

Proceedings of the International Astronomical Union

Date of delivery:	: 5	May 2016	
-------------------	-----	----------	--

Journal and vol/article ref: IAU 1600632

Number of pages (not including this page): 22

This proof is sent to you on behalf of Cambridge University Press. Please check the proofs carefully. Make any corrections necessary on a hardcopy and answer queries on each page of the proofs

Please return the **marked proof** within

days of receipt to:

Managing editor of this symposium

Authors are strongly advised to read these proofs thoroughly because any errors missed may appear in the final published paper. This will be your ONLY chance to correct your proof. Once published, either online or in print, no further changes can be made.

To avoid delay from overseas, please send the proof by airmail or courier.

If you have **no corrections** to make, please email **managing editor** to save having to return your paper proof. If corrections are light, you can also send them by email, quoting both page and line number.

• The proof is sent to you for correction of typographical errors only. Revision of the substance of the text is not permitted, unless discussed with the editor of the journal. Only **one** set of corrections are permitted.

- Please answer carefully any author queries.
- Corrections which do NOT follow journal style will not be accepted.

• A new copy of a figure must be provided if correction of anything other than a typographical error introduced by the typesetter is required.

If you do not send any corrections to the editor within 5 days, we will assume your proof is acceptable.

If you have problems with the file please contact

lwebb@cambridge.org

Please note that this pdf is for proof checking purposes only. It should not be distributed to third parties and may not represent the final published version.

Important: you must return any forms included with your proof. We cannot publish your article if you have not returned your signed copyright form.

NOTE - for further information about **Journals Production** please consult our **FAQs** at http://journals.cambridge.org/production_faqs Author queries:

Typesetter queries:

Non-printed material:

Chapter 1: Introduction

Solar and Stellar Flares and their Impact on Planets

Kazunari Shibata

Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto, Japan, 607-8471 email: shibata@kwasan.kyoto-u.ac.jp

Abstract. Recent observations of the Sun revealed that the solar atmosphere is full of flares and flare-like phenomena, which affect terrestrial environment and our civilization. It has been established that flares are caused by the release of magnetic energy through magnetic reconnection. Many stars show flares similar to solar flares, and such stellar flares especially in stars with fast rotation are much more energetic than solar flares. These are called superflares. The total energy of a solar flare is $10^{29} - 10^{32}$ erg, while that of a superflare is $10^{33} - 10^{38}$ erg. Recently, it was found that superflares (with $10^{34} - 10^{35}$ erg) occur on Sun-like stars with slow rotation with frequency once in 800 - 5000 years. This suggests the possibility of superflares on the Sun. We review recent development of solar and stellar flare research, and briefly discuss possible impacts of superflares on the Earth and exoplanets.

16 Keywords. stars:activity, stars:flare, stars:rotation, stars:solar-type, stars:starspots

1. Introduction

1

2

3

4 5

6

7

8

9

10

11 12

13 14

15

17

18 The first solar flare that human beings observed was a white light flare observed by Carrington (1859) and Hodgson (1859) (Fig. 1). This flare induced the largest geomag-19 20 netic storm in the most recent 200 yr, and caused several troubles in the terrestrial civilization even in the infancy of electromagnetic technology (Loomis 1861, Tsurutani 21 22 et al. 2003). The time between the "Carrington flare" and the geomagnetic storm was 17 hours 40 min, suggesting average propagation speed of a coronal mass ejection (CME) 23 ejected from the flare was about 2380 km/s, which is comparable to the speed of the 24 fastest CMEs in recent years. Hence it has been considered that the Carrington flare was 25 one of the most energetic flares (with energy of order of 10^{32} erg) observed so far (see also 26 27 reviews by Cliver and Svalgaard (2004) and Schrijver et al. (2012) on the Carrington-class extreme space weather event). 28

After Carrington, especially since the latter half of 20th century, many solar flares 29 have been observed in almost all electromagnetic wavelength, from radio (meter wave) 30 to X-rays and gamma-rays (e.g., Svestka 1976, Bastian et al. 1998, Benz 2008, Fletcher 31 et al. 2011). Typical energies of the solar flare are 10^{29} - 10^{32} erg, and typical time scales 32 are $100-10^4$ sec, though there are no actual characteristic energy and time for the flare. 33 The flare frequency statistics show that the number of flares N increases with decreasing 34 flare energy E with a power-law distribution: $dN/dE \propto E^{-\alpha}$ and $\alpha \sim 1.6 - 2.0$ (e.g., 35 Aschwanden *et al.* 2000). Recent observations revealed existence of microflares $(10^{26}-10^{28})$ 36 erg) and nanoflares $(10^{23}-10^{25} \text{ erg})$ with a similar power-law distribution (see Fig. 12 of 37 38 this paper).

39 The recent progress of space based solar observations in last few decades has revolu-40 tionized the solar flare research, and it has been established at least phenomenologically

Figure 1. Sunspots and white light flare regions (A, B, C, and D) sketched by Richard Carrington (Carrington 1859).

that solar flares are caused by the release of magnetic energy stored near sunspots in the solar atmosphere through the *magnetic reconnection* (e.g., Parker 1979, Low 1996, Priest and Forbes 2000, see also Shibata and Magara 2011 for more recent review on flare MHD processes). Nevertheless, there still remains fundamental puzzles on solar flares and reconnection, such as (1) what determines the reconnection rate ? (2) how can we connect the macro-scale dynamics and micro-scale plasma physics ? (3) what is the triggering mechanism of solar flares ?

On the other hand, many stars show flares similar to solar flares in optical, radio, and 48 49 X-ray wavelengths (e.g., Guedel 2002, 2004, Gershberg 2005, Benz and Guedel 2010). 50 Sometimes the total amount of energy of a stellar flare far exceeds that of a solar flare, say, 10^{33} - 10^{38} erg, especially in young stars (Koyama *et al.* 1996, Feigelson and Montmerle 51 52 1998) and binary stars, such as RS CVn (Benz and Guedel 1994). These flares are called superflares (Schaefer et al. 2000). Although these stellar flares have not yet been spatially 53 54 resolved, there are increasing indirect evidence of reconnection mechanism similar to that for the solar flare (Shibata and Yokoyama 1999, 2002). 55

It has been argued that superflares would never occur on the Sun, because astronomers
believed that the necessary condition for the superflare occurrence on slowly rotating
Sun-like stars is the existence of hot Jupiters near to these stars (Schaefer *et al.* 2000,
Rubenstein and Schaefer 2000).

60 More recently, many superflares (with energy of 10^{33} - 10^{35} erg) were discovered in solar 61 type stars (G-type main sequence stars) without hot Jupiters, especially in Sun-like stars 62 whose surface temperature and rotation periods are similar to those of the Sun (Maehara 63 *et al.* 2011, Shibayama *et al.* 2013, Notsu *et al.* 2013b). This suggests that we cannot 64 deny the possibility of occurrence of superflares on the Sun (Shibata *et al.* 2013).

In this article, we review the recent development of solar and stellar flare research from
the view point of unified physical model based on magnetic reconnection mechanism, and
briefly discuss possible impact of solar and stellar superflares on the Earth and exoplanets
around these stars.

Figure 2. A soft X-ray image of an LDE (Lond Duration Event) flare with cusp shaped-loop structure, observed on Feb. 21, 1992 (Tsuneta *et al.*, 1992a; Tsuneta, 1996). Shown in reversed contrast.

2. A Unified View of Solar Flares and Flare-like Phenomena in the Solar Atmosphere

69

70 71

72

73

74

75 76

77

78

79

80

81

82 83

84

85 86

87

2.1. Solar Flares, Coronal Mass Ejections, and Plasmoid Ejections

Solar flares have been observed with H α line from the ground based observatories, and are known to show two ribbon bright patterns in H α images. Motivated by the observations, a standard magnetic reconnection model called *CSHKP model* (after Carmichael 1964, Sturrock 1966, Hirayama 1974, Kopp and Pneuman 1976) has been proposed. The CSHKP model predicts the formation of hot, cusp-shaped flare loops or arcades. The predicted cusp-shaped flare loops were indeed discovered by Yohkoh soft X-ray observations (Tsuneta *et al.* 1992a) (Fig. 2). Now, the standard reconnection model (CSHKP) of solar flares and flare-like phenomenon is considered established, at least, phenomenologically (Tsuneta 1996, Forbes and Acton 1996).

