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ABSTRACT

The forward problem of time-distance helioseismology is computing travel-time perturbations that result
from perturbations to a solar model. We present a new and physically motivated general framework for cal-
culations of the sensitivity of travel times to small local perturbations to solar properties, taking into account
the fact that the sources of solar oscillations are spatially distributed. In addition to perturbations in sound
speed and flows, this theory can also be applied to perturbations in the wave excitation and damping mecha-
nisms. Our starting point is a description of the wave field excited by distributed random sources in the upper
convection zone. We employ the first Born approximation to model scattering from local inhomogeneities.
We use a clear and practical definition of travel-time perturbation, which allows a connection between obser-
vations and theory. In this framework, travel-time sensitivity kernels depend explicitly on the details of the
measurement procedure. After developing the general theory, we consider the example of the sensitivity of
surface gravity wave travel times to local perturbations in the wave excitation and damping rates. We derive
explicit expressions for the two corresponding sensitivity kernels. We show that the simple single-source pic-
ture, employed in most time-distance analyses, does not reproduce all of the features seen in the distributed-

source kernels developed in this paper.

Subject headings: scattering — Sun: helioseismology — Sun: interior — Sun: oscillations — waves

1. INTRODUCTION

Time-distance helioseismology, introduced by Duvall et
al. (1993b), has yielded numerous exciting insights into the
interior of the Sun. This technique, which gives information
about travel times for wave packets moving between any
two points on the solar surface, is an important complement
to global-mode helioseismology, as it is able to probe sub-
surface structure and dynamics in three dimensions. Some
of the main results concern flows and wave-speed perturba-
tions underneath sunspots (Duvall et al. 1996; Kosovichev,
Duvall, & Scherrer 2000; Zhao, Kosovichev, & Duvall
2001), large-scale subsurface poleward flows (Giles et al.
1997), and supergranulation flows (Duvall & Gizon 2000).

The interpretation of time-distance data can be divided
into a forward and an inverse problem. The forward prob-
lem is to determine the relationship between the observatio-
nal data (travel times 67) and internal properties (¢,).
Generally, this relationship is sought in the form of a linear
integral equation,
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where the 8¢, (r) represent the deviations in internal solar
properties from a theoretical reference model. The index «
refers to all relevant types of independent perturbations,
such as sound speed, flows, or magnetic field. The integral
J. dr denotes spatial integration over the volume of the
Sun. The kernels of the integrals, K (r), give the sensitivity
of travel times to the perturbations to the solar model. The
inverse problem is to invert the above equation, i.e., to esti-
mate 6¢,, as a function of position r, from the observed 67.
In this paper we consider only the forward problem.

An accurate solution to the forward problem is necessary
for making quantitative inferences about the Sun from
time-distance data. There have been a number of previous
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efforts to understand the effect of local perturbations on
travel times. D’Silva et al. (1996), Kosovichev (1996), and
Zhao et al. (2001) used geometrical acoustics to describe the
interaction of acoustic waves with sound-speed perturba-
tions and flows. Bogdan (1997) argued that a finite-wave-
length theory is needed. Birch & Kosovichev (2000) solved
the linear forward problem for sound-speed perturbations,
in the single-source approximation. Jensen, Jacobsen, &
Christensen-Dalsgaard (2000) solved a weakly nonlinear
forward problem for sound-speed perturbations, in the sin-
gle-source approximation, and proposed the use of Fresnel-
zone-based travel-time kernels. Bogdan, Braun, & Lites
(1998) used a normal mode approach to compute travel-
time perturbations in a model sunspot. Woodard (1997)
estimated the effect of wave absorption by sunspots on
travel times. This important work, which required a model
for random distributed wave sources, is one of the primary
motivations for obtaining a general theory for travel-time
sensitivity kernels. The model developed by Woodard
(1997) employs, however, the approximation that wave
damping affects only the amplitude of transmitted waves,
ignoring scattering. Birch et al. (2001) tested the accuracy of
travel times obtained in the Born approximation, which
models single scattering from local inhomogeneities.
Although the above-mentioned efforts represent substantial
progress, there is not yet a general procedure for relating
actual travel-time measurements to perturbations to a solar
model that takes into account random distributed sources
for solar oscillations, despite a preliminary study by Gizon
& Birch (2001).

The first part of this paper (§ 2) is an attempt to synthesize
and extend the current knowledge into a flexible framework
for the computation of the linear sensitivity of travel times
to local inhomogeneities. We start from a physical descrip-
tion of the wave field, including wave excitation and damp-
ing. We incorporate the details of the measurement
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procedure. Two other key ingredients of our approach are
the single-scattering Born approximation and a clear obser-
vational definition of travel time, both taken from the geo-
physics literature (e.g., Tong et al. 1998; Zhao & Jordan
1998; Marquering, Dahlen, & Nolet 1999). The main differ-
ence between the geophysics and helioseismology problems
is that helioseismology deals with multiple random wave
sources as opposed to a single isolated source.

The second part of this paper (§ 3) is an example calcula-
tion of travel time kernels for surface gravity waves. The
purpose is to demonstrate the application of the general
theory described in § 2. We compute travel-time kernels for
local perturbations in source strength and damping rate. In
our model, these perturbations are confined to the surface
and therefore are computationally convenient, as we obtain
two-dimensional kernels. Localized source and damping
perturbations are interesting and not yet well understood.
For this example, we also compare these kernels with ker-
nels calculated in the single-source picture (Birch & Kosovi-
chev 2000; Jensen et al. 2000), in which distributed random
sources are replaced by an artificial causal source placed at
one of the observation points. We show that the single-
source kernels do not reproduce all the features seen in the
distributed-source kernels.

2. GENERAL THEORY
2.1. Definition of Travel Times

The fundamental data of modern helioseismology are
high-resolution Doppler images of the Sun’s surface. In gen-
eral, the filtered line-of-sight projection of the velocity field
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where v is the Eulerian velocity and 1 is a unit vector in the
direction of the line of sight. The operator # describes
the filter used in the data analysis, which includes the time
window (time duration 7T'), instrumental effects, and other
filtering.

The basic computation in time-distance helioseismology
is the temporal cross-correlation, C(1, 2, ), between the sig-
nal, ¢, measured at two points, 1 and 2, on the solar surface,
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where 7 is the time duration of the observation. The cross-
correlation is useful, since it is a phase-coherent average of
inherently random oscillations. It can be seen as a solar seis-
mogram, providing information about travel times, ampli-
tudes, and the shape of the wave packets traveling between
any two points on the solar surface. Figure 1 shows an
example of a surface gravity wave cross-correlation. The
positive-time branch corresponds to waves moving from 1
to 2, and the negative-time branch represents waves moving
in the opposite direction. For acoustic waves there are addi-
tional branches, at larger absolute time, corresponding to
multiple bounces off the surface in between 1 and 2.

We define the ““travel time” for each branch to be the
time lag that minimizes the difference between the measured
cross-correlation, C, and a sliding reference wavelet, Ce',
Depending on the choice of reference wavelet, the term
“travel time” may be an abuse of language; this issue will
be clarified later. The travel time for waves going from 1 to 2
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FiG. .—Surface gravity wave cross-correlations. Left: Example of an observed cross-correlation C(1, 2, ¢) averaged over all possible pairs of points (1, 2),
as a function of distance A = ||2 — 1|| and time 7. Red refers to positive values and blue to negative values. The observations are 8 hr time series from the MDI/
SOHO high-resolution field of view (Scherrer et al. 1995). The filter # is chosen to isolate surface gravity waves around 3 mHz. This spatially averaged cross-
correlation could be used as the reference wavelet C™f, which is used to measure travel times (see § 2.1). Right: Theoretical cross-correlation from the model

discussed in § 3.
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is denoted by 7, (1, 2), and the travel time for waves going
from 2 to 1 by 7_(1, 2). The difference (in the least-squares
sense) between the observed cross-correlation and the refer-
ence wavelet is

X:(1, 2, 1) :/OC dr f (&)

x[ca, 2, f)—c¥a, 2, x4

The window function, f(#'), is a one-sided function (zero for
¢ negative) used to separately examine the positive- and
negative-time parts of the cross-correlation. The window
f(¢') is used to measure 7, and f(—¢') is used to measure 7_.
One possible choice is a window that isolates the first-skip
branch of the cross-correlation. Other window functions
could be chosen to, for example, isolate the second-bounce
branch of a cross-correlation in the case of acoustic modes.

By definition, the travel times 7. are the time lags that
minimize X :

(1, 2) = argmtin{Xi(l, 2, 1)}. (5)

Minimizing X5 is equivalent to fitting C™f (¢ F ¢) to C(¢')
with a weighting in time given by f(£¢), varying the time
lag ¢ only. An example of measuring the travel times 7 from
a cross-correlation is shown in Figure 2.

The choice of reference wavelet C™f(1, 2, ) is left to the
observer. For most applications the reference wavelet need
only be a function of distance A = ||2 — 1]| and time . As
was done in Figure 2, one possible choice is to take C™f to
look like a cross-correlation. In this case, 7, and 7_ are
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small and the term ““ travel time > should be understood to
mean ‘“‘time lag.” A reference wavelet that resembles a
cross-correlation can be constructed by either averaging the
observed cross-correlations over all possible pairs of points
(1, 2) for each distance A (see Fig. 1), or by computing a the-
oretical cross-correlation from a solar model (see § 3).
Another possible choice is to take C™f(1, 2, ¢) to look like
a single wavelet centered about 7 = 0. In this case 7, and 7_
will essentially represent the time it takes for wave packets
to travel between the observation points, and the denomina-
tion ““ travel times ”’ for 7. is appropriate.

The definition of travel time presented here is analogous
to the typical definition of travel time used in the geophysics
literature (e.g., Zhao & Jordan 1998). In time-distance heli-
oseismology, Duvall et al. (1997) measure travel times by fit-
ting a Gaussian wavelet to cross-correlations. This
procedure distinguishes between group and phase travel
times, by allowing both the envelope and the phase of the
wavelet to vary independently. Our definition is a simplifica-
tion of this procedure, as it contains only one travel-time
parameter per branch. The travel time defined here is nei-
ther a pure group or phase time; it is, however, perfectly well
defined and has already been used in a time-distance study
with real data (Gizon, Duvall, & Larsen 2000). Without sig-
nificant difficulty, the fitting presented here could be
extended to include more parameters, for example ampli-
tude and central frequency, as is done by Duvall et al.
(1997).

