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The singular value decomposition (SVD)

Definition: Let A be a rectangular m X n matrix with m > n,
then the SVD of A is

A=UxVv? = Zaiuiv?,
i=1

where the matrices U € IR™* ™ and V' € IR"*" are orthogonal

and
. n >
N -

where 3 = diag(o1, 02,... ,0,) and
012092 +20p,>0p41=+=0,=0,

r is the rank of A.

The SVD has numerous applications in, e.g.,

e Information retrieval (LSI)
e Inverse problems (regularization)

e Statistics (PCA)
e Image and signal processing



Equivalent symmetric eigenvalue problems

Let the singular value decomposition of the m X n matrix A be
A=UxV"

and assume without loss of generality that m > n. Then

VI(ATA)V = diag(o],... ,02),
T T : 2 2
U (AA")U = diag(oy,...,0,,0,...,0).

Moreover, if U = [ Uy U, | and

Yy = —
AT 0

1L TU U V2U, c_[ 0 A
Vo2l v =v. o |’ 77

then the orthonormal columns of the (m +n) X (m + n) matrix
Y form an eigenvector basis for the 2-cyclic matrix C' and

T :
Y C’Y:dlag(al,...,on,—al,...,—an,&..,g).
m-—-n



SVD using sparse symmetric eigensolvers

Many sophisticated software packages exist for the symmetric
eigenvalue problem. To mention a few:

e Lehoucq, Sorensen & Yang 1992 — 1997: (P)ARPACK
e Parlett, Simon, Wu et al. 1984 —1999: (P)LANSO & TRLAN
e Marques 1998: LZPACK & BLZPACK

In several studies (Berry 1992 (SVDPACK), Eldén & Lundstrom
1996) LANSO and ARPACK have proved highly efficient for
computing a few singular triplets of large and sparse or structured
matrices.

However, using a symmetric eigensolver as a “black box" for SVD
has certain disadvantages.



Using a symmetric eigensolver as a “black box”

Method 0: AT A

e Severe loss of accuracy of small singular values if A is ill-
conditioned.

e Fast when n < m since only Lanczos vectors of length n
need to be stored.

0O A
Method 1: =
ethod 1: C [ AT g }
e Lanczos vectors have length m 4+ n = Waste of memory and
unnecessary work in reorthogonalization.

e Ritz values converge to pairs of +0; = Twice as many
iterations are needed.

To (almost) get the best of both worlds:  Combine
Lanczos bidiagonalization (LBD) with the efficient semi-
orthogonalization schemes developed for the symmetric
eigenvalue problem.



Algorithm Bidiagl (Paige & Saunders)

1. Choose a starting vector pg € IR™, and let
B1 = |lpoll, w1 = po/B1 and vy =0

2. fori =1, 2,... ,k do
r; = Alu; — Bivi
a; = ||7il

v; = Ti/Oéi

pi = Av; — a;u;

Bit1 = ||Pz||

Uiyl = Pi/5i+1
end

After k steps we have the decomposition:
AV = Ug41 Byt ,

where V; and U,41 have orthonormal columns and

[ o \
B2 s

Bii1 = B3

873

\ Ry




Semiorthogonality, fundamental result

Simon '84: Let

HQr = Qi Tk + Bri1drr1er

be the tridiagonal decomposition computed after k steps of the
Lanczos algorithm on the hermitian matrix H. If the columns of
Q. are kept semiorthogonal, i.e.,

T . .
123}513 |qz’ q]' S u/k for ¢ 75 7,

then

where Q = Q. Ry is the compact QR-decomposition of Qj, and
the elements of Ey, is of order O(u||H||).

It follows (Wiedlandt-Hoffman) that A(7T%) are Ritz values for H
within O (u||H||).



Semiorthogonality in LBD

Bidiagl is equivalent to performing 2k 4 1 steps of symmetric
Lanczos with matrix C' and starting vector (u1,0)? € IR™™,
thus Simon’s result gives

Corollary: Define the levels of orthogonality in Bidiagl by v;; =
T

/ = ulu;. If

v; v; and p;; = u; u;.

max |Vz'j| S \/U/(Qk—l—l) fOI”L;éj ’

1<i,j<k

max |ui;| < \/u/(2/€-|-1) fori # 7,

1<i,j<k+1 =

then
UL AVi = Bji1 4+ O(u||A])) ,

where Ugy1 = (~]k+1jk+1 and Vi, = f/kf(k are the compact
QR-factorizaton of U1 and V.

