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Abstract. A feed-forward neural network which can account for nonlinear relationship was used7
to model total solar irradiance (TSI). A single layer feed-forward neural network with Levenberg-8
marquardt back-propagation algorithm have been implemented for modeling daily total solar9
irradiance from daily photometric sunspot index, and core-to-wing ratio of Mg II index data.10
In order to obtain the optimum neural network for TSI modeling, the root mean square error11
(RMSE) and mean absolute error (MAE) have been taken into account. The modeled and12
measured TSI have the correlation coefficient of about R=0.97. The neural networks (NNs)13
model output indicates that reconstructed TSI from solar proxies (photometric sunspot index14
and Mg II) can explain 94% of the variance of TSI. This modeled TSI using NNs further15
strengthens the view that surface magnetism indeed plays a dominant role in modulating solar16
irradiance.17

Keywords. Sunspots, Neural networks18

1. Introduction19

Total solar irradiance (TSI) is the total power from the sun impinging on the Earth20
and its variation in solar radiative output clearly has the potential to affect our planet.21
This radiative output heats the land and ocean, maintains our atmosphere, generates22
clouds, and cycles water (Rottman, 2006). These influence mechanisms of the sun can23
be linked to solar variations of luminosity, magnetic field, UV radiation, solar flares and24
modulations of cosmic ray intensity (Pap & Fox, 2004; Lean, 2001) .25

Following the satellite era, various empirical and semi-empirical models have been26
developed to model total solar irradiance from solar activity. Authors like Fröhlich &27
Lean (2004); Balmaceda et al. (2007) used empirical TSI modeling to address the question28
of the extent to which variations in TSI can be explained using only variations due to29
magnetic features such as sunspots, faculae and network. The fact that the TSI is on30
average higher near sunspot maximum implies that the influence of faculae and network31
is greater than that of sunspots ( Fröhlich & Lean, 1998). Proxy-based models (see,32
Ashamari et al., 2015, for a recent review) try to answer the question: to what extent33
specific solar proxies, such as sunspot number, Mg II index, F10.7 radio flux, abundance34
of cosmogenic isotopes, spectral lines or specific wavelength bands in the observed solar35
spectra or solar intensitygrams, can be used to describe solar irradiance variability.36

Neural Networks (NNs) have been widely used in multivariate nonlinear time series37
modeling in many research areas such as electronics, aerospace, and manufacturing engi-38
neering. NN is capable of directly correlating the time series of multiple input variables39
to the output variables through the interconnected nodes using trainable weights and40
bias signals (Hagan et al., 1995).41

In this study, our objective was to develop a neural network model to forecast SOURCE42
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TSI from measurements of solar proxy data. We consider the separate correspondence43
between the short- and long-term components of Mg II and solar irradiance time series.44
Fröhlich & Lean (2004) pointed out that the contribution of bright regions (i.e. faculae45
and network) to the TSI can be better modeled by a three component model where the46
short- and long-term components of Mg II have separate coefficients rather than by a47
single Mg II term.48

2. Data49

The input data have been taken from the solar indices that have impact on the TSI50
variations such as the daily PSI, and Mg II index. The daily PSI indicates the so-51
lar activity and it has been compiled by Balmaceda, Solanki & Krivova (2009) and52
downloadable at: http://www2.mps.mpg.de/projects/sunclimate/data/table4 v0613.txt.53
The Solar Radiation and Climate Experiment (SORCE) Mg II Index is available at54
: http://lasp.colorado.edu/lisird/tss/composite mg index csv?. This index is defined as55
the ratio of the irradiance in the core of the unresolved Mg II doublet at 280 nm to56
the nearby continuum irradiance and measures solar variability on both rotational and57
solar cycle time scales ( Deland & Cebula, 1993). All these indices are considered as an58
input parameter for TSI modeling by considering their short term as well as long term59
influences on solar activity. The Total Irradiance Monitor (TIM), a radiometer on the60
SORCE satellite, has been observing TSI since February 2003 with an absolute accuracy61
of 350 ppm, an instrumental noise of 12 ppm and a stability of better than 10 ppm/yr62
(Kopp & Lean, 2011). In this study we use version 17, level 3 six-hourly data averaged63
onto a daily cadence. The database we use extends over the period 2003 to 2013 with a64
total data of 3461. Figure 1 shows daily values from top to bottom: the SORCE of the65
TSI, PSI, Mg IIlt , and Mg IIst from the year 2003-2013 respectively66

3. Methodolgy67

Neural networks (NNs) are mathematical system which can be able to model the68
ability of biological neural networks by interconnecting many simple neurons. The neuron69
accepts inputs from a single or multiple sources and produces an output by training70
process with a predetermined non-linear function. Hornik et al. (1989) have proven that71
the perceptron with just one hidden layer is capable of approximating any measurable72
function to any desired degree of accuracy. For this study, mathematical representation73
of the perceptron with one hidden layer can be represented as follows:74

TSIpre =
6∑

j=1

ŵnj f

⎛
⎝

3∑
j=1

wjixi + bj

⎞
⎠ + b̂nj . (3.1)

where TSIpre is the predicted TSI of the output neuron, xi is the input value and i goes75
from 1 to 3, wjithe weights connecting the input layer to the hidden neurons and j goes76
from 1 to 6, bj represents the bias associated to the hidden neuron, f is the transfer func-77
tion of the hidden neurons (here, the function chosen to be hyperbolic tangent function78
for all neurons), ŵnj is the weights connecting hidden neuron to the output neuron, which79

contains a unique node n, and b̂j represents the bias associated to the output neuron.80
The root mean square error (RMSE) and mean absolute error (MAE) were used for the81
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Figure 1. Daily values of the time series a) SORCE TSI b) Photometric Sunspot Index (PSI)
c) Mg IIl t and d) Mg IIst index. The period covers from Febuary 27, 2003 up to May 10, 2013.