However, cusp-shaped flares are rather rare, and many flares do not show clear cusps. Observations show that the shape of cusp in soft X-rays is clear mainly during the *long duration event (LDE) flares*, that are long lived (more than 1 hours) flares, large in size, but have small frequency of occurrence. On the other hand, many flares (often called *impulsive flares*) are short lived, small in size, with large occurrence frequency, but show only a simple loop structure. Therefore people sometimes argued that the observed "simple loop" structure of many flares is anti-evidence of magnetic reconnection.

88 It was Masuda et al. (1994) who changed the entire scenario. He discovered the loop 89 top hard X-ray source well above the simple soft X-ray loop. Since hard X-ray source is 90 produced by high energy electrons, it provided an important evidence that a high energy process related to the central engine of flares is occurring *not* in the soft X-ray loop but 91 above the loop. Hence even non-cusped loop flares may be energized by the magnetic 92 93 reconnection high above the loop in a similar way as the reconnection in the cusp-shaped 94 flares (Masuda et al. 1994). Since then, a unified model has been proposed in which the 95 plasmoid ejection well above the loop top hard X-ray source is considered (Shibata et al. 96 1995) (Fig. 3).

Indeed, many plasmoid ejections have been discovered above the impulsive flares (Shibata et al. 1995, Tsuneta 1997, Ohyama and Shibata 1997, 1998, Sui et al. 2003, Kim
et al. 2005, Shimizu et al. 2008). It is important to note that the strong acceleration
of plasmoid occurs during the impulsive phase of the flares. This may provide a hint to

Figure 3. A unified model (*plasmoid-induced-reconnection model*) of solar flares and flare-like phenomena (Shibata *et al.* 1995), where LDE flares (Tsuneta *et al.* 1992) and impulsive flares are unified (Masuda *et al.* 1994).

understand why and how a fast reconnection occurs in actual flares (Shibata and Tanuma 2001).

About the half of the observed coronal mass ejections (CMEs; Yashiro *et al.* 2004) occur 103 in association with flares, but the other half are not associated with flares (e.g., Munro 104 et al. 1979). This also led to a lot of confusion in the community because CMEs were 105 thought to be fundamentally different from flares (Gosling 1993). However, Yohkoh/SXT 106 107 revealed the formation of giant arcade at the feet of CMEs (Tsuneta et al. 1992b, Hudson 108 et al. 1995, McAllister et al. 1996). These giant arcades are very similar to cusp-shaped 109 flares in morphology, but very faint in soft X-rays and H α , and cannot be seen in nonimaging observations of soft X-rays (such as GOES) or hard X-rays. Only high-sensitive 110 111 soft X-ray (and EUV) imaging observations were able to reveal the existence of giant arcade and the association of most of the non-flare CMEs with giant arcades. Hence we 112 can now say that both flares and non-flare associated CMEs can be unified to be basically 113 the same type of magnetically driven explosive phenomenon (Shibata *et al.* 1995, Webb 114 and Howard 2012). 115

116

2.2. Microflares, Nanoflares, and Jets

Space based solar observations revealed that the solar atmosphere is full of small scale 117 118 flares, called microflares, nanoflares, and even picoflares, and that these small scale flares 119 are often associated with jets. One of the nice example of a jet is X-ray jets discov-120 ered by Yohkoh/SXT (Shibata et al. 1992, Shimojo et al. 1996). There are many pieces of observational evidence that shows that the jets are produced by magnetic reconnec-121 tion (Shibata 1999). Yokoyama and Shibata (1995, 1996) performed MHD simulation of 122 reconnection between an emerging flux and an overlying coronal field and successfully 123 124 explained the observational characteristics of X-ray jets on the basis of their simulation results. A direct extension of the 2D model to 3D MHD simulation has been carried out 125 by Isobe et al. (2005, 2006). They found that the onset of the Rayleigh-Taylor instability 126 127 at the top of the rising emerging flux leads to formation of filamentary structures and

Figure 4. A unified model (*plasmoid-induced-reconnection model*) of solar flares and flare-like phenomena (Shibata 1999): (a) large scale flares (giant arcades, LDE flares, impulsive flares), (b) small scale flares (microflares, nanoflares).

patchy reconnection, in agreement with observations. As for the more recent development
of 3D models, see e.g., Moreno-Insertis *et al.* (2008), Pariat *et al.*(2010), Archontis and
Hood (2013).

131 From the high resolution images taken with Hinode/SOT, Shibata et al. (2007) discov-132 ered numerous, tiny chromospheric anemone jets (whose apparent foot-point structures are similar to "sea anemone" in a three dimensional space) in the active region chro-133 mosphere. The morphology of the chromospheric anemone jets is quite similar to that 134 135 of the coronal X-ray jets (Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007), 136 suggesting that magnetic reconnection is occurring at the feet of these jets, although the 137 length and velocity of these jets are much smaller than those of the coronal jets (see Takasao et al. 2013 for the most advanced 2D-MHD simulation model of jets based on 138 139 chromospheric reconnection).

140

2.3. Unified Model : Plasmoid-Induced-Reconnection Model

Table 1 summarizes solar "flare" observations from nanoflares to giant arcades. The 141 142 size and time scales range in wide values, from 200 km and 10 sec for nanoflares to 10^6 km and 2 days for giant arcades. However, it is interesting to note that if we normalize 143 144 the time scale by the Alfven time (t_A) , then the normalized time scale becomes similar, 145 $100 - 300t_A$. So the "flares" mentioned in Table 1 can be unified by a common physical process i.e. magnetic reconnection. It is quite evident that although mass ejections are 146 147 common in these "flares", the morphology is quite different between the large scale and small scale flares. In large scale flares (e.g., giant arcades, LDE flares, impulsive flares), 148 149 mass ejections (CMEs, filament eruptions) are bubble like or flux rope type, while in 150 small scale flares (e.g., microflares, nanoflares), mass ejections are jets or jet-like. So 151 what causes such morphological differences between "flares"?

Our answer to the question on morphology is as follows. According to our view (Fig. 152 4), the plasmoid ejection is a key process that leads to a fast reconnection (so we call 153 154 "plasmoid-induced-reconnection"), since plasmoids (magnetic islands or helical flux ropes 155 in 3D) are created naturally in the current sheets as a result of the tearing instability. 156 In the case of large scale flares, plasmoids (flux ropes) can retain their coherent structures during the ejection even during the interaction with the ambient magnetic field. 157 Therefore many CMEs look like the flux rope ejection. However, in the case of small scale 158 flares, plasmoids will lose their coherent shape soon after reconnection with the ambient 159 160 field, and are likely to disappear (or lose their structure) eventually after the interaction (collision) with the ambient field. As the remnant (eventually), one would expect a spin-161 ning helical jet on the reconnected field lines along with generation of Alfvén waves. We 162 163 conjecture that it will explain why jets are usually observed in association with small

"flare"		time scale (t) (sec)	Alfven time (t_A) (sec)	t/t_A	type of mass
nanoflares	0.02 - 0.1	20-100	1 - 10	10 - 50	chromospheric anemone ejection jet
microflares	0.1 - 1	100 - 1000	1 - 10	~ 100	coronal jet/surge
impulsive flares	1 - 3	$60 - 3 \times 10^3$	10 - 30	60 - 100	plasmoid/filament eruption
LDE flares	10 - 40	$3 \times 10^3 - 10^5$	30 - 100	100 - 300	CME/plasmoid/
giant arcades	30 - 100	$10^4 - 2 \times 10^5$	100 - 1000	100 - 300	filament eruption CME/plasmoid/ filament eruption

Table 1. Summary of Observations of Various "Flares"

164 165

scale flares, although this idea should be tested through future observations. It is interesting to mention that some of the observations (Kurokawa et al. 1987, Pike and Mason 1998, Alexander and Fletcher 1999) have revealed the formation of spinning (helical) jets 166 after flare-like phenomena (Shibata and Uchida 1986). Further, from the Hinode/XRT 167 168 observations, Shimojo et al. (2007) found that an X-ray loop ejection (possibly helical loop ejection) finally led to an X-ray jet. These observations support the unified model 169 170 shown in Fig. 4. (See also related recent works by Filippov *et al.* (2015) and Sterling et al. (2015) as supporting evidence of the unified model.)

