
Running the Observables codes

• There are 2 observables codes: HMI_observables and HMI_IQUV_averaging.
The executables are in:
/home/jsoc/cvs/Development/JSOC/_linux_x86_64/proj/lev1.5_hmi/apps/ and
/home/jsoc/cvs/Development/JSOC/_linux_avx/proj/lev1.5_hmi/apps/
while the sources are in:
/home/jsoc/cvs/Development/JSOC/ proj/lev1.5_hmi/apps/

HMI_observables produces the front camera observables (hmi.V_45s, hmi.M_45s,
hmi.Ic_45, hmi.Lw_45s, hmi.Ld_45s, hmi.V_720s, hmi.M_720s, etc... and their nrt
equivalent), while HMI_IQUV_averaging produces the side camera ones
(hmi.S_720s and hmi.S_720s_nrt).

The basic way of calling HMI_observables from the directory
/home/jsoc/cvs/Development/JSOC/on n02 is:
_linux_x86_64/proj/lev1.5_hmi/apps/HMI_observables
begin="2015.01.10_00:00:00_TAI" end="2015.01.10_00:20:00_TAI" levin="lev1"
levout="lev15" wavelength=3 quic klook=0 camid=1 cadence=45.0 lev1="hmi.lev1"
smooth=1 rotational=0 linearity=1 -L

On solar3 you will need to use the AVX binary rather than the x86_64 one.
Warning: the code produces slightly different results between the AVX and x86_64
binaries.
For instance, hmi.M_45s[2015.01.10_00:00:45_TAI] processed with the same code
version but once with the AVX binary (on solar3) and once with the x86_64 binary
(on n02) returns for DATAMEAN: 0.408243 and 0.408214; and for DATARMS:
48.986858 and 48.986938.
camid=1 is for the front camera (camid=0 for the side camera), quicklook=0 is for
definitive observables (=1 for NRT ones), levin=”lev1” tells the code to start from
lev1 data (rather than lev1d or lev1p), levout=”lev15” tells the code to produce
observables (rather than “lev1p” or “lev1d”), cadence=45.0 is the cadence of the
observables sequence, smooth=1 tells the code to use look-up tables from the MDI-
like algorithm that have been corrected for the interference fringes, rotational=0 tells
the code to use the usual pzt flat fields (rather than the rotational flat-fields),
lev=”hmi.lev1” tells the code which input series to use (hmi.lev1_nrt for NRT mode),
and linearity=1 tells the code to apply the non-linearity correction. wavelength=3
tells the code which of the 6 HMI wavelengths is the reference one: the code needs to
locate reference filtergrams to identify the observables sequence that was run and
what its properties are. It also needs to know how to organize the lev1 records for the
temporal interpolation. From the SDO launch onwards we have always used

wavelength=3, which ground tests have shown results in a lower noise level on the
observables (therefore, the value should always be set at 3). Finally, -L forces the
code to write a log (This option has sometimes caused issues in the past, resulting in
the code hanging after the DRMS was updated). You will notice that the output series
(e.g. hmi.V_45s) are not mentioned in the command line: they are hard-coded in the
source. Therefore, be extremely careful if you manually run the observables
code, because you will overwrite the published observables records. I think that
you should copy HMI_observables.c and HMI_IQUV_averaging.c in your own
cvs tree, rename them, and change the output series inside the source (there are
many output series, a lot of them are just for test purpose: more than 100,
starting from line 1801 for HMI_observables.c, and 7 series from line 1588 in
HMI_IQUV_averaging.c). Then, run your own copy of the code to avoid
accidentally overwriting existing lev15 or lev1p records. The .jsd files for all of
these series are in /home/couvidat/cvs/JSOC/proj/myproj.

To produce the MDI-like algorithm observables from side camera data (i.e. from
hmi.S_720s or hmi.S_720s_NRT), use: levin=”lev1p” camid=0 cadence=720.0 for
the usual mod C sequence. If a mod L sequence was used rather than a mod C, set
camid=3 (to tell the code that combining both cameras was required when producing
the Stokes vectors). Theoretically, you can use HMI_observables and run it on side
camera data to produce level 1.5 observables (i.e. to produce hmi.V_135s etc... for
the usual mod C sequence): however, some things are missing in the code to do that
(noone ever asked me for 135s cadence Dopplergrams...).

The basic way to run HMI_IQUV_averaging from
/home/jsoc/cvs/Development/JSOC/ on solar3 is:
_linux_avx/proj/lev1.5_hmi/apps/HMI_IQUV_averaging
begin="2015.04.05_19:48:00_TAI" end="2015.04.05_21:15:00_TAI" wavelength=3
camid=0 cadence=135.0 npol=6 size=36 lev1="hmi.lev1" quicklook=0 average=12
linearity=1 rotational=0

you need to specify the number npol of polarizations expected (6 for a mod C, 8 for a
mod L because we declare two consecutive I+/-V polarizations in a 90s list on the
front camera as different polarizations), the size of the framelist (size=36 for a mod C
--- 6 polarizations at 6 wavelengths --- and 48 for a mod L --- 8 polarizations at 6
wavelengths ---). average =12 is the number of minutes you want to average (you
can use 96 min too, as there is a series called hmi.S_5760 that was used for test
purpose). After you run HMI_IQUV_averaging, you also need to run two other
programs (hmi_segment_module and hmi_patch_module), prior to running
HMI_observables to produce the hmi.V_720s (etc...) observables. See with Jeneen
or Xudong for details.

