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Plasma ionization. Saha equation.

([2], p.184-187; [11] p.382-390, 402-408 )

How to make plasma? The most natural way is to
heat a gas to high temperature. High-speed
electrons collide with atoms and tear away electrons
from atomic orbits. The degree of ionization
depends on temperature. A general relation
between the degree of ionization and temperature
can be obtained from a statistical description of
plasma in thermodynamic equilibrium.

Consider Na0 atoms in volime V . Then, as a result
of an ionization process there are Ni ions and
Ne = Ni electrons. The number of remaining
neutral atoms is

Na = Na0 −Ni

Consider a single nucleus. If it has a bound
electron then this is an atom, otherwise it is ion.
According to statistical physics the probability
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electron is in the energy state εk is

wk = A exp
(
−εk

T

)

where A is a constant. Negative εk correspond to
bound states, and positive εk correspond to
continuum.

In hydrogen atom the energy of the bound states is
given by the Bohr formula:

εk = − me4

2h̄2k2
SI :εk = − me4

32π2ε20h̄
2k2

where k = 1, 2, .... For simplicity consider only the
lowest level.



Physics 312 2. Plasma ionization. Saha equation. 3

Figure 1: The energy energy levels of hydrogen atom
The abscissa denotes the position coordinate of the
electron (the distance between the proton and elec-
tron), r , in units of the Bohr radius a0, where
a0 = h̄2

me2 SI :a0 = 4πε0h̄2

me2 .
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For simplicity consider only the lowest level k = 1:

ε = −me4

2h̄2 = −I

where I = Ry = 13.6eV is the ionization potential.

Constant A can be found from the condition that
the total probability is 1:

∑

k

wk = 1

Thus,

A =

[∑

k

exp
(
−εk

T

)]−1

=

[
exp

I

T
+

∑
εk>0

exp
(
−εk

T

)]−1

The states with εk > 0 are in the continuum. Thus,
the second term (partition function) can estimated
as an integral in the phase space. In the
quasi-classical approximation, each energy state
corresponds to an elementary cell in the phase
space (p, r), the volume of which (2πh̄)3:

∑
εk>0

→
∫

d3pd3r

(2πh̄)3

where p is momentum.
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Each electron occupies 1 elementary cell in the
phase space (p, r) of volume (2πh̄)3. This is Pauli’s
exclusion principle.

In the continuum state we can neglect the energy of
interaction between electron and nucleus, and
assume that energy εk = p2/2m. Then,

∑
εk>0

exp
(
−εk

T

)
=

∫
d3pd3r

(2πh̄)3
exp

(−p2/2mT
)

=

=
V

(2πh̄)3

∫ ∞

0

4πp2dp exp
(−p2/2mT

)
=

=
4πV

(2πh̄)3
(2mT )3/2

∫ ∞

0

dxx2 exp
(−x2

)
=

=
V m3/2T 3/2

23/2π3/2h̄3 =
V

VQ
.

Here we assumed that the space is uniform and
isotropic and used the following relations:

∫
d3r = V
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is volume available for electron;
∫ ∞

0

dxx2 exp
(−x2

)
=
√

π/4

x = p/
√

2mT

.

Also, we defined ”quantum volume” VQ as

VQ =
23/2π3/2h̄3

m3/2T 3/2
=

(√
2π

mT
h̄

)3

≡ λ3
B

where

λB =
√

2πh̄√
mT

=
√

4π
h̄

p

where p =
√

2mT is momentum.

Thus, λB is a De Broglie wavelength of electrons
for thermal motion.

The physical volume V per electron is equal to the
total plasma volume divided by the number of
electrons, that is:

V = n−1
e
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Thus, the partition function of the free states is:
∑
εk>0

exp
(
−εk

T

)
=

V

VQ
=

1
λ3

Bne

Thus, constant A:

A =
(

exp
I

T
+

1
λ3

Bne

)−1

.

