PHYS747: Introduction to Helioseismology

Time: 1:00 pm - 2:20 pm, Monday, Tuesday
Teaching mode: hybrid
Place: GITC, room 1402
Instructor: Alexander Kosovichev
e-mail: alexander.g.kosovichev@nijit.edu

Office: Tiernan Hall 482

Office hours: by appointment
Course materials: Canvas

URL: http://sun.stanford.edu/~sasha/PHYS747

NJIT Webex: https://njit.webex.com/join/sasha

Grades: homework (20%), class participation (20%) quizzes (20%),

final presentation/project (40%)

Textbooks

1. M, Stix, The Sun: an Introduction. Second Edition,
Springer, 2004.

2. C. Aerts, J. Christensen-Dalsgaard, D. W. Kurt,
Asteroseismology, Springer, 2010

Additional sources:

1. A.G. Kosovichev, Advances in Global and Local
Helioseismology: An Introductory Review, Lecture
Notes in Physics, Volume 832, 2011

2. Extraterrestrial Seismology, V. Tong, R. Garcia
(eds), Cambridge Univ. Press, 2015
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Lecture Plan

Sept . 7. Lecture 1. Brief history of helioseismology.

Sept. 8. Lecture 2. Observations and basic properties of solar
oscillations.

Sept. 13. Lecture 3. Oscillation power spectrum. Excitation by
turbulent convection. Line asymmetry and pseudo-modes.

Sept. 14. Lecture 4. Magnetic effects: sunspot oscillations and
acoustic halos.

Sept. 20. Lecture 5. Helioseismic response to solar flares: sunquakes.
Sept. 21. Lecture 6. Global helioseismology. Basic equations. |
Sept. 27. Lecture 7. Global helioseismology. Basic equations. Il

Sept. 28. Lecture 8. JWKB solution; Dispersion relations for p- and g-
modes.

Oct. 4. Lecture 9. Frequencies of p- and g-modes. I. High-degree p-
modes

10.0Oct. 5. Lecture 10. Frequencies of p- and g-modes. Ill. Low-degree p-

modes

11.0ct. 11. Lecture 11. Gravity modes.
12.0ct. 12. Lecture 12. Surface gravity waves (f-mode).The seismic

radius.
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o

Oct. 18. Lecture 13. Asymptotic ray-path approximation.

Oct. 19. Lecture 14. Mode-ray duality

Oct. 25. Lecture 15. Duvall’s law. Time-distance relation

Oct. 26. Lecture 16. Asymptotic sound-speed inversion.

Nov. 1. Lecture 17. General helioseismic inverse problem. Variational
principle; Perturbation theory; Kernel transformations

Nov. 2. Lecture 18. Solution of inverse problem. Optimally localized
averages method.

Nov. 8. Lecture 19. Inversion results for solar structure

Nov. 9. Lecture 20. Inversions for solar rotation. Regularized least-
squares method.

Nov. 15. Lecture 21. Local-area helioseismology. Basic principles.
Ring-diagram analysis. Time-distance helioseismology; Acoustic
holography and imaging.

10.Nov. 16. Lecture 22. Solar tomography. Time-distance diagram. Wave

travel times. Deep- and surface-focus measurement schemes.

11.Nov. 22. Lecture 23. Inversion results of solar acoustic tomography.

Diagnostics of supergranulation. Structure and dynamics of sunspots.

12.Nov.23. Lecture 24. Large-scale and meridional flows. Solar dynamo.
13.Nov. 29-30. Work on student's projects.
14.Dec. 6-7. Presentation of student's projects.




Presentations: Jupyter notebooks,
https://jupyter.org/
* Requirements:

— Present observational facts

— Explain the basic physical processes

— Briefly review the current state of research

— Present project methodology, Python code and results

— Answer questions

» For each topic | will provide references and initial
material.

Topics

Doppler-shift modeling and analysis

Oscillations power maps — acoustic halo

Power spectrum of global oscillations
Propagation diagram for solar and stellar models
Ray-path theory

Line asymmetry modeling

Acoustic travel times

Time-distance helioseismology

Analysis of sunquakes
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Brief history of
helioseismology

1/21/2022

“At first sight it would seem that the deep
interior of the sun and stars is less
accessible to scientific investigation than
any other region of the universe. Our
telescopes may probe farther and farther
into the depths of space; but how can we
ever obtain certain knowledge of that which
is hidden behind substantial barriers?
What appliance can pierce through the
outer layers of a star and test the

conditions within? “

Sir Arthur Stanley Eddington, The Internal Constitution of
the Stars, 1926, page 1, line 1.




Discovery of solar oscillations

1962: R.Leighton, R.Noyers and G.Simon

discovered 5-min oscillations

4. The vertical velocities exhibit a striking repetitive time correlation, with a period T = 296 £ 3
sec. This quasi-sinusoidal motion has been followed for three full periods in the line Ca ) 6103, and is also
clearly present in Fe » 6102, Na A 5896, and other lines, The energy contained in this uscﬂlatory motion is
about 160 T cm?; the “losses” can apparently be compensated for by the energy transport (2).
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Spectrohellograph

The spectroheliograph is a solar
spectrograph with an exit slit in
the spectral plane.

* The solar image is moved across
the entrance slit, and
simultaneously the photographic
plate is moved along behind the
exit slit.

* A quarter-wave plate is used as a
line shifter, so that two images in
red and blue wings were recorder
simultaneously.

» The two spectroheliograms which
are simultaneously obtained in
the two wings of the spectral line
are subsequently subtracted
photographically.




Discovery of 5-min oscillations

* Theresultis a “Doppler plate”; its intensity variation
hasdits origin in the local Doppler shift of the line
used.

»  Two such Doppler plates, obtained by scanning the
Sun first in one and immediately afterwards in the
opposite direction, are then again subtracted from
each other.

» Since each scan takes a few minutes, the resulting
“Doppler difference” has a variable time delay At
between the two constituent Doppler plates: At is
smallest at the edge where the scanning direction
was reversed and increases linearly from there.

