Comparison of Travel-Time Definitions

S. Couvidat and the HMI Time-Distance Pipeline Team

LoHCo Meeting --- Stanford, 2009 March 12 - 13

Three travel-time definitions

Gabor Wavelet (Kosovichev & Duvall, 1997):

G = A exp[-δω²/4 (τ-τ_g)²] cos[ω₀(τ-τ_p)]

Gizon & Birch (2002):

$$X_{\pm}(\mathbf{r_1},\mathbf{r_2},t) = \int dt f(t') [C(\mathbf{r_1},\mathbf{r_2},t)-Cref(\Delta,t'-t)]^2$$

 $\tau_{\pm}(\boldsymbol{r}_{_{1}},\boldsymbol{r}_{_{2}}) = \operatorname{argmin}_{_{t}} \{X_{\pm}(\boldsymbol{r}_{_{1}},\boldsymbol{r}_{_{2}},t)\}$

Gizon & Birch (2004): $\tau_{\pm}(\mathbf{r}_{1},\mathbf{r}_{2}) = \int dt f(\pm t) \dot{C}_{ref}(\Delta,t) [C(r_{1},r_{2},t)-C_{ref}(\Delta,t)] / \int dt f(\pm t) [\dot{C}_{ref}(\Delta,t)]^{2}$

Mean and Difference Travel Times in Quiet Sun (I)

 $\Lambda = 6.2 \text{ Mm}$

-15.0

-20.0

-25.0

-30.0

-35.0

40.0

200

đ

-15.0

-20.0

-25.0

-30.0

-35.0

40.0

Mean and Difference Travel Times in Quiet Sun (II)

Δ= 30.55 Mm

x (Mm)

x (Mm)

x (Mm)

Mean and Difference Travel Times in Quiet Sun (III)

Black = GB02, Green= GB04, Red= Gabor

Mean and Difference Travel Times in Quiet Sun (IV)

Mean and Difference Travel Times in Quiet Sun (V)

Mean and Difference Travel Times in Quiet Sun (VI)

Solid = Gabor, dashed= GB02, dash-dotted= GB04 upper=mean, lower=difference Mean and Difference Travel Times in Active Region NOAA 9787 (preliminary results)

GIZON & BIRCH (2002)

300

200 Þ

100

0

0

100

200

200

x (Mm)

300

x (Mm)

300

(WH)

40.0 35.0 26.0 26.0 16.0 10.0 5.0 -5.0 -10.0 -15.0 -25.0 -25.0 -35.0

40.0

40.0 35.0 225.0 25.0 10.0 5.0 -5.0 -10.0 -25.0 -25.0 -30.0 -35.0 -35.0 -40.0

ότ_{man} (seconds)

бт_{лан} (seconds)

200

x (Mm)

300

 $\begin{array}{c} 40.0\\ 35.0\\ 30.0\\ 25.0\\ 20.0\\ 15.0\\ 10.0\\ -5.0\\ -10.0\\ -5.0\\ -20.0\\ -20.0\\ -35.0\end{array}$

-40.0

9

40.0

35.0

30.0 25.0 25.0 10.0 5.0 -10.0 -15.0 -20.0 -25.0 -35.0 -35.0 -35.0 -35.0 -35.0 -35.0

ότ_{men} (seconds)

GIZON & BIRCH (2002)

300

200

100

n

0

100

(IMIII)

Þ

y (Mm)

y (Mm)

200

x (Mm)

300

300

200

Û

0

(HH)

Þ. 100

200

x (Mm)

100

100

200

x (Mm)

GIZON & BIRCH (2002)

300

GIZON & BIRCH (2002)

300

200

100

0

A (Mm)

40.0 35.0 22.0 15.0 10.0 5.0 -5.0 -10.0 -15.0 -10.0 -20.0 -25.0 -25.0 -35.0 -35.0 -40.0

ότ_{απ} (seconds)

ότ_{att} (seconds)

ότ_{att} (seconds)

٠.

OT HAND

(seconds)

300

200

100

0

0

y (Mm)

x (Mm)

x (Mm)

y (Mm)

x (Mm)

GABOR;01/25/2002

 $\begin{array}{c} 40.0\\ 35.0\\ 30.0\\ 25.0\\ 15.0\\ 10.0\\ 5.0\\ -15.0\\ -15.0\\ -20.0\\ -25.0\\ -30.0\\ -35.0\\ \end{array}$

40.0

δτ_{diff} (seconds)

Ð

y (Mm)

y (Mm)

x (Mm)

Comparison of north-south difference travel times through horizontal flows added to a simulation of the solar convection

(S. Couvidat & A. Birch)

- Simulation of Stein, Nordlund, Georgobiani, & Benson (already used in local helioseismology by, e.g., Braun et al. (2007), Zhao et al. (2007), Georgobiani et al. (2007)
- power spectrum close to MDI
- 96x96x20 Mm³
- 8.5 hours of data
- dx=0.384 Mm, dt=60 s
- added steady southward uniform flows to the vertical velocity maps, using shift theorem in Fourier domain; 12 flow velocities
- worked with acoustic modes only (Jackiewicz et al., 2007, studied f-mode case)

- time-distance analysis performed with 2 kind of filters ("standard" ---values from T. Duvall--- and "broad" ---FWHM x4---) for 4 distances source-receiver

Uncertainty in the difference travel time with the phase time of the Gabor wavelet (I)

Uncertainty in the difference travel time with the phase time of the Gabor wavelet (II)

At Δ =8.7 Mm with a 200 m/s southward flow

 $\tau_{ref} = 12.85 \text{ min}$

 $\tau_{ref} = 12.85 + 2\pi/\omega_{ref} = 16.95 \text{ min}$

 $\tau_{\text{North}} = 12.917 \text{ min}$ $\tau_{\text{South}} = 12.781 \text{ min}$ $\tau_{\text{North}} = 12.917 + 2\pi/\omega_{\text{North}} = 17.074 \text{ min}$ $\tau_{\text{South}} = 12.781 + 2\pi/\omega_{\text{South}} = 16.794 \text{ min}$

 $\delta \tau_{\rm NS} = 8.15 \text{ s} \qquad \qquad \delta \tau_{\rm NS} = 16.79 \text{ s}$

$$\delta$$
 τ_{NS} not unique because $\omega_{North} \neq \omega_{South}$

Uncertainty in the difference travel time with the phase time of the Gabor wavelet (III)

Ray-path kernels can be corrected to include this dependence on the reference phase time: $\delta \tau_{NS} \sim -2 \int nU/c^2 ds + (\delta \omega_{S} - \delta \omega_{N})/\omega \tau_{D}$

North-South travel-time difference in presence of flows (I)

North-South travel-time difference in presence of flows (II) : frequency dependence

North-South travel-time difference in presence of flows (III) : frequency dependence

Conclusion

- in quiet Sun the three definitions give very similar results

- in active region, Gabor and GB02 give similar results after crosscovariances have been normalized

- GB04, even with normalization, seems inadequate for active regions
- lack of uniqueness of phase travel time returned by Gabor wavelet can be problematic: the reference phase time used should always be mentioned
- if phase-speed filters are too narrow, Gabor and GB02 can return time differences not linear in the flow strength
- GB04 is never linear in the flow strength