Flare Forecasting

Goal: To predict whether an active region will flare, or not, within a given time interval

Machine Learning:
Field of computer science that develops algorithms to learn a specific task without being explicitly programmed for it

Li, Wang, Cui, & Du (2007): support vector machine + k-nearest neighbour
Colak & Qahwaji (2007): neural network
Yu, Huang, Wang, & Cui (2009): decision tree
Song, Tan, Jing, et al. (2009): logistic regression
Yuan, Shih, Jing, & Wang (2010): support vector machine
Ahmed, Qahwaji, Colak, et al. (2013): cascade-correlation neural network

Non Machine Learning:

Wheatland (2005): statistical approach based on active region history
Barnes & Leka (2003,2008): discriminant analysis
Mason & Hoeksema (2010): epoch analysis
Falconer, Moore, Barghouty, et al. (2012): prior flaring + free magnetic energy

Here, we use support vector machine with HMI vector magnetograms (also tried: neural network, decision trees, logistic regression, and Adaboost). We used 303 flaring ARs and 5000 non-flaring ones
Support Vector Machine

- a binary classifier known to be superior to neural networks
- soft margin version proposed by Cortes & Vapnik (1995) works on non-linearly separable features
- tries to separate the features by an hyperplane with the largest margin while minimizing misclassifications
- cost function = \(\frac{1}{2} ||w||^2 + C \sum \varepsilon \)
- decision function can be non-linear through the use of kernels
- we use the Scikit-Learn module in Python (based on libsvm) commonly used in the literature
- we use a Gaussian kernel
=> 2 main parameters to train the SVM
- example dataset randomly separated in training and testing sets (70-30%)
Major Issue For Flare Prediction: Class Imbalance

- Solar flare forecasting is affected by strong class imbalance: many more negative examples N (non-flaring ARs) than positive ones P (e.g., Mason & Hoeksema had $N/P=260$ in their Table 2; Ahmed et al. have ~ 17; Barnes & Leka have ~ 10)
- different ways to deal with it: here, we assign different cost functions to the two classes

- imbalance impacts performance metrics used by various groups:
 To measure performance, we use a contingency table: TP, TN, FP, FN
 Accuracy = $(TP+TN)/(P+N)$
 Precision = ability of the classifier not to label as positive a negative example $= TP/(TP+FP)$
 Recall (aka sensitivity, POD...) = ability of the classifier to find all of the positive examples $= TP/P$
 Skill scores measure the performance compared to a benchmark:
 Heidke Skill Score (Barnes & Leka, 2008) HSS_1: correct predictions compared to always predicting negative
 Heidke Skill Score (Balch 2008) HSS_2: correct predictions compared to random predictions
 Gilbert Skill Score (Mason & Hoeksema, 2010) GS: correct positive predictions (TP) compared to correct positives from random predictions

- best to use **True Skill Statistic** (Bloomfield et al., 2012) TSS (aka Hanssen-Kuiper skill score), is: recall minus false alarm rate $= TP/P - FP/N$ (or recall+specificity-1). Widely used to test the performance of weather forecasts (McBride & Ebert, 2000)
Sensitivity of Skill Scores to N/P Ratio

Only TSS independent of imbalance ratio (Woodcock, 1976; Bloomfield et al. 2012) => TSS should be the preferred performance metric when comparing results of groups with different N/P ratios.

NB: HSS₁ is the least useful skill score (outside of accuracy) in case of strong imbalance.
Feature Selection

- including too many features does not improve the performance of SVM (and may lower the performance of other ML algorithms) => we try to optimize the number of features
- we use univariate feature selection based on the Fisher ranking score
 - easy to implement and useful, but ignores any dependence between features (compute correlation coefficients)
 - score has significant error bars (depends on the number of examples and the ones selected)
 - we retain only 13 features

- New feature-selection algorithms tested based on Shannon's entropy and maximum-relevance-minimum-redundancy criteria (multivariate feature selection)
Fisher score = \(\frac{d_1^2 + d_2^2}{\sigma_1^2 + \sigma_2^2} \) (based on F-statistic)
Skill score as a function of number of features