» A periodic velocity field on the Sun manifests itself as
a periodically changing intensity contrast.

Fig. 5.1. Doppler-
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difference plate for the

I
At (5) s Ball line A = 455.4nm.

From Leighton et al.
(1962)

Measurement procedure

In order to extract reliable statistical information from a Doppler plate without
undue amounts of calculation, a device (Fig. 2) was built which carries out the opera-
tions involved in evaluating auto-correlation (A-C) and cross-correlation (C-C) funec-
tions over a two-dimensional field. The two-dimensional A-C function C(s, £) is de-
fined by

C(s,i)z%ffT(my)T(x«l»s,y+£)dA=K(T(x,y)T(x+s,y-|»t)),

where A is the area, T(x, ¥) is the transmission of the plate at the point (x, y), K'is a
normalization constant, and the integration area is made sufficiently great that fluctua-
tions due to the boundaries are negligible. To obtain the A-C function over a given
area A, two copies of the plate are made, in a right- and left-handed pair, so that they
may be placed in register with their emulsions in contact, On one plate, the entire area
except for the area of interest is masked off. The plates are fixed to separate frames,
which are placed in a holder in such a way that their emulsions are in contact and in
register. A motor drive slides one plate slowly past the other. Collimated light is passed
through the two plates and is brought to a focus on the photocathode of a photomulti-
plier tube. When the plates are displaced an amount s in the x-direction and ¢ in the
y-direction, relative to each other, the photomultiplier records C(s, ¢). In practice, ¢ is




Discovery of solar oscillations

* 1962: R.Leighton, R.Noyers and G.Simon

discovered 5-min oscillations

4. The vertical velocities exhibit a striking repetitive time correlation, with a period T = 296 + 3
sec. This quasi-sinusoidal motion has been followed for three full periods in the line Ca ) 6103, and is also
clearly present in Fe X 6102, Na X 5896, and other lines, The energy contained in this oscillatory motion is
about 160 T cm3; the “‘losses” can apparently be compensated for by the energy transport (2).
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First explanation

» Atmospheric oscillations excited by
granular impacts (acting like pistons).
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Characteristic frequency of the
atmospheric oscillations:
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Where c is the sound speed, H is the
pressure scale height
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Discovery of a modal structure

003

* In 1969 Frazier developed
computer analysis of Doppler

+ images and calculated first k-

omega diagram, where k (or

ky,) is the horizontal
/f/—@ wavenumber; 1=2n/k is the
A=

Ik[0Zk™) B horizontal wavelength.
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+ It showed two oscillating
modes.

* This contradicts to the

interpretation that the
oscillations are atmospheric.
* He suggested that the

oscillations are excited below
the surface.
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Fig. 3a—d. Observed diagnostic diagrams. Fig. 3a, b, ¢, and ¢

* 1970: Roger Ulrich developed a theory of
subsurface oscillations and predicted the ridge
(modal) structure of 5-min oscillations

The most important finding of this study has been that the S-minute oscillations
are overstable and are capable of supplying the energy lost through radiation in the
chromosphere and corona. Also important is the result that the oscillations should be
confined to distinct lines on the diagnostic (&4, w)-plane. These lines have not yet been
found because of poor resolution in ks and w. The double peak observed by Frazier
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002 Resonant solar modes: n=1,2,3,4

— number of the nodal point along
the radius.
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Detection of the ridge structure

«  For the solar oscillations the important
fact is that the power is not evenly
distributed in the k,-w plane, but instead
follows certain ridges.

* Each of these ridges corresponds to a
fixed number of wave nodes in the radial
direction.

« The ridges theoretically predicted by
Ulrich (1970) were first observed by
Deubner (1975) with the Domeless

* Coude Telescope at Capri.

« Figure 5.4 shows an example, where up
to 15 ridges can be identified in the
velocity power spectrum.

Fig. 5.4. Ridges of p and f modes
in the ky,w-plane (contours of equal
power), and eigenfrequencies of a theo-
retical solar model (dotted curves). Af-
ter Deubner et al. (1979)

Search for global modes:
160-min oscillations

Fig. 2 The best fit for the fluctuations from visual inspection of the records obtained during first 9 d of observations. Fach point is the
S-min integrated signal of radial velocity (top). Averaging this gives the sine-like curve shown
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* In 1976, Severny, Kotov and Tsap observed the Doppler-shift difference between the
central part of the solar disk and the whole disk and detected global-Sun variations with
period of 160.01 min. The result was confirmed by 3 other groups. However, no
explanation was found. The period was very close to 1/9 of day.

« This led to suggestions to perform helioseismology observations from space.




Measurements of Line Shift.
Doppler Compensator.

The Doppler compensator is a
glass plate which is inclined to
balance signals in the line wings
recorded by two photomultipliers.
It is used in magnetographs. The
angle « is proportional to the line
shift A4, = Av/c. From this we

can determine the line-of-sight
velocity v.

a0y

Resonance-Scattering Spectrometer.
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This is a very accuitate method developed for obs(ebr)ving global oscillations
of the Sun in sodium line. The vapor cell with external magnetic field
provides signals of the light scattered in two wings, which are measured by
a photomultiplier. The difference of these signals is proportional to the
Doppler shift.

MAG.
FIELD
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Resonance-scattering spectrometer- GOLF

instrument on SOHO (Global Oscillations at Low Frequencies)

lens L1

O
/4. _\- solar image
polariser P1 pmm

filter Navapour cell
1i4 wave plates raagnetic
QP1 QP2 o l.}}zsa'aon
b S ” ; -
t
M0 lens L2
ll\ I il ! ! =y —‘\E‘ap
- ] T —

" -
magne %E?g?l photoraultipliers

5000 G magnetic field

Discovery of global 5-min
oscillations

Power (ms~')2 mHz"!

In 1979 using a new method of
resonant spectroscopy
Claverie et al observed the
Doppler shift of the Sun as a
star, and discovered the
discrete modal structure of the
5-min oscillations.