Traditionally, mean and difference travel times have been
used in place of the one-way travel times. The mean and dif-

0
- Cref
—C
-40 -30 -20 -10 0 10 20 30 40
t (min)
T T
= =
X X
0 0
-5 0 5 -5 0 5
t (min) t (min)

Fi6. 2.—Example showing how to measure the travel times 7. from a cross-correlation C(1, 2, 7). In this figure we choose the reference wavelet C*f (top
panel, heavy line) to be the zero-order cross-correlation, for the distance A = 10 Mm, from the surface gravity wave example discussed in § 3. In general, the
observer is free to choose any reference wavelet. This function C™is even in time. The light line (top panel) shows an example cross-correlation, C, which in
this particular case was computed from a model including a uniform horizontal flow of 400 m s~! in the direction 1 — 2. To measure the travel times 7, from C
we need to minimize the functions X.. The bottom panels show the functions X (7) and X (7), constructed using eq. (4). The window function /' was chosen to
be the Heaviside step function. For the positive-time branch of C, the best fit is obtained by shifting C™* toward ¢ = 0 (to the left). The minimum of X, (7)
occurs at a negative time 7, as can be seen in the bottom right panel. For the negative-time branch of C, the minimum of the function X_ () occurs at a positive
time 7_ (see bottom left panel). The locations, 7 and 7, of the minima of the functions X_(¢) and X () are, by definition, the measured travel times. In this
particular example the signs 7, < 0 and 7~ > 0 make sense, since waves travel faster with the flow than against it.
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ference travel times are obtained from the one-way travel
times by
Tmean — % (T+ =+ T—) ) (6)
Tdiff =T+ — T— . (7)
The motivation behind using 7nean and 7yier is that sound-
speed perturbations are expected to contribute mostly to the
mean travel time and flows to the travel-time difference
(e.g., Kosovichev & Duvall 1998).

The definition of travel-time perturbations described here
leaves observers free to measure without reference to a solar
model. We note, however, that in order for a proper inter-
pretation of measured travel-time perturbations to be made
it is essential for observers to report their choices of refer-
ence wavelet Cf, window function f, and filter #. A solar
model is only necessary for the next step, the interpretation
of travel-time perturbations in terms of local perturbations
to a solar model, to which we now turn.

2.2. Interpretation of Travel Times

The goal of time-distance helioseismology is to estimate
the internal solar properties that produce model travel times
that best match observed travel times. To achieve this, we
need to know how to compute the travel times for a particu-
lar solar model. In order to make the inverse problem feasi-
ble, we also need to linearize the forward problem around a
background state that is close to the Sun.

A background solar model is fully specified by a set of
internal properties (density, pressure, etc.), which we denote
by ¢.(r) for short. Standard solar models provide a reason-
able background state. In the background state the cross-
correlation and the travel times are C? and 79, respectively.
We then consider small perturbations, ¢, (r), to the solar
properties. These perturbations could include, for example,
local changes in density, sound speed, or flows. The differ-
ence between the resulting cross-correlation, C, and the
background cross-correlation we denote by 6 C,

6C(1, 2, 1)=C(1, 2, 1) - C'(1, 2, 1). (8)
Likewise, the perturbed travel times 7. are
6re(1, 2) = 72(1, 2) = 7L(1, 2) . )

The travel times 71 (1, 2) are measured from the cross-cor-
relation C(1, 2, t). The reference times 7) are the travel
times that would be measured if the Sun and the back-
ground model were identical.

Since we are considering small changes in the solar model,
the correction to the model cross-correlation, 6C, will also
be small. As a result, we can linearize the dependence of the
travel-time perturbations 674 on 6C. The algebra is detailed
in Appendix A. The result of this calculation can be written
as

571, 2) :/w dw.(1, 2, 95C(1, 2, 1), (10)

The functions W, depend on the zero-order cross-correla-
tion CY, the reference wavelet C™f, and the window function
f, and are given in equation (A7). The sensitivity of 67+ to
6C is given by the weight functions .. We emphasize that
the travel-time perturbations 67, are proportional to 6C,
which is a first-order perturbation to the background solar
model. We interpret the right-hand side of equation (10) as
a model for the difference between the observed travel times
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and the theoretical travel times in the background solar
model.

The source of solar oscillations is turbulent convection
near the solar surface (e.g., Stein 1967). As a result, the sig-
nal ¢ and the cross-correlation C are realizations of a ran-
dom process. In general, a random variable is fully
characterized by its expectation value and all of its higher
order moments. As a result, to describe a travel-time pertur-
bation 67 we need its expectation value (ensemble average)
as well as its variance, etc. In this paper we consider only the
expectation value. A calculation of the variance of the travel
times would be essential to characterize the realization noise
in travel time measurements. An accurate estimate of the
noise in travel time measurements is important for solving
the inverse problem.

In this paper we only compute the expectation values of
travel-time perturbations and cross-correlations. This rep-
resents a first and necessary step. Note in addition that
under the assumptions of the Ergodic theorem (e.g.,
Yaglom 1962) the cross-correlations (hence travel times)
tend to their expectation values as the observational time
interval increases.

2.3. Modeling the Observed Signal

In order to obtain the cross-correlation, C°, and its first-
order perturbation, 6C, we need to compute the observable,
¢, defined in equation (2), and therefore the wave velocity v.
Linear oscillations are governed by an equation of the form
(e.g., Gough 1993)

Sv=S. (11)

The vector S denotes the source of excitation for the waves.
The linear operator %, acting on v, should encompass all
the physics of wave propagation in an inhomogeneous
stratified medium permeated by flows and magnetic fields.
Damping processes should also be accounted for in .. An
explicit expression for the operator % including steady
flows is provided by Lynden-Bell & Ostriker (1967). Bogdan
(2000) includes magnetic field.

We now expand &, v, and S into zero- and first-order
contributions, which refer to the background solar model
and to the lowest order perturbation to that model:

=916, (12)
v=1"+dv, (13)
S=58"+45S. (14)

The operator 6. depends on first-order quantities such as
local perturbations in density, sound speed, and damping
rate, as well as flows and magnetic field. In general, one can
contemplate time-dependent perturbations. There are, how-
ever, many interesting structures on the Sun (e.g., supergra-
nules, meridional flow, moat flows) that are approximately
time independent on the timescale on which time-distance
measurements are made (at least several hours). As a result,
for the sake of simplicity, we only consider time-independ-
ent perturbations. These perturbations, which we denote by
6q.(r) for short, are thus only functions of position r in the
solar interior.
To lowest order, equation (11) reduces to

P9 =80, (15)

In order to solve this equation, we introduce a set of causal
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Green’s vectors G' defined by
LG (x,t;5,15) = &(s)0p(x — 5)op(t — 1), (16)

where the ¢;(s) are three orthogonal basis vectors at the
point s, and op is the Dirac delta function. The vector
G'(x,1;8, 1) is the velocity at location x and time ¢ that
results from a unit impulsive source in the e; direction at
time ¢, and location s. Note that the vector G' does not in
general point in the direction of ¢;. Guided by equation (2),
we define the zero-order Green’s functions for the observ-
able ¢:

G (x,t;5,t5) = ?{i(x) <G'(x,t;5, ZS)} . (17)

In terms of %', the unperturbed signal reads

¢ (x, z‘):/ds/ dt, G (x,t;5,1)8%(s, 1) . (18)

The sum is taken over the repeated index i, as is done for all
repeated indexes throughout this paper.
To the next order of approximation, equation (11) gives

L= —621" +6S. (19)

This is the single-scattering Born approximation (e.g.,
Sakurai 1995). The first-order Born approximation has been
shown to work for small perturbations (e.g., Hung, Dahlen,
& Nolet 2000; Birch et al. 2001). We note that equation (19)
is of the same form as equation (15): the term —6.2 v° + 6S
appears as a source for the scattered wave velocity év. The
solution to equation (19) is thus

ov(x, 1) :/ds/ dt; G'(x, t; s, 1)
x {=629(s, 1,) + 68 (s, 15) }, (20)

where {...}; denotes the ith component of the vector inside
the curly braces.

By expressing the zero-order velocity v° in terms of the
Green’s function and the source, and using equation (20)
and 6¢) = 7 {I - év}, the perturbed signal can be written as

Sp(x,t) = {/ dr/ dl’/ds/ dty 9 (x,t;r, 1)
© —00 ® —00

x {=62LG (r,1;s,15)}, S} (s, zs)]

+/ds/ dty G (x, t;5,1,)6Si(s, t;) . (21)
(O] —00

We recall that the operator 6.% contains the first-order per-
turbations to the solar model, 8¢, (r). The first term in the
above equation contains two Green’s functions; it repre-
sents the contribution to é¢(x, ¢) that comes from a wave
that is created by the source at location s at time £y, is scat-
tered at time ¢ by the perturbations at location r, and then
propagates to the location x. The details of the scattering
process are encoded in the operator .. The second term
results from the perturbation to the source function, and
involves only a single Green’s function, which propagates
waves from the location and time of the source to the obser-
vation location and time. As we now have ¢" and ¢, we can
next compute the zero- and first-order cross-correlations,
C%and 6C.
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2.4. Temporal Cross-Correlation

We remind the reader that we only want to compute the
expectation value of the cross-correlation (see § 2.2). In the
rest of this paper, cross-correlations stand for their expecta-
tion values. From equation (3) and the equation for ¢°
derived in the previous section (eq. [18]), we deduce a gen-
eral expression for the zero-order cross-correlation:

', 2, 1) /dt dsdtyds’ dty Mj)(s, t,;5', 1;)

X G (1,15, t)9 (2,1 + t;5, 1)), (22)
with

M,-Jo-(s, ts;8, 1) = E[S,O(s7 IS)SJ(-)(S/, %], (23)

where E|. ..] denotes the expectation value of the expression
in square brackets. For the sake of readability, we have
omitted the limits of integration in equation (23). The
matrix M gives the correlation between any two compo-
nents of $°, measured at two possibly dlfferent positions.

