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Plasma waves. Landau damping.

[Chen, p. 240-261]

We have discussed that collisions in plasma may
result in energy dissipation. Landau in 1946 found
a completely new mechanism which operates even
in the absence of collisions. As an example of this
mechanism we consider small-amplitude Langmuir
waves in the case when thermal motion of particles
play an active role.

In lecture 6, we have considered one-dimensional
plasma waves using the Vlasov equation:

∂f

∂t
+ v

∂f

∂x
− eE

m

∂f

∂v
= 0

For small deviations f1 from an equilibrium
distribution f0:

f = f0 + f1

we have:

∂f1

∂t
+ v

∂f1

∂x
− eE

m

∂f0

∂v
= 0,

where electric field E is produced by the oscillating
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electrons:
∂E

∂x
= 4πq = −4πe

∫
f1dv

where q is the oscillatory charge density.

We seek the solution in the form of plane waves:

f1(x, v, t) = f̂1(v)e−iωt+ikx

−i(ω − kv)f̂1 =
eÊ

m

∂f0

∂v

ikÊ = −4πe2iÊ

m

∫ ∞

−∞

∂f0
∂v

ω − kv
dv

ikÊ

(
1 +

4πe2

m

∫ ∞

−∞

∂f0
∂v

ω − kv
dv

)

︸ ︷︷ ︸
D(k,ω) −plasma dispersion function

= 0

Equation
D(k, ω) = 0

defines the dispersion relation ω = ω(k).
Sometimes, D(k, ω) is called ”plasma dielectric
function”, equation for Ê can be written as

∇ · [D(k, ω) ~E] = ∇ · ~D = 0,
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where ~D is dielectric displacement.

We have derived the dispersion relation for plasma
waves assuming that ω > kv:

1
ω − kv

=
1
ω

+
kv

ω2
+

k2v2

ω3
+

k3v3

ω4
+ ...

Using ∫ ∞

−∞

∂f0

∂v
dv = 0

∫ ∞

−∞

∂f0

∂v
v dv = −n

we obtain:

1− 4πe2kn

mω2k
= 0

or

ω2
p =

4πe2n

m
- plasma frequency.

Next terms of the expansion give:

ω2 = ω2
p + 3v2

T k2.

The integral in the plasma dispersion relation has
singularity at ω = kv. However, in reality ω is
complex because of some damping processes, and
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the integral calculated for complex ω is not
singular. The damping occurs even without
collisions. This effect is called Landau damping.

The physical reason is in the resonant interaction
between the waves and particles. Electrons moving
with velocities close to the wave phase velocity may
absorb wave energy. This process is reverse to the
Cherenkov effect when a particle moving with
velocity faster than the phase speed of light in a
medium emits waves.

Consider first a simple physical description of the
wave-particle interaction.

Let
E = E0 sin(kx− ωt)

is the electric field strength in a plasma wave
propagating in the x direction with the phase speed
vp = ω/k. Then the electrostatic potential in this
wave can be found from equation:

∇φ = −E

φ =
eE0

k
cos(kx− ωt) = φ0 cos(kx− ωt).
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The particle with the relative velocity u = v − vp

such as
mu2

2
< eφ0

are trapped by the wave. The maximum relative
velocity of the trapped particles is

mu2
m

2
=

eE0

k
or u2

m =
2eE0

km

Figure 1: Illustration of the energy exchange be-
tween the resonant particles and wave.

Particles with speed v > vp (type ”1”) will give
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their energy to the wave in reflections art the
potential well, and particles with v < vp (type ”2”)
will take energy of the moving wave well. Looking
at the distribution function we can conclude that
there more particles of type 2 than particles of type
1. Hence the wave will decay.

u u

Figure 2: Distribution function f0 showing particles
interacting with the wave.
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The energy transfer from particle ”1” to wave is

∆E =
mv2

2
− m(2vp − v)2

2
= 2m(v − vp)vp

The collision rate can be estimated as

ν1 ∼ v − vp

λ

where λ = 2π/k is the wave length. Then the
energy transfer rate for particles with velocity v is:

∆W = ∆Eν1 =
2m(v − vp)2

λ
vp.