[ N N N R
b The peaks of the global solar

oscillation are equidistant in

1
oL f
2 3
Frequency (‘lltz)
arge frequency
©1979 Nature Publishing Group .
separation
Fig. 5
days of data obtained at Izana on 4 and 5

August 1978. b, Power spectra of the same data
after subtraction of indicated discrete

the power spectrum.

It was theoretically predicted
a, Power spectra of two consecutive by Vandakurov (1968)

frequencies.
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Low-degree p-modes
z(n+ L2+ )

o ¢
That is the spectrum of low-degree p-modes is approximately equidistant with

For [ <<n, =0, and we get:

-1
frequency spacing:  Av = ( 4 .[OR ﬂj .
c

}_;g L L T T L T (T Maximum amplitude
TOTomomomom is around 3,300 pHz,
0 or 3.3 mHz. The
08l corresponding
g oscillation period is
Q oer | 300 seconds or 5
g Ll minutes.
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Fig. 5.8. Power spectrum of low-degree solar oscillations. From observations of
G. R. Isaak and collaborators, obtained in 1981 over three months at Tenerife and
Hawaii. Top lines: theoretical identification. From Leibacher et al. (1985)

Problem of identification of normal modes
(1979-1983)
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Fig. 5.8. Power spectrum of low-degree solar oscillations. From observations of
G.R. Tsaak and collaborators, obtained in 1981 over three months at Tenerife and
Hawaii. Top lines: theoretical identification. From Leibacher et al. (1985) 0014 hey.. !
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For determining the internal structure of the Sun it
is important to identify the observed oscillations
as the normal modes with 3 “quantum” numbers:
angular degree, |, angular order, m, and radial
order, n.
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The radial order identifications
of low-degree modes

mature voL sz s maren s * [N 1983, using observations
made at the South Pole Duvall
and Harvey were able to link
the high- and low-degree
modes, and identified the
radial orders in the global
oscillation spectrum.

+ It turned out that the observed
oscillation frequencies closely
correspond to the mode
frequencies of the standard

-0 solar model that predicted high
- neutrino flux.

» Therefore, helioseismology

Frequency (mHz)

0 25 80 15 100 135

Spherical harmonic degree showed that the solution of the
Fig. 2 Spectrum of solar oscillations in the degree range 0-139 SO|ar ne.UtrIno prOblem IS Wlthln
and the frequency range 1,416 to 5,583 pHz. The frequency the part|C|e phySICS.

resolution has been degraded to 8 uHz.

* NASA Solar Physics Exploration Seminar
(April 10, 1991).
— Speaker: Douglas Gough

1/21/2022
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Solar and Heliospheric Observatory (SOHO) makes
continuous
observations

of the Sun since 1996.

1/21/2022 http://sohowww.nascom.nasa.gov/ 27

Michelson Doppler Imager
(MDI)
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MDI provided Doppler images every minute with resolution 256x256
pixels uninterruptedly, and with resolution 1024x1024 pixels for 2
month a year.
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MDI principle

Mich Tune: —40. mA The Michelson Doppler

oF E Imager (MDI) on SOHO and
o8k E Helioseismic and Magnetic
04f E Imager (HMI) on SDO are
02 1 examples of the Fourier
oo > Transform  Spectrometer.
1o MiCh.T“”:e: _120. mA : MDI measures [(A) at 5
o8 3 positions across the line (Ni I
Zi: 3 6768A) , and HMI measures
ok /\ ] at 6 positions for Fe 1
0.0k (6173A).

Lyot and Michelson The advantage of these type
oBE : E of measurements is that there
gj: / 3 is no need for a narrow
oz > : N 3 entrance  slit of  the

6767 6768 6769 spectrometer.

Fig. 7. MDI’s principle of operation. The lower panel shows the individual profiles of the
Lyot filter (dashed line) and the channel spectrum of both Michelsons in series (solid line).
The upper panels illustrate the situation for two of the four nominal Doppler tunings. The
solid line represents the resulting instrument transmission profile for the corresponding
tuning position with respect to the 6768 A line profile (dotted line).

Solar oscillation movie from MDI

15



MDI discoveries
| Uhttp://soi.stanford.edu

 Differential rotation: near-
surface shear layer,
tachocline, torsional
oscillations

» Subsurface
supergranulation and large-
scale flows (“Solar
Subsurface Weather”)

+ Structures and flows
beneath active regions.

» Sunquakes

» Changes of the meridional
circulation with solar cycle

+ Far-side imaging

Time-distance
helioseismology

4 Aremarkable discovery was
made by Tom Duvall in 1993 that the
travel times of the solar waves can be
measured by using a cross-covariance

function of the stochastic wave field:
Te— Integration time

w(r.A) = [ f(Lr) [ (t+7,r+N)dt

or C(¢;¢) \ 0 \\

Oscillation signal (Doppler velocity, intensity
etc) at two points on the Sun’s surface

Time Distance

16



Global helioseismology estimates Time-distance helioseismology
frequencies of normal modes measures travel time delays and wave
from oscillation power spectra phase shifts from cross-covariance:

CObservational Time-Distance Diagram

300

200

time, min

e 0 50 100 150
1/24/2022-00 0 60( 00( distance, deg

Time-distance helioseismology

Measures travel times of acoustic or
surface gravity waves propagating
between different surface points
through the interior. The travel
times depend on conditions, flow
velocity and sound speed along
the ray path:

kS n-U
or = —lg{ds—l%s

1/21/2022
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Subsurface imag

Sound speed beneath sunspot

Sunspot data from MD! High Resolution, 18 June 1998

e of a sunspot

An image of the sound speed below a sunspot
derived from dopplergrams observed with the
Michelson Doppler Imager onboard the Solar and
Heliospheric Observatory spacecraft using the
technique of time-distance helioseismology.
Three planes are shown, on top the intensity at
the surface which shows the sunspot with the dark
central umbra surrounded by the somewhat
brighter, filamentary penumbra.