172 173

171

3. Plasmoid-Induced-Reconnection and Fractal Reconnection

3.1. Plasmoid-induced reconnection

174 As we have discussed in the previous section, it has become clear that the plasmoid 175 ejections are observed quite often in solar flares and flare-like events. As the spatial and 176 temporal resolutions of the observations have become better, more and more, smaller 177 plasmoids have been discovered in association with flares. So, how does plasmoid ejections 178 in flares are related with the fast reconnection?

From the soft and hard X-ray observations of impulsive flares, Ohyama and Shibata 179 (1997) found that (1) a plasmoid is ejected long before the impulsive phase, (2) the 180 181 plasmoid acceleration occurred during an impulsive phase (see Fig. 5(a)). As a result of 182 the magnetic reconnection, plasmoid formation takes place (usually about 10 min) before 183 the impulsive phase. When the fast reconnection ensues (i.e., in the impulsive phase), 184 particle acceleration and huge amount of energy release occurs for $\sim 10t_A$. During this 185 process the plasmoid acceleration is closely coupled to the reconnection.

A similar relation between the energy release (and fast reconnection) and plasmoid 186 187 acceleration has also been found in the case of CMEs (e.g., Zhang et al. 2001, Qiu 188 et al. 2004) as well as in laboratory experiment (Ono et al. 2011). What is the physical understanding that can be drawn from the relation between the plasmoid ejection and 189 190 the fast reconnection ?

191 Shibata and Tanuma (2001) suggested that plasmoid ejection induces a strong inflow 192 into the reconnection region as a result of mass conservation, and drive fast reconnection. 193 Since the inflow (that determines the reconnection rate) is induced by the plasmoid motion, the reconnection process was termed as *plasmoid-induced reconnection* (Shibata 194 195 et al. 1995, Shibata 1999).

Figure 5. (a) Time variations of the height of an observed plasmoid as well as hard X-ray intensity. From Ohyama and Shibata (1997). (b) Height-time relation of a magnetic island in a two-dimensional numerical simulation, which is supposed to be the two-dimensional counterpart of a plasmoid. Time variation of the electric field (i.e., the reconnection rate $\propto V_{inflow}$) is also plotted. From Magara *et al.* (1997). (c) Analytical model of plasmoid acceleration in the plasmoid-induced-reconnection model. From Shibata and Tanuma (2001). (d) Observations of a CME and associated filament eruption (Qiu *et al.* 2004). It is seen that the filament acceleration (+) show the time variation similar to that of electric field (reconnection rate; dotted curve). From Qiu *et al.* (2004).

It should be noted that a plasmoid can be formed in any current sheet if the current sheet length is longer than the certain critical length in the tearing mode instability (Furth, Killeen, Rosenbluth 1963).

196 197

198

199 During the initial stages of plasmoid formation, a plasmoid stays in the current sheet and during this stage, the plasmoid reduces the speed of reconnection significantly by in-200 hibiting the reconnection inflow toward the reconnection region. Only when the plasmoid 201 202 is ejected out of the current sheet, a substantial amount of magnetic flux can come to 203 the reconnection region and trigger a magnetic reconnection. This facilitates the ejection of a plasmoid via strong reconnection outflow (reconnection jet), and further in turn 204 205 enables to carry new magnetic flux towards the current sheet. The positive feedback between plasmoid ejection and reconnection inflow is established, so that *fast* reconnection 206 207 occurs and eventually the plasmoid is impulsively ejected out of the current sheet with 208 the Alfvén speed.

The 2D MHD numerical simulations (Magara *et al.* 1997, Choe *et al.* 2000, Tanuma *et al.* 2001) showed such dynamics very well. Figure 5(b) shows a height-time plot from a two-dimensional MHD simulation (Magara *et al.* 1997), in which magnetic reconnection produces an ejecting magnetic island (two-dimensional counterpart of a plasmoid). The time variation of the electric field is also plotted in the height-time plot. It is found that the electric field, that is also a measure of reconnection inflow and reconnection rate, becomes large when the magnetic island (plasmoid) is accelerated.

When comparing the MHD simulation and observations, it is assumed that the time variation of electric field in the reconnection region is closely related to the time variation of hard X-ray emissions because the electric field can accelerate particles which contribute to producing hard X-ray emissions. The comparison suggests that the plasmoid ejection drives a fast magnetic reconnection.

Shibata and Tanuma (2001) developed a simple analytical model for the velocity of an ejecting plasmoid by assuming (1) mass conservation between inflow and outflow $V_pW_p = V_{inflow}L_p$, and (2) the plasmoid is accelerated by the momentum added by the reconnection outflow $\rho_p L_p W_p dV_p/dt = \rho_0 V_{inlow} L_p V_A$, where V_p is the plasmoid velocity, W_p the plasmoid width, L_p the plasmoid length, V_{inflow} the inflow velocity, V_A the Alfven velocity, ρ_p the plasmoid density, ρ_0 the density of ambient plasma. From these simple assumptions, they obtained the plasmoid velocity,

$$V_p = \frac{V_A \exp(\omega t)}{\exp(\omega t) - 1 + V_A/V_0}.$$
(1)

221 In Equation (1), ω represents the velocity growth rate of a plasmoid, defined as $\omega = \rho_0 V_A / (\rho_p L)$.

The plasmoid velocity V_p , its acceleration $(a_p = dV_p/dt)$, inflow velocity V_{inflow} , and the height of the plasmoid obtained from the analytical model (Shibata and Tanuma 2001) are plotted in Figure 5(c). It is interesting to note that the acceleration and the inflow velocity (or reconnection rate) derived from this simple analytical model agree well with the observations (Qiu *et al.* 2004, Fig. 5(d)) as well as the numerical simulation results (Cheng *et al.* 2003).

229 A detailed relation between the plasmoid velocity and the reconnection rate has been 230 investigated by performing a series of numerical experiments (Nishida et al. 2009). An extension to 3D has also been developed by Nishida *et al.* (2013), and it was eventually 231 revealed that the formation of multiple flux ropes (helically twisted field lines) in a 232 233 reconnecting current sheet plays an important role in enhancing the reconnection rate. 234 These experiments show that the reconnection rate (inflow velocity) becomes larger when the plasmoid is accelerated further by 3D effect (e.g., the kink instability) compared with 235 236 2D, whereas if the plasmoid velocity is decelerated, the reconnection rate becomes smaller. When the reconnection is inhibited, the plasmoid motion (or acceleration) is stopped. 237

3.2. Plasmoid Instability and Fractal Reconnection

On the basis of nonlinear 2D MHD simulation of the magnetic reconnection on the current sheet (Tanuma *et al.* 2001), Shibata and Tanuma (2001) proposed that the current sheet eventually has a *fractal structure* consisting of many magnetic islands (plasmoids) with different sizes (Fig. 6, see also Tajima and Shibta 1997 for an idea of fractal reconnection).

243 Once the current sheet has a fractal structure, it becomes possible to connect macro 244 scale dynamics (with flare size of 10^9 cm) and micro plasma scale dynamics (with ion 245 Larmor radius or ion skin depth of 10^2 cm). Then collisionless reconnection or anomalous 246 resistivity can be applied to flare reconnection problems (see e.g., Cassak *et al.* 2005, 247 Yamada *et al.* 2010, for the role of collisionless effects in reconnection).

Shibata and Tanuma (2001) presented a scenario for fast reconnection in the solar corona as shown in Figure 6(b). That is, the current sheet becomes a fractal sheet consisting of many plasmoids with different sizes. The plasmoids tend to coalesce with each other (Tajima *et al.* 1987, Tajima and Shibata 1997) to form bigger plasmoids. When the biggest island (i.e., monster plasmoid) is ejected out of the sheet, we have the most violent energy release which may correspond to the impulsive phase of flares.