No assumptlon has been made about M° to obtain equa-
tion (22). With the assumptlons of stationarity in time and
homogeneity and isotropy in the horizontal direction, M°
only depends on the time difference ¢, — 7, the horlzontal
distance between s and s, and their depths. Further assump-
tions could be made in order to simplify the computation of
equation (22). In the spirit of Woodard (1997), one might
assume that the sources are spatially uncorrelated or are
located only at a particular depth. A better approach might
be to obtain the statistical properties of S from recent
numerical simulations of solar convection (e.g., Stein &
Nordlund 2000) or observations of photospheric convection
(e.g., Title et al. 1989; Chou et al. 1991; Strous, Goode, &
Rimmele 2000). Furthermore, a comparison of models and
observations of the power spectrum of solar oscillations can
be used to constrain the depths and types of sources (e.g.,
Duvall et al. 1993a).

We now perturb equation (3) and take the expectation
value to obtain

6C(1, 2, 1) :%/w dt’E[égé(l, )¢°(2, ¢ +1)

L0, 1) 8p(2, 1 + z)} . (24)

The function 6C has two contributions, one from the per-
turbation to the wave operator, 6Cy, and one from the
source perturbation, §Cs:

§C=6Cy+6Cs . (25)

Using the expressions for ¢° and §¢ given by equations
(18) and (21), we obtain the perturbation to the cross-corre-
lation resulting from a change in the wave operator %#:

6Co(1, 2, 1) =;/®dr/dt’dt”dsdtsds’dz;
X {;5$G[(r, /s, ZS)}kMg(s, ty s 1))
x {@f’(z, {48 )G, )
LA ) G2+ z”)} . (26)

The above equation, which gives the perturbation to the
cross-correlation due to scattering, has two components,
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illustrated in Figure 3a. The first component comes from the
correlation of the scattered wave at 1 with the direct wave at
2, ie., 6¢(1,7)¢°(2,7 + ), and the second component
comes from ¢°(1,7)64(2,¢ + t). Both of these components
appear in equation (26) as the product of three Green’s
functions. From the term §¢(1,7)¢%(2,¢ + 1) there is one
Green’s function for the wave that goes directly from s’ to 2,
which gives ¢°(2). There is a second Green’s function for the
wave that is created at s and travels to r, and the third
Green’s function takes the scattered wave from r to 1, which
gives §¢(1). The term ¢°(1,7)6¢(2, ¢ + ¢) can be understood
by switching the roles of 1 and 2. The scattering process is
described by the operator 6., which depends on the pertur-
bations 6¢,(r). The Green’s function ¥ is used for waves
that arrive at an observation point as it gives the response of
¢ to a source. The Green’s vectors G' are used to propagate
the wave velocity from a source to the scattering point, as
the scattered wave depends on the vector velocity of the
incoming wave.

The cross-correlation is also sensitive to changes in the
source function. The first-order perturbation resulting from
a small change in the source function can be written as (from
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eqs. [18] and [21])
6Cs(1, 2, t) = %/dl’ dsdt;ds di’. 5 My (s, ts;5', 1)
xG'(1, U;5,1)9 (2, { +1;5,1), (27)
where the perturbation to the source covariance is
SMy(s, 1535/, 1) = E[S0(5,1,) 68)(5', )
+68i(s,1,) S, z;)} . (28)

Figure 35 gives a graphical interpretation of this equation.
Unlike the perturbation to the cross-correlation due to scat-
tering, the above equation contains only two Green’s func-
tions. One connects the unperturbed source with the
unperturbed signal at an observation point, while the sec-
ond relates the source perturbation to the perturbed signal
at the other observation point.

Later in this paper it will be necessary to express the per-
turbation to the cross-correlation as a spatial integral over
the location, r, of the perturbation to the solar model. In

(a) Perturbation from scatterer

o xS%(s't) o
S (S,ts) S (S’ts)
< _I_
G <
Spp(1,t) %) ¢°(2,t'+1t) ¢°(1,t") S (2,t'+t)
694(7)
<b) Source perturbation
5S(s,t) @b X (st FROTEH
¢ < 9 a
S¢p(1,t) ¢%(2,t"+1t) #°(1,t") S¢p(2,t'+t)

Fi1G. 3.—Graphical representation of the two types of contributions to the first-order perturbation to the cross-correlation (eqs. [26] and [27]), showing ()
scattering from perturbations 6¢, (r) to the model and (b) changes S in the source function. Scattering processes contribute to the cross-correlation as the
product of three Green’s functions: one Green'’s function to describe the direct wave from the source to an observation point and two Green’s functions to
obtain the scattered wave at the other observation point, in the Born approximation. The sensitivity of the cross-correlation to a change in the source function
only involves two Green'’s functions, one to propagate waves from the unperturbed source to an observation point and one to give the response, at the other
observation point, to the change in the source function. Throughout the diagram, as in the text, the Green’s function for the observable is given by ¢, and the
Green’s function for the vector velocity is G. The dotted line between the source locations, s and s/, indicates that the two sources are connected through the

source covariance matrix M.
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order to be able to write equation (27) for 6 Cy in this form,
we introduce the change of variable r = (s++s')/2 and
u = s — §'. This change of variable is also useful because we
expect the source covariance M to be small for large u, i.e.,
for sources that are far apart. In the limit of very small
source correlation length, M is a function only of r.

We have shown how to obtain C° and 6§C from an
assumed solar model consisting of a background model (£°
and S°) and small perturbations (6. and 6S). Earlier, in
§ 2.2, we showed how to connect perturbations to the cross-
correlation to travel-time perturbations. In the next section
we put these pieces together and obtain travel-time kernels,
which give the travel-time perturbations resulting from
small changes in the solar model.

2.5. Travel-Time Sensitivity Kernels

It is useful for the derivation of travel-time kernels to
express the perturbation to the cross-correlation 6C as an
integral over the location r of the perturbations é¢,(r). In
general, 0.4 and 6M involve spatial derivatives of the per-
turbations 8¢, (r) to the solar model, and so integration by
parts on the variable r may be required to obtain, from
equations (25), (26), and (27),

6C(1, 2, 1) :/dréqa(r) €1, 2, t;r). (29)

The index « refers to the different types of perturbations in
the solar model, for example, perturbations to sound speed
or flows. The sum over « is over all relevant types of pertur-
bations. We note that any particular perturbation ¢, may
appear in both the operator 6. and the perturbation to the
source covariance M. For example, a flow will advect
waves as well as Doppler shift the sources. For any particu-
lar 6M (6¢q) it may be helpful to do partial integrations on
equation (27) before making the change of variable
r=(s+5')/2 described above. In § 3, we show a detailed
example of the derivation of “ for local perturbations to
source strength and damping rate for surface gravity waves.

In § 2.2 we showed how to relate the travel-time perturba-
tions 671 to the perturbation to the cross-correlation 6C.
Using equation (29) for 6C and equation (10) for 674, we
obtain

orL(1, 2) :/dréqa(r)/ daw.(, 2, )61, 2, t;r).

: (30)
Since we want to define sensitivity kernels in the form
orL(1, 2) :/dréqa(r)Ki(l, 2:r), (31)
©
we make the identification
K&, 2;r) :/OO daw., 2 )€, 2, t;r). (32)

By definition, K¢ represent the local sensitivity of the travel-
time perturbations 67+ to perturbations to the model, 6¢,,.
From the above equation we can see that the kernels depend
on both the definition of travel time, through the functions
W, and on the zero-order problem and the form of the
first-order perturbations, through . The inputs needed to
compute W. are the zero-order cross-correlation C°, and
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the reference wavelet C™ and the window function f(¢)
used in the travel-time measurement procedure (eq. [A7]).
The function ¥“ depends on the source covariance, the
Green'’s function, the filter, and the forms of the wave opera-
tor and the source function (egs. [26] and [27]).

We have now shown a general procedure for computing
travel-time kernels for any particular model. In order to
demonstrate the utility and feasibility of this procedure, in
the next section we derive two-dimensional kernels for sur-
face gravity waves.

3. AN EXAMPLE: SURFACE GRAVITY WAVES
3.1. Outline

In this section we derive the sensitivity of surface gravity
wave travel times to local perturbations to source strength
and damping rate. We work in a plane-parallel model with
constant density and gravity. In this model, wave excitation
and attenuation act only at the fluid surface, and the prob-
lem can be reduced to a two-dimensional problem. Our
model is a very simplified version of the actual solar f~mode
case, yet incorporates most of the basic physics. We follow
the basic recipe outlined in § 2 for deriving kernels.

The example is written in four parts. In § 3.2 we fully spec-
ify the problem: we derive the equations of motion, encap-
sulated in the operator ¢, and describe our models for the
source covariance and wave damping. We also describe the
filter %, which includes an approximation to the MDI/
SOHO point-spread function. In § 3.3 we compute the zero-
order solution to the problem: the Green’s function, power
spectrum, and zero-order cross-correlation. Travel-time
kernels for perturbations in source strength and damping
rate are derived in § 3.4. We conclude, in § 3.5, with a com-
parison of the kernels from § 3.4 with kernels obtained in
the single-source picture.

3.2. Specification of the Problem

We consider a simple plane-parallel medium appropriate
to studying waves with wavelengths that are small com-
pared to the solar radius. The geometry is shown in Figure
4. The height coordinate is z, measured upward, and a hori-
zontal coordinate vector is denoted by x. Gravitational
acceleration is assumed to be constant, —gz, where g = 274
m s~2is the solar surface value. For z < 0 the fluid has a uni-
form constant density, p. This assumption simplifies the
problem considerably and does not affect the dispersion
relation (w? = gk). In addition, acoustic waves are not
present in this problem because the medium is incompressi-
ble. In the steady background state there is a free surface at
z = 0. The background pressure distribution, P(z), is hydro-
static, with P = —pgz.