With HMI_observables you can also produce intermediate lev1d and lev1p records.
Lev1d are level 1 images that have been gap filled (cosmic ray hits and bad pixels),
de-rotated, un-distorted, interpolated in time at the same T_REC, re-registered for the
same Sun center coordinates, etc. They are stored in DRMS series
hmi.HMISeriesLev1d45 (and 45Q for the NRT mode) for front camera data, and in
hmi.HMISeriesLev1d135 (and 135Q) for side camera data. These data take an
enormous amount of memory, so they are not meant to be saved on a regular basis.
They are computed at run-time by the code, but are discarded at the end of the run.
For a given T_REC of the front camera observables, 12 lev1d records are produced.
Lev1p records are lev1d records that have been calibrated in polarization (polcal() has
been run on them), i.e. they are true I+V and I-V polarizations at the 6 wavelengths
for the front camera data. They are saved in the hmi.HMISeriesLev1pb45 (and 45Q
for the NRT mode) series. A single lev1p record will contain all 12 data segments for
the front camera.

For side camera data, lev1p records are the Stokes vector, but NOT averaged over 12
minutes (HMI_observables performs a temporal interpolation at T_REC, while
HMI_IQUV_averaging performs a temporal averaging). So, with the standard mod
C sequence, it’s the Stokes vector at a 135s cadence. They are stored in
hmi.HMISeriesLev1pa135 (and 135Q). Again, lev1p and lev1d data were meant
only to be tools to debug the observables codes, but because they give the user access
to the Fe I line profiles at different polarizations, they can be used for scientific
purpose (e.g. to study the line during flares). However, because they require so much
disk space, they can only be produced on an on-demand basis. Also,
HMI_observables requires all polarizations and wavelengths to be available in
memory to compute the observables (unlike HMI_IQUV_averaging): this takes a lot
of RAM at run-time. For side camera data (which have many more polarizations than
front camera ones) HMI_observables with levout=”lev1p” will simply not run on
n02 or solar3 (well, it will run until a segmentation fault occurs because you exceed
the amount of memory available) but will run fine on the cluster.

To run the observables codes on the cluster, here is what I do (taken from Keh-
Cheng’s email): first, make sure you have source ~kehcheng/cluster/sge2.csh in your
~/.cshrc file. Then, e.g. on $JSOCROOT on solar3, create a text file (say, script.txt)
that contains the following (this example is if you want to produce lev1p data from
front camera images for 20 minutes on January 10, 2015):

setenv OMP_NUM_THREADS 8

/home/jsoc/cvs/Development/JSOC/_linux_avx/proj/lev1.5_hmi/apps/HMI_observables
begin="2015.01.10_00:00:00_TAI" end="2015.01.10_00:20:00_TAI" levin="lev1" levout="lev1p" wavelength=3
quicklook=0 camid=1 cadence=45.0 lev1="hmi.lev1" smooth=1 rotational=0 linearity=1 -L

Make sure there is an empty line after the -L, otherwise (for whatever reasons
unknown to me) the job will die on the cluster. Finally, just type the following in the
Linux shell:
qsub -pe smp 8 script.txt

I put 8 after smp, but I’m not sure what the optimal number is. You can type qstat -u
followed by your user name to see if your job is running.

• Some things to remember when you run HMI_observables and
HMI_IQUV_averaging: if the begin and end times you provide are in a time interval
where NO level 1 record is available (e.g. due to an instrument issue, or the sequencer
was stopped for various reasons) then the observables code does not know whether
this lack of lev1 is normal or is a lev1 processing issue that may be fixed later.
Consequently, the code will just exit without producing any observables record, thus
leaving a gap in the lev1.5 records. To fill this gap, if it turns out that no lev1 will
ever be created for the T_REC in the time interval requested, then just run the
observables code with a begin and end interval that includes at least 1 lev1 record.
Then the code will produce empty lev1.5 records, with the QUALITY keyword set
appropriately for the times where no lev1 is available.

• Another thing: if the observables sequence is changed (from the usual FTSID=1021
to, say, a mod L with FTSID=1022) you may need to change the command line
parameters. For instance, if you go from a 1021 to a 1022, HMI_IQUV_averaging
needs to have npol changed from 6 to 8, size changed from 36 to 48, and cadence
from 135 to 90. For that specific example (1021 to 1022) there is no change required
for HMI_observables when computing the front camera observables at a 45s
cadence. However, for computing the 12-min average observables with
HMI_observables (from hmi.S_720s) you will need to change the camid command
line parameter from 0 to 3 (because CAMERA is set to 3 for hmi.S_720s(_nrt) when
both cameras are combined, even though HCAMID remains set to the usual 2). Also,
say you run HMI_IQUV_averaging with the command-line parameters for a
FTS=1021: then the code will still process the T_REC during which the 1022 was
taken, but will complain that the command-line parameters do not match the actual
observables sequence, and consequently it will create empty observables records with
the QUALITY keyword set accordingly. So you will have to reprocess these T_REC
with the correct command-line parameters. Also, for the specific case of FTS=1022,
the hmi.S_720s(_nrt) records produced by HMI_IQUV_averaging will have
CAMERA=3, but if there was a problem and the code created an empty record then
this record has CAMERA=1: so you might end up with several records for a given
T_REC (CAMERA being a prime key). Finally, when running
HMI_IQUV_averaging on a mod L, you might have to modify (increase) the