Therefore, the probability wa of an proton to have
a bound electron is:

wa =
exp (I/T )

exp (I/T ) + 1/λ3
Bne

The corresponding probability for ions is:

wi = 1− wa ≡ 1/λ3
Bne

exp (I/T ) + 1/λ3
Bne

Then, the relative ion density is:

ni

na
=

wi

wa
=

1
neλ3

B

exp (−I/T )

or
nine

na
=

1
λ3

B

exp (−I/T )
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Note that electrons, ions and atoms have internal
degrees of freedom, which affect their partition
functions. For instance, electrons have two spin
states, ”up” and ”down”, thus statistical weight for
electrons ge = 2. Because of this each energy levels
can be occupied by two electrons. Therefore, in the
last equation we should replace ne with ne/ge.

Taking into account the statistical weights for ions
gi and atoms ga we write:

neni

na
=

gige

ga

exp (−I/T )
λ3

B

≡ K(T )

K(T ) is the equilibrium constant.

The degree of ionization is defined as

α = ne/na0 = ni/na0

where na0 is the total number of atoms and ions.
Then na = (1− α)na0 and the final equation for
the ionization degree is:

α2

(1− α)
=

gige

ga

exp (−I/T )
λ3

Bna0

This is Saha equation.



Physics 312 2. Plasma ionization. Saha equation. 9

Figure 2: The degree of ionization, α, of hydrogen
plasma in thermodynamic equilibrium for different
plasma densities (in cm−3). J is the ionization po-
tential.

This plot shows that the characteristic temperature
of ionization is much lower than the ionization
potential. This is because the large factor 1/λ3

Bna0
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in the Saha equation. This ratio can be written as
(

n−1/3

λB

)3

,

cubed ratio of the distance between the particles
and the De Broglie wavelength. For example, for
na0 = 1015 and T = I = 13.6 eV, this factor is
1.7 · 108.

We have considered only the ground state of the
atom and continuum, and neglected the higher
bound state. How accurate is this approximation?
Since the ionization occurs at T ¿ I, and the
energy difference between the ground state and the
next energy level is 3

4I, the probability of the
transition to this level is exp

(− 3
4I/T

)
, very small.

The electron has much higher probability of
transition to continuum than to the higher energy
level. The reason for this is that the number of the
available states in the continuum is very large, and
even though the probability of transition to each of
them is lower the total probability of the transition
to the continuum is much higher than for the
higher bound states.
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Example: solar core: n = 1026 cm−3,
T = 103eV≈ 107K. (Note: h̄ = 6.582× 10−16eV·s,
m = 5.69× 10−16eV·s2cm−2).

λB =
√

2πh̄√
mT

' 2 · 10−9cm

λ3
Bn ' 1

α2

1− α
= exp

(
−13.6

103

)
≈ 1

α ' 0.6

Ionization is not necessary complete in the solar
core.

Example: solar surface: n = 1016 cm−3,
T ' 6000 K' 0.5 eV.

λB ' 9.6 · 10−8 cm

1/λ3
Bn ' 105

α2

1− α
=

1
nλ3

B

exp
(
−13.6

0.5

)
' 2 · 10−7

α ≈ 4 · 10−4

This is weakly ionized plasma.
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Elementary processes in plasma

The Saha equation describes ionization of plasma
in thermal equilibrium. When plasma is not in
thermodynamic equilibrium it is important to
study elementary processes of ionization and
recombination, which occur because of particle
collisions.

The most important processes are:

1. Ionization by electron impact

2. Photoionization

3. Recombination

Ionization by electron impact

Consider ionization due electron collisions:

e + H → H+ + e + e

First, we find the cross-section of this process.
Consider collision of two electrons. Ionization will
occur when the energy transferred to the electron
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in the bound state exceeds the ionization potential.

Figure 3: Electron collision.

Calculate the energy of the initially stationary
electron after the collision. For large collision
distances ρ, the electron will move in the direction
perpendicular to velocity of the fast electron.