In the following sections, we develop the equations of
motion (§ 3.2.1), encapsulated in the operator %, and
describe our models for the source covariance (§ 3.2.2) and
the wave-damping operator (§ 3.2.3). We also describe the
filter #, which includes an approximation to the MDI/
SOHO point-spread function (§ 3.2.4). The measurement
procedure is specified by choosing the reference wavelet and
the window function (§ 3.2.5).

3.2.1. Equations of Motion

We now derive the equations of motion, which we want in
the form of equation (11). For an inviscid fluid of constant
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p=const.

FiG. 4.—Basic setup for the example. The coordinate z denotes height,
and x is a horizontal coordinate vector. The half-space z < 0 is filled with
an incompressible fluid of density p, and the space above is empty. The line-
of-sight vector is I = Z, i.e., the observer is looking straight down at the sur-
face. Gravitational acceleration is constant and points in the —z direction.
Surface gravity waves are excited by a stochastic pressure distribution IT
applied at the surface, z = 0.

density, the linearized equations of conservation of mass
and momentum read

V=0, (33)
p+Vp=0, (34)

where p is the pressure perturbation associated with the
waves. Provided that there exists a time at which the velocity
field is irrotational, it will remain irrotational for all time.
We can imagine a medium free of waves as a starting condi-
tion and subsequently switch on the pressure sources at
some initial time in the distant past. As a result, we assume
that

VX =0 (35)

holds for all times.

In the Sun, the wave excitation mechanism is near-surface
turbulent convection, with various types of sources distrib-
uted with depth (e.g., Nigam & Kosovichev 1999; Kumar &
Basu 2000). Here, we excite surface gravity waves by apply-
ing a stochastic pressure source IT at the fluid surface. Thus,
the wave pressure perturbation, p, satisfies the linearized
dynamic boundary condition

p_pgézl_L atz:O, (36)
where & is the vertical displacement, which has time deriva-
tive equal to the vertical velocity at the surface.

In principle, turbulent convection is also responsible for
damping f~modes (e.g., Duvall, Kosovichev, & Murawski
1998). Turbulent convection can also modify the dispersion
relation (Murawski & Roberts 1993). Here, however, we use
a phenomenological model for wave attenuation by includ-
ing a dissipative term pYv in the momentum equation at the
surface. The operator T is a temporal convolution that
reproduces the observed damping rates; it is discussed in
detail in § 3.2.3. At the surface, the momentum equation
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thus becomes

pv+Vp=—pYv, atz=0. (37)
Eliminating p from equations (37) and (36), the surface
boundary conditions reduce to the equation

1 .
am—g%w—aw-HWZE%n, (38)
where V;, is the horizontal gradient and # and w are the hori-
zontal and vertical components of the wave velocity,

v=u+wz. (39)

We note that perturbations at the surface do not affect equa-
tions (33) and (35) for z < 0. As a result, the effect of surface
perturbations is contained entirely in equation (38). There-
fore, the problem is completely specified by equation (38) on
the surface, and the auxiliary equations VX v =0 and
V.v=0 for z < 0. The problem is thus essentially two-
dimensional, and equation (38) is the relevant equation to
put in the form of equation (11). So we have

Lo =0 — gVaw — 9,V + (Tu) , (40)
1 .

S=-VII. (41)
P

We note that the source function S is scalar, unlike in the
general theory (§ 2). Now that we have specified the opera-
tor ¢ and the source function S, it remains only to follow
the recipe presented in the theory section.

The first part of the recipe is to write the zero-order prob-
lem and the first-order Born approximation. We consider
two different types of perturbations to the background state:
a change in the damping operator, 6T, and a change in the
source function, 6S. The zero-order problem is

PP — 80 (42)
where

L =i — gVin® + 9,10 (43)

0= %v,g . (44)

Here, S° is the zero-order source function, #° the zero-
order wave operator, and 1° the unperturbed wave velocity.
We have used the fact that the zero-order damping operator
YO commutes with spatial derivatives. The first-order
approximation gives

PPov=—-6L1" +6S, (45)

where
—620" =0,V - (6Tu) (46)
55::%vi&i. (47)

Here, 65 is the perturbation to the source function, . the
perturbation to the wave operator, and év the first Born
approximation to the wave velocity. Note that equation
(45) has the same operator, #°, on the left-hand side as the
zero-order problem (eq. [42]).
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3.2.2. Source Covariance

In order to model the zero-order covariance M of the
source function S°, which is necessary to compute the cross-
correlation, we introduce the covariance of the applied sur-
face pressure distribution I1°,

Pl (x, 66, 1) = E[I0(x, ) 1I°(x, /)], (48)

which is a physical quantity. In terms of 7, the zero-order
source covariance MY is given by

M°(x,t:x' 1) = V2V2 0,0, m’(x, ;X 1), (49)

where V2 denotes the horizontal Laplacian with respect to
the variable x. Guided by the observations of Title et al.
(1989), we write m® as a product of spatial and temporal
decaying exponentials. Under the assumption of translation
invariance (in time and space),

efofx’H/L»\' eflt*ﬂ‘/T»\'

2nl? 2T,

m’(x;t;x', 1) =a (50)

Here L; is the correlation length and 7 the correlation time
of the lowest order turbulent pressure field IT°. The constant
a is the overall amplitude of m°. The normalization factors
2mL? and 27 are included so that in the limits of Ly — 0
and Ty — 0, m°® becomes the product of two Dirac delta
functions, ép(x — x') and ép (1 — 7).

Title et al. (1989) computed the covariance function of
quiet-Sun granulation intensity and found exponential
dependence on the temporal and spatial separations, |t — /|
and ||x — x'||, with correlation time 400 s and correlation
length 450 km. For this work, we take 7, =400 s and
L, = 0. Neglecting the source correlation length, i.e., treat-
ing the sources as spatially uncorrelated, is done for the sake
of computational simplicity; it is not at all a limitation of
the theory. The approximation of zero-correlation length is
appropriate because L; is smaller than a wavelength. For
the form of m° given by equation (50), and the definition of
the Fourier transform appropriate for functions that are
translation invariant (eq. [B4]), we obtain

2r)*[1 + (wTy)?]

which in particular does not depend on k for spatially
uncorrelated sources. Here, as in the rest of the paper, k is
the horizontal wavevector and w is the angular frequency.

We now consider source perturbations. As we have
already shown, what matters for the computation of cross-
correlations is not the perturbation to the source but rather
the perturbed source covariance, 6M, which can be
obtained from ém through

mo(k,w) = 5 as Lx_)oa (51)

SM(x,t;X',1) = ViV 0,0, 6m(x,t;x', 7). (52)

Three possible types of perturbations to the source cova-
riance are local changes in source correlation time, correla-
tion length, and amplitude. For instance, Title et al. (1989)
report different correlation times in the quiet Sun and mag-
netic network. Magnetic fields affect near-surface convec-
tion and thus are expected to introduce local changes in the
source strength as well. Here we consider only perturbations
to the local amplitude, a, of m, i.e., to model regions of
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increased or decreased f~-mode emission. We choose

om(x,t;x', ) = 6a7(")m0(3@ nx, 1), (53)

with
r=1(x+x). (54)

Here éa(r) gives the local change in the amplitude of the
source covariance. We have used the assumption that the
source correlation length is small compared to the length
scale of the spatial variation of the amplitude of the source
function, to write éa as a function of only the central
position r.

3.2.3. Damping

Theoretical descriptions of the damping of f~modes by
scattering from near-surface convective turbulence exist
(e.g., Duvall et al. 1998), but we elect to use a phenomeno-
logical model for the sake of simplicity. It is known from
observations that high-frequency waves are damped more
strongly than low-frequency waves (e.g., Duvall et al. 1998).
As a result, we need a frequency-dependent damping rate.
The easiest way to implement general frequency dependence
is through a temporal convolution (e.g., Dahlen & Tromp
1998). Thus, we express the zero-order damping operator,
YO as

Tov(x, ) = %/OC i T(t — ) v(x,7) . (55)

We have assumed that damping is acting purely locally. A
more sophisticated model would presumably include a spa-
tial convolution in addition to the temporal convolution.
With the Fourier convention given in Appendix B, Y9 can
be written as

Yook, w) = T(w) v(k,w) , (56)

where I'(w) is the temporal Fourier transform of T'%(¢). In
addition, we see that the operator 9, + Y9, which appears in
equation (37), becomes multiplication by —iw + I''(w) in
the Fourier domain.

For the sake of simplicity, we choose the function I'°(¢) to
be real and even in time. As a result ['°(w) is real and even. A
nonphysical consequence of this choice is that the damping
operator is not causal. We will see, however, in § 3.3.1, that
the Green’s function derived using this damping operator is
still causal. A treatment of causal frequency-dependent
damping can be found in Dahlen & Tromp (1998). In order
to damp all frequencies w, the function I'’(w) must be posi-
tive (see § 3.3.1). We will see in § 3.3.2 that T'0(w) is the full
frequency width at half-maximum of the surface gravity
wave power. We obtain a good fit to observed f-mode line
widths (Duvall et al. 1998) if we write I'(w) in the form

W) =1 : (57)

Wi

with the parameters wy /27 = 3 mHz, v/27 = 100 uHz, and
f=44. This fit 1is accurate in the range
1.5 mHz < w/27 < 5 mHz. The frequency dependence of
the damping rate is strong.

There are two basic types of perturbations to the local
damping rate: a change in the amplitude of the damping
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rate, v, and a change in the exponent, 5. In this paper we
only consider the former and write the perturbation to the
damping operator as

)
5T w(x, 1) = ) Yo ) (58)
Y
where 8v(x)/~ is the local fractional perturbation in the
damping rate.