RSUNerr variable inside the source (and check into cvs and compile the new
version): mod L requires combining both cameras for the side-camera observables,
but the code might complain because CRPIX1, CRPIX2, and R_SUN are too
different between front and side cameras. Increasing RSUNerr will increase the
tolerance the code has on these parameters. If you change RSUNerr, please also
modify the line strcpy(COMMENT,"De-rotation: ON; Un-distortion: ON; Re-
centering: ON; Re-sizing: OFF; correction for cosmic-ray hits; RSUNerr=1.0 pixels;
dpath="); to reflect the new value (this way the COMMENT keyword of the
observables will have the correct tolerance).

• To produce the lev1p data with HMI_observables and from front camera data, here
is how to call the observables code from /home/jsoc/cvs/Development/JSOC on n02:
_linux_x86_64/proj/lev1.5_hmi/apps/HMI_observables
begin="2015.01.10_02:00:00_TAI" end="2015.01.10_02:2 0:00_TAI" levin="lev1"
levout="lev1p" wavelength=3 quicklook=0 camid=1 cadence=45.0 lev1="hmi.lev1"
smooth=1 rotational=0 linearity=1 - L
The special option is levout=”lev1p” rather than the usual levout=”lev15”. -L may or
may not be necessary (usually we add -L for definitive data, but discard it for NRT
ones). Again, the front-camera lev1p data are saved in the series:
hmi.HMISeriesLev1pb45 (definitive mode) and hmi.HMISeriesLev1pb45Q (NRT
mode). If you are running the observables code on side camera data (camid=0), run it
on the cluster, and the output is in hmi.HMISeriesLev1pa135(Q) for the standard
observables sequence (FTSID=1021). Some people, might be asking for quite a lot of
these lev1p: again, be careful because they really take a lot of space (and the
definitive version is backed on tapes)...

• If you run the observables codes on older level 1 records, they are likely offline and
have to be retrieved from tape, which can take time. Retrieve the records from tape
prior to running the observables code, or the code might hang for hours. To retrieve
level 1 from tapes, you can either ask Hao directly, or do a show_info -p

• Finally, if I manually run the codes on n02 or solar3 I usually type setenv
OMP_NUM_THREADS 8 before, since both code use OpenMP. I also type unlimit
stack.

Calibration Codes To Run on a Regular Basis

To monitor the instrument and for trending purpose we take a lot of calibration
sequences. Most are processed by Rock. Here I only mention the few I process:

• Every other week we take a detune sequence (currently, HFTSACID=3027) that has
60 images. To analyze this detune sequence, the first thing to do is to locate the FSN
of the first record of the detune (e.g., type show_info ds=”hmi.lev1[2015.1.5_TAI/1d]
[? HFTSACID = 3027 ?]” key=FSN,T_OBS).
Then, run the phasemaps_test_voigt code (see hmiphasemaps_script in
/home/couvidat/cvs/JSOC for examples). Type unlimit stack on n02 or solar3 prior to
running the code, or it’s going to result in a segmentation fault.
Here is an example for the detune of March 25, 2015 (assuming I run the code on n02
from /home/couvidat/cvs/JSOC):
./_linux_x86_64/proj/lev1.5_hmi/apps/phasemaps_test_voigt
input_series="hmi.lev1[2015.03.25/24h][86968038/60]"
phasemap_series="hmi.phasemaps" hcamid=0 reduced=3 FSRNB=0.1689
FSRWB=0.33685 FSRE1=0.695 FSRE2=1.417 FSRE3=2.779 FSRE4=5.682
FSRE5=11.354 shift=0.0 center=2.7 thresh=750000. cal=2

you only have to change the T_REC interval, the range of FSNs, hcamid (0 for side
camera and 1 for front camera), and cal (=2 for the calibration used after 2014/01/15).
You have to run phasemaps_test_voigt twice: once for the front camera, once for the
side camera. During the run, the code will print on the screen the average OBS_VR
during the sequence (e.g.: VELOCITY = 22.286509): it should always be close to 0
within a 100 m/s or so. If not, then it means that the detune was not taken at the usual
time: ask Rock what the reason was. reduced=3 is used to produce 128x128 maps
(the current size). You can produce phase maps from hmi.lev1, or hmi.lev1_cal (the
records stay online with hmi.lev1_cal, but they are a copy of hmi.lev1 and the series
sometimes has some catching up to do with hmi.lev1).