Therefore o(Bj+1) are Ritz values for A within O(u||Al|).



The “w-recurrences” for LBD

In finite precision arithmetic:
av;, = Al w;— Bivi 1+ fi
ivs = J jvi—1 J
Biriujy1 = Awv; — aju; + g5,
where f; and g; represent round-off errors.

It is simple to show that p;y1; and vj; satisfy the coupled
recurrences:

Bititj+1,i = Vi + BilVji—1 — Oifhji
+u; gj — v, fi (1)
ajvi; = Bipilirl + ogpgs — Bivio1
— ujgi+v; fi, (2)

where Mi; = Vi; = 1 and ,LLO,L'ZI/OiEOfOI’]. S ) S]

These recurrences were derived independently by Simon & Zha
1997.

Partial reorthogonalization: Use the recurrences to monitor
the size of pjy1,; and vj;. Reorthogonalize only when necessary.



Bounding the round-off terms

We can bound the size of the round-off term

T T
lu; g5 —v; fil < gl + 1L fill

du((ad+ B, )"+ (@l +B)'?) + emv

T

IN

Round-off from matrix-vector multiply €py is  estimated
conservatively: ey < u(n + m) ||Al|, where i (™) is the
maximum number of non-zeros per row (column) in A.

Conservative updating rules v;_1; — vj; and pj; = it

/
Vii =  Bitiljit1 + aiplgi — Bivi-1i
/ . /
Vii = (ij' + Slgn(yji)T)/aj
!/
Piy1i = Qilji + Bilji—1 — Qjfdji
/ . !/
Hj+1: = (:u’j—l—l,i + Slgn(:u’j—l—l,i)T)//Bj-l-l
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Outline of algorithm

Lanczos bidiagonalization with Partial reorthogonalization:

force = FALSE
fory =1,2,... ,kdo
ozjvj = AT ’U,j — 53"1)]'_1
Update Vj—1,; — Vj4
if maxi<i<j |ij'| > tol or force
Reorthogonalize v;
force = (maX1§i<j |1/j7;| > tOl)
end
Bitiujr1 = Avj — aju;
Update pj; — pjt+1,
if maxj<ij<jy1|pjs1,i| > tol or force
Reorthogonalize u ;41
force = (max1§i<j+1 |,Ujj_|_1,z'| > tOl)
end
end

e The variable “force” causes extra reorthogonalizations, which
are necessary due to the coupling between v;; and ;1.

e It is not correct simply to replace “Reorthogonalize
uj+1  with  “Reorthogonalize w; and wu; ;" and
“Reorthogonalize v;” with “Reorthogonalize v;,_; and

’Uj.
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Software

PROPACK: Software package written in Matlab.

Main components:

lanpro
lanbpro
lansvd
laneig

Hermitian Lanczos with PRO
Lanczos bidiagonalization with PRO
Singular value decomposition
Hermitian eigensolver (=<LANSO)

Important implementation details:

— respecting coupling between p and v

— extended local reorthogonalization

— iterated Gram-Schmidt reorth. (DGKS, BLAS-2)
— recovery from near zero «; or (3;

— proper estimation of || A|

— interface similar to IRAM routines eigs and svds

URL: http://soi.stanford.edu/ rmunk/PROPACK

Fortran 77 versions of lanbpro and lansvd are also available

upon request.
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Numerical Experiments

The algorithms were tested by computing the first 10 singular
triplets for the following real non-symmetric matrices from Matrix

Market:
Name m n  nnz(A)
WELL1850 1850 712 8758
ILLC1850 1850 712 8758
TOLS4000 4000 4000 8784
MHD4800A | 4800 4800 102252
AF23560 23560 23560 460598
BCSSTK32 | 90449 90449 1921955
Software:
Algorithm Matlab | Fortran
Lanczos bidiagonalization with PRO | lansvd | LANSVD
Lanczos with PRO on AT A laneig | LANSO
Lanczos with PRO on C laneig | LANSO
IRAM on AT A eigs ARPACK
IRAM on C' svds ARPACK