3.2.4. Observational Filter

For this example we take the line-of-sight vector to be
vertical and independent of horizontal position, / = Z. Then
in accordance with equation (2) the observable is

o(x, 1) = F{v(x,1)- 3} . (59)

In this example we consider only the case in which there is
no spatial or temporal window function in the filter 7, i.e.,
we observe the wave field over an area A4 and a time interval
T'that are both very large. Therefore, the filter % can be rep-
resented by multiplication by a function F(k,w) in the Four-
ier domain,

o(k,w) = F(k,w)w(k,w) , (60)

where w = v+ z. The function F includes the instrumental
optical transfer function (OTF), which is the Fourier trans-
form of the point-spread function of the telescope optics, as
well as the effect of the finite pixel size of the detector. We
use an azimuthal average of the OTF estimated by Tarbell,
Acton, & Frank (1997) for the MDI/SOHO telescope in its
high-resolution mode near disk center. We correct the OTF
for the effect of finite pixel size, ¢, by multiplying by
sinc(ke/2), with e = 0.83 Mm and k = || k||.

In general, F also includes the filter used to select the par-
ticular waves of interest in the k-w diagram and to remove
low-frequency noise from the data. In this example there is
only one ridge in the k-w diagram, corresponding to the sur-
face gravity waves. We choose a filter that is zero for
frequencies less than wpi,/27 =2 mHz and more than
Wmax/2m™ =4 mHz, as was done for the data shown in
Figure 1.

We include an additional factor, R, in the filter to make
our unstratified example look more solar. The function
R(k) is the ratio of mode inertia in our model to mode iner-
tia in a standard stratified solar model:

0 2kz
p [ . e dz
Rk)=—F—"2—". 61
(k) f:*oo po(2)ek= dz D

Here p is the constant density in our model, and p, is the
density as a function of height in the solar model. We use
the solar model of Christensen-Dalsgaard, Proffit, &
Thompson (1993) complemented by the chromospheric
model of Vernazza, Avrett, & Loeser (1981) up to zyx =2
Mm. In the solar model z = 0 is the photosphere. If we had
started from the full stratified solar problem we would pre-
sumably obtain a solar-like power spectrum without this
correction factor.
To summarize, we take the filter F'to be

F(k,w) = OTF (k) R(k) Hea(w — wmin) Hea(wmax — w) ,
(62)

TIME-DISTANCE HELIOSEISMOLOGY 975

1
N\
\
\
\
0.8 \
\
\
N\
N
0.6 \
AN
N
N
N
0.4} ~
N
~
~
~
— Filter S o<
0.2 — - OTF
0 1 1 1 1
0 500 1000 1500 2000
kR

FI1G. 5.—Wavenumber dependence of the filter F and of the OTF for the
example calculation. Dashed line shows the azimuthal average of the OTF
estimated by Tarbell et al. (1997) for the MDI/SOHO high-resolution tele-
scope. The filter F'is the product of the OTF and the mode-mass correction
R given by eq. (61). Note that the mode-mass correction suppresses the
low-wavenumber part of the spectrum, which gives better agreement
between our unstratified model and a stratified solar model, for which low-
wavenumber modes are difficult to excite.

where ‘Hea’ is the Heaviside step function. The OTF and
the k-dependence of the full filter, F, are shown in Figure 5.
We repeat that we have not included the effect of an obser-
vational time window, nor the effect of observing a finite
area on the Sun. Both of these effects could be included,
although the filter could no longer be represented as a sim-
ple multiplication in the Fourier domain.

3.2.5. Measurement of Travel Times

As explained in § 2.1, the observer needs to select the
reference wavelet C™f and the window function f'in order to
make a travel-time measurement. For this example, we
choose C™ to be the zero-order cross-correlation of the
model,

(1, 2, 1) =C(1, 2, 1), (63)
and the window function f'to be the Heaviside step function,

f(t) = Hea(z) . (64)

For this choice of reference wavelet, the zero-order travel
times 70 are zero (see Appendix A). The window function f
is acceptable, as we have only a single skip (surface waves).
Using equation (AS8), we rewrite the travel-time perturba-
tions 67+ in terms of the temporal Fourier transforms of

W, and 6C:

67(1, 2) :47rRe/ doWi(1, 2, w)6C(1, 2, w), (65)
0

where Re selects the real part of the expression. The real and
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imaginary parts of W, (w) form a Hilbert transform pair:
—Hil 0(1, 2 jwCo(1, 2

WAL 2, w) = 1b[wCoo( , 2, w)}:Flez( , 2, w)
4r [ w?|CO(1, 2, W)[Tdo!

(66)

where Hilb]. . .] denotes the Hilbert transform (Saff & Snider
1993). Note that we used the fact that C%(¢) is even, as will
be shown in § 3.3.3. We now have an explicit definition of
the travel-time perturbations 67, and é7_ for our example.

The mean travel-time perturbation, O67mean, and the
travel-time difference, 674;ir, can be expressed in the form of
equation (65) with weight functions Wican (w) and Wi (w),
given by

Winean = 3 (W5 + WX) | (67)

From equation (66), and because C%(w) is real, we see that
Wiean(w) is real and that W} (w) is imaginary. Thus the
real part of the perturbation to the cross-correlation, 6§ C(w),
introduces a mean travel-time perturbation. The imaginary
part of §C(w) causes a travel-time difference.

3.3. Zero-Order Solution

Now that the problem has been fully specified, we can
compute the Green’s function (§ 3.3.1), the power spectrum
(§ 3.3.2), and the cross-correlation for the zero-order model
(§ 3.3.3). We show that the power spectrum in our example
resembles the solar f~mode spectrum. We find that the
unperturbed cross-correlation is the inverse Fourier trans-
form of the power spectrum.

3.3.1. Green’s Function

Here we derive the Green’s function appropriate for solv-
ing a problem of the form of equation (42). The vector
Green’s function, G(x,z, t; s, t;), is the velocity response at
horizontal coordinate x, height z, and time 7 to an impulsive
source in S at surface location s and time #,. In our example
S'is scalar, so we need only one vector Green’s function, and
we drop the superscript on the Green’s function, which
appeared in the general theory (eq. [16]). By definition, G
solves the surface boundary condition

LOG(x,z,t;5, 1) = op(x — s)op(t — t,) atz=0, (69)
with the additional constraints that G' must be irrotational
and divergenceless in the bulk, as well as vanish as z — —co.
The Green’s function G is only a function of the horizontal
spatial separation x — s, the time lag ¢ — ¢, and the observa-
tion height z. Using the Fourier convention given by equa-
tion (B4), the Fourier transform of the Green’s function can
be written

(ik + z)ek:
(27)*k[gk — w? — w0 (w)]

Gk,w;z) = , (70)

where k = k/k. We remind the reader that in this example
the wavevector k is horizontal. From the above expression
we can see that the horizontal component of G(k, w; z) is in
the direction of & and that the horizontal and vertical com-
ponents are of the same magnitude and 7/2 out of phase.
The amplitude of the Green’s function decays exponentially
with depth; the same result would apply for a vertically
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stratified medium (Lamb 1932). At fixed wavenumber k, the
Green’s  function has resonant frequencies w =~
+(gk)"*~iT'%/2 in the limit of small damping. We recognize
the dispersion relation for deep water waves. Since I'(w) is
positive, the imaginary part of the two poles of the Green’s
function is negative. This ensures that the Green’s function
is causal (e.g., Saff & Snider 1993). For later use, we also
introduce another Green’s function,

Gk, w) = iwk*F(k,w)G-(k,w,z = 0), (71)

which gives the vertical velocity at the surface resulting from
an impulsive source in IT/p. The Green’s function G. is the Z
component of G given by equation (70).

3.3.2. Power

By definition, the power spectrum is the square of the
modulus of the Fourier transform of the observable. For
convenience, we consider the zero-order power spectrum
per unit area and per unit time:

P(k,w) =

(2”)315[\(;50(1( w)[’] (72)
AT ) )

where A is the area and 7 the time interval over which the
power is computed. After a few simple manipulations, we
find that P is given by

P(k,w) = (2m)°| %" (k,w)['m (k, ) . (73)

None of the terms in the above equation depend on the
direction of k. In particular, m® = m°(k,w) because the
sources are spatially homogeneous and isotropic in the
zero-order problem. In addition, the filter F is a function
only of the wavenumber k and frequency w. Therefore, the
power spectrum is independent of the direction of k. The
term |4 (k,w)|* specifies the shape of the resonance
peaks in the power spectrum. For w near (gk)l/ 2 we have
approximately

k2 F2130
Pk, w) ~ ="

(w- \/.5%)2+ (%O> 2] h . (74)

Thus, at fixed wavenumber, the line shape is Lorentzian,
with full width at half-maximum I'%(w).

Figure 6 compares the power spectrum for our model,
P(k,w), with the power spectrum for the solar f~mode ridge
observed with the MDI/SOHO high-resolution telescope.
The distribution of power with frequency and wavenumber
confirms that there is a good agreement between the model
and the observations.

3.3.3. Cross-Correlation

To obtain the zero-order cross-correlation, we use the
definition of CY (eq. [22]), the expression for the source
covariance (eq. [49]), and the definition of the Fourier trans-
form to obtain

1,2, 0= / / dk / dwe® APk W),  (75)

where A = 2 — 1. For the zero-order problem the cross-cor-
relation is therefore the inverse Fourier transform of the
power spectrum. This is a consequence of the fact that the
problem is translation invariant. Since in our example P
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FiG. 6.—Comparison of observed and model power spectra. Top right: Zero-order power spectrum in our model, P(k,w), defined by eq. (73). The coordi-
nates are frequency, w/27, and dimensionless wavenumber, kR, where R, = 696 Mm is the solar radius. Top left: Azimuthal average of the power observed
with the MDI/SOHO high-resolution telescope. The f-mode ridge has been isolated by a simple boxcar filter. Botzom left: Power integrated over wavenumber,
as a function of frequency. The dashed and solid lines refer to the model and the observations, respectively. Bottom right: Power integrated over frequency, as
a function of wavenumber kR,. Again, the dotted line refers to the model and the solid line to the data. In our model the source correlation length and time are
Ly = 0and T = 400 s. The agreement between the model and the observations could be further improved by considering a nonzero source correlation length,

which would reduce the power at high spatial frequencies.

does not depend on the direction of k&, we can perform the
integration over the angle between k and A to obtain

(1, 2, 1) =2r / k dik / dwe ™' Jo(kA)P(k,w) ,
0 —00

(76)

where Jj is the cylindrical Bessel function of order zero.
From the above expression it is clear that the zero-order
cross-correlation is only a function of the time lag 7 and the
spatial separation between 1 and 2, A = ||A||. Note that the
amplitude of the cross-correlation falls off as A2 at large
distances as a result of the asymptotic form of Jy(kA). This
factor accounts for the geometrical spreading of two-dimen-
sional waves, like surface-gravity waves.