Here is an example of an output on the screen (I only show the last lines, because the
code outputs many more things before that):

 SPATIALLY AVERAGED PHASES (IN DEGREES)
NB Michelson: -119.416300
WB Michelson: 57.350394
Lyot E1: -135.894386

 SPATIALLY AVERAGED WIDTH, DEPTH, AND CONTINUUM
WIDTH: 0.075712
DEPTH: 569.935947
CONTINUUM: 996.775439

 COTUNE TABLE
E1 WB POL NB
7 50 0 80
10 44 0 68
13 38 0 56
16 32 0 104
19 26 0 92
22 20 0 80
25 74 0 68
28 68 0 56
31 62 0 104
34 56 0 92
37 50 0 80
40 44 0 68
43 38 0 56
46 32 0 104
49 26 0 92
52 20 0 80
55 74 0 68
58 68 0 56
61 62 0 104
64 56 0 92

The spatially averaged phases are in degrees. The width, depth, and continuum are
the values fitted for a Voigt model of the Fe I line (I use an analytical expression for
the Voigt profile, which is an approximation). I usually note all of these values
somewhere (in a file or a note book), so that I can see how they change with time.
The code also outputs a table showing the 27 intensities --- 30 for a given camera
minus 3 dark frames ---- of the detune (left column) and the predicted values (right
column) resulting from the fit, under the label SPATIALLY AVERAGED
INTENSITIES: this allows you to derive the goodness of fit.
Under the label COTUNE TABLE, the code provides the optimal cotune table
corresponding to the phases computed.

When the code runs you’ll see plenty of warnings for: “Unable to open the series
hmi.cosmic_rays”; it’s normal, just ignore these warnings. I also run
phasemaps_test_voigt on the definitive lev1 records rather than lev1_nrt, so you
have to wait a few days after the detune is taken to process it.

The output cotune table includes all of the 20 possible tuning positions (but HMI only
uses 6). The optimal tuning (the one that centers the HMI optical filter on the
6173.3433 A wavelength) corresponds to position number 11 (assuming the first line
is index 1). For the detune of March 25, 2015, the best tuning is 37 50 0 80 where
these numbers corresponds to steps in the hollow-core motors of the tunable
elements. The tuning polarizer is not used, so its position is always 0. For the position
37 50 0 80, 37 is for the Lyot element E1, 50 is for the WB Michelson, and 80 is for
the NB Michelson. Due to the drift of the two Michelsons, it is necessary to re-tune
HMI on a regular basis (the last returning was performed in April 2015, the next

retuning will probably not be necessary until the end of 2016 or the beginning of
2017) .
The optimal tuning (in HCM steps) is computed from the phases (in degrees) this
way:
for NB = -NBphase/6.0+60
for WB = -WBphase/6.0+60
for E1 = E1phase/6.0+60 (note the lack of a minus sign!)
since the steps must be integers, you have to round these numbers.

The current (as of May 2015) tuning positions are 37 50 0 80 (you can find all of the
tuning positions used in the past by typing: show_info
ds="hmi.lookup_corrected_expanded[]"
key=T_REC,FSN_REC,HWL1POS,HWL2POS,HWL3POS,HWL4POS).
When a re-tuning is needed, you have to produce a new cotune table and give it to
Rock who will update some files.
The IDL code cotunetable.pro (in /home/couvidat/cvs/JSOC) will produce such a
table. You have to first edit the source to enter the correct phases of the tunable
elements (in degrees). A way to see when a retuning will be needed is to plot the
polynomial coefficients of the series hmi.coefficients. COEFF0 keeps increasing with
time, until a retuning is operated (the re-tunings are easy to spot on the plot of
COEFF0 with time): you can extrapolate COEFF0 at future times to estimate when
the retuning will have to be performed. Another way is to extrapolate the phases of
the tunable elements at future times and to derive the optimal cotuning from these
phases: you can estimate at which date the current cotuning ceases to be optimal.

• Another useful code is lookup.c in /home/couvidat/cvs/JSOC/
proj/lev1.5_hmi/apps/lookup.c . This code produces the look-up tables for the MDI
like algorithm, from the tuning element phase maps.
The script lookup_script in /home/couvidat/cvs/JSOC/ provides examples of how to
run this code. Currently, we produce look-up tables that are corrected for interference
fringes, and that are expanded to 90 pixels off the solar limb (rather than the mere 50
pixels used at the start of the mission). So you primarily want to populate the
hmi.lookup_corrected_expanded DRMS series.
For example, to produce look-up tables valid after the retuning of April 8, 2015
(assuming you are on n02 and in the directory /home/couvidat/cvs/JSOC/) type:
./_linux_x86_64/proj/lev1.5_hmi/apps/lookup
phasemap="hmi.phasemaps_corrected[86968067]"
lookup="hmi.lookup_corrected_expanded" HCME1=37 HCMWB=50
HCMPOL=0 HCMNB=80 NUM=6 hcamid=1 cal=2 &

Don’t forget to type unlimit stack prior to running the code, or you’ll get a
segmentation fault. Be careful not to overwrite existing look-up tables when you
run this code! HCME1, HCMWB, HCMPOL, and HCMNB are the hollow core
motor positions to cotune HMI. NUM is the number of wavelengths you want: HMI
takes 6 in normal operations, but we also have test sequences with 8 and 10
wavelengths, so it’s useful to produce 6 look-up tables (front and side cameras, for 6,
8, and 10 wavelengths). hcamid=1 is for the front camera, =0 for the side camera.