The second plane is a vertical cut from the surface
to a depth of 24000 km showing areas of faster
sound speed as reddish colors and slower sound
speed as bluish colors.

The sound speed is affected both by the
temperature of the gas and the magnetic field,
which we know to be strong in the sunspot at the
surface. The normal increase of sound speed with
depth in the sun has been subtracted so that we
are only looking at deviations from the average.
The third plane (bottom) is a horizontal cut at a
depth of 22000 km showing the horizontal
variation of sound speed over a region of
150000x150000 km.

Solar Dynamics

Observatory

(launched on February 11, 2010)

AlA

Focal Plane Assembly

1SS Beam-splitter.
Assembly

Limb Sensor Assembly

ISS Pre-Amp
Electronics Box

Camera Electronics Box
Telescope Asserbly
Primary Lens Assembly
Front Window Assembly

Front Door Assermbly

SOLAR ARRAYS

&\ Optical Characteristics

3
P
Focal Ratio: 7354

HIGH-GAIN ANTENNAS

Effective Focal Length: 495 cm
Telescope Clear Aperture: 14 cm

Final Image Scale: 24 um / arcsec
Re-imaging Lens Magnification: 2
Focus Adjustment Range: 16 steps of 1 mm

Fold Mirror Asserbly

BDS Beam-splitter
Assembly

Michelson Interferometer
Alignment Mechanism
Filter Oven Assembly
Lyot Filter Assermbly
Oven Controller E-Box
Focus Mechanism

1SS Mirror Assernbly
Hollow Core Motors

\ Secondary Lens Assembly

Structure

Filter Characteristics
Central Wavelength: 617.3 nm
Reject 99% Solar Heat Load
Bandwidth: 0.0076 nm

Tunable Range: 0.05 nm

Free Spectral Range: 0.0688 nm

Mecharical Characteristics
Box 0.84x 055 x0.16m
Over All 119 x0.83 030 m
Mass: 42.15 kg

First Mode: 73 Hz

Helioseismic and Magnetic Imager (HMI) provides uninterrupted 4096x4096-

pixel Doppler images every 45 sec.

The MDI observation program was terminated on 12 April 2011




HMI principle

1.0 T

0.8

0.6

0.4

Normalized Intensities

0.2

-0.5 0.0 0.5
Wavelength (A)

Six tuning positions of the HMI
instrument on Solar Dynamics
Observatory (SDO) are shown
here with respect to the Fe |
6173A solar line at disk center
and at rest.

During observations the line
profile is shifted due to the
surface motions and spacecraft
orbital velocity (Doppler effect),
and also the line split in
magnetic field (Zeeman effect).
These line changes are used to
measure the Doppler velocity
and magnetic field strength.

Solar Dynamics Observatory

Anterma Boors

Helioseismic and Magnetic Imager (HMI)

- Full-disk Dopplergrams and magnetograms
Atmospheric Imaging Assembly (AlA)

— Full-disk images of the chromosphere and corona
Extreme Ultraviolet Variability Experiment (EVE)

— EUV solar irradiance

Geostationary orbit for uninterrupted
observations of the Sun.

http://hmi.stanford.edu/
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Ground-based helioseismology
networks: GONG since 1995

1/21/2022 39
https://gong.nso.edu/

Ground-based helioseismology
networks: GONG since 1995

1/21/2022 40
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Asteroseismology

v Indus

oot

Bedding & ¥
Kjeldsen & ]
(2003) ;
; o Centauri A E
The Sun ;
T NN DRI FORIN ol ]
0.1 1.0
Frequency (mHz)
Asteroseismology missions
16 Asteroseismology observations and space missions
Project Status D FOV my  Number Noise
or Launch (in cm) (in deg x deg) of stars  (in ppm?pHz” 1)
PRISMA  Phase A 40 15x 15 <8 2000
STARS Phase A a0 1 x1 <8 2500
Eddington  Phase B 120 5x5 <11 2000 6
MOST 2003 15 04x 04 <6 <6 5.7
CoRoT 2006 25 1x1 <7 10 1.7
Kepler 2009 95 105 x 10.5 <12 1300 17.6
PLATO 2026 67 47 x 47 <11 85000 4.2
TESS 2018 10 23 x 90 <12  5x10° 7.6
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Power speciral density [ppmlutiz]

Stellar oscillations

Solar-type stars

Red giants

KIC 8006161

KIC 12069424

KIC 6442183

Power spectral density [pp/uHz]
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Lecture 2
Observations and basic
properties of solar oscillations.

Oscillation power spectrum.

(Stix, Chapter 5.1; Kosovichev, p.3-13;
Christensen-Dalsgaard, p. 5-24)

First explanation

» Atmospheric oscillations excited by
granular impacts (acting like pistons).
0 Ao Tat? f: ] i Characteristic frequency of

the atmospheric
oscillations:
C
O=—"
A T 2H
- & Where c is the sound speed, H is
3 & 0 : the pressure scale height

2
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Detection of the ridge structure

«  For the solar oscillations the important
fact is that the power is not evenly
distributed in the kh, w-plane, but instead
follows certain ridges.

» Each of these ridges corresponds to a
fixed number of wave nodes in the radial
direction.

« The ridges theoretically predicted by
Ulrich (1970) were first observed by
Deubner (1975) with the Domeless

« Coude Telescope at Capri.

« Figure 5.4 shows an example, where up
to 15 ridges can be identified in the
velocity power spectrum.

Fig. 5.4. Ridges of p and f modes
in the ky,w-plane (contours of equal
power), and eigenfrequencies of a theo-

.10 ! retical solar model (dotted curves). Af-
ey (Mm™"] ter Deubner et al. (1979)

Problem of identification of

normal modes
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Fig. 5.8. Power spectrum of low-degree solar oscillations. From observations of
G.R. Tsaak and collaborators, obtained in 1981 over three months at Tenerife and
. Top lines: theoretical identification. From Leibacher et al. (1985) 0014 hey.. !

kp, [Mm™)

For determining the internal structure of the Sun it
is important to identify the observed oscillations
as the normal modes with 3 “quantum” numbers:
angular degree, |, angular order, m, and radial
order, n.