From the power spectrum, we can compute numerically
the cross-correlation using equation (76). Figure 1 provides
a comparison between the model cross-correlation CO (right
panel) and the average MDI cross-correlation for the f-
mode (left panel). The two cross-correlations show the same
features, including at very short distances. The two
branches of the cross-correlation correspond to the propa-
gation of the energy of the wave packets at the group speed,

vy = ¢/2w, where w is the central frequency. For a central
frequency of 3 mHz the group speed is 7.3 km s~1. The effect
of dispersion is also clearly visible: the oscillating fine struc-
ture has a different slope from the envelope slope, given by
the phase speed v, = 2v,. Low-frequency waves propagate
faster than high-frequency waves, because the phase speed
is inversely proportional to w. Note that for distances less
than about half a wavelength (2.5 Mm), the two branches of
the cross-correlation are merged. This implies that travel-
time measurements are difficult in the near field. The effect
of damping is to strongly suppress high-frequency waves at
large distances. Figure 2 shows a plot of the zero-order
cross-correlation, CO = Ctef at a distance A = 10 Mm. As a
consequence of the dependence of the phase speed on fre-
quency (dispersion), the instantaneous frequency of the
cross-correlation is seen to increase with time lag ¢.

3.4. Kernels for Source Strength and Damping Rate

In this section we derive travel-time kernels, K¢ and K7,
for perturbations to the local source strength and damping
rate, respectively. These kernels connect travel-time pertur-
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bations 67, to fractional perturbations to the model,

7. (1, 2) / ar S )K“(l 2:r)

Ki(1, 2r).  (77)

Here 6a(r)/a is the local fractional change in the source
strength and é7(r) /7 the fractional change in damping rate.
The two-dimensional integrals are taken over all points r on
the surface z = 0, denoted by (A4).

In Appendix C we give an explicit derivation of the sensi-
tivity kernels K] and K¢. We first compute the sensitivity of
the cross-correlation to small local changes in @ and ~ (egs.
[C2], [C3], and [C4]). We then relate changes in the cross-
correlation to changes in travel times, through the weight
functions W (eq. [30]). Because of the assumptions that we
have made in this example, the kernels can be written in
terms of separate one-dimensional integrals over horizontal
wavenumber. In Appendix C we show that K{ are given by

Ki(1, 2;r) = 477Re/ dw Wi, 2, wym®(w)
0

x T* (A1, w)(Ay,w) | (78)

where the integral 1(d,w) is a function of a distance d and
frequency w only:

1(d,w) = (27)° / S kdk (k) o). (19)

In equation (78), A; is the distance from 1 to r and A; is the
distance from 2 to r. The complex integral I(d,w)/(27)* i
the spatial inverse Fourier transform of the Green’s func-
tion 4" (k,w).

As shown in Appendix C, the damping kernels K can
also be written as combinations of two one-dimensional
integrals, I1(d,w) and I11(d, w):

K11, 2;¥) = 4n(A -Az)Re/ dw Wi, 2, w)
0

xXm ( )[H(Al, )HI(Az,w)
+ 1(Ay, w)IT* (A, w)] (80)

where A is a unit vector in the direction r — 1 and A, is a
unit vector in the direction r — 2. The explicit forms of II
and III are given in Appendix C. The function III is complex
and involves only one Green’s function, 4. The real inte-
gral IT involves two Green’s functions, G. and %', and is
related to the scattering process (see Fig. 3).

We computed the kernels numerically, with grid spacings
of 7 x 1073 rad Mm~! in k and 10-2 mHz in w/2x, which
were selected so that the smallest line widths (1.5 x 10~2 rad
Mm~!, 1.7 x 10~2 mHz) would be resolved. We ran a sec-
ond set of calculations at twice the above stated resolutions
and saw only very minor changes in the resulting kernels.

Figures 7a and 7b show the kernels K¢(1, 2;r) and
K1 (1, 2;r) for the distance A = 10 Mm, as a functions of
horizontal position r = (x, y). The observation points 1 and
2  have coordinates (x1,y;)=(-5,0) Mm and
(x2,2) = (5, 0) Mm, respectively. An important observa-
tion is that the kernels K¢ and K] are quite different: they
do not simply have opposite signs. This means that a
decrease in source strength is not equivalent to an increase

Vol. 571

in damping rate, as one might naively expect. In particular,
the total integral of the source kernel is zero, while the total
integral of the damping kernel is positive, with a value of 5.9
s. A uniform increase in source strength results only in a
change in the overall amplitude of the power spectrum (and
thus in the cross-correlation) and as a result does not affect
the travel time. In contrast, a uniform increase in the damp-
ing rate affects the shape of the power spectrum, and thus
causes a travel-time perturbation 67, . The kernels K" have
largest amplitude in the vicinity of the observation points 1
and 2. Both K] and K¢ have roughly the same magnitude,
of the order a few s Mm~2. Both of the kernels oscillate spa-
tially; this is a finite wavelength effect.

Hyperbola-shaped features (with A, — A; = const) are
present in both K and K¢. As Woodard (1997) noted, all of
the sources located along a particular hyperbola (with foci
at the observation points) give a similar contribution to the
cross-correlation, which explains the appearance of the ker-
nel K¢. We emphasize that the kernel K< (1, 2;r) is for the
one-way travel time 67 (1, 2), which relates to waves mov-
ing from 1 to 2. As a result, only perturbations to the sources
that produce waves moving from 1 to 2 can introduce a per-
turbation in 7, (1, 2). This is clear from Figure 7a: the ker-
nel K¢ is only significant in the region x < 0, which
produces waves that arrive at 1 before they arrive at 2.

The damping kernel K7 is more complicated, as it shows
ellipses (A; + A; = const) in addition to hyperbolas, and
results from scattering, unlike the source strength kernel.
The ellipses are due to waves that go through 1, scatter at r,
and are then observed at 2. The hyperbolas corresponds to
scattered waves that arrive at 1 before the direct waves
arrive at 2. Note that the damping kernels K7 change sign
on the circle A; « A, = 0, which goes through 1 and 2. This is
a result of the details of the scattering of waves by local
inhomogeneities in the damping rate. The scattered wave
depends on the direction of the incoming wave; back-
scattered waves are in antiphase with forward-scattered
waves.

In this example, because Crf = CO is even in time,
6r_(1, 2) = 674(2, 1). As a result the kernels K_, for the
travel-time perturbation 7_, can be obtained from

K.(1, 2¢) = K, (2, 1;7). (81)

This is not, however, a general rule; it depends on the choice
of reference wavelet. The kernels for the perturbations to
the travel-time mean and difference can be easily obtained
from the kernels for the one-way travel times:

Kg‘lean - (Ka’) + Ka 7) (82)
K4l =K% — K7 (83)

The kernels Kiean and Ky are plotted in the remaining
panels of Figure 7.

The kernels for the mean travel time are symmetric on
interchange of 1 and 2, and the travel-time difference kernels
are antisymmetric on interchange of 1 and 2. Note that like
the one-way travel time kernels, the kernels K and Kidan
are largest near the observation points 1 and 2. We note that
K4 is roughly of the opposite sign to K., except inside the
circle defined by A; « A, = 0, where the sign is the same. A
localized perturbation to source strength (damping rate) on
the line y = 0 with x <x gives an increase (decrease) in the
travel-time difference.
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FiG. 7.—Travel-time sensitivity kernels for perturbations in source strength and damping rate as functions of position r = (xx, y). The left column displays
kernels for source strength, K¢, and the right column displays kernels for damping rate, K7. The top row gives the one-way travel-time kernels K{”, the middle
row gives the travel-time difference kernels Kg;}, and the bottom row gives the mean travel-time kernels Kyjd,,. The observation points 1 and 2 have the coordi-
nates (x1, y1) = (=5, 0) Mm and (x2, y2) = (5, 0) Mm, respectively, and are denoted by the black crosses in each panel. The color scale indicates the local
value of the kernel, with blue representing negative value and red positive. The color scale is truncated at =1 s Mm~2. The grid spacing is 0.14 Mm.

In order to show the full range of variation of the kernels nel zone) of K| extend out to 3.5 Mm. The slice along the
we plot, in Figure 8, cuts of the kernels K¢ along the lines line y = 0, Figure 8b, shows the complicated behavior of the
y =0 and x = 0. Figure 8a shows that the source kernel is kernels near the observation points, where they oscillate.
zero along the line x = 0, while the damping kernel is posi- We have studied single-frequency kernels and seen that

tive and maximum at y = 0. The side lobes (the second Fres- there is constructive interference between different fre-
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FiG. 8.—Cuts through the source and damping kernels, K¢ and K.
Panel a shows cuts along the line x = 0, and panel b shows cuts along the
line y = 0. The dashed line is for the source kernel K¢, and the solid line is
for the damping kernel K.

quency components along the line y = 0, —co < x < x; for
K{,and theline y = 0, —co < x < x; for K¢. In the limit of
infinite bandwidth, the kernels K| and K¢ reduce to these
rays, respectively. This is in contrast to conventional ray
theory, in which the ray is restricted to the line segment
=0, x; <x<x.

In the past, travel-time kernels have been calculated in the
“single-source picture”” (Birch & Kosovichev 2000; Jensen
et al. 2000). In the following section we test the single-source
method by comparing single-source kernels with the kernels
calculated using a random distributed source model.

