02-00148-a.

APPENDIX

We describe some parts of the mean electromotive force
(Equation (1)). The basic formulation is given in P08. For
this paper we reformulate tensor α

(H )
i,j , which represents the

hydrodynamical part of the α-effect, by using Equation (23)
from P08 in the following form:

α
(H )
ij = δij

{
3ηT

(
f

(a)
10 (e · �(ρ)) + f

(a)
11 (e · �(u))

)}
+ eiej

{
3ηT

(
f

(a)
5 (e · �(ρ)) + f

(a)
4 (e · �(u))

)}
+ 3ηT

{(
eiΛ(ρ)

j + ej Λ(ρ)
i

)
f

(a)
6 +

(
eiΛ(u)

j + ej Λ(u)
i

)
f

(a)
8

}
.

(A1)

The contribution of magnetic helicity χ = a·b (a is a fluctuating
vector magnetic field potential) to the α-effect is defined as
α

(M)
ij = C

(χ)
ij χ , where

C
(χ )
ij = 2f

(a)
2 δij

τc

μ0ρ�2
− 2f

(a)
1 eiej

τc

μ0ρ�2
. (A2)

The turbulent pumping, γi,j , is also part of the mean electromo-
tive force in Equation (23, P08). Here we rewrite it in a more
traditional form (cf., e.g., Rädler et al. 2003),

γij = 3ηT

{
f

(a)
3 Λ(ρ)

n + f
(a)
1 (e · �(ρ))en

}
εinj

− 3ηT f
(a)
1 ej εinmenΛ(ρ)

m . (A3)

The effect of turbulent diffusivity, which is anisotropic due to
the Coriolis force, is given by

ηijk = 3ηT

{(
2f

(a)
1 − f

(d)
1

)
εijk − 2f

(a)
1 eienεnjk

}
. (A4)

Functions f
(a,d)
{1−11} depend on the Coriolis number, Ω∗ = 2τcΩ0,

and the typical convective turnover time in the mixing-length
approximation, τc = �/u′, both of which can be found in
P08. The turbulent diffusivity is parameterized in the form,
ηT = Cηη

(0)
T , where η

(0)
T = u′�

3 is the characteristic mixing-
length turbulent diffusivity, u′ is the rms convective velocity, �
is the mixing length, and Cη is a constant to control the intensity
of turbulent mixing. The others quantities in Equations (A1),
(A3), and (A4) are �(ρ) = ∇ log ρ is the density stratifica-
tion scale, �(u) = ∇ log(η(0)

T ) is the scale of turbulent diffu-
sivity, e = �/ |Ω| is a unit vector along the axis of rotation.
Equations (A1), (A3), and (A4) take into account the influ-
ence of the fluctuating small-scale magnetic fields, which can
be present in the background turbulence and stem from the
small-scale dynamo (see discussions in Frisch et al. 1975;

Moffatt 1978; Vainshtein & Kitchatinov 1983; Kleeorin et al.
1996; Brandenburg & Subramanian 2005). In our paper, the

parameter ε = b2

μ0ρu2
, which measures the ratio between the

magnetic and kinetic energies of fluctuations in the background
turbulence, is assumed equal to 1. This corresponds to the energy
equipartition. The quenching function of the hydrodynamical
part of α-effect is defined by

ψα = 5

128β4

(
16β2 − 3 − 3(4β2 − 1)

arctan(2β)

2β

)
. (A5)

Note that in the notation of P08, ψα = −3/4φ
(a)
6 and β =

|B|
u′√μ0ρ

.
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Yoshimura, H. 1975, ApJ, 201, 740
Zhang, H., Sakurai, T., Pevtsov, A., et al. 2010, MNRAS, 402, L30

