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Electromagnetic waves in plasma.

(Chen, F.F., Introduction to Plasma Physics and
Controlled Fusion, 1984, Ch.4.12-4.17, p.114-135)

Electromagnetic waves in plasma

without magnetic field

Propagation of electromagnetic waves in plasma is
described by Maxwell equations:

∇× ~B1 =
1
c

∂ ~E1

∂t
+

4π

c
~j1

∇× ~E1 = −1
c

∂ ~B1

∂t

∇ · ~E1 = 4πρ

∇ · ~B1 = 0

Here we use index 1 for waves and 0 for background
fields. We consider first the case of zero magnetic
field ~B0 = 0.
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Consider propagation along z axis:

~B1, ~E1 ∝ exp (i~k~r − iωt)

We consider plane waves.

Then, we obtain the following system of linear
equations:

i~k × ~B1 = − iω

c
~E1 +

4π

c
~j1

i~k × ~E1 =
iω

c
~B1

If we consider high-frequency waves, light or
microwaves, than the ions can be considered as
fixed. Then, the current comes only from electron
motion:

~j1 = −en0~v1

From the equation of motion

m
d~v1

∂t
= −e ~E1

we have

~v1 =
e ~E1

imω



Physics 312 11. Electromagnetic waves in plasma. 3

Then we obtain equation for ~E1:

~B1 =
c

ω
~k × ~E1

~k × (~k × ~E1)
ic

ω
= − iω

c
~E1 − 4π

c

n0e
2

imω
~E1

~k × (~k × ~E1) = −ω2

c2
~E1 +

4πn0e
2

c2m
~E1

or

~k · (~k · ~E1)− k2 ~E1 = −ω2

c2
~E1 +

ω2
p

c2
~E1

where

ω2
p =

4πn0e
2

m

is the plasma frequency. If we take the inner
product of ~k and the first equation

~k ·
(

~k × ~B1 = − iω

c
~E1 − 4π

c

n0e
2

imω
~E1

)

in the left-hand side we obtain

~k · (~k × ~B1) = 0

because
∇ ~B1 = i~k · ~B1 = 0
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Then, from the right-hand side we obtain:

~k · ~E1 = 0

Hence, the electromagnetic waves are transverse (~k
and ~E1 are perpendicular).

Using this, we finally obtain the wave dispersion
relation

−k2 ~E1 = −ω2

c2
~E1 +

ω2
p

c2
~E1

ω2

c2
= k2 +

ω2
p

c2

or
ω2 = k2c2 + ω2

p

This is the dispersion relation for electromagnetic
waves in plasma without magnetic field. The
plasma frequency plays the role of cutoff frequency.
Waves with frequencies lower than ωp cannot
propagate in plasma. This is used for plasma
diagnostics to measure plasma density. Also, this
phenomenon is important for propagation of radio
waves in the ionosphere, shortwave radio
communications.

Phase speed vφ ≡ ω/k is higher than the speed of
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light. The refraction index: n = c/vφ = ck/ω < 1.
Thus a concave plasma lens is convergent. This is
used for plasma heating.

Figure 1: Dispersion relation for electromagnetic
waves in plasma without magnetic field.

Below the cutoff frequency the signal decays:

kc =
√

ω2 − ω2
p = i

√
ω2

p − ω2

E1 ∝ exp (ikx) ∼ exp (−x/δ)

where δ = |k|−1 = c/
√

ω2
p − ω2 is skin depth.
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Electromagnetic waves in plasma with

magnetic field

Consider now electromagnetic waves in plasma
with magnetic field. There two general types of
electromagnetic waves: ordinary waves in which
electrons move along the magnetic field lines, and
thus are not affected by the magnetic field, and
extraordinary waves that are affected by magnetic
field.
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Figure 2: Classification of electromagnetic waves in
plasma with magnetic field.
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In the first case of ordinary waves: ~E1 ‖ ~B0 and
~k ⊥ ~B0.

Consider, for instance, the case when

~B0 = (0, 0, B)

~E1 = (0, 0, E1)

~k = (k, 0, 0)

Then (
k2 − ω2

c2

)
~E1 =

4πi

ω
~j1

Since ~E1 = E~ez we have to consider only z

component of the equation of electron motion:

m
dvz

dt
= −eE1

Then we obtain exactly the same relation as
without the magnetic field:

ω2 = ω2
p + k2c2
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Figure 3: The ~E-vector of an extraordinary wave is
elliptically polarized. The components Ex and Ey

oscillate 90◦ out of phase, so that the total vector
rotates along the ellipse.



Physics 312 11. Electromagnetic waves in plasma. 10

Consider now a case of extraordinary (L and R)
waves: ~E1 ⊥ ~B0 and ~k ‖ ~B0:

~B0 = (0, 0, B)

~E1 = (Ex, Ey, 0)

~k = (0, 0, k)

Then the equation of motion is

m
d~v

dt
= −e

[
~E +

1
c
~v × ~B0

]

−imω~v = −e

[
~E +

1
c
~v × ~B0

]

For simplicity we dropped index ”1”

Since
~v × ~B0 = ~exvyB0 − ~eyvxB0

we obtain

vx = − ie

mω

(
Ex +

vy

c
B0

)

vy = − ie

mω

(
Ey − vx

c
B0

)
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We find vx and vy from this linear system:

vx +
ieB0

mωc
vy = − ie

mω
Ex

− ieB0

mωc
vx + vy = − ie

mω
Ey

vx

(
1− ω2

c

ω2

)
= − ei

mω

(
Ex − ieB0

mωc
Ey

)

vx = − ie

mω

Ex − (ωc/ω)Eyi

1− ω2
c/ω2

vy = − ie

mω

Ey + (ωc/ω)Exi

1− ω2
c/ω2

where

ωc =
eB0

mc

is the electron cyclotron frequency.