The radial order identifications
of low-degree modes

mature voL sz s maren s * [N 1983, using observations
made at the South Pole Duvall
and Harvey were able to link
the high- and low-degree
modes, and identified the
radial orders in the global
oscillation spectrum.

+ It turned out that the observed
oscillation frequencies closely
correspond to the mode
frequencies of the standard
solar model that predicted high
neutrino flux.

o o * Therefore, helioseismology
Spherical harmonic degree showed that the solution of the

Fig. 2 Spectrum of solar oscillations in the degree range 0-139 SOlar neUtrIno prOblem IS Wlthln

and the frequency range 1,416 to 5,583 pHz. The frequency the pal"ticle phySiCS.
resolution has been degraded to 8 uHz.

Frequency (mHz)

0

Global helioseismology estimates frequencies of normal modes
from oscillation power spectra

1/21/2022 0 200 400 600 800 1000 6




The nature of solar oscillations

Acoustic and surface gravity waves stochastically excited by turbulent convection
in the upper convection zone.

1/21/2022 7

Granule disappears

Uz (8.7 Mm} Uz (0 Mm)

lcant
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prllz Flux

Kinetic flux

— k3 L = L0

— Mg Gl s D

Excitation sources are stochastic: rapid
downdrafts in dark intergranular lanes

-
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Sr. 8l ar ' er e
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Seismic response to solar flares —
“Sunquake”

100 Ny BT

50

-50

High-energy flare particles heat the solar chromosphere generating a shock
propagating downward and hitting the surface.
1/21/2022

Enhanced images of the flare
ripples on the Sun’s surface

10¢ —100  —a0

Compare with water ripples

1/21/2022




time

Time-distance diagram of the flare seismic
response calculated by averaging the wave
front over 360 degrees

The propagation speed
of the seismic wave:

V=§(distance)/5(time)

increases with time from
10 km/s to 100 km/s.

/W ‘ag

Why?

0 20 40 60 80 100 120

distance, Mm

Propagation of acoustic waves on
the Sun

The wave front on the
surface accelerates
because it is formed

by acoustic waves
propagating through the
solar interior where the
sound speed is higher.




The basic idea of helioseismology

« To measure travel times T or resonant frequencies m,
and to determine the internal properties of the Sun, such
as the sound speed c(r)

1/21/2022 13

Time-distance helioseismology

» Using the time-distance
diagram one can measure
the travel time of acoustic
waves for various
distances, and then infer
the sound speed along the
wave paths.

» Can we measure the travel
times by using the
stochastic wave field
continuously generated by
the turbulent convection?




Time-distance
helioseismology

4 Aremarkable discovery was
made by Tom Duvall in 1993 that the
travel times of the solar waves can be
measured by using a cross-covariance

function of the stochastic wave field:
Te— Integration time

w(r.A) = [ f(Lr) [ (t+7,r+N)dt

or C(s¢) 0 \\

Oscillation signal (Doppler velocity, intensity
etc) at two points on the Sun’s surface

Time Distance

Time-distance helioseismology measures travel time delays and
wave phase shifts from cross-covariance:

Observational Time—Distance Diagram

300

250

200

time, min
on
=}

100

0 50 100 150
distance, deg
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Time-distance helioseismology

Measures travel times of acoustic or
surface gravity waves propagating
between different surface points
through the interior. The travel
times depend on conditions, flow
velocity and sound speed along
the ray path:

_jﬁﬁds j(i)d

1/21/2022

Solar oscillations.

4 Observations_ 200 30 15 13"'3“% 6 5

« Theory of p-, g-, and Lk
r-modes.

» Excitation
mechanisms.

* Oscillations of solar-
type stars.

Oscillation power spectrum from
Solar and Heliospheric Observatory !




=20, m=16

1/21/2022

Normal Mode of Solar Oscillations —
displacement eigenfunction: 8r(r,0,0)=&(r)*Y,(6,4)

Single Dopplergram

(30-MAR-95 19:54:00)

-2500. 2000, -1500. -1000. -500. 0. 560, 1000. 1500. 2000
Velogity (m/s)

SCIfMDI Stanford Lockheed Instituta for Space Research

The rotation speed of the solar surface is 2km/s.
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Average Dopplergram Minus Polynomial Fit
45 images averaged (30-Mar-96 19:26 to 30-Mar-98 20:17)

-700.-600.-500.-400.-300. 200 -100. 0. 100. 260. 360 400. 500. 600, 700
Velogity (m/s)

SCIfMDI Stanford Lockheed Instituta for Space Research

Dopplergram of Solar Oscillations

Single Dopplergram Minus 45 Images Average
(30-MAR-96 19:54:00)

MDI single Dopplergram minus an
average solar velocity image
observed over 45 minutes reveals
the surface motions associated with
sound waves traveling through the
Sun’s interior. The small scale light
and dark regions represent the up
and down motions of the hot gas
near the Sun’s surface. The pattern
falls off towards the limb because
the acoustic waves are primarily
radial.

-500. -400. -300. -200. 0.

-100. . 100. 200. 300. 400. 500.
Velocity (m/s)

SOl /MDI Stanford Lockheed Institute for Space Research
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ATAA NI AARA A sample of solar oscillations
A L M et A AAAA A P

A V\AMM%MW observed as a function of time
o A and position on the disk
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Power spectrum of solar
oscillations

Velocity of oscillations v(x, y,#) can be represented in terms of its Fourier components:

a(k,.k,, o) = Hj v(x,y, t)ei(k*HkJ’y +a”)a’xa’ya'l‘,

where &, and k, are components of the wave vector, @ is the frequency.

The power spectrum is:  P(k,,k,,®) = a"a, where a’ is complex conjugate.

If there is no preference in the direction of the wave propagation then P depends on two

. . 2 2
variables, the horizontal wavenumber kh = kx + ky , and frequency.

