TIME-DISTANCE MEASUREMENTS OF LARGE-SCALE FLOWS IN THE SOLAR CONVECTION ZONE

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF APPLIED PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

> By Peter M. Giles December 1999

© Copyright 2000 by Peter M. Giles All Rights Reserved I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

> Phil Scherrer (Principal Advisor)

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Peter Sturrock

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Arthur B. C. Walker

Approved for the University Committee on Graduate Studies:

Abstract

Helioseismology has been a powerful tool for measuring the structure and rotation of the solar interior. However, there are still many aspects of the Sun's dynamics which are not well understood. This thesis uses the recently developed method of time-distance helioseismology, closely analogous to seismic exploration in geophysics, to search for large-scale flows in the interior of the Sun. With this technique, data from the Michelson Doppler Imager (MDI) have been used to measure the meridional circulation deep in the solar convection zone for the first time. The results show that the measurements are consistent with a meridional circulation which is 20 m/s poleward at the solar surface, and roughly 3 m/s equatorward at the base of the convection zone. The turnover point is just below $r = 0.80 R_{\odot}$. The meridional circulation is also observed to be varying with time, with the possible appearance of an equatorward surface flow at high latitudes during the rising phase of the solar magnetic cycle. In addition to these important results, the measurements have yielded interesting results for the solar differential rotation, including the possible detection of a highly localized asymmetric feature with an amplitude of 200 m/s.

All of these measurements illustrate the unique capabilities of the time-distance technique for looking at the solar interior in a new way. Furthermore, these results will have a bearing on our understanding of solar dynamics, particularly the solar cycle and the maintenance of the rotation profile.

Acknowledgements

There are many people who need to be mentioned and acknowledged, either for the part they played in this work, or just for being good friends during the last six years.

First of all, I would be remiss if I did not mention that SOHO is a project of international cooperation between ESA and NASA, and that my research was supported by NASA contract NAG5-3077 at Stanford University.

Second, there is a long list of people at Stanford who have contributed to this work in one way or another. From a scientific standpoint, Tom Duvall, Jr., was the guidance and the inspiration for the work, the inventor of the tools, and the Master to the apprentice. I have Phil Scherrer to thank for many of the ideas contained in this thesis and for his ability to ask the big questions. Alexander Kosovichev has also been an inspiration, and a teacher. Jesper Schou and Rasmus Munk Larsen provided the measurements of the internal rotation rate which I have used as a reference, and have also been helpful when I was drowning in an ocean of linear algebra. Also, the new measurements of the Carrington elements in appendix A were inspired by comments and suggestions made by Jesper. Rick Bogart wrote and maintained the remapping software used in the analysis. John Beck, Laurent Gizon, and Aaron Birch have also made contributions which appear in these pages. Also, a special thanks to Margie Stehle for keeping all the details in order, and especially for all her help during the last few weeks.

There is an even longer list of people who have made the last six years not only intellectually challenging but just plain fun. Out of the many friends I have made during this six years, I would like to especially thank Russ, Duncan and Julie, Adrian, Chris, Andreas and Eileen, and Brian, for making this six years into much more than just work. My life will be better for knowing them. Jesper Schou makes this list also, for the four peaks we have stood on together: Mount Whitney, Mount Williamson, Mount Tyndall, and Mount Fuji. I spent many more weekends reaching some smaller summits with Jesper and Brian Roberts as well. Thank you also to everybody who helped me take out my frustrations with a hockey stick. Finally, let me recall an afternoon spent at Candlestick Park in late summer of 1997, with Rick and Tom, a bases-loaded double play and an extra-inning home run to beat the Dodgers.

Thank you also to my family; Mom and Dad, Kristina, and Steve and Angela. It has been a long time and I have been far away, and I have missed you all.

And of course, I wouldn't have done any of this without Kate's love, understanding, and support. The four years that we spent apart have made these last two even more wondrous. Truly she deserves an epic poem or a great novel; for now she will have to settle for the rest of these pages. I hope they will make her proud.