• In /home/couvidat/cvs/JSOC there are a few IDL codes (.pro) of interest:
analyze_Iripple.pro. This code follows the temporal evolution of the tunable
element I-ripples. You must first run the scripts in hmiphsemaps_script (starting
from the line: ./_linux_x86_64/proj/lev1.5_hmi/apps/phasemaps_test_voigt_Iripple2
input_series="hmi.lev1_cal[2010.05.06/24h][4875773/60]" hcamid=0 reduced=3
FSRNB=0.1689 FSRWB=0.33685 FSRE1=0.695 FSRE2=1.417 FSRE3=2.779
FSRE4=5.682 FSRE5=11.354 shift=0.0 center=2.7 thresh=750000. cal=1 >
Iripple_results.txt). phasemaps_test_voigt_Iripple2 does not compute phase maps: it
performs a spatial averaging of the detune-sequence intensities across the CCD and
then fits the phases of the tunable elements, the Fe I line characteristics, and the I-
ripple characteristics. It outputs the result on the screen, e.g.:
4875778 -131.915283 13.736845 -139.697708 0.067878 0.923974 1.365605 -0.006369 0.049829 -0.114849 -0.006080
-0.061444 0.043307 11.580346

where the first number is the FSN of the first image used by the code, the 3 following
numbers are average phases (in degrees) of the NB Michelson, WB Michelson, and
E1 (respectively), the following 3 numbers are the width, depth, and continuum
intensity of the Fe I line (fitted by a Voigt profile), the following 6 numbers are the I-
ripple parameters, and the last number is a measure of the goodness of fit (the square
root of the total residual error). The I-ripple parameters are 2 for E1, 2 for WB, and 2
for NB. With the example provided here, -0.006369 is the I-ripple coefficient for the
cosine of E1, while 0.049829 is the coefficient for its sine. The I-ripples for each tunable
elements are modeled as: I=I*(1+[A*cos(phase)+B*sin(phase)]2) where phase is a
combination of the tuning phase plus the “initial” phase of the element, and I is the
intensity transmitted by the element.

In hmiphasemaps_script, you will notice that I ran phasemaps_test_voigt_Iripple2
on all of the detunes (up to a certain date): the goal is to build the Iripple_results.txt
file. This file is then used to follow the temporal evolution of the I-ripple. To create a
nice plot of the temporal evolution I run analyze_Iripple.pro. Instructions to run this
code are in the header of the source.

• Another code (in IDL): sun_lin.pro. This code processes the calibration sequences to
measure the non-linearity in the CCD gains. It’s Jesper’s code that I modified slightly
to return a nice figure and to run on lev0 images (note that normally you run it on

lev1 data, but no lev1 is available for some sequences taken during commissioning.
In that case you need to use hmi_ground.lev0). We take non-linearity calibration
sequences occasionally (maybe once a year. See with Rock). The FTSID of these
sequences has changed with time (5003, 5004, 3004, 3005, 3034, etc...).

• bad_datamin.pro computes the number of daily images with DATAMIN<0 from
hmi.lev0a and draws a plot as a function of time. Rock pointed out that it’s now part
of the health and monitoring website, so this IDL code is not needed anymore.

• HMI_CCD_temperature.pro computes the temperature dependence of CCD gains.

Procedure for an HMI retuning

prior to the retuning:

– Compute the phase maps for the tunable elements by running the
phasemaps_test_voigt program (see examples in hmiphasemaps_script in
/home/couvidat/cvs/JSOC, and a description in a previous section of this document).
I use the most recent phase maps computed from a detune sequence to produce the
new look-up tables (for the MDI-like algorithm) that will be required by the new
instrument co-tuning. Since detunes are taken every other week, the most recent set
of phase maps might be a couple of weeks old: this is not an issue, as the phases
change only slowly with time. The look-up tables that will be used by the new
cotuning need to be ready prior to the date and time of this retuning.
 Again, here is a standard way of running the phase map code:
/home/couvidat/cvs/JSOC/_linux_x86_64/proj/lev1.5_hmi/apps/
phasemaps_test_voigt input_series="hmi.lev1[2015.03.25/24h][86968038/60]"
phasemap_series="hmi.phasemaps" hcamid=0 reduced=3 FSRNB=0.1689
FSRWB=0.33685 FSRE1=0.695 FSRE2=1.417 FSRE3=2.779 FSRE4=5.682
FSRE5=11.354 shift=0.0 center=2.7 thresh=750000. cal=2
where cal=2 is used to indicate which calibration to use (we have changed the
calibration twice as of May 1, 2015), reduced=3 is used to indicate you want
128x128 phase maps, hcamid=0 refers to the side camera (=1 for the front), and the
FSN in hmi.lev1 refers to the beginning of a detune sequence (HFTSACID=3027).
After producing the phase maps (in hmi.phasemaps) for both front and side cameras,
you should look at them (with fitsio_read_image in idl or with ds9 for instance) to
make sure they look smooth and that there are no bad pixels. If the phase maps have
an issue, use the most recent set that is fine.

