
Chapter 5

Solution of the Inverse Problem

Once the travel time di�erences have been computed as a function of travel distance �

and latitude �, it remains to compute the subsurface velocity u(r; �). This process is

rather more complicated than it might appear at �rst glance, and its solution requires

some knowledge of inverse problems. The terminology and formalism of this subject

are brie
y described here.

5.1 The Integral Equation

Equation 2.44 relates the horizontal velocity u of the solar plasma to a particular

measured time di�erence �� , under the assumptions of the ray approximation. The

object, then, is to determine the function u(r; �) which best �ts the measurements.

A naive approach would be to discretize the problem and then �nd the \best �t"

model u in a least-squares sense. In the discussion which follows, I will describe this

procedure in slightly more detail, explain why it must fail, and then describe the use

of regularization to obtain a stable and reasonable solution.
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5.2 The Regularized Least Squares Method

5.2.1 Discretization of the problem

In order to convert the equation 2.44 into a matrix equation which can be solved by

a computer, it is simply necessary to model the region of wave propagation with a

suitable grid. One approach is to create a grid which is equally spaced in radius and

latitude. Assume that there are M1 latitude gridpoints and M2 radial gridpoints,

where M = M1M2. These M model velocities can be thought of as forming a vector

u. For a particular measurement ��i, where the index i denotes the coordinates (�;�)

which determine the ray path, the relationship between the model and the data can

be expressed as

��i =
MX
j=1

Kijuj: (5.1)

The sensitivity kernel Kij has elements which are given by

Kij = 2
Z
i

vgh
vgrc2

drj; (5.2)

where the integral is along the particular element of the ray path determined by i

which lies within grid cell j. In other words, the velocity u is assumed to be constant

within each cell of the grid.

The choice of the grid spacing is intimately related to the question of the resolution

of the solution, which is discussed in section 5.2.4. However, the radial coordinate

deserves special mention. The simplest choice is to make a grid which is equally

spaced in radius as well as latitude. However, analysis of the inversion results has

shown that this o�ers a somewhat misleading view of the resolution of the solution

deep in the convection zone. A better choice is to create a grid which has equal

spacing in acoustic radius, de�ned1 as

r� �
Z r

0

dr0

c
: (5.3)

1Here I use the symbol r� rather than the standard � , so as not to become confused with travel

time.
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In this case the grid points are equally spaced in travel time, assuming radially prop-

agating waves and ignoring dispersion.

A typical sensitivity kernel is shown in �gure 5.1. Since each measurement ��i

actually is made from the average of a large number of cross correlations, the kernel

is not actually constructed for a single ray path but for the weighted mean of all of

the ray paths which have contributed to the average. The weight for each ray path

is proportional to the number of pairs of pixels used which had exactly the same

distance, latitude, and direction (see also section 4.3.2).

Once the problem has been discretized, the equation 5.1 can be recast in matrix

form,

Ku = z; (5.4)

where the N elements of the vector z are zi = ��i, the vector u has the M model

velocities for components, and each row of the N�M matrixK is a sensitivity kernel

with components given by equation 5.2. If we de�ne two new quantities A and b,

bi = zi=�i; i = (1; : : : ; N) (5.5)

Aij = Kij=�i; j = (1; : : : ;M) (5.6)

then we want to �nd the solution û which minimizes

�2 � jAu� bj2 (5.7)

with respect to u. This is equivalent to solving the set of linear equations (see for

example Press et al. (1992))

ATAu = ATb: (5.8)

