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Abstract. We review nonlinear force-free field (NLFFF) modeling of magnetic fields in active10
regions. The NLFFF model (in which the electric current density is parallel to the magnetic11
field) is often adopted to describe the coronal magnetic field, and numerical solutions to the12
model are constructed based on photospheric vector magnetogram boundary data. Comparative13
tests of NLFFF codes on sets of boundary data have revealed significant problems, in particular14
associated with the inconsistency of the model and the data. Nevertheless NLFFF modeling15
is often applied, in particular to flare-productive active regions. We examine the results, and16
discuss their reliability.17
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1. Introduction19

Sunspot magnetic fields power large scale solar activity, i.e. flares and coronal mass20
ejections (CMEs), which can produce space weather storms (e.g., Baker et al. 2008).21
Terrestrial space weather effects motivate the modeling of active region magnetic fields.22
Accurate models may assist with understanding and quantifying processes of magnetic23
energy storage and release, and may lead to improved event prediction.24

A variety of models may be used to represent active region coronal magnetic fields.25
Magneto-hydrodynamics (MHD) provides a time-dependent model for the field B, the26
fluid velocity v, the fluid pressure p and the fluid density ρ. Numerical solution of the27
MHD equations requires specification of initial values for the dependent variables, and28
boundary conditions on the variables at all times. The process is computationally in-29
tensive and requires detailed boundary conditions. The model is not generally applied30
directly to solar data (but see e.g., Amari, Canou & Aly 2014). More often it is applied31
to prescribed boundary and initial configurations which resemble solar configurations,32
or else solar data is combined with synthetic boundary data in some way. Magneto-33
hydrostatic modeling is a simpler, static approach, involving a boundary value problem34
for B, p, and ρ. In principle this model may be useful for modeling from solar data, but35
it has not been widely used to date (but see e.g., Gilchrist & Wheatland 2013; Wiegel-36
mann, Petrie & Riley 2015). The nonlinear force free field (NLFFF) model is a static37
model presenting a boundary value problem for the field B alone. Numerical solution of38
this model is less computationally intensive than MHD, and it is often applied to solar39
boundary data (photospheric vector magnetograms).40

The NLFFF model has become popular, with dozens of papers a year presenting solu-41
tions to the model for solar data, and interpreting and using the results (an ADS search42

165
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for abstracts containing the words “nonlinear”, “force”, “free” and “solar” returned 4043
refereed papers for 2012, 46 papers for 2013, and 44 papers for 2014). A basic problem44
with NLFFF modeling is that the boundary data are in general inconsistent with the45
model, as highlighted by the comparisons of results for NLFFF methods presented in46
Schrijver et al. (2008), Metcalf et al. (2008), and DeRosa et al. (2009). This problem is47
rarely discussed in new papers using the model. Recently DeRosa et al. (2015) revisited48
the question of the reliability of NLFFF modeling in application to solar data, presenting49
results for a number of different NLFFF codes applied to vector magnetograms prepared50
with different spatial resolutions.†51

This paper presents a brief review of NLFFF modeling, including the solar data used,52
the details of the model and of the boundary conditions, and the problem of inconsistency53
and its effects on methods of solution of the model. Strategies for assessing the reliability54
of results are discussed.55

2. NLFFF modeling56

2.1. Vector magnetogram data57

Vector magnetograms are maps of the photospheric vector magnetic field B = (Bx,By ,Bz )58
in local cartesian heliographic coordinates, where z is the local radial direction. The field59
values are constructed from observations of magnetically sensitive spectral lines formed60
close to the photosphere (del Toro Iniesta 2003). Stokes Polarimeters measure polarisa-61
tion profiles I(λ), Q(λ), U(λ), V (λ) as a function of wavelength λ across spectral lines,62
for points within fields of view on the disk, or for the whole disk. The magnetic fields63
parallel to, and perpendicular to, the line of sight are obtained from the polarisation64
measurements by applying a radiative transfer model. This process is known as Stokes65
inversion. The vector components of the fields are obtained after resolution of the intrin-66
sic 180 degree ambiguity in the direction of the field perpendicular to the line of sight67
(Metcalf 1994; Metcalf et al. 2006; Leka et al. 2009). In principle vector magnetograms68
provide boundary conditions for NLFFF modeling, as discussed below.69

