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Dynamo theory

([8], p. 178-196)
Geological data show that the Earth’s magnetic

field existed for at least the past 3×109 years. How-
ever, in the absence of external sources of electric
currents, magnetic field decays on the time scale:

τ =
4πσL2

c2
,

where conductivity σ ∼ 1.5 × 105 s−1, L ∼ 3.5 ×
108cm is the Earth’s radius. Then, the decay time:

τ ∼ 6× 1012 s ∼ 2× 105 years

Clearly, some process inside the Earth must main-
tain the magnetic field. This process of self-generation
of magnetic field is called dynamo. Similar estimates
can be made for stars and galaxies.

The magnetic energy lost via ohmic heating is
replenished by the work against the Lorenz force:
~V · (~j × ~B)/c, where ~V is a flow field driven, for
instance, by thermal convection. If the flow is suf-
ficiently strong the energy input can overcome the
losses.
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Consider kinematic dynamo theory when the flow
field is prescribed, and magnetic field does not affect
the flow field.

The basic MHD equation is:

∂ ~B

∂t
= ∇× (~V × ~B) +

c2η

4π
∇2 ~B,

where η = 1/σ is electrical resistivity.
If ~V is prescribed than the equations are linear,

and the problem is reduced to find a growing solu-
tion, which is linear eigenvalue problem. What type
of motion is capable of self-generating a magnetic
field?
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Figure 1: The homopolar disk dynamo.

The homopolar generator

The dynamo process can be illustrated by a sim-
ple homopolar disk dynamo. The device consists of
a conducting disk which rotates about about its axis
by an external force. A twisted wire has a sliding
contact with the disk and is connected with the axis.
It carries current I(t).

Let’s find if this current can grow.
The magnetic field associated with this current
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has a flux Φ = MI across the disk, where M is the
mutual inductance between the wire and the rim of
the disk. The rotation of the disk in the presence of
this flux generates electromotive force

E =
dΦ
dt

=
Ω
2π

Φ =
Ω
2π

MI

The equation for I is written:

L
dI

dt
+ RI =

M

2π
ΩI,

where R is the total resistance, and L is the self-
inductance.

Solution is:
I(t) = I0e

γt,

where

γ =
1
L

(
M

2π
Ω−R

)

The solution is growing when γ > 0, or when

Ω >
2πR

M
.

Thus, rapid rotation is essential.
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Slow and fast dynamos

Let’s search for solutions of the MHD equation
for a prescribed velocity field ~V (~r). Requirements:

1. solution must be self-contained, that is main-
tained by motions rather than by currents at
infinity; thus V,B → 0 as r →∞

2. solution must be exponentially growing, that
is: B ∝ eγt, γ > 0.

In astrophysics, the resistivity is very small, η → 0.
We can expect that

lim
η→0

γ ∝ ηα.

There can be two types of dynamo (Vainstein & Zel-
dovich, 1978):

1. α > 0 - ”slow” dynamo

2. α = 0 - ”fast” dynamo (the growth rate does
not depend on plasma resistivity)

Slow dynamo cannot operate in perfectly con-
ducting fluid (e.g. homopolar generator is a slow
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dynamo). However, fast dynamo can operate when
η = 0.

When η = 0 magnetic field lines are frozen into
plasma. Thus, stretching fluid will amplify magnetic
field.

Figure 2: Example of fast dynamo action: a stretch-
twist-fold cycle for magnetic field lines (Vainstein
and Zeldovich, 1978)

A magnetic fluxtube can be doubled in intensity
by taking it around a stretch-twist-fold cycle. The
doubling time for this process clearly does not de-
pend on the resistivity: in this sense, this dynamo is
a fast dynamo. However, under repeated application
of this cycle the magnetic field develops increasingly
fine-scale structure. In fact, both velocity and mag-
netic fields eventually become chaotic.

Fast dynamo is not fully established but needed
in astrophysics.
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Cowling anti-dynamo theorem

An axisymmetric magnetic field cannot be main-
tained via dynamo action.

The Ponomarenko dynamo

This is the simplest known kinematic dynamo.
Consider plasma occupying all space; motion is con-
fined to cylinder of radius a. Consider the MHD
equation in the polar coordinates (r, θ, z).

The flow field is written:

~V = (0, rΩ, U) for r ≤ a,

where Ω and U are constants. Consider incompress-
ible flow ∇ · ~V = 0.

The dynamo equation is:

∂ ~B

∂t
= ∇× (~V × ~B) +

ηc2

4π
∇2 ~B.