Contents

Abstract

\mathbf{A}	Acknowledgements				
1	Intr	roduction			
	1.1	Large-	Scale Flows and Solar Dynamics	2	
	1.2	Previo	ous Observations	3	
		1.2.1	Differential rotation	3	
		1.2.2	Torsional oscillations	7	
		1.2.3	North-south asymmetry in rotation	8	
		1.2.4	Meridional circulation	9	
	1.3	3 Observations In This Work		11	
		1.3.1	The deep meridional circulation \ldots \ldots \ldots \ldots \ldots	11	
		1.3.2	North-south asymmetry in rotation	11	
		1.3.3	Time variation of meridional circulation	12	
		1.3.4	Depth variation of torsional oscillation $\ldots \ldots \ldots \ldots \ldots$	12	
		1.3.5	New Carrington elements	12	

iv

2	Time-Distance Helioseismology				
	2.1	Solar	Oscillations	14	
	2.2	Norm	al Modes of Oscillation	15	
		2.2.1	Measuring rotation with mode frequencies	17	
		2.2.2	Limitations of the global approach	17	
	2.3	Time-	Distance Helioseismology	18	

		2.3.1	Wave travel times	19
		2.3.2	The ray approximation	23
		2.3.3	Horizontal and radial flows	29
		2.3.4	Wave Effects	32
3	$\mathrm{Th}\epsilon$	e Miche	elson Doppler Imager on SOHO	34
	3.1	The Se	ОНО Spacecraft	34
	3.2	MDI		35
		3.2.1	MDI filtergrams	36
		3.2.2	Observing modes	37
4	Dat	a Anal	lysis Methods	40
	4.1	Rema	pping of Images	40
	4.2	Filteri	ng and Image Correction	41
		4.2.1	Rotation gradient \ldots	41
		4.2.2	Supergranulation	41
		4.2.3	Surface gravity waves	42
		4.2.4	Phase velocity filtering	44
		4.2.5	Instrument modulation transfer function $\ldots \ldots \ldots \ldots$	46
	4.3	Comp	uting Cross Correlations	49
		4.3.1	Observing modes and computational burden \ldots	50
		4.3.2	Averaging of cross correlations	52
	4.4	Travel	Times From Cross Correlations	53
	4.5	Measu	$urement Uncertainties \ldots \ldots$	53
	4.6	Typica	al Measurements	57
	4.7	Instru	mental and Systematic Errors	60
		4.7.1	Roll angle uncertainty	60
		4.7.2	Plate scale uncertainty	61
5	Solu	ution o	of the Inverse Problem	65
	5.1	The Ir	ntegral Equation	65
	5.2	The R	egularized Least Squares Method	66

		5.2.1	Discretization of the problem	66
		5.2.2	Regularization	69
		5.2.3	Trade-off parameter	70
		5.2.4	Spatial averaging kernels	70
		5.2.5	Error analysis	71
	5.3	Addit	ional Constraints	72
6	\mathbf{Res}	ults		75
	6.1	Rotat	ion and Zonal Flows	75
		6.1.1	Inversion method and regularization	75
		6.1.2	Comparison to modal approach	77
		6.1.3	North-south asymmetry	85
		6.1.4	Torsional oscillation	92
		6.1.5	Time variation of high-latitude rotation	97
	6.2	Merid	ional Circulation	98
		6.2.1	Meridional circulation deep in the convection zone	98
		6.2.2	Problem of the return flow	99
		6.2.3	Behaviour of the equator-crossing flow	107
		6.2.4	Time variation of meridional circulation $\ldots \ldots \ldots \ldots$	107
7	Dis	cussio	n and Conclusions	110
	7.1	Angul	ar Momentum Transport	110
		7.1.1	Maintaining differential rotation	110
		7.1.2	Asymmetry in flow patterns	111
	7.2	The S	olar Cycle	112
		7.2.1	Babcock-Leighton dynamo theories	112
		7.2.2	Implications for the Wang <i>et al.</i> model	114
		7.2.3	Suppression of magnetic buoyancy	115
	7.3	Concl	usions	116
		7.3.1	Summary of results	116
		7.3.2	Future work	117