Vector magnetogram data are now routinely available. In particular satellite obser-70
vations are provided by the Solar Optical Telescope Spectro-Polarimeter (SOT/SP) on71
board Hinode (Tsuneta et al. 2008) and the Helioseismic & Magnetic Imager on the Solar72
Dynamics Observatory satellite (SDO/HMI) (Scherrer et al. 2012).73

2.2. The model and the boundary conditions74

The NLFFF model for the coronal magnetic field (e.g., Wiegelmann & Sakurai 2012) is:75

J × B = 0 and ∇ · B = 0 (2.1)

where J = μ−1
0 ∇× B is the electric current density, which is everywhere parallel to the76

magnetic field. Introducing the force-free parameter α via77

J = αB/μ0 , (2.2)

the equations may be rewritten as:78

B · ∇α = 0 and ∇× B = αB. (2.3)

The boundary conditions for the problem in a half space z > 0 (e.g., Grad & Rubin 1958)79
consist of the values of Bz at z = 0, together with the values of α at z = 0 over one80

† The data presented in DeRosa et al. (2015) are available online, including NLFFF solution
cubes for the different methods. See the paper for details.
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polarity of Bz (i.e. the region where Bz > 0, here denoted P , or the region where Bz < 0,81
here denoted N). Values of Jz may be prescribed instead of α, according to Eq. (2.2).82

Some methods of solution of the force-free equations use as boundary conditions the83
values of B over both polarities of Bz , i.e. over both P and N . This defines Jz over both84
polarities using85

Jz =
1
μ0

(
∂By

∂x
− ∂Bx

∂y

)
(2.4)

and is formally an over-prescription.86
The methods of solution of Eqs. (2.3) applied to solar data are iterative. These in-87

clude Grad-Rubin iteration (e.g., Grad & Rubin 1958; Amari, Boulmezaoud & Aly 2006;88
Wheatland 2007), optimization (e.g., Wheatland, Sturrock & Roumeliotis 2000; Wiegel-89
mann 2007) and the magnetofrictional method (e.g., Valori, Kliem & Keppens 2005).90

In this paper we present NLFFF solutions calculated with a Grad-Rubin code (CFIT).91
The Grad-Rubin method involves two steps at each iteration. First, currents are run92
along the field lines of a given field, subject to the boundary conditions on α. Second,93
the field due to this current configuration (and subject to the boundary conditions on94
the field) is calculated. This provides a new field configuration for the next iteration.95

The process of solution of the NLFFF model for given solar boundary data is often96
referred to as NLFFF ‘reconstruction’, or ‘extrapolation’.97

2.3. The problem of inconsistency and its effects98

Studies comparing NLFFF reconstructions using different methods of solution applied to99
given vector magnetograms have revealed basic problems (Schrijver et al. 2008; Metcalf100
et al. 2008; DeRosa et al. 2009; DeRosa et al. 2015). The results may not be accurate101
solutions to the NLFFF model, for a given solution method, and the results produced102
by different methods may not agree with one another. In particular they may have103
substantially different magnetic energies and magnetic free energies, and they may reveal104
different field line structures.105

The problems arise in part from inconsistency between the boundary data and the106
model. Molodenskii (1969) identified a set of integral identities which must be met in a107
boundary by a NLFFF, and these identities are generally only approximately satisfied108
for photospheric vector magnetogram data (e.g., Metcalf et al. 1995; DeRosa et al. 2009).109
The boundary field values are uncertain due to errors in measurements and field inference110
(e.g., Leka et al. 2009), but the results imply non-magnetic forces at the photospheric111
level (e.g., Metcalf et al. 1995). The NLFFF model may provide a good approximation112
to magnetic fields in the magnetically-dominated solar corona, at most locations and at113
most times, but in the denser photosphere forces due to gas pressure, gravity and fluid114
flows are important. The boundary field is not force free.115

The influence of inconsistency on NLFFF modeling depends on the method of solution116
of the equations. In the following we briefly describe the effects for two popular methods.117