Solar observations show the fractal-like time variability of solar flare emission, especially in microwaves (Karlicky *et al.* 1996, Kliem *et al.* 2000, Barta *et al.* 2008, Aschwanden 2002), and hard X-rays (Ohki 1991). The above idea of the fractal reconnection seems to explain the observations very well, since the observations suggest fragmented

8

219 220

238

Figure 6. (a) Schematic view of the fractal reconnection. (b) A scenario for fast reconnection. I: The initial current sheet. II: The current sheet thinning in the nonlinear stage of the tearing instability or global resistive MHD instability. The current sheet thinning stops when the sheet evolves to the Sweet-Parker sheet. III: The secondary tearing in the Sweet-Parker sheet. The current sheet becomes fractal because of further secondary tearing as shown in (a). IV: The magnetic islands coalesce with each other to form bigger magnetic islands. The coalescence itself proceeds in a fractal manner. During the III and IV phases, a microscopic plasma scale (ion Larmor radius or ion inertial length) is reached, so that the fast reconnection becomes possible at small scales, V: The greatest energy release occurs when the largest plasmoid (magnetic island or flux rope) is ejected. The maximum inflow speed $(V_{inflow} = \text{reconnection})$ rate) is determined by the velocity of the plasmoid (V_p) . Hence this reconnection is termed as plasmoid-induced-reconnection. From Shibata and Tanuma (2001).

258 energy release processes in the fractal (turbulent) current sheet. For example, Karlicky 259 et al. (1996) showed that the temporal power spectrum analysis of the narrow band of dm-spikes of a flare show power-law spectrum, suggesting Kolmogorov spectra after 260 transformation of the frequency scales to the distance scales.

261

266

267

The tearing mode instability in Sweet-Parker current sheet is studied by Loureiro 262 et al. (2007), and is now addressed as plasmoid instability. Numerical simulations of the 263 nonlinear evolution of the plasmoid instability has been developed significantly in recent 264 ten years (e.g., Bhattacharjee *et al.* 2009). 265

3.3. Observational Evidence of Plasmoid-Dominated Reconnection and Fractal Reconnection

Asai *et al.* (2004) reported that there are multiple downflow (supra arcade downflow; 268 McKenzie and Hudson 1999, McKenzie et al. 2013) which are associated with hard 269 270 X-ray impulsive emssions. Although the origin of supra arcade downflow is still not yet 271 understood well, the physical relation between downflow and hard X-ray emission may 272 be similar to the relation between plasmoid ejections and hard X-ray emissions (see Fig. 5a). 273

By analyzing the soft X-ray images and hard X-ray emission of a flare taken with 274 275 Yohkoh satellite, Nishizuka et al. (2010) found multiple plasmoid ejections with velocities of 250 - 1500 km/s. They also found that each plasmoid ejection is associated with 276 an impulsive burst of hard X-ray emissions which are a result of high energy electron 277 278 acceleration and are signature of main energy release due to the fast reconnection. Later,

Figure 7. (a) Close-up images of the reconnection site of a solar flare in six different wavelengths (171, 193, 211, 335, 94, and 131 A) of AIA at the time when the current sheet, the plasma blob, and the hot post flare loops are observed. White solid lines indicate the solar limb. (b) Schematic diagram of the flaring region. Black solid lines indicate the magnetic field. Top: the global configuration of the magnetic field. Bottom: a close-up image of the current sheet region. From Takasao *et al.* (2012).

Nishizuka and Shibata (2013) proposed a new theoretical model of particle acceleration
at the flare loop top, considering the effect of plasmoid dynamics; namely, Fermi-type
acceleration occurs when a downwardly propagating plasmoid collide with the fast mode
termination shock at the top of the flare loop.

283 Singh et al. (2012) analyzed chromospheric anemone jets (Shibata et al. 2007) observed by Hinode/SOT, and found that all the jets they analyzed show intermittent and recur-284 rent ejections of the jet and the corresponding brightening of the loop. Such behavior is 285 286 quite similar to plasmoid ejections from large flares (e.g., Nishizuka et al. 2010). Note 287 that chromospheric jets are considered to be a result of *collisional* magnetic reconnec-288 tion in a weakly ionized plasma (Singh et al. 2011). Nevertheless, the time-dependent behavior of chromospheric jets is quite similar to that of coronal reconnection (collision-289 290 less reconnection), suggesting the common macro-scale dynamics, i.e., plasmoid-induced 291 reconnection in a fractal current sheet.

Takasao *et al.* (2012) observed both reconnection inflow and outflow simultaneously using SDO/AIA EUV images of a flare and derived the nondimensional reconnection rate 0.055 - 0.2. They also found that during the rise phase of the flare, some plasma blobs appeared in the sheet structure above the hot flare loops, and they were ejected bidirectionally along the sheet (see Fig. 7). This is the first imaging observations of the plasmoid-dominated current sheet in a solar flare.

3.4. Flare Triggering Mechanism

What is the triggering mechanism of solar flares ? This question is one of the most
important questions in flare study from both scientific and application (space weather)
points of view.

302 Chen and Shibata (2000) presented an MHD simulation model of eruptive flares and 303 CMEs on the basis of idea from observational data analysis on the triggering of filament eruption by emerging flux (Feynman and Martin 1995). Initially, they assumed a flux 304 rope with a filament in a stable equilibrium in 2D situation. Then, emerging flux is 305 input from the lower boundary, which makes small scale reconnection just below the 306 flux rope (filament). This small scale change of magnetic field configuration leads to loss 307 of equilibrium or instability in global system, eventually leading to eruption of whole 308 flux rope system. Kusano et al. (2012) extended this model to 3D successfully. It is 309

298

Figure 8. 3D Magnetic structure and photospheric and chromospheric line of sight magnetic fields, formed as a result of emergence of a twisted flux tube (from 3D MHD simulations by Takasao *et al.* 2015). (a)-(c): Bird's eye view. (d): Top view. (e): A schematic diagram of the merging field lines. (f): A schematic diagram of the magnetic field structure shown in the panel (d). This magnetic field configurations is very similar to those observed in the δ -type sunspot. Note also that this field line configuration shows a quadrupole magnetic field, which is favorable for occurrence of energetic flares.

also possible to trigger global eruption of the flux rope system even when emerging flux
appears in a distant place from the neutral filament if the polarity distribution is favorable
for local reconnection.

Here it should be stressed that reconnection is strongly coupled to eruption of the flux rope (filament or plasmoid) as discussed above. If we inhibit reconnection, the *fast* ejection of the flux rope cannot be possible. Since the flux rope becomes a CME itself or a core of CME, reconnection plays essential role in *fast* CMEs. (See Chen (2011) for a nice review on CME models and the debate on the role of reconnection in CMEs.)

In the Chen-Shibata model, small scale reconnection (cancellation) associated with emerging flux triggers large scale reconnection in the X-point high above or far from the emerging flux region. In this sense, it can be classified as *two-step reconnection* model (Wang and Shi 1993). The break out model by Antiochos *et al.* (1999) and the tether cutting model by Moore *et al.* (2001) also belong to this two-step reconnection model (see also Wang *et al.* 2002, Nagashima *et al.* 2007, Schmieder *et al.* 2013).

Shiota *et al.* (2005) compared the Chen-Shibata model with Yohkoh observations of
Y-shaped ejections above giant arcades (helmet streamer), finding the signature of slow
and fast mode MHD shocks associated with reconnection.

327 Takasao *et al.* (2015) developed the 3D-MHD simulation model of emergence of a 328 twisted flux tube, and reproduced the basic characteristics of the δ -type sunspot, which

Figure 9. The EM (emission measure)-T (temperature) diagram for solar and stellar flares (Shibata and Yokoyama 2002). Hatched area shows solar flares (oblique hatch) and solar microflares (horizontal hatch), whereas other symbols denote stellar/protostellar flares. Solid lines correspond to magnetic field strength = constant, and dash-dotted lines correspond to flare size (loop length) = constant.

329 is one of the most important preflare signatures of energetic flares. They also revealed that 330 during the development of the δ -type spot, the quadrupole magnetic field configuration 331 with a current sheet was naturally formed, which is favorable for flare occurrence (Fig. 8).