We search for solution in the form:

~B(r, θ, z, t) = ~B(r)eimφ−ikz+γt
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Using the vector formula:

∇×(~V× ~B) = −1
r

∂

∂φ
(rΩBr)− ∂

∂z
(UBr) = −i(mΩ−kU)Br

(∇2 ~B)r =
∂

∂r

[
1
r

∂

∂r
(rBr)

]
+

1
r2

∂2Br

∂φ2
+

∂2Br

∂z2

(∇2 ~B)φ =
∂

∂r

[
1
r

∂

∂r
(rBφ)

]
+

1
r2

∂2Bφ

∂φ2
+

2
r2

∂Br

∂φ
+

∂2Bφ

∂r2

we derive the following equations for Br and Bφ:

γBr = −i(mΩ− kU)Br+

+
c2η

4π

(
d2Br

dr2
+

1
r

dBr

dr
− m2 + k2r2 + 1

r2
Br − 2im

r2
Bφ

)

γBφ = r
dΩ
dr

Br − i(mΩ− kU)Bφ+

+
c2η

4π

[
d2Bφ

dr2
+

1
r

dBφ

dr
− m2 + k2r2 + 1

r2
Bφ +

2im
r2

Br

]

We keep dΩ/dr to evaluate the matching condi-
tions at r = a.

Let
B± = Br ± iBφ;
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y = r/a; τR = 4πa2/c2η;

q2 = k2a2 + γτR + i(mΩ− kU)τR;

s2 = k2a2 + γτR.

Here τR is a typical diffusion time for magnetic field.
Then,

y2B′′
± + yB′

± − [(m± 1)2 + q2y2]B± = 0 for y ≤ 1

y2B′′
± + yB′

± − [(m± 1)2 + s2y2]B± = 0 for y > 1

Solutions are Bessel’s functions:

B± = C±Im±1(qy)/Im±1(q) for y ≤ 1

B± = D±Km±1(sy)/Km±1(s) for y > 1

where C± and D± are arbitrary constants. We find
these and the eigenvalue γ (a dispersion relation) by
matching the solutions at y = 1 (see [8], p.193).

In general, the dispersion relation is:

γ = γ(k, m, τR, Ω, U).

For ka >> 1 it becomes:

γτr ' eiπ/3

(
mΩτR

2

)2/3

− k2a2 − i(mΩ− kU)τr/2.
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Dynamo takes place when Re(γ) > 0:

ΩτR >
25/2(ka)3

m
.

In agreement with the Cowling’s theorem the ax-
isymmetric dynamo m = 0 is impossible.

This is oscillatory dynamo because both Re(γ)
and Im(γ) are non-zero. The dynamo occurs when-
ever the flow is sufficiently rapid. The critical mag-
netic Reynolds number:

Rem =
τR|V |

a
=

τR

√
Ω2a2 + U2

a

is 17.7.
The dynamo action occurs when Rem > 17.7.

Laboratory dynamo was achieved in the Riga ex-
periment: stirring liquid sodium (best electrocon-
ducting fluid) at temperature 170◦C by a propeller
at Ω = 2000 rpm.
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Turbulent dynamo

Mean-Field Electrodynamics

Consider the MHD induction equation:

∂ ~B

∂t
= ∇× (~v × ~B) +

c2

4πσ
∇2 ~B =

≡ ∇× [~v × ~B − c2

4πσ
∇× ~B].

We seek a solution to the dynamo problem in terms
of a mean magnetic field:

~B =< ~B > +~b,

where ~b is a fluctuating part of ~B: < ~b >= 0. Simi-
larly, we consider a global and fluctuating motions:

~v =< ~v > +~u,

where < ~u >= 0. Then, we separate the large-scale
and fluctuating parts of the induction equation:

∂(< ~B > +~b)
∂t

= ∇× [(< ~v > +~u)× (< ~B > +~b)−
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− c2

4πσ
∇× (< ~B > +~b)].

The mean part is:

∂ < ~B >

∂t
=

= ∇
[
< ~v > × < ~B > + < ~u×~b > − c2

4πσ
∇× < ~B >

]
.

Subtracting the mean part from the total equation
we get an equation for the fluctuating part:

∂~b

∂t
= ∇×[< ~v > ×~b+~u× < ~B > +~u×~b− < ~u×~b > −

− c2

4πσ
∇×~b].

The term
E =< ~u×~b >

in the mean-field equation represents a mean electric
field generated by fluctuating magnetic and velocity
fields. If it is known we can solve the equation for
< ~B >. In principle, E must be calculated in terms
of < ~B > using the equation for the fluctuating part,
~b. However, in general, this is difficult.
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However, we see that there is a linear relation
between ~b and < ~B >, and hence between E and
< ~B >. We write this relation as an expansion:

E = α < ~B > −β∇× < ~B > +...

For almost isotropic turbulence:

α ' 1
3

< ~u · ∇ × ~u > τ,

β ' 1
3

< ~u · ~u > τ,

where τ is a characteristic correlation time.
The first term in the explanation for E is called

α-effect, and < ~u · ∇ × ~u > is ‘kinetic helicity’.
Then, the mean-field equation is:

∂ < ~B >

∂t
= ∇× (< ~v > × < ~B > +

+α < ~B > −(η + β)∇× < ~B >),

where η = c2

4πσ is magnetic diffusivity.

η + β ≡ ηt

is called turbulent diffusivity.



Physics 312 18.Dynamo theory. 0-13

The α-term generates magnetic field providing
the dynamo effect.