Grad-Rubin iteration118
Grad-Rubin methods use the formally correct boundary conditions for the problem,119

described in § 2.2. However, vector magnetograms permit calculation of α values over120
both the P and the N polarities (e.g., via Eq. (2.4)). Hence the data provide two sets of121
boundary conditions and allow calculation of two solutions (the P and the N solutions).122
For inconsistent boundary data, the two solutions may be substantially different. Also,123
a Grad-Rubin iteration sequence may not converge. In practice it is difficult to achieve124
convergence for solar data, and approximate solutions are obtained by a process of trial125
and error in which the boundary data are modified, e.g., by smoothing Bx and By values126
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Figure 1. P and N solutions for AR10978 on 12 Dec 2007. The two panels show sets of field
lines traced from common starting positions (indicated by the asterisks), for the CFIT bin 4 P
and N solutions described in DeRosa et al. (2015).

before calculation of α values (e.g., Canou et al. 2009), or by ‘censoring’ α values, i.e.127
assigning α = 0 in weak field regions (e.g., Wheatland & Leka 2011; Amari, Canou &128
Aly 2014).129

Figure 1 illustrates the effects. The figures shows two of the CFIT solutions discussed130
in DeRosa et al. (2009), which are constructed for a vector magnetogram based on Hinode131
SOT/SP data for active region AR10978 observed on 12 December 2007. The two panels132
show the CFIT bin 4 P solution (left) and the CFIT bin 4 N solution (right). The133
views look down vertically on the computational domain, and the red and blue in the134
background indicates positive and negative values of the vertical field Bz . The blue and135
purple curves are sets of field lines originating from sets of points in the lower boundary136
(the starting positions are indicated by asterisks). The purple field lines appear similar137
for the P and N solutions, but the blue field lines are qualitatively different. For these138
solutions values of α are censored to achieve approximate convergence of the Grad-Rubin139
iteration sequence. The free energies of the P and N solutions are similar: EP /EP,0 = 1.11140
and EN /EN,0 = 1.10, where EP,0 and EN,0 are the reference potential field energies.141

Optimization142
Optimization (e.g., Wheatland, Sturrock & Roumeliotis 2000; Wiegelmann 2007) uses143

values of B over both P and N as boundary conditions. In principle there is only one144
result, but for inconsistent boundary conditions the result cannot be an accurate solution145
to the model. The result may have J×B �= 0 and/or ∇·B �= 0. (The optimization method146
uses initial conditions with explicit departure from the ‘solenoidal’ state ∇ ·B = 0. If an147
accurate solution to the model is obtained, it is close to solenoidal.)148

Preprocessing is often applied to vector magnetogram data prior to use of optimization149
(Wiegelmann, Inhester & Sakurai 2006; Wiegelmann & Inhester 2010). In this procedure150
the field boundary values are altered to better satisfy the Molodenskii (1969) conditions.151
In practice preprocessing is found to improve the quality of NLFFF solutions based on152
some metrics. However, the Molodenskii integrals represent necessary (but not sufficient)153
conditions for the existence of a NLFFF, and preprocessed boundary conditions are in154
general still inconsistent with the model (e.g., DeRosa et al. 2009).155

2.4. Changes in the boundary conditions156

As § 2.3 suggests, it is generally necessary to change the boundary values provided by a157
vector magnetogram to achieve a satisfactory solution to the NLFFF model.158

Figure 2 illustrates the size of the changes required for one of the solutions in DeRosa159
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Figure 2. Changes in the boundary conditions for the horizontal field of AR10978 (by compar-
ison with the vector magnetogram) for the CFIT bin 2 P solution (DeRosa et al. 2015). The
top panel shows the magnitude of the field, and the bottom panel shows the magnitude of the
change.

et al. (2015)). The figure shows the changes in the boundary values of the horizontal160

field Bh =
√

B2
x + B2

y for the CFIT P solution at the bin 2 resolution. (The Grad-Rubin161

method does not change the vertical component of the field.) The top panel shows the162
magnitude of the horizontal field, and the bottom panel shows the magnitude of the163
change in the horizontal field. The figure indicates that there are substantial changes164
in Bh across the boundary region, and that the maximum change is comparable to the165
maximum value of Bh . DeRosa et al. (2015) present a more detailed investigation of the166
changes in the boundary field introduced by different solution methods, and a comparison167
of the changes between methods.168

2.5. Assessing the errors in solutions169

In assessing the result of a NLFFF reconstruction, it is useful to consider two (related)170
questions:171

• Q1 – Does it represent what is on the Sun?172
• Q2 – Is it an accurate solution to the model?173
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Approaches to answer Q1 may include comparison of field line traces with EUV/X-ray174
images, comparison with results obtained between NLFFF methods, or with other models175
(e.g., MHD), and consideration of the changes in the boundary conditions required to176
achieve a solution (see § 2.4).177