Experimental setup: PC workstation with 600 MHz Pentium Il
CPU, 512MB memory, IEEE arithmetic, running RedHat Linux

6.2.
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Performance of Matlab functions

The Matlab implementations were tested using Matlab 5.3
with LAPACK numerics library. The table shows execution time
in seconds:

Function lansvd laneig eigs svds
Matrix A | ATA C| A'A C
WELL1850 1.00 0.63 1.77 2.20 13.31
ILLC1850 0.57 0.37 1.75 1.39 8.91
TOLS4000 2.73 1.76 6.76 16.84 73.71
MHD4800A 1.52 1.41 3.31 4.38 20.80
AF23560 30.57 | 20.92 61.54 50.51 181.61
BCSSTK32 85.72 | 76.34 19266 | 179.76 628.69

e laneig(ATA) wins on speed
e lansvd is a factor of 2 faster than laneig(C")

e PROPACK routines up to an order of magnitude faster than
svds!
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Performance, Fortran implementations

The Fortran version of 1ansvd was compared with the LANSO
and ARPACK codes. The table shows execution (CPU) time in

seconds:

Program LANSVD LANSO ARPACK

Matrix A | ATA C AT A C
WELL1850 0.30 0.12 1.00 0.20 1.44
ILLC1850 0.19 0.12 0.61 0.14 1.07
TOLS4000 1.04 0.99 6.32 2.66 9.97
MHD4800A 0.51 0.38 1.22 0.73 4.70
AF23560 11.11 449 1542 8.73 28.10
BCSSTK32 28.22 | 29.09 9477 | 107.91 194.32

e LANSO(ATA) wins on speed
e LANSO consistently faster than ARPACK on same problem
e LANSVD significantly faster than any other backwards stable

variants.

Experimental setup: EGCS (GNU) 2.95.2 compiler suite, ASCI
Red BLAS by Greg Henry, LAPACK 3.0 compiled locally.
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Tuning LANSO

The results for LANSO were improved by changing the strategy
for expanding Lanczos basis.

Before:
IF (NEIG.EQ.O) THEN
LAST = FIRST+8
ELSE
LAST = FIRST+MAX (2, ((J-6)*(MAXPRS-NEIG))/NEIG)
ENDIF
After:

IF (NEIG.EQ.O) THEN
LAST = FIRST+max(8,FIRST/2)

ELSE
LAST = FIRST+MAX(2, ((J-6)*(MAXPRS-NEIG))/(2*NEIG+1))
ENDIF
Before After
Matrix AT A C | ATA C
WELL1850 0.62 0.65 0.12 1.00
ILLC1850 1.28 0.73 0.12 0.61

TOLS4000 0.28 1.52 0.99 6.32
MHD4800A 0.46 1.45 0.38 1.22
AF23560 20.85 41.16 449 1542
BCSSTK32 | 53.64 93.02 | 29.09 94.77
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One-sided reorthogonalization

Simon & Zha (1997): It is sufficient to keep either Uy41 or
Vi orthogonal to compute accurate low rank approximations.

A=~ Uk+1BkaT

It is also sufficient to compute accurate singular values of A.

Leads to efficient algorithms for “skinny” matrices (m > n)
=> only the short vectors v; need to be reorthogonalized.

Only the current long vector u; need not be stored =- Storage
requirements are low.
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flops

One-sided reorthogonalization

Singular values are just as accurate as with full or partial reorthogonalization. Example
matrix not skinny enough to beat partial reorthogonalization in term of flops.
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Conclusion

Experiments with matrices from different applications show that:

e PROPACK provides efficient and robust replacements for eigs
and svds

e LANSVD is almost as fast as LANSO(ATA) (ratio (m +

n)/(2n))
e LANSVD is 2-4 times as fast LANSO(C') with same higher
accuracy

e LANSVD and LANSO generally outperform ARPACK. Up to
a factor of 2-3 on large examples.
Caveats: No restarts = more memory!

Future work:

e Restarting (e.g. Thick Restarts as in TRLAN)
e Finish parallel implementation of LANSVD
e Add solver based on one-sided reorth. to PROPACK
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