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ABSTRACT

We propose a solar dynamo model distributed in the bulk of the convection zone with toroidal magnetic-field flux
concentrated in a near-surface layer. We show that if the boundary conditions at the top of the dynamo region allow
the large-scale toroidal magnetic fields to penetrate close to the surface, then the modeled butterfly diagram for the
toroidal magnetic field in the upper convection zone is formed by the subsurface rotational shear layer. The model
is in agreement with observed properties of the magnetic solar cycle.
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1. INTRODUCTION

It is widely believed that the 11 year sunspot activity is
produced and organized by large-scale magnetic fields generated
somewhere in the deep convection zone. Most of the solar
dynamo models suggest that the toroidal magnetic field that
emerges on the surface and forms sunspots is generated near the
bottom of the convection zone, in the tachocline or just beneath
it in a convection overshoot layer (see, e.g., Choudhuri et al.
1995; Rüdiger & Brandenburg 1995; Dikpati & Charbonneau
1999; Bonanno et al. 2002; Tobias & Weiss 2007). The belief
in a deep-seated solar dynamo comes from the fact that this
region is sufficiently stable and can store magnetic flux despite
the magnetic-flux–tube buoyancy effect (Parker 1975; Spiegel
& Weiss 1980; van Ballegooijen 1982; Spruit & Roberts 1983;
van Ballegooijen & Choudhuri 1988; Choudhuri 1990). The
tachocline represents a strong radial shear of the angular
velocity. Yet, turbulent diamagnetism (see, e.g., Zeldovich 1957
or Kitchatinov & Rüdiger 1992) pumps the magnetic fields
from the intensively mixed interior of convection zone to its
boundaries. This effect can substantially amplify the toroidal
magnetic fields near the convection zone boundaries (see, e.g.,
Krivodubskij 1987; Guerrero & de Gouveia Dal Pino 2008).

However, an attention was drawn to a number of theoretical
and observational problems concerning the deep-seated dynamo
models (Brandenburg 2005, 2006). A renewed discussion of the
place of the solar dynamo can be found, e.g., in papers by
Brandenburg (2005) and Tobias & Weiss (2007). In particular,
there are some arguments that the subsurface angular velocity
shear could play an important role in the dynamo distributed
in the convection zone. This shear layer becomes an important
ingredient of the flux-transport dynamo models as well (see,
e.g., Guerrero & de Gouveia Dal Pino 2008).

In this Letter, we discuss the importance of the surface
boundary conditions for the dynamo models, which include
the subsurface shear layer. The boundary conditions commonly
used in the dynamo models correspond to a perfect conductor
at the bottom of the convection zone and vacuum boundary
conditions at the top. Both the vacuum and perfect conductor
boundary conditions can be regarded as a mathematically
convenient idealization. The top boundary conditions play a
particularly important role because they control the escape of
the dynamo-generated magnetic fields from the Sun.

The perfect conductor boundary condition is usually identi-
fied as “closed” (e.g., Choudhuri 1984), because in this case
there is no penetration of the generated magnetic flux to the
outside. For the axisymmetric magnetic fields all magnetic-field
flux is closed inside the dynamo region. The vacuum boundary
condition is identified as “open.” In this case the poloidal field
lines are open to the outside, and the corresponding poloidal
magnetic flux “freely” escapes. Also, the strength of the toroidal
magnetic field goes smoothly to zero at the boundary. This
means that the vacuum boundary condition does not allow the
toroidal field to penetrate into the surface. With such bound-
ary condition it is hardly possible to form sunspots from the
near-surface large-scale toroidal magnetic fields.

Bearing in mind the dynamical nature of magnetic fields on
the solar surface one can model the near-surface behavior by
using a combination of the “open” and “closed” types of the
boundary conditions. Various consequences of this idea were
explored (see, e.g., Choudhuri 1984; Tavakol et al. 1995, 2002;
Covas et al. 1998; Kitchatinov & Mazur 1999; Kitchatinov et al.
2000; Käpylä et al. 2010). Here, we apply this approach to
a solar dynamo model that extends from the bottom of the
convection zone to the top, including the region of the strong
subsurface rotational shear. We show that allowing the toroidal
magnetic flux to penetrate into the surface brings the butterfly
diagram of the toroidal large-scale magnetic field in the upper
convection zone and also the phase relations between the
different components of the dynamo-generated magnetic field
in agreement with solar-cycle observations.