– Update the interference fringe correction with the IDL cal_fringes.pro code in
/home/couvidat/cvs/JSOC (this code was developed by Jesper). The fringe correction
uses as many phase maps from detune sequences as possible, and is usually updated
only prior to a retuning of HMI. For the last retuning (April 8, 2015), I used 132
detune sequences (from May 1, 2010 onwards) to compute the correction. All of the
phase maps need to have been computed with the same calibration (the cal command-
line option of phasemaps_test_voigt). Because the phase maps in hmi.phasemaps
have been produced with different cal settings (since we changed the calibration over
time and phase maps for hmi.phasemaps should be computed with the current
calibration at the time of the detune), I created other phase maps series whose only
purpose is to be used to compute the fringe correction: hmi.phasemaps_cal11,
hmi.phasemaps_cal12, and hmi.phasemaps_cal13. Only the latter will be of use for
future retuning.
To run cal_fringes, you first need to create 2 text files listing all of the FSNs and
paths to the phase maps obtained with the front or side cameras and that will be used
to compute the fringe correction. An example of such a file is
cal_fringes13_updated_side.txt in the same directory as the code. It has lines like:

4649722 /SUM10/D692211818/D516927333/S00000
4875802 /SUM10/D692211818/D515284944/S00000
5198362 /SUM10/D692211818/D515287278/S00000

The first column is the FSN_REC of the phase maps, and the second column is their
path. The actual path to the phase maps will change with time because their online
retention time is only 90 days (but they are archived). To produce
cal_fringes13_updated_side.txt I typed:

show_info ds="hmi.phasemaps_cal13[][][2][128]" key=FSN_REC -p -q >
cal_fringes13_updated_side.txt
show_info ds="hmi.phasemaps[][2013.12.19_TAI-2015.4.1][2][128]"
key=FSN_REC -p -q >> cal_fringes13_updated_side.txt

You can see that I combined phase maps from hmi.phasemaps_cal13 with phase
maps from hmi.phasemaps that were computed with cal=2 (which corresponds to the
calibration number 13... sorry for the weird numbering scheme: the calibration used
after the 2nd change since the launch of SDO ---- cal=2 --- is the 13th calibration I had
tested since I started working on HMI).
For a future retuning, you should run the same thing, except change the 2015.4.1 date
into the date of the most recent detune sequence (the last T_REC in the
hmi.phasemaps series).
Again, the fringe correction is computed separately for front and side cameras, so you
need so create two separate files (with names like cal_fringesXXX.txt and

cal_fringesXXX_side.txt where XXX is whatever string you want). You also need to
update the cal_fringes.pro file so that it will use these new .txt files (it’s on the line:
filename='cal_fringes13_updated_side.txt'). After it runs, the code returns three data
arrays (newphases, newphases1, and newphases2) that contain the corrected phase
maps for all of the detunes in your input .txt file.
You only need to save 1 corrected set of phase maps in a fits file (use the newphases1
array for the corrected phase maps): you will need to locate the position in the
newphases1 array that corresponds to the most recent phase maps you computed (the
array newphases1 has 4 indexes, the last one corresponds to the detune sequence
index), and then run the following in your IDL session:
fits_write,’phases_86968067_side.fits’,float(newphases1[*,*,*,132])
in this example 86968067 is the FSN_REC of the latest phase maps, corresponding to
the index 132 in the newphases1 array, and for the side camera. newphases1 is
preferred because it includes correction for the small-scale and large-scale fringes,
while newphases only includes the large-scale ones, and newphases2 is doing another
correction that is not as good.

– Once the corrected phase maps (2 sets, one for front camera and one for side camera)
have been saved as fits files on your local directory, they need to be ingested into the
hmi.phasemaps_corrected series using the ingest_corrected_phasemaps.c program
(in /home/couvidat/cvs/JSOC/proj/lev1.5_hmi/apps/). Run it for both the front and
side cameras. This code is not user friendly: you have to edit the source to provide the
correct FSN_REC of the phase maps you are trying to ingest. Here is what the
relevant part of the source looks like:
 char *inRecQuery ="hmi.phasemaps[86968067][][3][128]";
 //char *inRecQuery ="hmi.phasemaps_cal13[65714753][][2][128]";
 //char *inRecQuery ="hmi.phasemaps[51564722][][3][128]";
 char *dsout ="hmi.phasemaps_corrected";
 //char *inFilename ="phases_65714753_side.fits";
 //char *inFilename ="phases_51564722.fits";
 char *inFilename ="phases_86968067.fits";

in inRecQuery, you provide the info about where the original phase maps come from
(so their FSN_REC and HCAMID). The code will copy the keywords of this record
into the hmi.phasemaps_corrected record. In inFilename you provide the name of the
fits file where the corrected phase maps are stored. A note about the camera
convention: hmi.phasemaps is using HCAMID, not CAMERA, as a prime key. With
HCAMID, the front camera is 3 and the side one is 2.

