

JOURNALS

Proceedings of the International Astronomical Union

Date of delivery:	5 May 2016
-------------------	------------

CAMBRIDGE

Journal and vol/article ref: IAU 1600055

Number of pages (not including this page): 3

This proof is sent to you on behalf of Cambridge University Press. Please check the proofs carefully. Make any corrections necessary on a hardcopy and answer queries on each page of the proofs

Please return the **marked proof** within

days of receipt to:

Managing editor of this symposium

Authors are strongly advised to read these proofs thoroughly because any errors missed may appear in the final published paper. This will be your ONLY chance to correct your proof. Once published, either online or in print, no further changes can be made.

To avoid delay from overseas, please send the proof by airmail or courier.

If you have **no corrections** to make, please email **managing editor** to save having to return your paper proof. If corrections are light, you can also send them by email, quoting both page and line number.

• The proof is sent to you for correction of typographical errors only. Revision of the substance of the text is not permitted, unless discussed with the editor of the journal. Only **one** set of corrections are permitted.

- Please answer carefully any author queries.
- Corrections which do NOT follow journal style will not be accepted.

• A new copy of a figure must be provided if correction of anything other than a typographical error introduced by the typesetter is required.

If you do not send any corrections to the editor within 5 days, we will assume your proof is acceptable.

• If you have problems with the file please contact

lwebb@cambridge.org

Please note that this pdf is for proof checking purposes only. It should not be distributed to third parties and may not represent the final published version.

Important: you must return any forms included with your proof. We cannot publish your article if you have not returned your signed copyright form.

NOTE - for further information about **Journals Production** please consult our **FAQs** at http://journals.cambridge.org/production_faqs Author queries:

Typesetter queries:

Non-printed material:

Searching for failed eruptions interacting with overlying magnetic field

Dominik Gronkiewicz^{1,2}, Tomasz Mrozek^{2,3}, Sylwester Kołomański ² and Martyna Chruślińska⁴

¹Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland email: gronki@camk.edu.pl

²Astronomical Institute, University of Wrocław, ul. Kopernika 11, 51-622 Wrocław, Poland ³Space Research Centre, PAS, ul. Kopernika 11, 51-622 Wrocław, Poland

⁴Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland

10 Abstract. It is well known that not all solar flares are connected with eruptions followed 11 by coronal mass ejection (CME). Even strongest X-class flares may not be accompanied by 12 eruptions or are accompanied by failed eruptions. One of important factor that prevent eruption 13 from developing into CME is strength of the magnetic field overlying flare site. Few observations 14 show that active regions with specific magnetic configuration may produce many CME-less solar 15 flares. Therefore, forecasts of geoeffective events based on active region properties have to take 16 into account probability of confining solar eruptions. Present observations of SDO/AIA give a 17 chance for deep statistical analysis of properties of an active region which may lead to confining 18 an eruption. We developed automated method which can recognize eruptions in AIA images. 19 With this tool we will be able to analyze statistical properties of failed eruptions observed by 20 AIA telescope.

Keywords. Sun: corona, Sun: atmospheric motions, methods: data analysis, techniques: image
 processing

1. Introduction

1

2

3

4 5

6 7

8 9

23 24

25

26 27

28 29

30 31

32

33

34

35 36

37

38

39

40 41 According to Gilbert *et al.* (2007), on the basis of kinematic criteria, solar coronal eruptions may be grouped into three classes described in Table 1. In this work we concentrated on the 3rd class, the eruptions which, after initial acceleration in low corona, decelerate and stop eventually due to various mechanism:

- Insufficient energy to escape the gravitational potential of the Sun.
- Properties of overlying magnetic field. (Torök & Kliem 2005; Wang & Zhang 2007)
- Magnetic tension within the erupting flux rope (Vršnak 1990)
- Momentum exchange with the background plasma (Archontis & Török 2008)

• Kink instability and stabilization of the erupting filament (Torök & Kliem 2005; Ji et al. 2003)

• Reconnection with the overlying field arcade (Amari *et al.* 1999)

Major observational characteristics of failed eruptions are as follow:

• Untwisting motion of erupting flux ropes (Ji et al. 2003)

• Brightenings in footpoints of overlying loops as a result of electron acceleration (Netzel *et al.* 2012)

- Heating of overlying loops (Song *et al.* 2014)
- Visible interaction betweeen the eruption and overlying loops (Mrozek 20011)
- Radio emission in deceleration region (Kushwaha et al. 2015)

D. Gronkiewicz et al.

 Table 1. Classification of solar eruptions.

Type		Ejected
Full		> 90% of matter and magnetic structure
Partial(a)	Entire magnetic structure, part of matter
Partial(b) Part of magnetic structure, small part of matter		
Failed		Neither matter nor magnetic structure

In space weather predictions failed eruptions are usually omitted as events which not lead to geoeffective storms. However, detailed statistical analysis of failed eruptions will provide more precise boundary conditions for full eruption occurence from active region of given physical condition. With present, huge observational data base from Solar Dynamics Observatory we are able to search and catalogue failed eruptions in more systematic way. In this paper we describe an algorithm that we use to search for dynamic events in SDO data base.