Then, we calculate the angular average in the k-space:

2z
P(k,,w) = i j P(k, cos ¢,k sin g, w)dg
0

This is a local power spectrum. It allows us to investigate properties of various regions
observed on the solar disk.
Consider example using IDL code: power_spectrum.pro.
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3D Power Spectrum

Spherical harmonic transform

For the global oscillations we must use the spherical coordinates (r,(b4
and expansion in terms of spherical surface harmonics:

o0 /
wO,4.0=3 a, (D" (0.
1=0 m=-1
In the spherical coordinates, 6,¢:

a(l,m,w) = j j j v(6,4,1)Y," (6, $)e™ dOd L,
where Y]m (H, ¢) = B‘m‘(g)eiw is a spherical harmonic of the angular degree / and

angular order m , le (0) is an associate Legendre function.

Degree [ gives the total number of node circles on the sphere; order m is the number nodal
circles through the poles.

13



Single Harmonics

(=0 cos(me) P;"(cos 6)

(=1 D .\ =
o : y (=10
; : m=>

IS oM

{=2 U | N ..

3 - .\ .’ Y

=3 /@ @ @ W
m=0 m=1 m=2 m¥3

Degree [ gives the total number of node circles on the
sphere; order m is the number nodal circles through the
poles.

Spherical harmonic power spectrum

The coefficients of the spherical harmonic expansion can be found by using
the spherical harmonic transform:

a(l,m,w) = m W0, 4,0)Y"(0,)e” dOd pdt,

where Ylm (9 5 ¢) is a spherical harmonic of the angular degree / and angular order m .

The power spectrum is:
P(l,m,w)=aa.

For a spherically symmetrical star, P depends only on / and @.
In this case the power spectrum is ‘degenerate’ with respect of angular order m .

Then we can define the analog of the horizontal wavenumber:

JII+1)

k=N
R

We will derive this in a future lecture.

» where R is the solar radius.

14



Oscillation power spectrum

8

The power spectrum represents
the oscillation signal in terms

of spherical harmonics of
angular degree / (and the
horizontal wavelength, ),
=2r/k,, ), and the oscillation
“cyclic” frequency, v=0/2n.

[ is integer number
A, is measured in Mm
v is measured in mHz
o is measured in rad/sec

(sometimes called angular
frequency)

13753 mode frequencies from MDI full-disk data (E.Rhodes & J.Reiter)

Power spectrum of
solar oscillations
obtained from the
MDI data. Black
points are mode
frequencies
determined from the
power spectrum.
The lowest ridge is
the surface gravity
wave (f-mode). The
upper ridges are
acoustic (p) modes.

frequency, mHz

0 200 400 600 800 1000
angular degree,

15



Low-Degree (Global) Modes
When the Sun is observed as a star (integrated whole-disk Doppler-shift
measurements) the power spectrum consists only of low-degree p-modes
of /=0,1,2 and 3.
soor COLF Fourier spectrum : . The distance between main
peaks in the power
© spectrum is about 68 xHz.
< The corresponding time:
+ 1/(68:10%)=245 min is
the travel time for acoustic
| waves propagate through
the center of the Sun to the
- - far side and come back.
oonoa|- - The low-degree mode
provide information about
meﬂm mm“m“; physical conditions of the

Power (a.u.)

1500 2000 2500 3500 4000 450C

solar core.

This figure is a Fourier spectrum of the longest continuous GOLF time series
(805 days). GOLF is an instrument on SOHO that measures the oscillations in
the line-of-sight velocity of the solar photosphere from the whole Sun. These
oscillations appear at precise frequencies, visible as sharp peaks in this
spectrum, mainly around 3mHz, corresponding to periods about Smin.




Lecture 3
Basic questions of helioseismology
Oscillation power spectrum.

(Stix, Chapter 5.1.2-5.1.4; Kosovichev, p.11-17;
Christensen-Dalsgaard, p. 5-24)

L

~

8.

Basic questions of

helioseismology
What are the chemical composition and
thermodynamic conditions inside the Sun?
How fast is the internal rotation of the Sun?
Is there meridional circulation inside the Sun?
What is the structure of solar convections?
What is the source of solar magnetic fields?

How are the magnetic active regions and
sunspots formed?

What is the cause of the instability of magnetic
fields and mass eruptions?

How can we predict the periods of high solar
activity?

1/21/2022




Internal structure

» Variations of the sound

+ Convective instability. speed detected by
- Convective energy helioseismology
transfer.

* Non-standard solar
models.

» Solar neutrinos,
neutrino transitions,
MSW effect.

Global Helioseismology

+ Variational principle
* Perturbation theory.

* Inversions, sound
speed and rotation
inferences.




Local Helioseismology

Local-area Subsurface structure of sunspot

helioseismology

Ring-diagrams N

5

Acoustic imaging o
Time-distance ‘
tomography.

Subsurface structure and
dynamics.

Far-side |mag|ng lllustration of far-side imaging of active regions

Meridional circulation.
Emerging magnetic flux.
Active region dynamics.

[0307_00h
N




Convection.

3D numerical simulations of solar

° GranUIation, granulation
supergranulation,
giant cells.

* Near-Surface Shear
Layer.

* Rotational and
magnetic effects.

* Numerical
simulations.

Differential rotation.

Rotation rate inside the Sun
determined by helioseismology

nHz days

460;25.2

440 —26.3

» Oblateness, quadrupole
moment, test of the
general relativity.

* Models of differential
rotation.

» Rotation of solar-type
stars.

400T— 289

380 30.5

360 32.2

340 34.0




Dynamo theory.

* Mean-field Animation of the solar dynamo
electrodynamics.

* Alpha- and Omega-
effects.
* Dynamo models.

« 3D MHD
simulations.