– Once the corrected phase maps are available, you need to use them to produce new
look-up tables for the MDI-like algorithms, with the new co-tune setting.
Use lookup.c (in /home/couvidat/cvs/JSOC/proj/lev1.5_hmi/apps/) for that purpose.
The script lookup_script in /home/couvidat/cvs/JSOC/ shows how to run the code.

For the retuning of April 2015, here is what I did (on n02 and from
/home/couvidat/cvs/JSOC):
./_linux_x86_64/proj/lev1.5_hmi/apps/lookup phasemap="hmi.phasemaps_corrected[86968067]"
lookup="hmi.lookup_corrected_expanded" HCME1=37 HCMWB=50 HCMPOL=0 HCMNB=80 NUM=6 hcamid=1
cal=2 &
./_linux_x86_64/proj/lev1.5_hmi/apps/lookup phasemap="hmi.phasemaps_corrected[86968067]"
lookup="hmi.lookup_corrected_expanded" HCME1=37 HCMWB=50 HCMPOL=0 HCMNB=80 NUM=6 hcamid=0
cal=2 &
./_linux_x86_64/proj/lev1.5_hmi/apps/lookup phasemap="hmi.phasemaps_corrected[86968067]"
lookup="hmi.lookup_corrected_expanded" HCME1=37 HCMWB=50 HCMPOL=0 HCMNB=80 NUM=8 hcamid=1
cal=2 &
./_linux_x86_64/proj/lev1.5_hmi/apps/lookup phasemap="hmi.phasemaps_corrected[86968067]"
lookup="hmi.lookup_corrected_expanded" HCME1=37 HCMWB=50 HCMPOL=0 HCMNB=80 NUM=8 hcamid=0
cal=2 &
./_linux_x86_64/proj/lev1.5_hmi/apps/lookup phasemap="hmi.phasemaps_corrected[86968067]"
lookup="hmi.lookup_corrected_expanded" HCME1=37 HCMWB=50 HCMPOL=0 HCMNB=80 NUM=10 hcamid=1
cal=2 &
./_linux_x86_64/proj/lev1.5_hmi/apps/lookup phasemap="hmi.phasemaps_corrected[86968067]"
lookup="hmi.lookup_corrected_expanded" HCME1=37 HCMWB=50 HCMPOL=0 HCMNB=80 NUM=10 hcamid=0
cal=2 &

So I called the code 6 times, to produce look-up tables for the front and side cameras,
and for the cases where HMI uses 6, 8, or 10 wavelengths (the cases 8 and 10
wavelengths are for special observables sequences that we may run occasionally). I
actually ran the code more than that because here I only showed how to populate the
hmi.lookup_corrected_expanded series, which is the one currently used, but there are
other series you may want to populate (hmi.lookup, hmi.lookup_corrected, and
hmi.lookup_expanded). Running the code once on n02 takes half an hour or so (with
8 OpenMP threads), so running it 6 times will take roughly 3 hours. The new
cotuning of the instrument (in terms of hollow core motor positions so that the
instrument is centered on the Fe I line at 6173.3433 A) is provided on the command
line by HCME1, HCMWB, HCMPOL, and HCMNB: you need to use the correct
values. NUM is the number of wavelengths you want, and cal is the calibration used
(should be 2).

– Finally, you need to update the std_flight.w file if necessary (to add the new tuning
positions). The file is in /home/couvidat/cvs/JSOC/proj/tables/hmi_mech/std_flight.w
and should be checked into cvs. Make sure the file in the development tree
(/home/jsoc/cvs/Development/JSOC/proj/tables/hmi_mech) has been updated (I
usually ask Art to do it). Rock is the one who creates std_flight.w. You have to be
careful because there are several versions available (one with and one without
comments).

After the retuning occurs:

• Update the file filePhaseMaps.txt (in
/home/couvidat/cvs/JSOC/proj/lev1.5_hmi/apps/), check it into cvs, and make sure

that the file in /home/jsoc/cvs/Development/JSOC/proj/lev1.5_hmi/apps has been
updated (ask Art). This file tells VFISV which phase maps to use for T_REC larger
than a certain value. Therefore, it needs to be updated for VFISV to process the
hmi.S_720s(_nrt) records obtained after retuning. The first column in this file is the
T_REC (as a double) at which the retuning occurred, and the right column is the
FSN_REC of the look-up table to use for T_REC larger than the retuning T_REC. You
need to know the precise time at which retuning occurs to update this file, so it is
usually done shortly after retuning. However, if the retuning is done during a
calibration maneuver, no observable sequences are taken for hours, so it does not
matter if the T_REC you use is not exact: in that case, you can update the file prior to
retuning, once you have a good enough estimate of the time at which retuning will
occur (ask Rock). The T_REC in filePhaseMaps.txt are listed as doubles, not as
timestamps. To convert timestamps into double I use time_convert.c (in
/home/couvidat/cvs/JSOC/proj/lev1.5_hmi/apps/), but I believe there is an actual
DRMS function that does that. You have to edit time_convert.c to provide the FSN
of a lev1 record (the record at the time of retuning for instance), and the code returns
the T_REC as a double corresponding to this FSN.