4. Stellar Flares

332

333 334

4.1. Unified Model of Solar and Stellar Flares: Emission Measure - Temperature Diagram

335 The stellar flares show X-ray light curves similar to those of solar flares. The time scale and typical properties derived from soft X-rays also show some similarities to solar flares, 336 337 though dynamic range of stellar flare parameters are much wider than those of solar flares. Recent X-ray astronomy satellite, such as ASCA, revealed that flares are frequently 338 occurring in young stars, even in class 1 protostars (Koyama et al. 1996). One remarkable 339 340 characteristics of these protostellar flares is that the temperature is generally high, 50 -100MK, much hotter than the temperature of solar flares, 10 - 20MK. The total energy 341 estimated is also huge, and amounts to 10^{36-37} erg, much greater than that of solar 342 flares, 10^{29-32} erg. 343

Can we explain the protostellar flares by magnetic reconnection ? The answer is, of course, yes. A part of the reason of this answer comes from our finding of empirical correlation between emission measure and temperature of solar, stellar, and protostellar flares. Figure 9 shows the observed relation between emission measure and temperature of solar flares, microflares, stellar flares (Feldman *et al.* 1995), and young stellar objects (YSO) flares. It is remarkable that these data show the same tendency in a very wide dynamic range. What does this relation mean ? Solar and Stellar Flares

Our answer is as follows (Shibata and Yokoyama 1999, 2002). Yokoyama and Shibata (1998, 2001) performed the self-consistent MHD simulation of reconnection with heat conduction and evaporation for the first time. From this simulation, they discovered a simple scaling relation for the flare temperature:

$$T \simeq 10^7 \left(\frac{B}{50 \text{G}}\right)^{6/7} \left(\frac{L}{10^9 \text{ cm}}\right)^{2/7} \left(\frac{n_0}{10^9 \text{ cm}^{-3}}\right)^{-1/7} \text{K}.$$
 (2)

This is simply a result of energy balance between reconnection heating $(B^2 V_A/4\pi)$ and conduction cooling $(\kappa T^{7/2}/L)$ (since the radiative cooling time is much longer than the conduction time). With this equation and definition of emission measure $(EM = n^2 L^3)$, and pressure equilibrium $(p = 2nkT = B^2/8\pi)$, we finally obtain the following relation:

$$\mathrm{EM} \simeq 10^{48} \left(\frac{B}{50\mathrm{G}}\right)^{-5} \left(\frac{T}{10^7 \mathrm{K}}\right)^{17/2} \left(\frac{n_0}{10^9 \mathrm{cm}^{-3}}\right)^{3/2} \mathrm{cm}^{-3}.$$
 (3)

359 We plotted this relation for constant field strength (B = 15, 50, 150 G) in Figure 9. It is remarkable that these B = constant lines nicely explain empirical correlation. In other 360 361 words, the comparison between observation and our theory tells that the magnetic field strength of solar and stellar flares are not so different, of order of 50-150 G. In the solar 362 case, this value agrees well with the observations (average field strength of active region). 363 In the case of stars, we have only limited set of observations, but these observations show 364 a kG field in the photosphere, suggesting a 100 G average field strength in the stellar 365 366 corona, consistent with our theoretical prediction.

We can also plot constant loop length lines in the diagram in Figure 9.

367

379

$$\mathrm{EM} \simeq 10^{48} \left(\frac{L}{10^9 \mathrm{cm}}\right)^{5/3} \left(\frac{T}{10^7 \mathrm{K}}\right)^{8/3} \left(\frac{n_0}{10^9 \mathrm{cm}^{-3}}\right)^{2/3} \mathrm{cm}^{-3}.$$
 (4)

The loop length for microflares and flares is $10^8 - 10^{10}$ cm, consistent with the observed sizes of microflares and flares, whereas the size of stellar flare loop is huge, even larger than 10^{11} cm, comparable to or even larger than stellar radius. Because of this large size, the total energy of protostellar flares become huge and their temperature becomes hotter than those of solar flares (see eq. 2). Since it is not possible to resolve the stellar flares, the large sizes of stellar flares are simply theoretical prediction at present.

Shibata and Yokoyama (2002) noted that the EM-T diagram is similar to the
Hertzsprung-Russell (HR) diagram, and examined basic properties of the EM-T diagram.
They found the existence of coronal branch, forbidden regions, and also showed that flare
evolution track can be plotted on the EM-T diagram, similarly to stellar evolution track
in HR diagram.

4.2. Superflares on Solar Type Stars

By analyzing existing previous astronomical data, Schaefer *et al.* (2000) discovered 9 superflares with energy $10^{33} \sim 10^{38}$ erg in ordinary solar type stars (G type main sequence stars with slow rotation with velocity less than 10 km/s). It was argued that the cause of the superflares is the hot Jupiter orbiting near to these stars (Rubenstein and Schaefer 2000), and thus concluded that the Sun has never produced superflares, because the Sun does not have a hot Jupiter (Schaefer *et al.* 2000).

Maehara *et al.* (2012) analyzed the photometric data obtained by the Kepler space telescope (which was intended for detecting exoplanets using transit method), and found 365 superflares on 148 solar type stars. Figure 10 shows a typical example of a superflare observed by Kepler, which shows the spike-like increase (1.5 percent) in stellar brightness

Figure 10. Left panel shows a typical example of a superflare on solar type stars (Maehara *et al.* 2012). Right panel shows artistic view of a superflare and big starspots on a solar type star on the basis of Kepler observations of superflares on solar type stars (courtesy of H. Maehara).

for a short time (a few hous). It should be remembered that even one of the largest solar flares in recent 20 years (X18 class solar flare in 2003) showed only 0.03 percent solar brightness increase for 5 to 10 minutes. The total energy of this superflare was estimated to be around 10^{35} erg, 1000 times larger than the largest solar flare (10^{32} erg).

It is also interesting to see in Figure 10 that the stellar brightness itself shows significant time variation with amplitude of a few percent with characteristic time of 10 to 15 days. It is remarkable that almost all superflare stars show such a time variation of the stellar brightness. Maehara *et al.* (2012) interpreted that the stellar brightness variation may be caused by the rotation of a star with big starspots (Fig. 10).

Notsu *et al.* (2013b) developed this idea in detail using the model calculation of the 399 400 brightness change of the rotating star with big starspots. If this interpretation is correct, 401 we can indirectly measure the rotation period of stars and the size of star spot (or total magnetic flux assuming the magnetic flux density is the same as that of the sunspot, 402 1000 to 3000 G). Since a big spot can store huge amount of magnetic energy around it, it 403 404 is reasonable to find that almost all superflare stars show stellar brightness change of the 405 order of a few percent or more as indirect evidence of big spots necessary for occurrence 406 of superflares.

407 According to Shibata *et al.* (2013), the maximum energy of solar flares in a spot with 408 magnetic flux density B and an area A has an upper limit determined by the total 409 magnetic energy stored in a volume $A^{3/2}$ near the spot, i.e.,

$$E_{flare} \simeq f E_{mag} \simeq f \frac{B^2}{8\pi} A^{3/2} \simeq 7 \times 10^{32} [\text{erg}] \left(\frac{f}{0.1}\right) \left(\frac{B}{10^3 \text{G}}\right)^2 \left(\frac{A}{3 \times 10^{19} \text{cm}^2}\right)^{3/2}$$
$$\simeq 7 \times 10^{32} [\text{erg}] \left(\frac{f}{0.1}\right) \left(\frac{B}{10^3 \text{G}}\right)^2 \left(\frac{A/2\pi R_{sun}^2}{0.001}\right)^{3/2} \tag{5}$$

410 where f is the fraction of magnetic energy that can be released as flare energy.

Figure 11 shows the empirical correlation between the solar flare energy (assuming that GOES X-ray flux is in proportion to flare energy) versus sunspot area. We see that the theoretical relation (upper limit is used in eq. (5)) nicely explains observed upper limit of flare energy as a function of sunspot area. We also plotted the superflare data on the Figure 11. It is interesting to see that there exist many superflares above the theoretical upper limit. One possible solution of this apparent discrepancy is that these stars (above an upper limit) may be pole-on stars. Namely, if we observe stars from the

Figure 11. Flare energy vs sunspot area (Maehara *et al.* 2015). Thick and thin solid lines in this figure represent Equation 5 for f = 0.1, B = 3, 000 and 1,000 G, respectively. Filled squares and small crosses show data of superflares on solar type stars, while small dots are solar flare data.

418 pole, we tend to estimate smaller size of starspot, because the brightness change of stars419 (due to rotation) become small when viewed from rotating poles.