Integrating for trapped particles with velocity
range [vp, vp + um] and subtracting a similar
integral for particles taking the wave energy, with
velocities [vp − um, vp] we obtain

dW

dt
=

∫ vp+um

vp

2mvp

λ
(v − vp)2f0(v)dv−

−
∫ vp

vp−um

2mvp

λ
(v − vp)2f0(v)dv

Approximating

f0(v) = f0(vp) +
∂f

∂v

∣∣∣∣
vp

(v − vp)
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and calculating the integrals we obtain:

dW

dt
=

2mvp

λ

∂f0

∂v

∣∣∣∣
vp

u4
m

2

dW

dt
=

2e2E2
0ω

πmk2

∂f

∂v

∣∣∣∣
v=ω/k

.

Since the wave energy is

W =
E2

0

4π

we obtain:

dW

dt
= W

8e2ω

mk2

∂f

∂v

∣∣∣∣
ω/k

= W
2ω3

p

πk2n

∂f

∂v

∣∣∣∣
ω/k

,

where ω2
p = 4πe2n

m is the squared plasma frequency.

Since in Maxwellian plasma ∂f/∂v < 0, the plasma
waves decay because of the resonant interaction
with electrons. However, if ∂f/∂v > 0 then the
wave will gain the energy from electrons. This
happens, for instance, for plasma beams (so-called,
beam instability).
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The decay/growth rate is

γ =
1
W

dW

dt
=

2ω3
p

πk2n

∂f

∂v

∣∣∣∣
ω/k

.

u u

Figure 3: Distribution function f0 with an electron
beam showing particles interacting with the wave.
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Landau damping from the Vlasov

equation

Consider the plasma dispersion equation obtained
from the Vlasov equation:

1 +
4πe2

mk

∫ ∞

−∞

∂f0
∂v

ω − kv
dv = 0.

Since we know that plasma waves decay, ω is
complex, and the integral can be calculated as a
contour integral in the complex v plane, using the
residue theorem:

∫

C1

Gdv +
∫

C2

Gdv = 2πiR(ω/k)

where G is the integrand, C1 is the path along the
real axis, C2 is the semicircle at the infinity, and
R(ω/k) is the residue at ω/k.

We consider a simple case when the damping is
weak, so that the singular point is close to the real
axis. We use the integration contour prescribed by
Landau: a straight line along the Re(v) axis with a
small semicircle around the pole. In going around
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the pole, one obtains 2πi times half the residue
there.

Hence,

I =
∫ ∞

−∞

∂f
∂v

ω − kv
dv = P

∫ ∞

−∞

∂f
∂v

ω − kv
dv+

+
∫ ω/k+ε

ω/k−ε

dv

ω − kv

∂f

∂v

∣∣∣∣
ω/k

where P stands for the Cauchy principal value.
∫ ω/k+ε

ω/k−ε

dv

ω − kv
= −1

k

∫ ε

−ε

dz

z
= − i

k

∫ 2π

π

dφ = − iπ

k

where z = ε exp (iφ) - complex variable.
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C1

C2

Figure 4: Integration contour in the complex v plane
for small Im(ω).

Thus,

I = P

∫ ∞

−∞

∂f
∂v

ω − kv
dv − iπ

k

∂f

∂v

∣∣∣∣
ω/k

Most contribution to the first integral comes from
where ∂f0/∂v is large, that is where v ¿ ω/k.

Expanding

1
ω − kv

=
1
ω

+
kv

ω2
+

k2v2

ω3
+ ...
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we obtain the dispersion relation:

1 +
4πe2

mk

[
k

ω2
(−n)− iπ

k

∂f0

∂v

∣∣∣∣
ω/k

]
= 0

or

1− ω2
p

ω2
− iπω2

p

nk2

∂f0

∂v

∣∣∣∣
ω/k

= 0

Since the damping term is small we seek for
solution in the form

ω = ωp − iγ

where γ is the decay rate, that is

e−iωt = e−iωpt−γt.

1− ω2
p

(ωp − iγ)2
− iπω2

p

nk2

∂f0

∂v

∣∣∣∣
ω/k

= 0

1− ω2
p

ω2
p

(
1 + 2

iγ

ωp

)
− iπω2

p

nk2

∂f0

∂v

∣∣∣∣
ω/k

= 0
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−2
iγ

ωp
=

iπω2
p

nk2

∂f0

∂v

∣∣∣∣
ω/k

and, finally,

γ =
π

2
ω3

p

k2n

∂f0

∂v

∣∣∣∣
ω/k

For the Maxwellian distribution this takes form:

γ =
1
2

√
π

2
ωp

(krD)3
e
− 1

2(krD)2

where

rD =
vT

ωp
=

√
T

mω2
p

is the Debye radius.

