Physics 312 12. Plasma waves. Landau damping.

Plasma waves. Landau damping. I

[(Chen, p. 240-261]

We have discussed that collisions in plasma may
result in energy dissipation. Landau in 1946 found
a completely new mechanism which operates even
in the absence of collisions. As an example of this
mechanism we consider small-amplitude Langmuir
waves in the case when thermal motion of particles

play an active role.

In lecture 6, we have considered one-dimensional

plasma waves using the Vlasov equation:
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For small deviations f; from an equilibrium
distribution f:
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we have:
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where electric field F is produced by the oscillating
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electrons:
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where ¢ is the oscillatory charge density.

We seek the solution in the form of plane waves:
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D(k,w) —plasma dispersion function

Equation
D(k,w) =0
defines the dispersion relation w = w(k).

Sometimes, D(k,w) is called ”plasma dielectric

function”, equation for F/ can be written as

V. [D(k,w)E]=V-D =0,
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where D is dielectric displacement.

We have derived the dispersion relation for plasma
waves assuming that w > kv:
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we obtain:

or

- plasma frequency.

Next terms of the expansion give:
2 2 2 7.2
w® = w, + 3vpk”.
The integral in the plasma dispersion relation has

singularity at w = kv. However, in reality w is
complex because of some damping processes, and
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the integral calculated for complex w is not
singular. The damping occurs even without

collisions. This effect is called Landau damping.

The physical reason is in the resonant interaction
between the waves and particles. Electrons moving
with velocities close to the wave phase velocity may
absorb wave energy. This process is reverse to the
Cherenkov effect when a particle moving with
velocity faster than the phase speed of light in a

medium emits waves.

Consider first a simple physical description of the

wave-particle interaction.

Let
E = Eysin(kx — wt)

is the electric field strength in a plasma wave
propagating in the x direction with the phase speed
v, = w/k. Then the electrostatic potential in this

wave can be found from equation:

V¢ =—E

i)
¢ = 670 cos(kx — wt) = ¢ cos(kx — wt).
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The particle with the relative velocity u = v — v,

such as

mu2

2
are trapped by the wave. The maximum relative

< epo

velocity of the trapped particles is

mu?n eFq 5 2eE
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2 k m km
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Figure 1: Illustration of the energy exchange be-

tween the resonant particles and wave.

Particles with speed v > v, (type ”1”) will give
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their energy to the wave in reflections art the
potential well, and particles with v < v, (type 72”)
will take energy of the moving wave well. Looking
at the distribution function we can conclude that
there more particles of type 2 than particles of type
1. Hence the wave will decay.
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Figure 2: Distribution function f; showing particles

interacting with the wave.



Physics 312 12. Plasma waves. Landau damping.

The energy transfer from particle 71”7 to wave is

2 2 . 2
AE=""" m(20p —v) = 2m(v — vp ) vy
2 2
The collision rate can be estimated as
Uy~ vV — Up

A

where A = 27 /k is the wave length. Then the
energy transfer rate for particles with velocity v is:

2 L 2
AW = AFEv; = m(v}\ Up) Vp.

Integrating for trapped particles with velocity

range |vp, Up + U] and subtracting a similar
integral for particles taking the wave energy, with
velocities v, — um, v,] We obtain
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and calculating the integrals we obtain:

dW  2mu, Ofo| up,
dd A Ov o, 2
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Since the wave energy is
E2
W=
47
we obtain:
3
dw :W8e2w of W 2wy Of |
dt mk2 Ov w/k wk?n Ov w/k
where wg — 4dmen o the squared plasma frequency.

Since in Maxwellian plasma 0f/0v < 0, the plasma
waves decay because of the resonant interaction
with electrons. However, if 9f/0v > 0 then the
wave will gain the energy from electrons. This
happens, for instance, for plasma beams (so-called,

beam instability).
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The decay/growth rate is
1 dW 2w, Of

~y

T W dt | 7k2n ov w/k°

Jo
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Figure 3: Distribution function fy with an electron

beam showing particles interacting with the wave.
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Landau damping from the Vlasov
equation

Consider the plasma dispersion equation obtained

from the Vlasov equation:

Ame? [
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Since we know that plasma waves decay, w is
complex, and the integral can be calculated as a
contour integral in the complex v plane, using the

residue theorem:

/ de—l—/ Gdv = 2miR(w/k)
Ci Co

where G is the integrand, ' is the path along the

real axis, Cs is the semicircle at the infinity, and

R(w/k) is the residue at w/k.