Zonal acceleration reveals patterns of
dynamo waves

Zonal acceleration, dV/dt (10'8mlsj’)8 "

Measurements of the zonal L0
acceleration revealed zones
of deceleration, caused by 0.8
internal magnetic fields (blue
areas in the movie). Ui
0.6 s
The flow deceleration s
originates at the base of the & N
solar convection zone, 0.4F \‘
200 Mm beneath the solar \ ’
surface, at about 60 degrees % %é |
latitude. 0.2/ v
I| ]
1
0.0 . . .
This is the primary seat 0.0 0.2 0.4 0.6 0.8

of the solar dynamo. r/R




Sunquakes

Sunquakes — helioseismic waves

» Energetic particles. excited by solar flares

« Thin- and thick-target
models, chromosphe 100
evaporation, heat
conduction. 50§

 Radiative and MHD
shocks. g

=50

Power spectrum of solar
oscillations

Velocity of oscillations v(x, y,7) can be represented in terms of its Fourier components:
i(kx+k,y+ot)
alk,.k,,@) = [[[v(x,p,00¢" " dxdyat,

where k_ and k, are components of the wave vector, @ is the frequency.

The power spectrum is:  P(k,,k,,®)=a a, where a’ is complex conjugate.
If there is no preference in the direction of the wave propagation then P depends on two

. . 2 2
variables, the horizontal wavenumber kh = kx + ky , and frequency.

Then, we calculate the angular average in the k-space:

2z
P(k,, )= i [ P(k, cos g,k sin g, )d
0

This is a local power spectrum. It allows us to investigate properties of various regions
observed on the solar disk.
Consider example using IDL codepower_spectrum.pro.




3D Power Spectrum

Spherical harmonics

For the global oscillations we must use the spherical coordinates (r,(9
and expansion in terms of spherical surface harmonics:

) /
w(0.6.0=2 > a,(1)Y"(0.4)
1=0 m=—-1
In the spherical coordinates, &,¢:

a(l,m,w) = m v(0,4,0)Y" (6, $)e™ sin(0)dOd gL,
where Y/m (9, ¢) = P;‘ml(e)eimj is a spherical harmonic of the angular degree / and

angular order m, P, (49 ) is an associate Legendre function.

Degree [ gives the total number of node circles on the sphere; order m is the number nodal
circles through the poles; m=-1,-/+1,...,I-1, | that is (2/+1) m-values on m for given /.




Spherical harmonics

The coefficients of the spherical harmonic expansion can be found by using
the spherical harmonic transform:

a(l,m,w) = j j j W(0,8,0)Y" (0,4)e sin(0)dOd pdt,

where Ylm (9 > ¢) is a spherical harmonic of the angular degree / and angular order m .

The power spectrum is:
P(l,m,w)=a"a.

For a spherically symmetrical star, P depends only on / and @.
In this case the power spectrum is ‘degenerate’ with respect of angular order m .

Then we can define the analog of the horizontal wavenumber:

L Jid+
h_T

We will derive this in a future lecture.

» where R is the solar radius.

Oscillation power spectrum

» The power spectrum represents
the oscillation signal in terms
of spherical harmonics of
angular degree / (and the
horizontal wavelength, ),
=2m/k,, ), and the oscillation
“cyclic” frequency, v=0/2n. .

[ is integer number
A, is measured in Mm
v is measured in mHz
o is measured in rad/sec

(sometimes called angular
frequency)




—__ . .
Cyclic frequency V = 2 1s often used as frequency variable.
Because only a hemisphere of the Sun is observed in the power spectrum
for a given mode of target /,m beside peaks corresponding to this mode

peaks of other modes appear (so-called ‘mode leaks’). The spherical
harmonics are not orthogonal on a hemisphere.

Mode leakage matrix

For the global oscillations we must use the spherical coordinates (v,(34
and expansion in terms of spherical surface harmonics:
0 !
w0,4.0=2 > a,, (DY (0.4)
I'=0 m'==1"
The coefficients can found by applying spherical harmonic transform:

a, (f) = j j v(0,4,1)Y" (6, $)sin 0dOdp,

where the integral is calculated over the whole sphere. In this case because the spherical
functions are orthogonal the integral will give the exact coefficients, because

[[7 .87 0.9)5in 00004 = 8,5,
Q

However, the oscillations are observed only in one hemisphere the orthogonally is not
satisfied, and the spherical harmonic transform gives a combination of the a-coefficients:

0 I

a,,(t) = Z Z lr'rzl,maz'm' (),

I'=0 m'=-1'

where S lr”ll h= _” Yl’m 3 ¢)Ylm (0,4)sin 0dOd ¢ is the “mode leakage matrix”

hemisphere

The mode leakage complicates the analysis of the observed spectra.




13753 mode frequencies from MDI full-disk data (E.Rhodes & J.Reiter)

Power spectrum of
solar oscillations
obtained from the
MDI data. Black
points are mode
frequencies
determined from the
power spectrum.
The lowest ridge is
the surface gravity
wave (f-mode). The
upper ridges are
acoustic (p) modes.

frequency, mHz

0 200 400 600 800 1000
angular degree,

Power (0.u.)

Low-Degree (Global) Modes

When the Sun is observed as a star (integrated whole-disk Doppler-shift

measurements) the power spectrum consists only of low-degree p-modes

of /=0,1,2 and 3.
[ ‘ GOUF Fourer specirum . The distance between main
peaks in the power
b © spectrum is about 68 xHz.
i < The -corresponding time:
I - 1/(68:107%)=245 min is
i ~ the travel time for acoustic
I . waves propagate through

| the center of the Sun to the
- - far side and come back.
oonoa}- - The low-degree mode

| provide information about
| ‘\ . . 1 1 1 1 Uidiisi . physical conditions of the
2500 F,Equ:,iayu(“yz) 3500 4000 450C solar core

0.0000 Ll \L;AJ.JAJ
1500 2000

This figure is a Fourier spectrum of the longest continuous GOLF time series
(805 days). GOLF is an instrument on SOHO that measures the oscillations in
the line-of-sight velocity of the solar photosphere from the whole Sun. These
oscillations appear at precise frequencies, visible as sharp peaks in this
spectrum, mainly around 3mHz, corresponding to periods about Smin.
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Asteroseismology