9

http://dx.doi.org/10.1046/j.1365-8711.1998.01635.x
http://adsabs.harvard.edu/abs/1998MNRAS.298..543A
http://adsabs.harvard.edu/abs/1998MNRAS.298..543A
http://dx.doi.org/10.1086/312046
http://adsabs.harvard.edu/abs/1999ApJ...517L.163B
http://adsabs.harvard.edu/abs/1999ApJ...517L.163B
http://dx.doi.org/10.1088/1742-6596/271/1/012001
http://adsabs.harvard.edu/abs/2011JPhCS.271a2001B
http://adsabs.harvard.edu/abs/2011JPhCS.271a2001B
http://adsabs.harvard.edu/abs/1988MNRAS.230..535B
http://adsabs.harvard.edu/abs/1988MNRAS.230..535B
http://dx.doi.org/10.1086/429584
http://adsabs.harvard.edu/abs/2005ApJ...625..539B
http://adsabs.harvard.edu/abs/2005ApJ...625..539B
http://dx.doi.org/10.1016/j.physrep.2005.06.005
http://adsabs.harvard.edu/abs/2005PhR...417....1B
http://adsabs.harvard.edu/abs/2005PhR...417....1B
http://dx.doi.org/10.1002/asna.200710881
http://dx.doi.org/10.1002/asna.200710881
http://adsabs.harvard.edu/abs/2007AN....328.1118B
http://adsabs.harvard.edu/abs/2007AN....328.1118B
http://dx.doi.org/10.1086/512049
http://adsabs.harvard.edu/abs/2007ApJ...659..801C
http://adsabs.harvard.edu/abs/2007ApJ...659..801C
http://adsabs.harvard.edu/abs/1995A&A...303L..29C
http://adsabs.harvard.edu/abs/1995A&A...303L..29C
http://dx.doi.org/10.1017/S0022112074001236
http://adsabs.harvard.edu/abs/1974JFM....65...33D
http://adsabs.harvard.edu/abs/1974JFM....65...33D
http://dx.doi.org/10.1017/S002211207500122X
http://adsabs.harvard.edu/abs/1975JFM....68..769F
http://adsabs.harvard.edu/abs/1975JFM....68..769F
http://dx.doi.org/10.1111/j.1365-2966.2010.17408.x
http://adsabs.harvard.edu/abs/2010MNRAS.409.1619G
http://adsabs.harvard.edu/abs/2010MNRAS.409.1619G
http://dx.doi.org/10.1023/A:1022425402664
http://adsabs.harvard.edu/abs/2002SoPh..211..357H
http://adsabs.harvard.edu/abs/2002SoPh..211..357H
http://adsabs.harvard.edu/abs/2011MNRAS.410.1503K
http://adsabs.harvard.edu/abs/2011MNRAS.410.1503K
http://adsabs.harvard.edu/abs/1991A&A...243..483K
http://adsabs.harvard.edu/abs/1991A&A...243..483K
http://adsabs.harvard.edu/abs/2000A&A...359..531K
http://adsabs.harvard.edu/abs/2000A&A...359..531K
http://dx.doi.org/10.1080/03091920802396518
http://adsabs.harvard.edu/abs/2009GApFD.103...53K
http://adsabs.harvard.edu/abs/2009GApFD.103...53K
http://adsabs.harvard.edu/abs/2010IAUS..264..202K
http://adsabs.harvard.edu/abs/1996A&A...307..293K
http://adsabs.harvard.edu/abs/1996A&A...307..293K
http://adsabs.harvard.edu/abs/2000A&A...361L...5K
http://adsabs.harvard.edu/abs/2000A&A...361L...5K
http://dx.doi.org/10.1103/PhysRevE.59.6724
http://adsabs.harvard.edu/abs/1999PhRvE..59.6724K
http://adsabs.harvard.edu/abs/1999PhRvE..59.6724K
http://dx.doi.org/10.1002/asna.200911308
http://adsabs.harvard.edu/abs/2010AN....331..130M
http://adsabs.harvard.edu/abs/2010AN....331..130M
http://dx.doi.org/10.1051/0004-6361/201015637
http://adsabs.harvard.edu/abs/2011A&A...526A.138M
http://adsabs.harvard.edu/abs/2011A&A...526A.138M
http://dx.doi.org/10.1086/172631
http://adsabs.harvard.edu/abs/1993ApJ...408..707P
http://adsabs.harvard.edu/abs/1993ApJ...408..707P
http://dx.doi.org/10.1080/03091920701374772
http://adsabs.harvard.edu/abs/2008GApFD.102...21P
http://adsabs.harvard.edu/abs/2008GApFD.102...21P
http://dx.doi.org/10.1088/2041-8205/727/2/L45
http://adsabs.harvard.edu/abs/2011ApJ...727L..45P
http://adsabs.harvard.edu/abs/2011ApJ...727L..45P
http://dx.doi.org/10.1080/0309192031000151212
http://dx.doi.org/10.1080/0309192031000151212
http://adsabs.harvard.edu/abs/2003GApFD..97..249R
http://adsabs.harvard.edu/abs/2003GApFD..97..249R
http://adsabs.harvard.edu/abs/1995A&A...296..557R
http://adsabs.harvard.edu/abs/1995A&A...296..557R
http://dx.doi.org/10.1007/BF00712873
http://adsabs.harvard.edu/abs/1994SoPh..150....1S
http://adsabs.harvard.edu/abs/1994SoPh..150....1S
http://www.sidc.be/sunspot-data/
http://adsabs.harvard.edu/abs/2007sota.conf..319T
http://dx.doi.org/10.1086/171494
http://adsabs.harvard.edu/abs/1992ApJ...393..165V
http://adsabs.harvard.edu/abs/1992ApJ...393..165V
http://dx.doi.org/10.1080/03091928308209069
http://adsabs.harvard.edu/abs/1983GApFD..24..273V
http://adsabs.harvard.edu/abs/1983GApFD..24..273V
http://dx.doi.org/10.1086/319817
http://adsabs.harvard.edu/abs/2001ApJ...550..752V
http://adsabs.harvard.edu/abs/2001ApJ...550..752V
http://dx.doi.org/10.1086/153940
http://adsabs.harvard.edu/abs/1975ApJ...201..740Y
http://adsabs.harvard.edu/abs/1975ApJ...201..740Y
http://dx.doi.org/10.1111/j.1365-2966.2009.15947.x
http://adsabs.harvard.edu/abs/2010MNRAS.402L..30Z
http://adsabs.harvard.edu/abs/2010MNRAS.402L..30Z

	1. INTRODUCTION
	2. BASIC EQUATIONS
	3. RESULTS
	3.1. Effects of the Near-surface Diffusion and Turbulent Pumping
	3.2. Magnetic Helicity Effect and the Waldmeier’s Relations

	4. DISCUSSION AND CONCLUSION
	APPENDIX
	REFERENCES