Q2 is often addressed by calculating two specific metrics (Wheatland, Sturrock &178
Roumeliotis 2000). The pointwise average of |∇·Bi | over grid points i provides a measure179
of the solenoidal error, and a weighted average angle between Ji and Bi over grid points is180
presented as an indicator of magnetic forces. However these ‘answers’ to Q2 are difficult181
to interpret, and are unrelated to how the solutions are used. For example, NLFFF182
solutions are often used to estimate magnetic energy or magnetic free energy, but these183
metrics do not indicate whether the resulting energy estimates are reliable.184

3. Recommendations185

Based on the results in DeRosa et al. (2015), NLFFF modeling of coronal magnetic186
fields for active regions remains challenging. Codes may produce solutions of varying187
quality, and a range of results may be obtained for the same vector magnetogram.188

Here we make two specific, simple recommendations for answering Q2 (checking the189
quality of the solution to the model), based on the intended use of the solution.190

First, if solutions are being used to estimate magnetic energy, we recommend using191
the method of Valori et al. (2013) to calculate the non-solenoidal contributions to the192
energy, following DeRosa et al. (2015). Valori et al. (2013) show how to decompose the193
field into potential (p) and current carrying (c) components, each with solenoidal (s) and194
non-solenoidal (ns) parts. The total magnetic energy E may be expressed as195

E = Ep,s + Ep,ns + Ec,s + Ec,ns + Emix , (3.1)

where196

Ep,s =
1

2μ0

∫
B2

p,s dV, Ep,ns =
1

2μ0

∫
B2

p,ns dV (3.2)
197

Ec,s =
1

2μ0

∫
B2

c,s dV, Ec,ns =
1

2μ0

∫
B2

c,ns dV, (3.3)

and198

Emix =
1
μ0

∫
(Bp,s ·Bp,ns + Bc,s ·Bc,ns + Bp,s ·Bc,ns

+ Bc,s ·Bp,ns + Bp,ns ·Bc,ns + Bp,s ·Bc,s) dV.

(3.4)

For a solenoidal field E = Ep + Ec with Ep = Ep,s and Ec = Ec,s , and199

Ep,ns = Ec,ns = Emix = 0. (3.5)

For a NLFFF solution it is necessary to check that Ep,ns , Ec,ns and |Emix | are small200
compared with the magnetic free energy, which is the component Ec,ns . The results in201
DeRosa et al. (2015) suggest that solutions obtained by the optimization method, in202
particular, may fail this test.203

Second, if solutions are being used to identify specific field structures, then we rec-204
ommend tracing relevant field lines, and current streamlines (field lines of ∇× B) from205
common starting points. If the field is force free, then the field lines and current stream-206
lines should agree. This provides a stringent test because departures in the two paths add207
up along the paths. In general the sets of field lines and current streamlines will not be208
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Figure 3. Traces of field lines (black) and current streamlines (yellow) for three sets of common
starting points, for the CFIT bin 4 P solution for AR10978 described in DeRosa et al. (2015).

exactly coincident, but they should both reproduce structures of interest (e.g., ‘twisted209
flux ropes’).210

Figure 3 illustrates the second recommended test, for one of the CFIT solutions in211
DeRosa et al. (2015), namely the P solution at the bin 4 resolution. The figure shows212
three bundles of field lines (black curves), and corresponding current streamlines (yellow213
curves). The three sets of curves do not agree exactly but are qualitatively similar. The214
departures occur because the field is only approximately force free.215

4. Summary216

This paper presents a short review of nonlinear force-free field (NLFFF) modeling of217
coronal magnetic fields in active regions. Coronal field modeling is often motivated by218
solar activity, and the role of activity in space weather.219

Vector magnetograms provide boundary values for coronal field ‘extrapolation’ based220
on the nonlinear force-free field model, and this modeling approach has become quite221
popular. However, studies suggest that the results may be unreliable. In particular, the222
inconsistency of the solar data with the NLFFF model is the source of problems, which223
depend in detail on the method of solution of the model.224

We recommend two simple tests for NLFFF models, which assess the quality of the225
solutions. The tests are chosen to match the use made of the NLFFF solutions.226
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