Reference: Equation for α and β are derived in
A.R. Choudhuri, The Physics of Fluids and Plasmas,
Cambridge Univ. Press, 1998.
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Ω- and α-Effects

Consider an initially poloidal (in the r and θ direc-
tions, in spherical polar coordinates) fossil field sub-
ject to a differential azimuthal flow within the Sun.
The field is stretched by the flow in the toroidal di-
rection (the azimuthal direction) a process called the
Ω effect.

Figure 3: The Ω effect

To close the dynamo cycle, it is necessary to have
a scheme whereby a poloidal field is reproduced from
the stretched toroidal field bands produced by the Ω
effect. This is argued to occur through cyclonic con-
vection. A toroidal field line caught in a convection
cell will be pulled into a loop.

The resulting rising Ω-loop (the name refers to
the shape) will be twisted by the Coriolis force pro-
duced by the Sun’s rotation. This twisting - which
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Figure 4: The α effect.

is known as the effect - leads to the top of the loop
pointing in the poloidal direction, as shown in the
right-hand panel of the above figure. If enough re-
sulting poloidal field elements reconnect, a poloidal
field will be reconstructed (with a reversed polarity
from the original poloidal field).

Kinematic αΩ Dynamo

In the astrophysical context, a dynamo is a fluid
flow capable of sustaining a magnetic field indefi-
nitely against Ohmic decay.

Consider a combined action of the α-effect and
differential rotation. We shall assume that the ki-
netic helicity α(r, θ) and angular velocity Ω(r, θ) are



Physics 312 18.Dynamo theory. 0-16

z

y

x

Ω

Figure 5: Coordinate system.

known functions. We consider the mean-field equa-
tion

∂ < ~B >

∂t
= ∇×(< ~v > × < ~B > +α < ~B > −ηt∇× < ~B >),

where ~v is the rotational velocity.
Consider this equation in cartesian coordinates in

a small region of the Sun, so that axis x has direction
along meridian, axis y is along the latitude, and axis
z is perpendicular to the surface.

Magnetic field has two parts:

• toroidal ~Bt = B~ey
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• poloidal ~Bp = (Bx, 0, Bz)

The poloidal can be represented in terms of a vector-
potential, A, which has only one component, Ay:

~B = ∇× ~A,

or
~Bp =

(
−∂A

∂z
, 0,

∂A

∂x

)
.

The induction equation in terms of A is:

∂ ~B

∂t
=

∂∇× ~A

∂t
= ∇× [~v × (∇× ~A) + α~B−

−ηt∇×∇× ~A].

From this equation we obtain equations for A and
B:

∂A

∂t
= αB + ηt∇2A,

∂B

∂t
=

∂v

∂z

∂A

∂x
− ∂v

∂x

∂A

∂z
+ ηt∇2B.

Since
v = rΩ = (R + z)Ω,

then
∂v

∂z
= Ω.
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The derivative ∂v
∂x corresponds to the latitudinal dif-

ferential rotation. However, in the first approxima-
tion we do not consider this term.

Thus, in the simple 1D case we have a system of
two equations:

∂A

∂t
= αB + η

∂2A

∂x2
(1)

∂B

∂t
= Ω

∂A

∂x
+ ηt

∂2B

∂x2
(2)

For constant coefficients α, Ω and ηt we can seek
a solution in terms of periodic functions:

A = A0e
−iωt+ikx,

B = B0e
−iωt+ikx.

Substituting these in the equations we obtain a
linear system:

(−ω + ηtk
2)A0 − αB0 = 0 (3)

(−ω + ηtk
2)B0 − ΩikA0 = 0. (4)

A non-zero solution exists if

(−iω + ηtk
2)2 − ikαΩ = 0.
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For αΩ > 0:

−iω + ηtk
2 = ±

√
i
√

kαΩ = ±1 + i√
2

√
kαΩ

−iω =

(
−ηtk

2 +

√
kαΩ

2

)
+ i

√
kαΩ

2
.

This is a dispersion relation for dynamo waves.
Then the solution for toroidal magnetic field is:

B = B0 exp

[(
−ηtk

2 +

√
kαΩ

2

)
t + i

(√
kαΩ

2
t + kx

)]
.

It describes waves migrating poleward (towards neg-
ative x).

If we consider the case

αΩ < 0

then the propagation is the positive direction, to-
wards the equator.

Magnetic field grows if

αΩ
2η2

t k3
> 1,

or in terms of Dynamo Number:

RD =
αΩR3

η2
t

,
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RD(kR)−3 > 1.

By considering the dynamo equations in spherical
coordinates one can show that the dynamo waves
propagate along surfaces Ω=const, and the direction
of propagation is given by the vector:

α∇Ω× ~eφ,

where ~eφ is an azimuthal unit vector.
The magnetic field growth is limited by back re-

action on convection: magnetic field changes the
properties of convection. This is modeled by ”alpha-
quenching”:

α =
α0

1 + (B/B0)2
.

This provides a stationary oscillatory solution.
It is believed that the solar dynamo operates in

the tachocline at the low boundary of the convec-
tion zone because it is difficult to accumulate strong
magnetic field in the convection zone.