• Create some “fake” hmi.coefficients entries: the polynomial coefficients records have
a keyword named CAL_FSN that is used by the observables code hmi_observables
to determine what look-up table was used to produce the Dopplergrams on which the
coefficients are based (CAL_FSN is the FSN_REC of the corresponding look-up
table). Therefore, when we retune HMI and produce new look-up tables, the
observables code will not use polynomial coefficients computed with another look-up
table. Also, there will be a gap in the observables if no precaution is taken: you need
to create entries in hmi.coefficients just prior to and just after the retuning. Of course,
you won’t have the necessary 24h of data to process these records in the usual way:
hence the need to create fake entries.
 I usually just copy (with set_keys -c) the last record in hmi.coefficients obtained with
24h of data to a T_REC that is 1s before the retuning, and then I copy the first
hmi.coefficients record obtained with 24h of data after retuning to a T_REC that is 1s
after retuning (you can do a show_info ds=”hmi.coefficients[]” for T_REC around
the retuning of April 8, 2015 to see what the records look like).
You compute the hmi.coefficients records after retuning once 24h worth of
hmi.V_45s_nrt is available by running the correction_velocities code manually (if
you wait for the scripts to run automatically, it takes about 3 days after retuning).
Example of how to run correction_velocities:
/home/jsoc/cvs/Development/JSOC/_linux_x86_64/proj/lev1.5_hmi/apps/
correction_velocities begin=2010.9.30_6:45_TAI end=2010.10.1_6:45_TAI
levin=hmi.V_45s_nrt levout=hmi.coefficients

You might have to force computation if the number of hmi.V_45s_nrt records

available is less than the 1920 per day expected: if so, add the forced=1 mindata=1
options on the command line. The polynomial coefficients only change slowly from
one day to the next, so if you observe sudden jumps in these coefficients, something
went wrong (maybe some Dopplergrams are bad, or maybe there was not enough
Dopplergrams to produce reliable coefficients): in that case you probably want to
delete the faulty records and copy the closest one to the faulty T_REC.

Miscellaneous Codes

• A code that might be useful from time to time is undistort_lev1.c (in
proj/lev1.5_hmi/apps): as the name implies, this code takes level 1 records as an input
and gapfills and undistorts it (it was used to process the Venus transit data for
instance). This code also run the limb-finder after having undistorted the images,
rather than to rely on the ad-hoc values for the solar radius and solar center that are
returned by the undistortion routine (this is unlike what is done in the observables
codes). You call it this way (from /home/couvidat/cvs/JSOC/ on n02):
_linux_x86_64/proj/lev1.5_hmi/apps/undistort_lev1
begin=”2015.05.01_00:00:00_TAI” end=”2015.05.01_00:10:00_TAI”
in=”hmi.lev1” out=”su_couvidat.lev1”

The ouput series is on the command line: make sure you don’t overwrite a lev1 record
from hmi.lev1!

• Another potentially useful code: limbfit_sc (also in
/home/couvidat/cvs/JSOC/proj/lev1.5_hmi/apps): this is a standalone program based
on Richard’s limb finder. It will run the limb finder on any level 1 record, then will
perform the formation height correction, and return the following values:
FSN, X0_LF, Y0_LF, RSUN_LF, CRPIX1, CRPIX2, and R_SUN
You run it the following way (on solar3 and in /home/couvidat/cvs/JSOC/):
_linux_avx/proj/lev1.5_hmi/apps/limbfit_sc dsin=”hmi.lev1[2015.5.1_TAI/1m]”

Even though you can run the limb finder on different series, it crashes if the image on
which you run it is not a hmi.lev1 record and has NaNs. I had to replace NaNs by
zeroes in some images (like the lev1 with PSF removed by Aimee) to be able to have
the limb finder runs smoothly on them.

Ingesting PSF Corrected Level 1 Data

Right now, Aimee’s code to produce PSF corrected lev1 records is not running in the
DRMS, so you need to first fetch the lev1 data segments (with exportdata for
instance), then run her code, and then you need to ingest the output lev1 images into a
DRMS series. To perform the latter, I use ingest_Aimee.c (in
/home/couvidat/cvs/JSOC/proj/lev1.5_hmi/apps/). From /home/couvidat/cvs/JSOC on
n02 you run it like this:
_linux_x86_64/proj/lev1.5_hmi/apps/ingest_Aimee
fits="/tmp20/norton/scat/deconvolved/image_lev1_01.fits" out="su_couvidat.lev1"
inRec="hmi.lev1[2012.06.06_02:27:00.86_UTC]"

fits is the path to the fits file produced by Aimee, out is the series where you want to
ingest the lev1 record (make sure not to overwrite production records in hmi.lev1),
and inRec is the level1 records that Aimee deconvolved (it is used to copy its
keywords into the output series).
The code runs the limbfinder on the deconvolved level1 image, to update the X0_LF,
Y0_LF, RSUN_LF, CRPIX1, CRPIX2, CDELT1, and R_SUN keywords.