420 421

422

Later, Notsu *et al.* (2015a, b), using spectroscopic observations of 34 superflare stars, confirmed the interpretation, in addition to the confirmation of the real rotation velocity of these 34 stars (see also Notsu *et al.* 2013a, Nogami *et al.* 2014, Honda *et al.* 2015).

Figure 11 shows that both solar and stellar flares are caused by the release of magnetic energy stored near spots. Figure 9 (EM-T diagram) along with Figure 11 (energy vs magnetic flux diagram) makes us sure that in a statistical sense the stellar flares are actually caused by the magnetic reconnection.

427 Maehara *et al.* (2015) analyzed the short time cadence data (1 min) taken by the 428 Kepler mission, and found that the duration of superflares scales with flare energy (E)as $t_{flare} \propto E^{0.39}$, which is similar to the correlation between the duration of solar flares 429 and X-ray fluence E observed with the GOES $(t_{flare} \propto E^{1/3})$ (Veronig et al. 2002). 430 This correlation is interesting because the reconnection model of flares predict that the 431 flare energy and duration scales with the length $E \propto L^3$ and $t_{flare} \propto L$, since the flare 432 duration is basically determined by the inverse of the reconnection rate, of order of 100 433 $t_A = 100 L/V_A$. From these relations, we find $t_{flare} \propto L \propto E^{1/3}$. This explains both solar 434 and stellar flare observations. It provides another evidence of the magnetic reconnection 435 436 model for *spatially unresolved* stellar flares.

What is the frequency of solar flares and stellar superflares ? Figure 12 shows the occurrence frequency of flares as a function of flare energy, for solar flares, microflares,

Figure 12. Occurrence frequencies of solar flares, microflares, and nanoflares. Occurrence frequency of superflares on solar type stars are also shown in this figure (Shibayama *et al.* 2013, Shibata *et al.* 2013).

nanoflares and also superflares on Sun-like stars. It is remarkable to see that superflare frequency is roughly on the same line as that for solar flares, microflares, and nanoflares,

$$dN/dE \propto E^{-2} \tag{6}$$

437 suggesting the same physical mechanism for both solar and stellar flares. It was found 438 that the occurrence frequency of superflares of 10^{34} erg is once in 800 years, and that of 439 10^{35} erg is once in 5000 years on Sun-like stars whose surface temperature and rotation 440 are similar to those of the Sun.

441 It should be noted here that there were no evidence of hot Jupiters around the superflare stars, suggesting the possibility that superflares may occur on the Sun (Nogami et al. 2014).

Shibayama *et al.* (2013) extended and confirmed the work by Maehara *et al.* and
found 1547 superflares on 279 solar type stars from 500 days Kepler data. Shibayama *et al.* found that in some Sun-like stars the occurrence rate of superflares was very high,
447 4 superflares in 500 days (i.e., once in 120 days).

448 It is interesting to note that large cosmic ray events in 7th and 9th century are found 449 from tree ring (Miyake *et al.* 2012, 2013). Although the source of this cosmic ray is a 450 matter of further investigation, the possibility that such event is caused by a solar super 451 flare cannot be ignored. The frequency of the large cosmic ray events is pretty much 452 consistent with the superflare frequency.

453 What is the relation between flare energy and rotational period of stars? Figure 13 454 shows the flare energy vs. the brightness variation period (interpreted as the rotation 455 period of each star). It is remarkable that the maximum energy of stellar flares are almost independent of their rotational period, against expectation. Figure 13b also shows 456 457 distribution of the occurrence frequency of flares as a function of the brightness variation period (rotational period of each star). This figure shows that as a star evolves (and 458 459 its rotational period increases), the frequency of superflares decreases. Hence expected average coronal X-ray luminosity would also decrease with increasing rotational period, 460 which agrees well with our previous observations of solar type stars. One amazing dis-461 covery from Figure 13 is that the superflare (with energy comparable to 10^{34} - 10^{35} erg) 462

Figure 13. (a) Scatter plot of the flare energy vs. the brightness variation period (interpreted as the rotation period of each star). The period of the brightness variation in this figure was estimated by using the Kepler data. (b) Distribution of the occurrence frequency of flares as a function of the brightness variation period (rotational period of each star). The vertical axis indicates the number of flares with energy 5×10^{34} erg per star per year. The frequency distribution of superflares saturates for periods shorter than a few days. It is intereting to note that a similar saturation is observed for the relationship between the coronal X-ray activity and the rotation period of stars (Randich 2000). From Notsu, Y. *et al.* (2013b).

463 can occur on slowly rotating stars like our Sun, even if the frequency is very low (once464 in a few thousand years).

465 If a superflare with energy $10^{34} - 10^{35}$ erg (i.e., 100 - 1000 times larger than the largest 466 solar flares ever observed, such as the Carrington flare) occur on the present Sun, the 467 damage that such a superflare can cause to our civilization would be extremely large. 468 Hence it is very important to study the basic properties of superflares on Sun-like stars 469 to know the condition of occurrence of superflares and to understand how the superflare-470 producing stars are similar to our Sun.

In this regard, Balona *et al.* (2015) examined oscillations in light curves of stellar
superlfares using short-cadence Kepler data, and detected flare loop oscillations similar
to solar flare loop oscillations (e.g., Nakariakov *et al.* 2006) in a few stars, but did not
find conclusive evidence as yet for flare induced global acoustic oscillations (starquakes)
(Kosovichev and Zharkova 1998). This kind of comparative studies between solar flares
and stellar superlflares will be important to reveal the difference and similarity of physical
conditions of our Sun and superflare stars.

478 It should be noted that stellar flares observed by Kepler are all "white light flares",
479 and that the physics of solar white light flares have not yet been understood well and
480 hence one of the hottest topics of the present flare research (e.g., Heinzel and Kleint 2014,
481 Kowalski *et al.* 2015).

It will also be important to study the difference and similarity between solar type stars (G type dwarfs) and non-solar type stars. Candelaresi *et al.* (2013) and Balona (2015) studied superflares on non-solar type stars (i.e., A, F, K, M type stars). According to the detailed study by Maehara *et al.* (2015, in preparation), if we determine the size of spots, the maximum flare energy and frequency are uniquely determined, independent of the stellar properties (surface temperature and rotational period). (Instead, the size of spots strongly depend on the surface temperatue and rotational period.)

489 5. Impacts of Superflares on the Earth and Exoplanets

490 If a superflare with energy $10^{34} - 10^{35}$ erg would occur on the Sun or Sun-like stars, 491 what would be expected on the environment of the Earth and exoplanets orbiting in a 492 habitable zone around the Sun-like stars ?

It has already been discussed that if the Carrington-class flare would occur, our civilization would suffer various disasters, such as electric power outage, radio communication troubles, damages of many artificial satellites, and dangerous radiation exposure to astronauts and airline passengers (e.g., Baker 2004, Tsurutani and Lakhina 2014, Gopalswamy *et al.* 2015). Hence much more severe disasters would occur all over the world if the super-Carrington flare occur on the Sun.

What would happen on the Earth, if the super-Carrington flare occur in ancient days
? The maximum brightness (in visible light) of 10³⁵ erg superflare is only a few percent
larger than the average brightness of the Sun (Fig. 10), so that there is nothing changed
in the terrestrial climate in a short time scale just when the superflare occurs.

However, UV and EUV would increase more than 10 percent when the superflare
occurs. We can expect the average solar/stellar activity would be significantly increased
(see the flare frequency of the most active Sun-like stars in Fig. 12). They affect the
upper atmosphere of the Earth and exoplanets significantly.

507 Further, considering the empirical rule that the sunspot lifetime increases with increasing with the size of sunspot, we can expect the lifetime of large spots on superflare stars 508 509 is comparable to 10 years (Shibata et al. 2013). Then long term climate variation may be triggered by the prolonged hyper-activity of the Sun and stars. (It is interesting to 510 note that Saar and Brandenburg (1999) reported the existence of hyper-active phase of 511 stellar activity cycle in some stars.) Even the enhanced visible light variation may occur 512 as a result of the increased spot area or faculae for such a long time. (Consider what 513 would happen if the solar brightness will be decreased by a few - 10 percent for 10 years 514 515 by the effect of large spots.)