3.5. The Single-Source Picture

The single-source picture consists of placing a single
causal source at 1 and observing the effect of local perturba-
tions on the wave field observed at 2. The one-way travel-
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time perturbation is approximated by the travel-time shift,

S di8e(2, 1)°(2,1)
[ di8°@, )’

between the unperturbed and perturbed signals at 2 (Birch
& Kosovichev 2001). This new definition of travel time is
necessary: in the single-source picture there is no cross-cor-
relation, and thus our earlier definition of travel time cannot
be used. In equation (84), ¢°(2) and 6¢(2) are the unper-
turbed and perturbed wave fields at 2. The wave field is gen-
erated by a causal pressure source placed at 1:

I(s, t;) = pO(s — 1, t,) . (85)

57501, 2) = L (84)

The function © characterizes the pressure source, and will
later be used to tune the source spectrum.

In this section we consider the kernel K™, derived in the
single-source picture, which gives the sensitivity of the
travel-time perturbation 67 to a local fractional perturba-
tion in the damping rate. The single-source picture cannot
easily be used to derive a kernel for a source perturbation,
which does not involve a scattering process.

By definition, the kernel K7***, which we derive in Appen-
dix D, satisfies

575 (1, 2):/ ar
(1)

gl

DKISA, 26, (86)

The definition of travel time given in equation (84) closely
resembles the definition of travel time used in the general
theory (eqgs. [A6] and [A8)]) if (2, t) looks like the positive
time-lag branch of the zero-order cross-correlation from the
random source model (§ 3.3.3). This condition implies that
the spectrum of the source, O (k,w), is given by equation
(DB8).

Figure 9 is a comparison of the single-source kernel K™
with the distributed-source kernel K/, computed in § 3.4.
The single-source kernel fails to reproduce the hyperbola-
shaped features that are seen in the random source kernel,
even though the ellipses can be seen in both (with the same
order of magnitude and sign). A single causal source at 1 is
not sufficient to generate all of the waves that are relevant to
the problem of computing travel-time kernels (see Fig. 10).

Cuts at y = 0 through K™ and K are shown in Figure
11, again for the distance A = 10 Mm that was used in all
previous plots of kernels. The kernels agree well for x>0,
where the hyperbola-shaped features in K| are absent. For
x50, the two kernels are quite different; in particular, the
single-source kernel is nearly zero for x < —7 Mm, while K
has a negative tail there.

In the limit of infinite bandwidth (ray theory), the single-
source kernel K7™ would be restricted to the line segment,
y =0, x] < x < Xy, in contrast to the finding (see § 3.4) that
the distributed-source kernel K| would reduce to the ray
y=0,—00 <x < xa.

4. DISCUSSION

We now have a general recipe (§ 2) for solving the lin-
ear forward problem, i.e., computing travel-time sensitiv-
ity kernels. This recipe is based on a physical description
of the observed wave field. The kernels give the linear
dependence of travel-time perturbations on perturbations
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Fi6. 9.—Comparison between single and distributed source kernels for damping rate. Lef#: distributed source kernel for damping, K (also shown in Fig.
7b). Right: Single-source kernel K|** discussed in § 3.5 and computed using eqs. (D5) and (D6). For the single-source kernel the source is located at 1, with
coordinates (—5, 0) Mm. The observation point 2 is located at (0, 5) Mm.

to a solar model, and they take into account the details In § 3 we have shown how to compute the two-dimen-

of the measurement procedure. The sensitivity kernels sional sensitivity of travel-time perturbations to source and

depend on the background solar model, the filtering and damping inhomogeneities for surface gravity waves. This

fitting of the data, and the position on the solar disk example is important, as it shows that kernels can be

(through the line of sight). obtained, using our recipe, once the physics of the model is
Source at 1 Anti—causal source at 2

FiG. 10.—Graphical discussion of the single-source picture for computing kernels for the one-way travel time 67 (1, 2). The left panel is the conventional
single-source picture, in which a causal source is exploded at 1 and the scattered wave is observed at 2. The scattering point is denoted by r. Perturbations
located on curves with constant || — 1|| + ||2 — r|| contribute to the scattered field with the same geometrical delay in travel time, and as a result ellipse-shaped
features are seen in the travel-time kernel. A single source at 1 does not, however, produce all of the waves that are relevant to computing correct travel-time
kernels. The right panel shows an example of a component to the wave field that is missed in the single-source picture. An anticausal source at 2 causes an
incoming wave toward 2, which is then scattered at r and arrives at 1. For r near 1, this gives a signal that is first observed at 1 and then later at 2, i.e., looks like
a wave moving from 1 to 2. Perturbations located on curves with constant |r — 1|| — |2 — r||, i.e., hyperbolas, contribute to the scattered field with the same
geometrical delay in travel time (Woodward 1992). Were the single-source picture extended to include an anticausal source at 2, hyperbola-shaped features
would be seen in the travel-time kernels. Note, however, that hyperbolas naturally appear in the distributed-source kernels K{” (Figs. 7a and 7b). The hyper-
bolas with ||r — 1|| — [|2 — || > 0 are not seen, as they do not affect the positive-time branch of the cross-correlation (the scattered wave arrives at 1 after the
unperturbed wave arrives at 2).



982 GIZON & BIRCH

-2 . . ,
-10 -5 0 5 10

X (Mm)

FiG. 11.—Cuts along the line y = 0 through the damping kernels K and
K™ shown in Fig. 9. The dashed line is for the distributed-source kernel,
and the solid line is for the single-source kernel.

fully specified. In particular, the source spectrum and the
details of the observation procedure need to be specified at
the start of the problem and appear explicitly in the expres-
sion for the travel-time kernels.

The model with random-excitation sources reveals some
important details in the sensitivity kernels that are not
accounted for in the single-source model. In particular, the
single-source kernels show only ellipse-shaped features,
while the distributed-source kernels show both hyperbola-
and ellipse-shaped features. Computations of kernels in the
single-source picture are as difficult, both analytically and
numerically, as for kernels in the distributed-source picture.

The example we have presented is a simplified model for
the solar f~mode. Improvements to the model would include
stratification, spherical geometry, compressibility, and a
physical model of excitation and damping. In particular, in
a compressible medium the effect of the conversion of p-
modes into f-modes by scattering could be computed.
Despite these limitations, we believe that our two-dimen-
sional example kernels can be useful in studying solar prob-
lems using time-distance helioseismology. The kernels can
be interpreted as depth averages over the first few Mm
below the photosphere of the three-dimensional solar ker-
nels (Duvall & Gizon 2000).

Woodard (1997) performed an analysis of the effect of
localized damping on travel times for acoustic waves; this
analysis showed that for a model sunspot, with radius 10
Mm, the travel-time difference is of the order of —1 minute,
in the case where 1 is located at the center of the sunspot and
2 is a distance 10 Mm away. For the same geometry, the ker-
nel Kj., which we have computed, predicts a positive
travel-time difference of 1 s for a 50% increase in damping
rate. These two apparently conflicting results are, however,
for different types of waves and quite different models for
the effect of damping inhomogeneities. The damping pertur-
bation employed by Woodard (1997) can be understood in
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terms of a reduction in source strength for sources located
behind the sunspot from the observation points, as scatter-
ing by the damping inhomogeneities was neglected. Work
remains to be done on this subject. For example, it is known
that absorption by magnetic structures is a strong function
of frequency (Braun, Duvall, & LaBonte 1988; Bogdan et
al. 1993). This effect could be modeled by writing kernels for
local changes to the exponent ( in equation (57) for the
damping rate. We plan to do a quantitative analysis of this
problem in the future. Note that perturbations in sunspots
are strong and that linear theory may not be accurate in this
case (e.g., Cally & Bogdan 1997)

The most significant obstacle to the computation of accu-
rate travel-time kernels is our lack of a detailed understand-
ing of turbulent convection. The excitation and damping of
solar oscillations is due to convection and is thus extremely
difficult to account for in the background model; approxi-
mations must be introduced. For this paper we employed a
phenomenological model based on observed properties of
solar convection. An important constraint on the zero-order
solar model is that it must produce a k-w diagram compati-
ble with observations. A further complication introduced
by turbulence is that, in principle, it demands a theory for
wave propagation through random media, i.e., a treatment
of perturbations that vary on short temporal and spatial
scales.

We have not addressed the computation of three-dimen-
sional travel-time kernels in a spherical solar model. Pre-
liminary efforts have shown that such a computation is
feasible, but demanding (Birch & Kosovichev 2000).

There are a number of less fundamental issues relating to
the interpretation of travel times. We emphasize that the fil-
ter # includes the point-spread function of the instrument,
which is not always well known. It is unclear how an inaccu-
rate estimate of the point-spread function affects the inter-
pretation of travel-time measurements. A straightforward
issue is that cross-correlations are typically averaged over
annuli or sectors of annuli (Duvall et al. 1997); this can
easily be accounted for by averaging the point-to-point ker-
nels described in this paper.

The inverse problem, using measured travel times to learn
about how the Sun differs from a model, is an entirely sepa-
rate issue and beyond the scope of this paper. We wish to
note, however, that techniques for the three-dimensional
inversion of time-distance data have already been developed
(Kosovichev 1996; Jensen et al. 1998). The errors in the
travel-time measurements, which are essential to solving the
inverse problem, are mainly due to realization noise. The
formalism presented in this paper will be helpful in estimat-
ing these errors.

Despite all of the aforementioned difficulties, the ap-
proach we have described here is feasible, as we have seen in
the example section. Gizon et al. (2000) have shown the
same procedure to work with real f~-mode data.

The basic theory presented here was developed independ-
ently and in parallel by the authors. We are grateful to C.
Donohue, T. Duvall, G. Felder, A. Kosovichev, P. Scherrer,
and J. Schou for helpful comments on the manuscript. We
thank T. Tarbell for the MDI point-spread function. This
work was supported by NASA grant NAGS5-8878.