agreement index to present the accuracy of the current model given as:82

RMSE =

√√√√ 1
N

N∑
i=1

(TSIi
meas − TSIi

pre)2 . (3.2)

83

MAE =
1
N

N∑
i=1

|TSIi
meas − TSIi

pre |. (3.3)

where N is the number of data points, TSImeas is the measured data by using satellites,84
and TSIpre is predicted by the model.85

The two primary components of the NNs are the processing elements and their inter-86
connections. Figure 2 shows a fully connected single hidden layer feed-forward NNs and87
it has categories of layers in a neural network: input, hidden and output layers. The input88
layer receives the initial values of the variables; the output layer shows the results of the89
network for the input values; and the hidden layer performs the operations designed to90
obtain an output. The input layer must have as many neurons as there are input vari-91
ables, and the output layer must have as many neurons as the outputs produced by the92
network.93
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Table 1. Results of NNs techniques for training, validation and testing data set.

No of Training Validation Testing
hidden RMSE MAE RMSE MAE RMSE MAE
neuron (Wm−2 ) (Wm−2 ) (Wm−2 ) (Wm−2 ) (Wm−2 ) (Wm−2 )

3 0.1028 0.0736 0.1032 0.0735 0.1095 0.755
4 0.1012 0.0724 0.111 0.0732 0.1085 0.0745
5 0.1001 0.0726 0.0988 0.0706 0.1105 0.0728
6 0.1007 0.0709 0.0881 0.0635 0.0919 0.0671
7 0.0992 0.0698 0.0948 0.0573 0.1028 0.0755
8 0.0963 0.0689 0.0986 0.0702 0.1141 0.0735
9 0.0900 0.0698 0.0954 0.0671 0.1050 0.0709

PSI

Mg II
St

 Input Layer

Mg II
lt

 Output Layer

 Hidden Layer

TSI
Pre

Figure 2. Schematic of a single hidden layer, feed-forward neural network to reconstruct TSI.

4. Results94

It is known that neural networks interpolate well within the input space, and therefore95
the network is expected to reproduce the data set that was used to train it with relatively96
good accuracy (Habarulema et al., 2007 ; Habarulema & McKinnell 2012 ; Tebabal et al.,97
2015). However, this model may not generalize well to new data that is outside the98
training set (Srivastava et al., 2014; Demuth & Beale, 2000)). The risk of over-fitting99
during the training can be prevented by using early stopping techniques, accordingly100
the data can be randomly partioned into training, validation and testing sets. The model101
building data set is used to estimate model parameters (weights and biases) and validation102
set is to check the performance of the network to determine the epoch at which training103
should be stopped to avoid over-fitting or over-training. The testing set is used to assess104
final overall performance of the NNs.105

Comparison of model prediction and observations during training, validation and test-106
ing phases are given in Figure 3. The correlation coefficients between the model prediction107
and observations for both phases were 0.9648, 0.964 and 0.97 respectively. A summary108
of the statistics of the model performance is given in Table 1. As shown in this table the109
network with single hidden layer of 6 hidden neurons has achieved the best performance.110
Results show that the neural network model was satisfactorily trained to determine the111
parameters in the network so that the modeled TSI match with the SORCE TSI for112
testing data sets.113

The temporal comparison of model prediction and SORCE TSI during testing phase is114
given in Figure 4. As it is seen from the figure the temporal variation of SORCE TSI is115
well predicted by the model. To examine the linear association between the TSI for the116
testing data and NNs model output, we present a scatter plot in Figure 3. The red colored117
dashed line represents the best fit linear regression line between the NNs prediction and118
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Figure 3. Comparison of the NNs modeling and targets for training, validation and testing
data sets.
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Figure 4. Temporal variations of NNs modeled TSI (blue) and SORCE TSI (red).

SORCE TSI data sets. In the panel, the corresponding correlation coefficient R, and the119
linear equations are given. This performance is achieved based on 518 data points. The120
measured TSI and model prediction has a correlation coefficient of R = 0.97, and this121
means that 94% the total variation of the TSI is due to these solar proxies.122
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5. Conclusions123

In this paper, artificial neural networks method is used to model past TSI from SORCE124
measurements. The neural network method used here is a static feed-forward network125
and the Levenberg-Marquardt back-propagation algorithm is adopted for training the126
NN to minimize the RMSE and MAE. PSI, Mg IIlt , and Mg IIst are chosen as input127
neuron and TSI from SOURCE as output neuron. The best NN configuration for the128
present study was found to be a single hidden layer containing 6 neurons. The selection129
of this configuration was based on the minimization of the difference in RMSE and in130
MAE between the target and predicted values of TSI. The results can be concluding as131
follows:132

• A comparison between the SORCE TSI and the predicted one using the developed133
feed-forward network model shows a good performance for the test set data and their134
correlation coefficient is R 0.965. Therefore, this model has able to explain 94% of the135
variation of TSI.136

• The dynamic nonlinear trend of SORCE TSI is well reproduced by the model for137
the year 2003 through 2013.138

• The implication of the close correlation between SORCE TSI and the pridicted one139
is that the surface magnetic field causes the irradiance variation on the time scales of140
days up to solar cycles.141
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