49 2. Algorithm description

50 With our method, SDO/AIA 171 Å synoptic data series (1024x1024 full-disk images) were chosen for analysis. Downloading and processing data is performed automatically. A 51 52 standard tool used for motion detection is running difference of two consecutive frames. 53 We introduced a slight modification to this technique that is very efficient in extraction 54 of faint, fast-moving objects. Before differentiation simple transformation is applied to 55 the image in following way (where I denotes the intensity of pixel (x, y) at time t and α is 56 a constant): $J(x, y, t) = \ln(I(x, y, t) + \alpha)$. We have found that this technique is far more 57 efficient for moving structures recognition, and it helps to eliminate stationary loops and most of flares in the very preliminary phase of image analysis. Behaviour of each pixel 58 can be described by its state $\hat{S} = (I, V)$ where 59

$$V = \sqrt{\left(\frac{dJ}{dt}\right)^2 + \frac{1}{4}\left(\frac{d^2J}{dt^2}\right)^2}$$

68

The next step is to classify state \hat{S} of each pixel to one of the classes: class E (eruption) 60 61 for areas containing the eruption and Q (quiet) describing the remaining part of the 62 image. We use probabilistic approach. We select 20% of frames with lowest values of 63 squared derivatives (marked with boxes in Figure 1, panel a) and assume that all pixels in these frames belong to class Q. Histogram of (I, V) pairs for these frames, which yields 64 the distribution P(S|Q), is presented in Figure 1 (panel b). Similar histogram is made 65 for all frames (Figure 1, panel c) in order to provide $P(\hat{S})$. A priori probability $P(E|\hat{S})$ 66 67 can be then computed iteratively using Bayes theorem:

$$P\left(E|\hat{S}\right) = 1 - P(Q)\frac{P\left(\hat{S}|Q\right)}{P(\hat{S})} \quad \text{where} \quad P(Q) = 1 - \frac{area_{eruptions}}{area_{total}}$$

3. Results and Discussion

Three months of observations between 01-Apr-2012 and 01-Jul-2012 were analyzed.
Automatic algorithm has found 618 events. They were manually browsed and categorized
into six classes.

Figure 1. (a) Mean values of squared derivatives for each frame; squares mark frames chosen as quiet Sun reference; (b) Histogram of intensity and variability for each pixel; (c) A priori probability; dark area are eruption pixels; (d) Probability re-mapped to the image. Eruption as well as some smaller fluctuations have been detected.

About 26% of found events were solar eruptions, 70% of which were failed eruptions. There was also large contribution from surges – almost 18%. Relative large number of errors (18%) was caused by dark frames which were unfiltered from sequences. The largest group of uncategorized phenomena (35%) included prominence plasma motions, large-scale loop motions or other events.

The results were compared to events obtained from HEK database (Hurlburt 2012), containing eruptions found by Eruption Patrol algorithm described by Hurlburt (2015). The 200 events were present in analyzed time range, which is slightly less than our results (270). The overall spatial distribution of events is in general agreement with our method.

81 Presented method is moderately effective in searching for eruption candidates in large datasets, allowing real-time processing. Apart from eruptions, it is extremely sensitive to 82 motions of faint plasma structures high in the corona, including expansion, untwisting, 83 oscillations and EIT waves. Such events could be easily missed during manual browsing 84 85 of SDO/AIA data. However, the output catalog is uncertain and needs to be reviewed 86 manually to filter out false detections. Attempts at extracting information about eruption 87 kinematics automatically also failed. Nevertheless, we find it an useful tool for preliminary selection of events visible in SDO/AIA data. 88

89 Acknowledgements

We acknowledge financial support from the Polish National Science Centre grant num-90 ber 2011/03/B/ST9/00104.

92 References

72

73

74

75

76

77

78

79 80

91

- 93 Amari, T. & Luciani, J. F. 1999, ApJL, 515, L81
- 94 &Archontis, V. and Török, T. 2008, A&A, 492, L35
- 95 Gilbert, H. R., Alexander, D., & Liu, R. 2007, Sol. Phys., 245, 287
- Hurlburt, N., Cheung, M., & Schrijver, C., et al. 2012, Sol. Phys., 275, 67-78 96
- 97 Hurlburt, N. 2015, arXiv preprint, 1504.03395
- 98 Ji, H., Wang, H., Schmahl, E. J., Moon, Y.-J., & Jiang, Y. 2003, ApJL, 595, L135
- 99 Kushwaha, U., Joshi, B., Veronig, A. M., & Moon, Y.-J. 2015, arXiv preprint, 1504.01888
- 100 Mrozek, T. 2011, Sol. Phys., 270, 191
- 101 Netzel, A., Mrozek, T., Kołomański, S., & Gburek, S. 2012, A&A, 548, A89
- 102 Song, H. Q., Zhang, Jie., & Cheng, Xin., et al. 2014, ApJ, 784, 48
- 103 Török, T. & Kliem, B. 2005, ApJL, 630, L97
- 104 Vršnak, B. 1990, Sol. Phys., 129, 295
- 105 &Wang, Y. and Zhang, J. 2007, ApJ, 665, 1428