Acceleration in the perpendicular direction is:

w⊥ =
e2

m

ρ

(ρ2 + v2t2)3/2
,

Then, the velocity change is:

v⊥ =
e2

m

∫ ∞

−∞

ρdt

(ρ2 + v2t2)3/2
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v⊥ =
e2

mvρ

∫ ∞

−∞

dx

(1 + x2)3/2
=

2e2

mvρ

The corresponding energy change is

ε =
mv2

⊥
2

=
2e4

mv2ρ2
=

e4

Wρ2

where W = mv2/2 the initial electron energy.

Thus, ρ2 =
(

e4

Wε

)
.

Define the differential cross-section as:

dσ = |2πρdρ| = πe4

Wε2
dε.

Ionization will occur when the energy transfer is
greater than the ionization potential: ε ≥ I.
However, the energy transfer cannot exceed the
initial energy W .

Therefore, the total ionization cross-section is
obtained by integrating the differential
cross-section from I to W :

σi =
∫ W

I

dσ =
∫ W

I

πe4

Wε2
dε =

πe4(W − I)
W 2I

This is so-called Thompson’s formula.
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Maximum of this function is at W = 2I:

σmax =
πe4

4I2
= πa2

B = 10−16cm2

where aB is Bohr’s radius of electron.

Figure 4: Cross-section ionization of hydrogen atom
by electron impact. The solid is the experimental
cross-section. the dashed line shows Thompson’s for-
mula.
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The ionization rate by electrons in a unit volume is:

na〈σive〉
where the brackets denote averaging over a velocity
distribution of electrons.

Then the number of electrons growths as a result of
ionization as

dne

dt
= nena〈σive〉

When the number of electrons is large then the
reverse process of collisional (or triple)
recombination takes place when two electrons
collide with an ion and one of the becomes bound
and another one carries away the released energy.

H+ + e + e → H + e

Let σ∗ be the cross-section of this process. Then its
rate is:

nin
2
e〈σ∗ve〉 = nin

2
eβ

where β = 〈σ∗ve〉 is recombination constant.

dne

dt
= neni〈σive〉 − βn2

eni



Physics 312 2. Plasma ionization. Saha equation. 17

The recombination constant β can be calculated
from the dynamics of collisions or more easily from
the Saha equation.

Indeed, in the thermodynamic equilibrium
dne/dt = 0:

nena〈σive〉 − βn2
eni = 0

β =
nena

n2
eni

〈σive〉 =
na

neni
〈σive〉

From Saha equation we know that
nine

na
= K(T )

Therefore,

β =
〈σive〉
K(T )

.

Photoionization and recombination

Photorecombination: H+ + e → H + h̄ω

Photoionization: H + h̄ω → H+e

The rate of photoionization is proportional to
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density of both atoms and photons:
(

dne

dt

)

photoion

= µna

where the number of photons is included in the
coefficient, µ. In the thermodynamic equilibrium
the number of photons radiated in plasma is a
function of temperature.

Similarly, the rate of photorecombination is:
(

dne

dt

)

photorec

= −γnine

A complete equation for electron density including
the collision terms can written as:

(
dne

dt

)
= nena〈σive〉 − βn2

eni + µna − γneni

In the local thermodynamic equilibrium
(LTE) the collisional and radiative processes are
balanced separately:

nena〈σive〉 = βneni

µna = γneni
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However, in laboratory plasma, photoionization is
not significant because photons escape, and if the
plasma density is not very high then
photorecombination is more significant then the
collisional triple recombination. Then, we have a
balance between the electron-impact ionization and
photoionization:

nena〈σive〉 = γneni

In this case, the ionization degree depends only on
plasma temperature:

α =
ni

na
=
〈σive〉

γ

.

This is a replacement for Saha equation in
low-density plasmas. This is called coronal
equilibrium because this is valid for the solar
corona.

Numerical formula for the photorecombination
coefficient:

γ =
4 · 10−13

√
TeV

cm3/s