Thus, waves with short wavelength, k ∼ 1/rD, are
strongly damped. For long waves the decay is
exponentially small. Because the long waves have
frequencies close to the plasma frequency this
justifies the approximations that we made in
deriving the equation for Landau damping.
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Figure 5: Distortion of a Maxwellian distribution
function in the region v = vp caused by Landau
damping.
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Beam instability

We can estimate the growth rate of the beam
instability when ∂f/∂v > 0. Assume that the beam
makes a bump in the distribution function:

f ∼ n1

∆v

where n1 is the beam density, ∆v is the velocity
dispersion. Then, the derivative of f can be
estimated as

∂f

∂v
∼ n1

∆v2

Hence,

γ ∼ ω3
p

k2n

∂f

∂v
∼ ωp

v2

∆v2

n1

n

In non-linear regime, the instability leads to a
plateau in the distribution function.
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Figure 6: The plateau formation in the distribution
function as a result of the beam instability.
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Consider the beam instability for monoenergetic
beams.

Now we assume that the beam distribution
function is very narrow, and that the total
distribution function of plasma and beam is

f = fM + fb

where
fb = n1δ(v − v0)

Calculate the plasma dispersion relation:

D(k, ω) = 1 +
4πe2

mk

∫ ∞

−∞

∂f
∂v

ω − kv
dv = 0

∫ ∞

−∞

∂fb

∂v

ω − kv
dv = −

∫ ∞

−∞
fb

∂

∂v

1
ω − kv

dv+
fb

ω − kv

∣∣∣∣
∞

−∞
=

= −k

∫ ∞

−∞

fb

(ω − kv)2
dv = − kn1

(ω − kv0)2

Hence,

D(k, ω) = 1− 4πe2n

nω2
− 4πe2n1

m(ω − kv0)2
=

= 1− ω2
p

ω2
− ω2

b

(ω − kv0)2
,



Physics 312 12. Plasma waves. Landau damping. 19

where

ω2
b =

4πe2n1

m
The dispersion relation is:

1 =
ω2

p

ω2
+

ω2
b

(ω − kv)2
≡ F (k, ω)

We plot F (k, ω) vs ω for a fixed k

Figure 7: Function F (k, ω) of the plasma-beam dis-
persion relation.
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It has minimum at:

−2ω2
p

ω3
− 2ω2

b

(ω − kv0)3
= 0

(
1− kv0

ω

)3

+
ω2

b

ω2
p

= 0

ω =
kv0

1 +
(

ωb

ωp

)2/3

The minimum value of F is:

minF =
ω2

p

k2v2
0

[
1 +

(
ωb

ωp

)2/3
]3

When minF > 1 there are complex roots, and
hence, instability. This happens when

k <
ωp

v0

[
1 +

(
ωb

ωp

)2/3
]3/2

This means that the long wavelength wave are
unstable, excited by the beam.

The maximum growth rate of this instability will
occur when

kv0 = ωp,
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the resonance between the oscillations of plasma
(ω = ωp) and the beam (ω = kv0). We find the
maximum growth rate by seeking the solution of
the dispersion relation in the form:

ω = ωp − iγ :

1 =
ω2

p

(ωp − iγ)2
− ω2

b

γ2

1 =
ω2

p

ω2
p

(
1 +

iγ

ωp

)
− ω2

b

γ2

ω2
b

γ2
=

iγ

ω2
p

γ3 = −iωpω
2
b

or, finally,

γ ∼ ωp

(
ω2

b

ω2
p

)1/3

∼ ωp

(n1

n

)1/3

Comparing this with the formula for
non-monoenergetic beam:

γ ∼ ωp
v2

∆v2

n1

n

we find that a beam can be considered as
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monoenergetic when

∆v

v
¿

(n1

n

)1/3

.

This instability leads to modulation of the electron
beam by the electric field in plasma waves, and in
non-linear regime to bunching - trapping of
electrons by plasma waves.