2. DYNAMO EQUATIONS

The evolution of the axisymmetric magnetic field (B being the
azimuthal component of the magnetic field, A is proportional to
the azimuthal component of the vector potential) is governed by
the following equations:
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These equations are similar to those used by Pipin & Seehafer
(2009) and Seehafer & Pipin (2009). We use the same notations
for the functions and parameters as in the paper of Pipin (2008,
hereafter P08). Here, G = ∂r log ρ is the density stratification
scale. Functions f

(a,d)
1,2,3,10 depend on the Coriolis number Ω∗ =

2τcΩ0; functions ψη,α describe magnetic quenching and depend

on β = B/

√
μ0ρū2. For reference, these functions are given

in the Appendix. The parameter Cα controls the strength of the
α-effect. In the presented model the α-effect is distributed in
the bulk of the convection zone. For a more clear demonstration
of the boundary condition impact, we confine the α-affect in
a low-latitude region where the radial gradient of the angular
velocity is positive in the most part of the solar convection zone.
Similarly to Dikpati et al. (2004), we specify the confinement
function:

f (θ ) = (1 + e30(|θ−π/2|−π/6))−1. (6)

In the radial direction the α-effect depends on the density strat-
ification, G, and function of the Coriolis number f

(a)
10 (Ω∗). We

introduce parameter Cη to control the turbulent diffusion coef-
ficient, ηT = Cηη

(0)
T , where η

(0)
T = τcū2/3. The internal param-

eters of the solar convection zone are given by Stix (2002).
At the top of the solar convection zone the stratification is
strongly deviates from adiabatic, and also the turbulence pa-
rameters vary sharply. For this reason we confine the integration
domain between 0.71 R� and 0.972 R� in radius, and it extends
from pole to pole in latitude. The differential rotation profile,
Ω = Ω0fΩ(x, μ) (shown in Figure 1(a)) is a slightly modified
version of the analytical approximation proposed by Antia et al.
(1998):
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Figure 1. Internal parameters of the solar convection zone: (a) the contours of
the constant angular velocity are plotted for the levels (0.75–1.05)Ω0 with a
step of 0.025Ω0, see, Equation (7); (b) turnover convection time τc , turbulent
diffusivity ηT , rms convective velocity U ′

c; (c) the radial profile of the dynamo

α-effect, αρ = ηT Gf
(a)
10 , see Equation (3). The distance is measured in units of

the solar radius.

where Ω0 = 2.87 × 10−6 s−1 is the equatorial angular ve-
locity of the Sun at the surface, x = r/R�, φ (x, x0) =
0.5 [1 + tanh [100(x − x0)]], x0 = 0.71. The distribution of the
Coriolis number, turbulent diffusivity, and the rms convection
velocity are shown in Figure 1(b). The radial profile of the
α-effect is shown in Figure 1(c).
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Figure 2. Case of δ = 0.95 (the top boundary conditions with a partial penetration of toroidal magnetic fields into the outer layers of the Sun). The top panel shows
the near-surface toroidal component of large-scale magnetic fields (contour lines) and the surface radial component of the field (color background). The bottom panel
shows snapshots of the poloidal (contour lines) and toroidal magnetic field components for a half of the magnetic cycle. The maximum strength of the toroidal field is
about 1 kG. Time is in years.

(A color version of this figure is available in the online journal.)

At the bottom of the integration domain we apply the perfect
conductor (“closed”) boundary conditions: Eθ = 0, A = 0. The
boundary conditions at the top are defined as the following.
Bearing in mind the idea of the partial escape of the toroidal
flux from the Sun discussed in Introduction, we explore a
combination of the “open” and “closed” boundary conditions
at the top, controlled by a parameter δ. For the toroidal field we
use condition

δ
ηT

re

B + (1 − δ) Eθ = 0. (8)

This is similar to the boundary condition discussed by
Kitchatinov et al. (2000). For the poloidal field, we apply a
combination of the local condition A = 0 and condition of
smooth transition from the internal poloidal field to the external
potential (vacuum) field:
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where the external potential field is
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P 1
n (μ) is the associated Legendre polynomial of degree n. For

the numerical implementation of Equation (9), we take a one-
side finite difference approximation for the radial derivative at
an angular mesh point μj :

∂Aj

∂r

∣∣∣∣
r=re

= 3AN j − 4AN−1 j + AN−2 j

2hr

,

where hr is the radial discretization interval, and consider
the expansion (10) at the top boundary r = re: AN j =∑
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collocation points of P 1
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us to express coefficients an in Equation (10) via the values of
potential A at the grid points: an = M

(a)−1
nj AN j . Substituting

this in Equation (9) and solving it we get
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where E is a unit diagonal matrix.

3. RESULTS AND DISCUSSION

Parameter δ in the boundary conditions describes a transition
between the “closed” (δ = 0) to “open” (δ = 1) boundaries.
Physically, it controls penetration of the dynamo-generated
fields into the outer atmosphere.