516 There is another effect of the superflare. That is the enhanced high energy particles 517 by the superflare. It is not easy to estimate the radiation dose of superflare particles at 518 the ground level but we think it is not much (less than 40 mSv). Hence we think there is 519 no significant effect of solar energetic particles on the life on the ground in a short time 520 scale (Takahashi *et al.* 2015, in preparation).

521 However, it is known that the solar energetic particles (protons) can destroy the ozone 522 layer in the high latitude regions, since the energetic protons collide with Nitrogen to 523 form NOx molecules, which eventually destroy ozone (O_3) molecules.

524 Figure 14 shows time evolution of the ozone column depth in an Earth-like exoplanet 525 orbiting in the habitable zone around an M-type dwarf (Hawley *et al.* 1995) when a

Figure 14. Time evolution of the ozone column depth compared to the initial steady state in an Earth-like exoplanet orbiting in the habitable zone around an M-type dwarf (Hawley *et al.* 1995) when a superflare occur on the M-type star. These results show the combined influence of the flare's incident UV radiation and a proton event at the peak of the flare. Line with diamonds: O_3 fraction change for a simultaneous UV and proton flux peak. Line with crosses: O_3 fraction change for a proton event with a maximum delayed by 889 s with respect to the UV flare peak. Vertical dotted lines indicate the time for the peak of the UV flare and the end of the UV flare. From Segura *et al.* (2010).

superflare occur on the M-type star (Segura *et al.* 2010). This calculation shows that the
effect of the flare (protons and UV) is short (only for a few years or so), so that flares
may not present a direct hazard for life on the surface of an orbiting habitable planet.
Further studies will be necessary to predict the consequence and impacts of superflares
on the Earth and exoplanets with various atmospheric conditions.

The study of superflares on the Sun and stars are important not only for the survivability of our society and civilization on the present and future Earth, but also for the habitability and evolution of life on exoplanets (as well as on the past Earth).

534 Acknowledgement

We would like to thank Shinsuke Takasao, Hiroyuki Maehara, Yuta Notsu, Shota
Notsu, Takuya Shibayama, Satoshi Honda, Daisaku Nogami, Naoto Nishizuka, Takuya
Takahashi, Alkendra Singh for their help for preparing the manuscript. This work is supported by the Grant-in-Aids from the Ministry of Education, Culture, Sports, Science
and Technology of Japan (25287039).

540 References

- 541 Alexander, D. M. & Fletcher, L. 1999, Solar Phys., 190, 167
- 542 Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, *ApJ*, 510, 485
- 543 Archontis, V. & Hood, A. W. 2013, *ApJ*, 769, L21
- 544 Asai, A., Yokoyama, T., Shimojo, M., & Shibata, K. 2004, ApJ, 605, L77
- 545 Aschwanden, M. J., et al. 2000, ApJ, 535, 1047
- 546 Aschwanden, M. J. 2002, Space Sci. Rev., 101, 1
- 547 Aulanier, G., et al. 2013, A & A, 549, 66

20

K. Shibata

- 548 Baker, D. N. 2004, in Space Weather: The Physics Behind a Slogan, ed. K. Scherer, H. Fichtner,
 549 B. Heber, & U. Mall (Lecture Notes in Physics, Vol. 656; Berlin: Springer), 3
- 550 Balona, L. A. 2015, *MNRAS*, 447, 2714
- 551 Balona, L. A., et al. 2015, MNRAS, 450, 956
- 552 Bárta, M., Karlický, M., & Žemlička, R. 2008, Solar Phys., 253, 173
- 553 Bastian, T. S., Benz, A. O., & Gary, D. E. 1998, ARAA, 36, 131
- 554 Benz, A. O. 2008, Living Reviews in Solar Physics, 5, 1
- 555 Benz, A. O. & Guedel, M. 1994, A&A, 285, 621
- 556 Benz, A. O. & Guedel, M. 2010, ARAA, 48, 241
- 557 Bhattacharjee, A., et al. 2009, Phys. Plasmas, 16, 112102
- 558 Carrington, R. C. 1859, *MNRAS*, 20, 13
- Carmichael, H. 1964, in Proc. of AAS-NASA Symp. on the Physics of Solar Flares, W. N. Hess
 (ed.), NASA-SP 50, p. 451
- 561 Candelaresi, S., Hillier, A., Maehara, H., et al. 2014, ApJ, 792, 67
- 562 Cassak, P. A., Shay, M. A., & Drake, J. F. 2005, *Physical Review Letters*, 95, 235002
- 563 Chen, P. F. 2011, Living Reviews in Solar Physics, 8, 1
- 564 Chen, P. F. & Shibata, K. 2000, *ApJ*, 545, 524
- 565 Cheng, C. Z., Ren, Y., Choe, G. S., & Moon, Y.-J. 2003, *ApJ*, 596, 1341
- 566 Choe, G. S. & Cheng, C. Z. 2000, *ApJ*, 541, 449
- 567 Cirtain, J. W., et al. 2007, Science, 318, 1580
- 568 Cliver, E. W. & Svalgaard, L. 2004, Solar Phys., 224, 407
- 569 Feldman, U., Laming, J. M., & Doschek, G. A. 1995, *ApJ*, 451, L79
- 570 Feigelson, E. D. & Montmerle, T. 1999, ARAA, 37, 363
- 571 Feynman, J. & Martin, S. F. 1995, *JGR*, 100, 3355
- 572 Filippov, B., et al. 2015, MNRAS, 451, 1117
- 573 Fletcher, L., et al. 2011, Space Sci. Rev., 159, 19
- 574 Forbes, T. G. & Acton, L. W. 1996, *ApJ*, 459, 330
- 575 Furth, H. P., Killeen, J., & Rosenbluth, M. 1963, *Physics of Fluids*, 6, 459
- 576 Gershberg, R. E. 2005, Solar-Type Activity in Main-Sequence Stars (Berlin: Springer)
- 577 Guedel, M. 2002, ARAA, 40, 217
- 578 Guedel, M. 2004, A&ARv, 12, 7
- 579 Gosling, J. T. 1993, JGR, 98, 18937
- 580 Gopalswamy, N., Tsurutani, B. T., & Yan, Y. 2015, PEPS, 2, 13
- 581 Hawley, S. A., et al. 1995, ApJ, 453, 464
- 582 Heinzel, P. & Kleint, L. 2014, *ApJ*, 794, L23
- 583 Hirayama, T. 1974, Sol. Phys., 34, 323
- 584 Hodgson, R. 1859, MNRAS, 20, 15
- 585 Honda, S., Notsu, Y., Maehara, H., et al. 2015, PASJ, 67, 85.
- 586 Hudson, H. S., & Haisch, B. and Strong, K. T., 1995, JGR, 100, 3473
- 587 Inglis, A. R., Ireland, J., & Dominique, M. 2015, *ApJ*, 798, 108
- 588 Isobe, H., Miyagoshi, T., Shibata, K., & Yokoyama, T. 2005, Nature, 434, 478
- 589 Isobe, H., Miyagoshi, T., Shibata, K., & Yokoyama, T. 2006, *PASJ*, 58, 423
- 590 Karlicky, M., Sobotka, M., & Jiricka, K. 1996, Solar Phys., 168, 375
- 591 Kim, Y.-H., et al. 2005, ApJ, 622, 1240
- 592 Kliem, B., Karlicky, M., & Benz, A. O. 2000, A& A, 360, 715
- 593 Koch, D. G., Borucki, W. J., Basri, G., et al. 2010, ApJ, 713, L79
- 594 Kopp, R. A. & Pneuman, G. W. 1976, Solar Phys., 50, 85
- 595 Kosovichev, A. G. & Zharkova, V. V. 1998, *Nature*, 393, 317
- 596 Kowalski, et al. 2015, ApJ, 798, 107
- 597 Koyama, K., et al. 1996, PASJ, 48, L87
- 598 Kurokawa, H., Hanaoka, Y., Shibata, K., & Uchida, Y. 1987, Solar Phys., 79, 77
- 599 Kusano, K., et al. 2012, ApJ, 760, 31
- 600 Lin, J., Ko, Y.-K., Sui, L., et al. 2005, ApJ, 622, 1251
- 601 Loomis, E. 1861, Am. J. Sci., 82, 318