We consider a simple case when the damping is

weak, so that the singular point is close to the real
axis. We use the integration contour prescribed by
Landau: a straight line along the Re(v) axis with a

small semicircle around the pole. In going around
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the pole, one obtains 27¢ times half the residue
there.

Hence,
I = % —dv=P 20—
/oow—kvv /Oow—kv vt
/w/k+e d'U af
_|_
w/k—e W— kv Ovu w/k

where P stands for the Cauchy principal value.
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where z = eexp (i¢) - complex variable.

11
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Figure 4: Integration contour in the complex v plane

for small Im(w).

Thus,

00 0 .
I:P/ 5 g, T Of
w — kv k (%w/k

Most contribution to the first integral comes from
where 0fy/0v is large, that is where v < w/k.
Expanding

1 1 kv k*0?

w—kv:;+w
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we obtain the dispersion relation:

1+47T€2 [k v 0 fo
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Since the damping term is small we seek for

solution in the form
W= wp — 1y

where v is the decay rate, that is

e—iwt — e—iwpt—fyt.
- wg B iﬂwg dfo 0
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iy imwy dfo
Wy - nk2 v

w/k

and, finally,

N wp Ofs
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For the Maxwellian distribution this takes form:

1 /7 w, ——1
Y= = —— = e 2(krp)
2\ 2 (krp)?

2
Wp mw

where

is the Debye radius.

Thus, waves with short wavelength, k ~ 1/rp, are
strongly damped. For long waves the decay is
exponentially small. Because the long waves have
frequencies close to the plasma frequency this
justifies the approximations that we made in

deriving the equation for Landau damping.
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Figure 5: Distortion of a Maxwellian distribution
function in the region v = v, caused by Landau
damping.
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Beam instability

We can estimate the growth rate of the beam
instability when 0f/0v > 0. Assume that the beam
makes a bump in the distribution function:
ni
T Av
where ny is the beam density, Awv is the velocity
dispersion. Then, the derivative of f can be

estimated as

of nq
ov Av?
Hence,
wy Of v my

~N — N (Jy———— ——
T 20 o PAVZ n
In non-linear regime, the instability leads to a
plateau in the distribution function.

16
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Jo

Figure 6: The plateau formation in the distribution
function as a result of the beam instability.
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Consider the beam instability for monoenergetic
beams.

Now we assume that the beam distribution
function is very narrow, and that the total
distribution function of plasma and beam is

J =7 I+ fo

where
fo =n10(v — vp)

Calculate the plasma dispersion relation:
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where
,  4meing
wb —
m
The dispersion relation is:
2 2
W w
1=-L + b = F(k,w)

w?  (w—kv)?

We plot F(k, w}_;ys w for a fixed k

k=const
A

>
0 kv, 0

Figure 7: Function F'(k,w) of the plasma-beam dis-

persion relation.
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It has minimum at:

Qw3
w3 (w—kyy)3

The minimum value of F' is:

o\ 2/3 3
1+< b) ]
Wp

When minF' > 1 there are complex roots, and

w2

minf' =

2
Uo

hence, instability. This happens when

L\ 2/3]
1+( b) ]
Wp

This means that the long wavelength wave are

k<—
Vo

unstable, excited by the beam.

The maximum growth rate of this instability will
occur when

kvg = wyp,
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the resonance between the oscillations of plasma
(w = wy) and the beam (w = kvy). We find the
maximum growth rate by seeking the solution of
the dispersion relation in the form:

1 = C()p . Wi
(wp —17)* o2
2 .
1= 22 (14 ﬂ) %
w2 Wy 2
wy _ by
7wy
V3 = —iwpwg

or, finally,

Comparing this with the formula for
non-monoenergetic beam:
’02 ni
~N Wy ———— —
7 PAVZ n

we find that a beam can be considered as
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monoenergetic when

Av nq 1/3
— < (—) :
v n

This instability leads to modulation of the electron
beam by the electric field in plasma waves, and in
non-linear regime to bunching - trapping of

electrons by plasma waves.
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