Decreasing δ in Equations (8) and (9) results in stronger
tangential and weaker radial large-scale magnetic fields at the
surface. While the strong toroidal magnetic field is a desired
feature of the model, the weak radial magnetic field decreases
the efficiency of the radial subsurface shear to produce large-
scale toroidal magnetic fields. In fact, the simulations reveal that
the critical dynamo number, Cα , is greater when the penetration
parameter δ is smaller. For this reason, we consider the case of a
small deviation from the vacuum (“open”) boundary conditions.
Moreover, in order to match the dynamo period to the solar
cycle we choose the magnetic diffusivity parameter Cη = 0.05,
which is significantly lower than the value predicted by the
mixing length theory. To demonstrate the effect of the new
boundary conditions with the field penetration we show for
comparison in Figures 2 and 3 the results of two runs for
δ = 0.95 (corresponding to a partial penetration of toroidal
field) and δ = 1 (the vacuum boundary conditions).

These results show that allowing the large-scale toroidal
magnetic field to penetrate into the surface layers of the Sun
changes the direction of the latitudinal migration of the toroidal
field activity and produces the magnetic butterfly diagram in a
good qualitative agreement with solar-cycle observations. The
dynamo wave penetrates into the surface and propagates along
the iso-surface of angular velocity in the subsurface shear layer.
This is in agreement with the Yoshimura rule (Yoshimura 1975).

Dikpati et al. (2002) explored generation of toroidal magnetic
fields by the Ω-effect in the subsurface shear layer in the
Babcock–Leighton-type dynamo models. They found that the
phase relation between the subsurface toroidal magnetic field
and the surface radial magnetic field is inconsistent with
observations. We believe that this inconsistency was due to
the fact that in their model the source of the surface poloidal
magnetic fields was related with the bottom of convection zone.
Therefore, the subsurface toroidal field that is generated in
the subsurface shear layer does not contribute directly to the
generation of the poloidal magnetic field.

Both of our simulation runs shown in Figures 2 and 3 were
started with initial conditions representing equally mixed sym-
metrical and antisymmetrical (relative to the equator) magnetic
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Figure 3. Same as in Figure 2 for the vacuum boundary conditions, δ = 1.

(A color version of this figure is available in the online journal.)

field components. The evolution retains only the dipole-like par-
ity configurations in both cases though the relaxation time in the
penetration case of δ = 0.95 is much longer than in the case
of the pure vacuum boundary conditions. If we relax the con-
finement of the α-effect in latitude, i.e., f (θ ) = 1 instead of
Equation (6), the general patterns of Figure 2 are hold except
that the maximum of the toroidal magnetic field is shifted to
higher latitude ≈ 40◦. Therefore, we can conclude that the αΩ-
dynamo model with the boundary conditions that allow a small
partial penetration of the toroidal field into the outer layers of
the Sun can robustly reproduce the solar-cycle butterfly diagram
for the near-surface large-scale magnetic-field evolution. These
results demonstrate the importance of the subsurface rotational
shear layer in the solar dynamo mechanism.

The authors thank F. Busse, N. Mansour, and M. Stix for
useful comments. This work was supported by the NASA LWS
NNX09AJ85G grant and partially by the RFBR grant 10-02-
00148-a.

APPENDIX

Here, we give the definitions of the functions which were
used in the model. The given functions describe the efficiency
of the Coriolis force and the mean magnetic field to act on
the stratified turbulence and to produce the dynamo α-effect,
anisotropy of magnetic diffusion, turbulent magnetic pumping,
magnetic quenching of the turbulent effects, etc. These effects
are discussed in Pipin (2008). Functions f

(a,d)
1,2,3,10 depend on the

Coriolis number Ω∗ = 2τcΩ0; functions ψη,α describe magnetic
quenching and depend on β = B/

√
μ0ρū2:

f
(a)
1 = 3

4Ω∗ 2

(
(Ω∗2 + 3)

arctan Ω∗

Ω∗ − 3

)
,

f
(d)
2 = 3

4Ω∗ 2

(
((ε − 1)Ω∗ 2 + 3ε + 1)

arctan(Ω∗)

Ω∗ − (3ε + 1)

)
,

f
(a)
3 = 3

4Ω∗ 2

((
(ε − 1) Ω∗ 2 + ε − 3

) arctan Ω∗

Ω∗ + 3 − ε

)
,

f
(a)
10 = − 1

3Ω∗ 3

(
3(Ω∗2 + 1)(Ω∗2 + ε − 1)

arctan Ω∗

Ω∗

− ((2ε + 1)Ω∗2 + 3ε − 3)

)
,

ψη = 3

16β2

(
((4β2 + 3)ε + 4β2 − 1)

arctan (2β)
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(
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arctan (2β)

2β

)
.

The parameter ε measures the ratio between the turbulent
energies of the kinetic and magnetic fluctuations ε = b̄2/μ0ρū2,
in the background turbulence (in the absence of the mean fields).
Note, in notation of Pipin (2008), the turbulent diffusivity and
α-effect quenching functions are defined as follows: ψη =
φ3 + φ2 − 2φ1 and ψα = −3/4φ

(a)
6 , respectively. Expressions

for φ1,2,3 and φ
(a)
6 are given in Pipin (2008).
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