In practice, however, this will not give us a useful answer for û, if it gives an answer at

all. The problem here is that since the operator K is an integral operator it will act

to smooth the response of the data to the model. This \smoothed out" information

cannot be recovered by solving the set of linear equations in equation 5.8. In addition,

since the operator K is a smoothing operator, the inverse operator (if it exists), when

operating on the noisy measurements, will cause the solution to be unstable. Finally,
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Figure 5.1: The left-hand �gure shows the sensitivity kernel for the zonal velocity,
for the measurement with � = 7:5�, � = 18:1�. The right-hand �gure shows the
sensitivity to the meridional velocity for the measurement with � = 24:4�, � = 44:1�.
The greyscale shows the sensitivity to horizontal 
ows, with black areas being those
with no sensitivity. The black curves depict ray paths for the individual measurements
which were averaged together to get the single kernel shown here; that is, each black
curve represents a di�erent pair of MDI pixels. There are 52 rays in the left-hand
�gure, and 39 on the right, although many of the curves overlap. In the left-hand
�gure, note that the rays do not propagate at constant latitude.
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the problem may be underdetermined | we may attempt to solve for more model

parameters than there are measurements. This is, strictly speaking, mathematically

impossible, but can be accomplished if some a priori knowledge can be used to select

the proper solution from the set of possible solutions given by the measurements.

5.2.2 Regularization

A common and very useful approach to this problem is to add an additional constraint

which causes the chosen solution to be \smooth" in some way. For example, rather

than minimize�2 alone, we can try to �nd the solution û which minimizes the quantity

jAu� bj2 + 
uTHu; (5.9)

where the second term represents some sort of smoothing operation. As examples,

four forms have been used for the matrix H in this work:

uTH0u =)
Z Z

juj2r dr d� (5.10)

uTH1u =)
Z Z

jruj2r dr d� (5.11)

uTHu=ru =)
Z Z ����ru

r

����2 r dr d� (5.12)

uTH
u =)
Z Z ����r u

r cos�

����2 r dr d� (5.13)

where the matrix operations on the left are discrete approximations of the integrals

on the right. The chosen matrix H is called the regularization operator, and adding

it to the problem constrains the solution to be smooth in some sense.

Minimizing the quantity 5.9 is equivalent to solving the set of linear equations

(ATA+ 
H)u = ATb: (5.14)

The solution u = û obviously depends not only on the data z, the errors �, and the

model K, but also on the regularization scheme chosen (choice of H). The relative

in
uence of the regularization is controlled by the free parameter 
 in equation 5.14,
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which is called the regularization trade-o� parameter.

5.2.3 Trade-o� parameter

When 
 is large, the in
uence of H is great compared to the in
uence of the model

A, and the solution obtained, although very smooth, probably will not be a good �t

to the data. On the other hand, when 
 is small, the in
uence of the regularization

term is relatively small. The solutions in this case can provide an arbitrarily good �t

to the (noisy) data, but will have unreasonably large magnitudes and derivatives.

In general, model solutions û are usually computed for a range of di�erent values

of 
, and then the \best" model in some sense is chosen from the set of solutions. At

the two extremes, it is easy to rule out the solutions obtained, but the determination

of the \best" solution is often a matter of art.

One way to look at the e�ect of the trade-o� parameter in a somewhat quantitative

way is to plot the magnitudes of the two terms in the quantity 5.9. Such a diagram is

shown in �gure 6.1 and is known as an L-curve. The trade-o� parameter is increasing

in magnitude from right to left, so the smoothness of the solution is increasing. The

bend in the L-curve is an optimal solution for this particular choice of regularization;

it is the smoothest solution possible with a \small" value of �2. If the errors � in the

measurements can be trusted, then we can hope that the bend in the L-curve will be

located near a solution with �2 = N , the number of measurements.

5.2.4 Spatial averaging kernels

Another way to think about the e�ect of 
 is to examine the interplay between the

stability and the resolution of the inversion solution. For the sake of a convenient

notation, de�ne the matrix D as

D � ATA+ 
H: (5.15)
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We can therefore express the solution û to equation 5.14 as

û = D�1(ATb): (5.16)

Substituting for b from equation 5.8,

û = D�1ATAu: (5.17)

Equation 5.17 shows that each parameter of the model solution û can be expressed as

a linear combination of the parameters of the \real" velocity u. For this reason, each

row of the M �M matrix D�1ATA is called an averaging kernel for the solution.

For the particular problem under consideration here, each element of the vector u

corresponds to a particular latitude and radius, so the kernel gives a representation

of the spatial resolution of the solution.