\mathbf{A}	On	The Rotation Axis of the Sun	119		
	A.1	The Coordinate System: i and Ω	120		
	A.2	SOHO Orbit and Alignment	123		
	A.3	Solar Velocities and Angle Errors	125		
	A.4	Previous Results and Discussion	130		
	A.5	Conclusions	134		
В	Dat	asets Available from SOI	135		
	B .1	Tracked Data Cubes	137		
	B.2	$Cross Correlations \ldots \ldots$	137		
		B.2.1 Dynamics 1996	138		
		B.2.2 Dynamics 1997, 1998	138		
		B.2.3 Structure	138		
Bi	Bibliography 139				

List of Tables

A.1	Determination of elements i and Ω from meridional velocity \ldots \ldots	129
A.2	Determination of elements i and Ω from zonal velocity $\ldots \ldots \ldots$	130
B .1	Datasets available from the Stanford SSSC	136

List of Figures

1.1	Some well-known measurements of the solar surface rotation $\ldots \ldots$	5
2.1	Velocity power spectrum from 8 hours of Dynamics images	15
2.2	Some examples of ray paths in the convection zone	24
2.3	Lower turning point versus travel distance for acoustic ray paths	26
2.4	A model meridional circulation	30
2.5	The relative contribution of horizontal and radial flows to the measured	
	time differences	31
3.1	Typical Dopplergrams from MDI	38
4.1	High-pass temporal frequency filter	42
4.2	f-mode filter	43
4.3	Phase speed filter	45
4.4	Directional filter	46
4.5	MDI modulation transfer function $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	47
4.6	MDI intrumental astigmatism	48
4.7	Typical cross correlations	51
4.8	Measurement errors for south-north time differences	55
4.9	Measurement errors for east-west time differences	56
4.10	Comparison of Dynamics and Structure measurement errors	57
4.11	An example of the measurements: south-north time differences	58
4.12	An example of the measurements: east-west time differences	59
4.13	MDI plate scale error and measurement of rotation	62

4.14	MDI plate scale error and measurement of meridional circulation	63
5.1	Typical sensitivity kernels for zonal and meridional flows $\ldots \ldots \ldots$	68
6.1	L-curve for RLS inversion of rotation	76
6.2	Comparison of the time-distance and normal mode rotation measure-	
	ments: Ω versus λ .	78
6.3	Comparison of the time-distance and normal mode rotation measure-	
	ments: Ω versus r .	79
6.4	Selected averaging kernels for rotation inversion	81
6.5	Selected averaging kernels for rotation inversion	82
6.6	Comparison of the time-distance and normal mode methods, account-	
	ing for the averaging kernels	84
6.7	Measurements of east-west time differences from 792 days	86
6.8	Subset of east-west time differences from figure 6.7	87
6.9	Effect of an asymmetric perturbation to the rotation on travel time	
	differences	89
6.10	Averaging kernel in the vicinity of the possible rotation asymmetry .	90
6.11	Rotation asymmetry from figure 6.8, for four six-month intervals \ldots	91
6.12	"Torsional oscillation" in the time difference measurements	93
6.13	Torsional oscillation at different depths	94
6.14	Radial cross section of averaging kernels for results in figure $6.13.$.	95
6.15	Symmetric and antisymmetric components from figure $6.13(b)$	96
6.16	East-west time differences for the three Dynamics periods	97
6.17	L-curve for inversion of meridional circulation	99
6.18	Inversion results for the meridional circulation from 792 days of Struc-	
	ture images: v versus λ .	100
6.19	Inversion results for the meridional circulation from 792 days of Struc-	
	ture images: v versus r	101
6.20	Selected averaging kernels for the meridional circulation inversion. \ldots	102
6.21	Selected averaging kernels for the meridional circulation inversion	103

6.22	Inversion results for the meridional circulation with conservation of	
	mass constraint: v versus λ	105
6.23	Inversion results for the meridional circulation with conservation of	
	mass constraint: v versus r	106
6.24	South-north time differences for the three Dynamics periods	108
6.25	Inversion results for the three Dynamics periods	109
A.1	Geometry of the Sun's coordinate system	121
A.2	Definition of the effective position angle	122
A.3	Spurious time variation of the meridional velocity $\ldots \ldots \ldots \ldots$	126
A.4	Spurious time variation of the zonal velocity $\ldots \ldots \ldots \ldots \ldots$	127
A.5	Measurements of Δi and $\Delta \Omega$	131
A.6	Summary of previous experimental results	132