Then, we substitute these into the Maxwell
equations:

~k × (~k × ~E) = −ω2

c2
~E +

4πω

ic2
~j

~k(~k ~E)− k2 ~E = −ω2

c2
~E +

4πω

ic2
~j
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since we have ~k ~E = 0 hence
(

ω2

c2
− k2

)
~E =

4πω

ic2
~j

or
(ω2 − c2k2) ~E = i4πn0eω~v

Then, using the equations for vx and vy:

(ω2 − c2k2)Ex =
4πn0e

2

m

1

1− ω2
c

ω2

(
Ex − i

ωc

ω
Ey

)

or

(ω2 − c2k2)Ex =
ω2

p

1− ω2
c

ω2

(
Ex − i

ωc

ω
Ey

)

Introducing parameter

α =
ω2

p

1− ω2
c

ω2

we obtain equations for Ex and Ey and the
dispersion relation

(ω2 − c2k2 − α)Ex + iα
ωc

ω
Ey = 0

(ω2 − c2k2 − α)Ey − iα
ωc

ω
Ex
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(ω2 − c2k2 − α)2 − α2 ω2
c

ω2
= 0

Solving this equation we obtain:

ω2 − c2k2 − α = ±α
ωc

ω

or
ω2 − c2k2 = α

(
1± ωc

ω

)
=

=
ω2

p

1− ω2
c

ω2

(
1± ωc

ω

)
=

ω2
p

1∓ ωc

ω

Thus, we obtained two solutions:

1. R-wave
c2k2

ω2
= 1− ω2

p/ω2

1− ωc/ω

2. L-wave
c2k2

ω2
= 1− ω2

p/ω2

1 + ωc/ω

To understand the physical sense of these solutions
we have to look at the solution for Ex and Ey:

for the R-wave we obtain:

α
ω2

c

ω2
(Ex + iEy) = 0
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or
Ex + iEy = 0

and for the L-wave we have:

Ex − iEy = 0

The R and L waves are circularly polarized.

Figure 4: Geometry of circularly polarized L- and
R-waves propagating along B0.



Physics 312 11. Electromagnetic waves in plasma. 15

For instance, for the R-wave:

Ey = −iEx

We define

Ex = E0<[exp(−iωt + ikz)] = E0 cos(−ωt + kz)

then

Ey = E0<[i exp(−iωt + ikz)] = −E0 sin(−ωt + kz)

For z = 0 the electric field oscillates as:

Ex = E0 cos(ωt)

Ey = E0 sin(ωt)

Similarly, for the L-wave, but in the opposite
direction. For R wave vector ~E rotates in the same
direction as electron gyration. Thus, there is
resonance at ω = ωc. For L waves the directions are
opposite - no resonance.
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Consider the phase-speed vφ ≡ ω/k) diagram for R
and L waves.

Figure 5: The phase speed (vφ ≡ ω/k) diagram for L
and R waves. The regions of v2

φ < 0 are the regions
of nonpropagation.

R wave:

ω2

c2k2
=

1

1− ω2
p

ω(ω−ωc)

=
ω(ω − ωc)

ω2 − ωωc − ω2
p

L wave:

ω2

c2k2
=

1

1− ω2
p

ω(ω+ωc)

=
ω(ω + ωc)

ω2 + ωωc − ω2
p
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Waves propagate when k2 > 0, and don’t propagate
if k2 < 0. Thus, the cutoff frequencies are
determined at k = 0:

• R waves:

1− ω2
p

ω(ω − ωc)
= 0

ω2 − ωωc − ω2
p = 0

we find the cutoff frequency ωR from this
quadratic equation:

ωR =
ωc +

√
ω2

c + 4ω2
p

2

• L waves:

1− ω2
p

ω(ω + ωc)
= 0

ω2 + ωωc − ω2
p = 0

ωL =
−ωc +

√
ω2

c + 4ω2
p

2
Consider the dispersion relation L and R waves.
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Figure 6: The dispersion relation for L waves. ωL is
the cutoff frequency.



Physics 312 11. Electromagnetic waves in plasma. 19

Figure 7: The dispersion relation for R waves. ωR is
the cutoff frequency. ωc is the cyclotron frequency.

For L waves the dispersion relation is similar to the
dispersion relation without magnetic field.

Whistler mode

For R waves there is additional low-frequency mode
at ω < ωc: whistler mode (electron cyclotron wave)
which is very important ionospheric phenomenon.



Physics 312 11. Electromagnetic waves in plasma. 20

In whistler mode the direction of rotation of the
polarization vector is the same as the direction of
gyration of electrons. Hence, the wave accelerate
electrons and cannot propagate at ω = ωc.

At small k the dispersion relation is:

c2k2

ω2
∼ ω2

p

ωωc

or

ω ∼ c2ωc

ω2
p

k2

or group velocity

∂ω

∂k
∝ k ∝ √

ω

Thus the low frequencies arrive later, giving rise to
the descending tone.

Several whistlers can be produced by a single
lightning flash because of propagation along
different magnetic flux tubes.
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Figure 8: Actual spectrogram of whistler signal. The
downward motion of the dark curves indicates a de-
scending glide tone.

Figure 9: Diagram showing whistlers are created.
The channels A, B, and C correspond to the signals
in the spectrogram.
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Faraday rotation

R waves have higher phase speed than L waves.
This means that a plane-polarized wave sent along
a magnetic field will suffer a rotation of its plane of
polarization. This is because a linear polarized
wave can be represented in terms of a linear
superposition of two circular polarized waves,
which will propagate as L and R waves with
different speed, and at the end will have a different
phase relation.
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