TSS peaks at 13 features

Only TOTUSJH remains
Results

<table>
<thead>
<tr>
<th>Metric</th>
<th>Mason</th>
<th>Ahmed</th>
<th>Ahmed</th>
<th>Barnes</th>
<th>Bloomfield</th>
<th>Yu</th>
<th>Song</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time interval (no flare)</td>
<td>48h</td>
<td>24h</td>
<td>6h</td>
<td>48h</td>
<td>24h</td>
<td>24h</td>
<td>24h</td>
</tr>
<tr>
<td>class-imbalance ratio</td>
<td>16.5</td>
<td>16.5</td>
<td>260</td>
<td>15.85</td>
<td>16.58</td>
<td>9.92</td>
<td>26.5</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.973±0.004</td>
<td>0.963±0.004</td>
<td>0.694</td>
<td>0.975</td>
<td>0.963</td>
<td>0.922</td>
<td>0.830</td>
</tr>
<tr>
<td>Precision (positive)</td>
<td>0.779±0.047</td>
<td>0.661±0.034</td>
<td>0.008</td>
<td>0.877</td>
<td>0.740</td>
<td>NA</td>
<td>0.146</td>
</tr>
<tr>
<td>Precision (negative)</td>
<td>0.984±0.003</td>
<td>0.980±0.002</td>
<td>0.998</td>
<td>0.980</td>
<td>0.972</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Recall (positive)</td>
<td>0.732±0.047</td>
<td>0.641±0.045</td>
<td>0.617</td>
<td>0.677</td>
<td>0.523</td>
<td>NA</td>
<td>0.704</td>
</tr>
<tr>
<td>Recall (negative)</td>
<td>0.987±0.003</td>
<td>0.982±0.004</td>
<td>0.695</td>
<td>0.994</td>
<td>0.989</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>f1 (positive)</td>
<td>0.753±0.032</td>
<td>0.661±0.034</td>
<td>0.015</td>
<td>0.764</td>
<td>0.613</td>
<td>NA</td>
<td>0.242</td>
</tr>
<tr>
<td>f1 (negative)</td>
<td>0.986±0.002</td>
<td>0.980±0.002</td>
<td>0.819</td>
<td>0.987</td>
<td>0.989</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ISS1</td>
<td>0.520±0.064</td>
<td>0.342±0.076</td>
<td>-78.9</td>
<td>0.581</td>
<td>0.339</td>
<td>0.153</td>
<td>NA</td>
</tr>
<tr>
<td>ISS2</td>
<td>0.739±0.033</td>
<td>0.641±0.035</td>
<td>0.008</td>
<td>0.751</td>
<td>0.594</td>
<td>NA</td>
<td>0.190</td>
</tr>
<tr>
<td>Gilbert skill score</td>
<td>0.587±0.042</td>
<td>0.473±0.039</td>
<td>0.004</td>
<td>0.601</td>
<td>0.422</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>TSS</td>
<td>0.719±0.046</td>
<td>0.623±0.044</td>
<td>0.312</td>
<td>0.671</td>
<td>0.512</td>
<td>NA</td>
<td>0.539</td>
</tr>
</tbody>
</table>

Operational form: results significantly better than Ahmed et al.
Segmented form: results marginally better for TSS
Conclusion

- We used SVM + HMI vector magnetograms through SHARP parameters
- We compared our results mostly with Ahmed et al. (2013): most recent study and amongst the largest database (27539 flaring ARs, 469516 non-flaring ones, incl. C-class)
- Good results overall: TSS is larger than other papers studied, especially in segmented mode
- Probably due to better features: vector magnetograms give access to field topology
- TOTUSJH is the most useful parameter, and only 5-6 are needed: confirms conclusion of Leka and Barnes (2007) that USFLUX, TOTUSJH, and TOTUSJZ are very useful
- However, still far from perfect: 36% (operational mode) and 27% (segmented mode) of flares not predicted
- As was concluded several times in the past by other groups (e.g. Leka and Barnes, 2007), it is not clear that we can improve on flare forecasting with only photospheric magnetograms
- Future works:
 - take into account time evolution of features, include C-class flares (Colak & Qahwaji, 2009: including C-class flares improve performances), test other ML algorithms (especially SVM+k-nearest neighbors)
 - AR parameters are sensitive to which pixels contribute to their calculation: should try different masks
- We recently added 2 new features: B effective and fractal dimension: B_{eff} is highly relevant to flaring activity (confirming Georgoulis & Rust, 2007), while the fractal dimension is not relevant (confirming Georgoulis, 2012).

- We started working on including AIA data (discussions with Paul Higgins), in collaboration with Stathis Ilonidis

- We started working on addition of temporal variation in the features (mostly Stathis Ilonidis). Preliminary results show an increase in performance metrics