- 602 Loureiro, N. F., Schekochihin, A. A., & Cowley, S. C. 2007, *Phys. Plasmas*, 14, 100703
- 603 Low, B. C. 1996, Solar Phys., 167, 217
- 604 McAllister, et al. 1996, JGR, 101(A6), 13497
- 605 Maehara, H., Shibayama, T., Notsu, S., et al. 2012, Nature, 485, 478
- 606 Maehara, H., Shibayama, T., Notsu, Y., et al. 2015, Earth, Planets and Space, 67, 59
- 607 Magara, T., Shibata, K., & Yokoyama, T. 1997, ApJ, 487, 437
- 608 Masuda, S., Kosugi, T., Hara, T., Tsuneta, S., & Ogawara, Y. 1994, Nature, 371, 495
- 609 McKenzie, D. E. & Hudson, H. S. 1999, *ApJ*, 519, L93
- 610 McKenzie, D. E. 2013, *ApJ*, 766, 39
- 611 Miyake, F., Nagaya, K., Masuda, K., & Nakamura, T. 2012, *Nature*, 486, 240
- 612 Miyake, F., Masuda, K., & Nakamura, T. 2013, Nature Com, 4, 1748
- 613 Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. 2001, *ApJ*, 552, 833
- 614 Munro, R. H., et al. 1979, Solar Phys., 61, 201
- 615 Nagashima, K., et al. 2007, ApJ, 668, 533
- 616 Nakariakov, V. M., et al. 2006, A& A, 452, 343
- 617 Nishida, K., Shimizu, M., Shiota, D., Takasaki, H., Magara, T., & Shibata, K. 2009, $ApJ,\,690,$ 618 748
- 619 Nishida, K., Nishizuka, N., & Shibata, K. 2013, *ApJ*, 775, L39
- 620 Nishizuka, N., Takasaki, H., Asai, A., & Shibata, K. 2010, ApJ, 711, 1062
- 621 Nishizuka, N. & Shibata, K. 2013, *Phys. Rev. Let.*, 110, 051101
- 622 Nogami, D., Notsu, Y., Honda, S., et al. 2014, PASJ, 2014, 66, L4
- 623 Notsu, S., Honda, S., Notsu, Y., et al. 2013a, PASJ, 65, 112
- 624 Notsu, Y., Shibayama, T., Maehara, H., et al. 2013b, ApJ, 771, 127
- 625 Notsu, Y., Honda, S., Maehara, H., et al. 2015a, PASJ, 67, 32
- 626 Notsu, Y., Honda, S., Maehara, H., et al. 2015b, PASJ, 67, 33
- 627 Ohki, K. 1991, LNP, 387, 106
- 628 Ohyama, M. & Shibata, K. 1997, PASJ, 49, 249
- 629 Ohyama, M. & Shibata, K. 1998, ApJ, 499, 934
- 630 Ono, Y., et al. 2011, Physics of Plasma, 18, 11213
- Parker, E. N. 1979, Cosmical Magnetic Fields: Their Origin and their Activity, Clarendon Press;
 Oxford University Press, Oxford; New York
- 633 Pike, C. D. & Mason, H. E. 1998, Solar Phys., 182, 333
- 634 Priest, E. R. & Forbes, T. G. 2000, Magnetic Reconnection, Cambridge University Press.
- 635 Qiu, Jiong, Wang, Haimin, Cheng, C. Z. & Gary, Dale E. 2004, *ApJ*, 604, 900
- 636 Rubenstein, E. P. & Schaefer, B. E. 2000, *ApJ*, 529, 1031
- 637 Schrijver, C. J. et al. 2012, JGR, 117, A08103
- 638 Saar, S. H. & Brandenburg, A. 1999, *ApJ*, 524, 295
- 639 Schaefer, B. E., King, J. R., & Deliyannis, C. P. 2000, ApJ, 529, 1026
- 640 Schmieder, B., Demoulin, P., & Aulanier, G. 2013, AdSR, 51, 1967
- 641 Segura, A., et al. 2010, Astrobiology, 10, 751
- 642 Shibata, K. & Uchida, Y. 1986, Solar Phys., 103, 299
- 643 Shibata, K., Nozawa, S., & Matsumoto, R. 1992, PASJ, 44, 265
- 644 Shibata, K., et al. 1995, ApJ, 451, L83
- 645 Shibata, K. 1999, Astrophys. Space Sci., 264, 129
- 646 Shibata, K. & Yokoyama, T. 1999, *ApJ*, 526, L49
- 647 Shibata, K. & Tanuma, S. 2001, Earth, Planets & Space, 53, 473
- 648 Shibata, K. & Yokoyama, T. 2002, ApJ, 577, 422
- 649 Shibata, K., Nakamura, T., Matsumoto, T., et al. 2007, Science, 318, 1591
- Shibata, K. & Magara, T. 2011, Solar Flares: Magnetohydrodynamic Processes. Linving Reviews
 in Solar Physics, 8, 6
- 652 Shibata, K., Isobe, H., Hillier, A., et al. 2013, PASJ, 65, 49
- 653 Shibayama, T., Maehara, H., Notsu, S., et al. 2013, ApJS, 209, 5
- 654 Shimizu, T. 1995, *PASJ*, 47, 251
- 655 Shimizu, M., Nishida, K., Takasaki, H., et al. 2008, ApJ, 683, L203

- 656 Shimojo, M., Hashimoto, S., Shibata, K., et al. 1996, PASJ, 48, 123
- 657 Shimojo, M., et al. 2007, PASJ, 59, S745
- 658 Shiota, D., et al. 2003, PASJ, 55, L35.
- 659 Singh, K. A. P., Shibata, K., Nishizuka, N., & Isobe, H. 2011, *Phys. Plasmas*, 18, 111210
- 660 Singh, K. A. P., Isobe, H., Nishizuka, N., Nishida, K., & Shibata, K. 2012, *ApJ*, 759, 33
- 661 Sterling, A. C., et al. 2015, Nature, 523, 437
- 662 Sturrock, P. A. 1966, Nature, 211, 695
- 663 Sui, L. & Holman, G. 2003, *ApJ*, 596, L251
- 664 Svestka, Z. 1976, Solar Flares, Springer-Verlag Berlin Heidelberg 1976
- 665 Takasao, S., Asai, A., Isobe, H., & Shibata, K. 2012, *ApJ*, 745, L6
- 666 Takasao, S., Isobe, H., & Shibata, K. 2013, *PASJ*, 65, 62
- 667 Takasao, S., Fan, Y., Cheung, M., & Shibata, K. 2015, *ApJ*, 813, 112
- 668 Tanuma, S., Yokoyama, T., Kudoh, T., & Shibata, K. 2001, *ApJ*, 551, 312
- 669 Tajima, T., et al. 1987, ApJ, 321, 1031
- 670 Tajima, T. & Shibata, K. 1997, Plasma Astrophysics, Addison-Wesley, Reading, MA
- 671 Tsuneta, S., et al. 1992a, PASJ, 44, L63
- 672 Tsuneta, S., et al. 1992b, PASJ, 44, L211
- 673 Tsuneta, S. 1996, *ApJ*, 456, 840
- 674 Tsuneta, S. 1997, *ApJ*, 483, 507
- 675 Tsurutani, B. T., Gonzalez, W. D., Lakhina, G. S., & Alex, S. 2003, JGRA, 108, 1268
- 676 Tsurutani, B. T. & Lakhina, G. S. 2014, *GRL*, 41, 287
- 677 Wang, J. & Shi, Z. 1993, Solar Phys., 143, 119
- 678 Wang, T., et al. 2002, ApJ, 572, 580
- 679 Webb, D. F. & Howard, T. 2012, Living Reviews in Solar Physics, 9, 3
- 680 Yamada, M., Kulsrud, R., & Ji, H. 2010, Rev. Mod. Phys., 82, 603
- 681 Yashiro, S., et al. 2004, JGRA, 109, 7105
- 682 Yokoyama, T. & Shibata, K. 1995, Nature, 375, 42
- 683 Yokoyama, T. & Shibata, K. 1996, *PASJ*, 48, 353
- 684 Yokoyama, T. & Shibata, K. 1998, *ApJ*, 494, L113
- 685 Yokoyama, T. & Shibata, K. 2001, *ApJ*, 549, 1160
- 686 Zhang, J., et al. 2001, ApJ, 559, 452