5.2.5 Error analysis

As in the case of all least squares �tting techniques, the uncertainties in the model

parameters are determined by the uncertainty in the measurements and by the char-

acteristics of the kernels K. In both the regularized and standard forms, the error

information is contained in the covariance matrix of the solution. In the case of

regularized least squares, however, the formulation is slightly more complicated.

The variance in the model velocity ûj is de�ned as

�2(ûj) =
NX
i=1

�2i

 
@ûj
@zi

!
2

(5.18)

where �2i is the variance in measurement zi. Writing equation 5.16 in component

form,

ûj =
MX
k=1

[djk]
�1

NX
i=1

ziKki

�2i
(5.19)

so that
@ûj
@zl

=
MX
k=1

[djk]
�1
Kkl

�2l
: (5.20)
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Here I have represented the elements of D�1 symbolically as [dij]�1. Inserting this

result into de�nition 5.18 gives

�2(uj) =
MX
k=1

MX
l=1

[djk]
�1[djl]

�1[ATA]kl; (5.21)

or in matrix form,

�2(uj) = [D�1ATA(D�1)T ]jj: (5.22)

Note that in the case with no regularization (
 = 0) the variance reduces to [D�1]jj

as we expect.

Equation 5.22 shows that the error propagation | the way that uncertainty in the

measurements is transformed into uncertainty in the velocities| depends not only on

the model, but also on the choice of regularization parameter 
 and the regularization

operator H in equation 5.15.

In fact, another way to visualize the e�ect of the tradeo� parameter 
 is to imagine

the balance between the error propagation and the resolution. With little regular-

ization, the averaging kernels are well localized, but the solution is very sensitive to

errors in the measurements; when 
 is large, the solution is stable with respect to

errors but the resolution is very poor.

5.3 Additional Constraints

The previous section describes how regularization is used to select a \good" solution

from the in�nity of models which might be compatible with a set of noisy measure-

ments. However, the use of such a selection mechanism is not really based on physics,

but on some a priori ideas about what the velocity �eld should look like.

In addition to some type of smoothness, it would also be desirable to select a

model solution where the velocity �eld u satis�es the continuity equation 2.40. In the

case of the large-scale, steady 
ows measured here, this reduces to

r � (�(r)u) = 0: (5.23)
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Unfortunately, as noted in section 2.3.3, the radial component of the meridional

circulation is essentially undetectable in the time-distance technique, so that it is

not possible to constrain the 
ow �eld by applying equation 5.23 at each grid point.

However, there is one important case where the conservation of mass can be applied

to constrain the solution.

If the model is allowed to extend all the way to the bottom of the convection zone,

and if the meridional circulation is assumed not to penetrate into the radiative zone,

then the total amount of mass 
owing northward must be equal to the total amount


owing southward. In fact, it is possible to state the constraint in stronger terms: for

every latitude, the net amount of mass crossing that latitude must be zero.

The method used in this work to impose this condition is a so-called \barrier

method." The condition of mass conservation is cast in matrix form by creating a

matrix C which satis�es

uTCu =
M1X
i=1

0
@M2X
j=1

�jUji drj

1
A
2

= 0: (5.24)

Here the velocity vector u is treated symbolically as a (M2�M1) matrix U inside the

sum; the indices j and i indicate radius and latitude, respectively.

Once the matrix C has been formed, the condition uTCu = 0 is satis�ed in an

approximate sense by solving a modi�ed version of equation 5.14:

(ATA+ 
H + �C)u = ATb: (5.25)

Thus, the condition that mass be conserved is treated as an extra regularization

condition; the deviation from perfect continuity can be made arbitrarily small by

making � arbitrarily large.

Solving inverse problems is an art and a science in itself; the methods described

here have been used as a starting point. No doubt the methods of inversion, and
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the approximations used in the modeling, will be greatly improved as time-distance

helioseismology becomes more mature. The next chapter will describe the numerous

results which can be obtained using this relatively simple approach.