No. 2, 2002 TIME-DISTANCE HELIOSEISMOLOGY 983

APPENDIX A
DEFINITION OF TRAVEL TIME

According to equation (5) the travel times 7, (1, 2) and 7_(1, 2) are the time lags that minimize the functions
Xi(1, 2,0) = / di f(£)[C(1, 2,¢) — C*'(1, 2,/ F z)]2 : (A1)

As a result, the time derivatives of X5 evaluated at 7 are zero:
Xi(lv 277—i) :O (AZ)

Note that X does not involve a time derivative of the observed cross-correlation C. In order to obtain the travel-time perturba-
tions 674, we need to linearize around the zero-order travel times Ti, which are defined by

(1, 2) = argmin { X (1, 2,0)}. (A3)

The functions X? refer to equation (A1) evaluated for C = CY, where CY is the zero-order cross-correlation in the reference
model. L1near121ng equation (A2) about 7. = 70 gives

6X.(1, 2,79)

ore(1, 2) = — 0, 2.00) (A4)
The functions § X, are given by
6Xi(1, 2,6) = +2 /Oc dr f(£)C (1, 2,/ F1)6C(1, 2,7). (AS)
We can then compute X0(70 ) by straightforward differentiation of equation (A1). The result for 67, (1, 2)is thus
orL(1, 2) = /OO dtWi(l, 2,1)6C(1, 2,1), (A6)
with
W) = Hf () Crel (1 F 79) (A7)

[P dr [f () CO() Cref (¢ 19) £ f (£2)Cf (¢ F 79) Cref (¢ T 79)]

We have suppressed the spatial arguments 1 and 2 in the above equation for the sake of readability. This is the general linear-
ized result for arbitrary C™f and /. The only assumption is that the perturbation to the cross- correlation is small compared to
the zero-order cross-correlation. Note that we have not written an explicit expression for 79, which needs to be computed
numerically by minimizing X9 (¢) (eq. [A3]).

In the case where Ctf and C 0 are even in time, 70 = 70. For the choice C™ = C?, the zero-order travel times are both zero,
79 = 0. This choice is recommended if a theoretical model is available to the observer. With Crf = C0, the weight functions
W simplify to

@&, 2,0
[ dr f(£0)[C0(, 2,¢)]
In the example presented in § 3, we choose C™f = C% and f'(¢) = Hea(z).

Wi(17 25 t)

(A8)

APPENDIX B
FOURIER CONVENTION FOR THE EXAMPLE SECTION

Given a function ¢(x, ), of horizontal position x and time 7, we employ the convention that the function ¢(x, 7) and its Four-

ier transform g(k, w) are related by
d) = [ [k [ avt g, (BI)

dx [ dre g ), (B2)

4(k7 w) =

(2r)

where k is a two-dimensional horizontal wavevector and w is the angular frequency. We commonly use the same symbol for ¢
and ¢: the arguments make clear whether the function or its transform is intended. We use the notation ¢(k,w) when ¢(k,w)
only depends on the magnitude of k, not its direction, for example in the filter function F(k,w). We note that for functions
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q(x,t) that do not vanish at large ||x|| or || the Fourier transform is not defined. In particular, there is a problem for the case
when the observable is not windowed in space or time. In such a case, ¢(k,w) is intended to mean the Fourier transform of the
function ¢(x, 7) truncated to zero for |¢| > T/2 and ||x|| > (4/x)"/?, where the time interval 7 and the area 4 are both large
and finite. This modification enables us to refer to the Fourier transform of a stationary/homogeneous random function (cf.
Yaglom 1962, for a rigorous formalism).

When a function of four arguments, Q(x, t; X', '), depends only on the separations x — x” and 7 — ¢ (translation invariance),
we use the conventions

O(x—x',t—1) = Q(xtx ) (B3)
O(k,w) 2y / / dx / dt e *H O (x ) (B4)

The above conventions are employed, in our example, for the functions m° (k,w), G(k,w; z), and % (k, w).
Finally, we recall the relations

/ di e = 2o (w) | (B5)

/ _w dxe ™ = (27)? §p (k) , (B6)

which are very useful in rewriting the kernels in Fourier space (Appendix C).

APPENDIX C
TRAVEL-TIME SENSITIVITY KERNELS FOR THE EXAMPLE

In this Appendix we derive surface gravity wave travel-time kernels, K¢ and K7, for perturbations to local source strength
and damping rate, respectively. These kernels connect travel-time perturbations, 7., to perturbations to the model,

. 5“() a 67() 24
67 (1, 2)/(A)d KU1, i)+ /<A>d K (1, 2:). (C1)

Here 6a(r)/a is the local fractional change in the source strength, and 6v(r)/~ is the local fractional change in damping rate.

The spatial integral f 1 dris a two-dimensional integral taken over all points r on the surface z = 0. From the theory part of
this paper (§ 2), we know that in order to compute kernels we first need to write the perturbation to the cross-correlation in
terms of the functions ¥“ and €7 (see eq. [29]):

c(1, 2,1 / dr ——= (6" 1, 2 ¢r / dr&y—(y)(g"’(l, 2. t;r). (C2)
A) 0

The general expression for 6C(1, 2,17) is given by equations (25), (26), and (27). In our example, however, the superscripts on
the Green’s function can be dropped, as the source S is scalar. To obtain ¢, we use equation (27) for s and the definition of
the source perturbation 6 M (eqs. [49] and [53]). After integrations by parts on the source variables in the right-hand side of
equation (27) and the change of variablesr = (s + ¢/) /2 and u = s — s/, we obtain

1
%1, 2,tr) :?/dl’dtsdtfydumo(u, ty — t@)gn(l —r—;,t' — ts)gH(Z—rJrg,t’ — t§+z) . (C3)

The function ¥ is obtained from equation (26) with 6. defined by equations (46) and (58). After integrations by parts on the
source variables, and a partial integration on the variable r, the result is

€1, 2,6r) = ﬁ / dr df’ dsdtyds' dt, diT° (¢ —Hm°(s — ', 1, — £)VaGy(r — 5,7 — 1)

. [gn(l — S =GR = =)+ G2 =5+ — L)V G( — - z”)] , (C4)
where G, denotes the two horizontal components of the vector G. In the space-time domain these integrals are quite compli-
c?lted to compute. They are, however, greatly simplified when written in terms of the Fourier transforms of the various func-
tions:

%(1,2,5;r) = 2m)* / dwdk dK' 1= -8t 0% (4 11y /2wl 9™ (K, w) G (K w) (C5)
©(1,2,8;r) = (2%)7/dwdkdk' (eik-Al—ik’-Az—iwt _|_eik-A3—ik’-A1+iwt)

x T(w)m® (k, w)G" (k, w) %™ (k,w)k « K G (K | w) /K. (C6)
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We have used the definitions

Gk, w) = F(k,w)G" (k,w) , (C7)
G (k,w) = iwk?G.(k,w;z = 0) , (C8)
and the identity G}, (k,w) = ikG.(k,w) resulting from equation (70). The Green’s function G.(k,w) is the z component of G,

given by equation (70).
With the assumption that m° is independent of k, the above expressions can be simplified to

E(1, 2,w;r) = m (W (A1, w)(Ar, W), (C9)
G(1, 2,w;r) = m*(w)As + Ag [TI(A1, W) (Ar, w) + T(Ag, w)IIT* (A, w)] - (C10)
The integrals I, II, and IIT are given by
1(d,w) = (2w)3/0wkkoo(kd)gH(k,w), (C11)
1(d,w) = (2m)°T°(w) /0 " kdk J1(kd)G" (k,w)%" (k,w) , (C12)
I(d,w) = (27)° /0 "k Ji(kd) " (k, w) . (C13)

The kernels for source strength and damping are then obtained from

K{(1, 2,r) :47rRe/ dw Wi, 2,w)6(1, 2,w;r), (C14)
0

with W¥(1, 2,w) given by equation (66). The kernels, in terms of the integrals I, II, and III, are reported in the main body of
the text (eqs. [78] and [80]).

APPENDIX D

SINGLE-SOURCE KERNELS FOR THE DAMPING RATE

In the single-source picture, we seek an expression for the kernel K™ that provides an integral relationship between the
one-way travel time 675 (eq. [84]) and the local damping perturbation 6v(r) /7, i.e.,

5751, 2) :/ ar W) g1, 20 (D1)
(A) Y

We first rewrite the single-source definition of travel time (eq. [84]) in terms of the temporal Fourier transform of the signal
observed at point 2:

_Re Jo© dwiw ¢ (2,w) 66(2,w)
Iy dwe?| (2, w)

§75(1, 2) = (D2)

Given the pressure source pO, located at point 1 and defined by equation (85), the zero- and first-order signals observed at 2
are

' (2,w) = (2n)* / k dic Jo(kA) G (k, w)O (k,w) , (D3)
0
1177/
66(2,w) = 2m)* () / ar ) / dk dk' %Y1= % Gl w)@(k,w)k-k’w. (D4)
(4) v
Using equation (D2) we obtain the damping kernel K7™ in the form
> dww?|¢0(2,w) P T, 2
KISS(I, 2;r):f0 ww L(f ( 7w)| + (2, 7"7‘*’) ’ (DS)
Jo dwuw?|¢0(2,w)]
with the function # "™ (single-frequency kernel) defined by
TS, 2irw) = Ap - Ay Im V(AL @) (A, w) (D6)

wd"(2,w)
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In the above equation, the function IV is a one-dimensional integral given by

V(d,w) = 27)’T(w) /ODC k dk Jy (kd)G" (k,w)O (k,w) , (D7)

and the function I1I denotes the integral already deﬁned by equation (C13). Note from equation (D5) that the kernel K

frequency average of #7* weighted by w?|¢°(2, w)|*.

V8

In order to compute the kernel we have to make a choice for the source spectrum, ©(k,w). In general, this is difficult without
a priori knowledge of the zero-order cross-correlation. When comparing the definition of travel time of Appendix A with the
single-source definition (eq. [84]), we find that a good match between the two definitions is obtained when ¢°(2, ) looks like

Hea(¢)C°(1, 2,¢). This condition is best met when

k F(k,w)m®(k,w)

O(k,w) = —

200(w)

(D8)

Note that the filter function F(k,w) appears in equation (D8). The kernel K™, shown in Figure 9, was computed using this

choice.
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