L v Indus
i kckonbiebaall

& Hydrae

by

Bedding & ¥
Kjeldsen &
(2003)
é o Centauri A é
; The Sun ;
L YT S Y SOVt RO Jujlmlm. ]
0.1 1.0
Frequency (mHz)
10000, Excitation of Solar
Oscillations
© 000 l Solar  oscillations  are
! randomly excited by
0 b allk sl Ml turbulent convection. The
3350 3390 3430 3470 random excitation
v (uHz) function  appears  as
multiplicative noise in the
10005 power  spectra.  This
. represents  the  most
= :
: 5000 serious problem  for
a measuring mode
b wi frequencies. This figure
O bttt TR
shows examples of good
4020 4060 4100 4140 4 i ¢
v (uH?) and poor fits of an

Power spectra of A) [ =50,m =—-32,n =12 and B)

[1=50,m=0,n=16.

oscillation model to the
power spectra.
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Elements of signal processing

Forward and inverse Fourier transform

F() = [ x()e™di

o =2xf
1 ® o~ io [ . e
x(t) = —j F(w)e”'dw e’ = cos wt+isin ot
2 77
X
* L] L4 ¢ .
| ] | | | | >
I | | | | | | ;
=0 j=1 j=2 j=3 j=4 j=N-1T
Sample rate, f: fo=1/1At1
Duration T, number of samples N, Nyquist frequency:
f\'T = N’ fNyquixt = f‘x / 2
Time index j: Frequency resolution:
t, = jAt; j=0,1,2,..N - 1; Af =1/T
Frequency index k:
fi=k/T; [T =k; k=0,1,2,..N -1

G. Mendel, LIGO-G1200759

Discrete Fourier Transform (DFT)

N-1 1 N-1
~ —2rzijk/ N _ ~ 2rijk/N
.xk = E .xje .xj =— xke

]:0 k=0

The DFT is of order N? operations.
The Fast Fourier Transform (FFT) is a fast way of doing the DFT, of order Nlog,N.

DFT Aliasing

f—=>-f X=X
f = fEmf; Xy = X3 Xy =%
Useful Band : [0, frpquise ] = & =[0, N /2]

Power outside this band is aliased into this band. Thus need to filter data before
digitizing, or when changing f, to prevent aliasing of unwanted power into this band.

12



Parseval’s Theorem

N-1 ) 1 N-1 N-1 1 N-1
~ ~ K
‘x/‘ Z|xk| ijyj N X Vi
Jj=0 NS =0 k=0

Correlation Theorem

~ %

:ijyj+j' C =X Vs
j=0
Convolution Theorem

N-1
Cj.=ijyj._j C,=x)
j=0

One-sided Power Spectral Density (PSD)

Estimation
2<|)zk|2>m2 2<|;zk|2>Az z<|xk|2>
P = = =
¢ T N Nf,

The absolute square of a Fourier Transform gives what we
call “power”. A one-sided PSD is defined for positive
frequencies (the factor of 2 counts the power from negative
frequencies). The angle brackets, < >, indicate “average
value”. Without the angle brackets, the above is called a
periodogram. Thus, the PSD estimate is found by averaging
periodograms. The other factors normalize the PSD so that
the area under the PDS curves gives the RMS? of the time
domain data.

13



Power Spectral Density of Gaussian White Noise

(m)=0; <‘”/‘2>:ﬁz‘”f‘2:o"2

j=0

o 1 N-1 o N-1 . 2 5
()= SIf =Xl [ =No
k=0 j=0

2(Jf ) ar 20,2 :
P = |k| :2NO' At 2262At=2i
T T f,
N/2 N/2 2 2
ZB{A,}”:ZZO- lzﬁ2a =0 °— Area = RMS?
=0 i f, T 2 N

For Gaussian white noise, the square root of the area
under the PSD gives the RMS of time domain data.

Amplitude and Phase of a spectral line

2rift;+ig, —27ift . ~ig,
‘ +e

2

. ~ AN i, If the product of fand T is an integer k, we call
fT =k > X, = T e say this frequency is “bin centered”.

x; =Acos2z ft, +¢,) = A4

For a signal with a non- bin-
centered frequency, power leaks out
into the neighboring bins.

%=0.2"Cos(2°pi*300.15*); {,=1000 Hz; T = 10

For a sinusoidal signal with a “bin
centered” frequency, all the power lies in
one bin.

10 ¥=0.2"Cos(Z"pi*300.1°0; ,=1000 Hz; T = 10's
®

10

2
I
e - v w b o @ N @ w
(

4
10 / /
P ~—
2
o 100 200 300 400 So0 600 700 600 800 1000 10
frequency iHz)

0 100 200 300 400 SO0 600 700 800 800 1000
frequency (Hz)
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PSD Statistics

7 =x+ iy Gaussian noise with 2 degrees of freedom:

‘5‘2:x2+y2; if <x>=<y>=0;<x’>=<y’ >=1
P(x, y)dxdy = Le_)‘z/2 Le_yz/zdxafy

A 27 N2
r=+x>+y*;¢=tan"'(y/x);dxdy — rdrd ¢

1 Rayleigh Distribution:
P(r,¢)drd¢ = 2—re"2/2drd¢; P(r)dr =re” *dr
T

Chi-squared for 2 degrees of freedom:

p= rz;%dp =rdr;  P(p)dp= %e‘p”dp

1200

Histograms of Real and Imaginary Parts of DFT

x=4.0"randn(1,N3; N=10000 ®=4.07randn(1,N); N=10000
1500 1500
1000 1000
s00 s00
a a
-1000 -500 [ s00 1000 -1000 -s500 [ 500 1000
real(mp imag(mes

Histogram DFT Power — a chi-squared
Rayleigh Distribution distribution for 2 degrees of freedom.

-4 0°Fandn(1 N); N-10000; mean(amplitude)-356 %=40*randn(1,N); N=10000; mean(power)= 161470
: T T : T 3500

3000

2500

2000

1500

1000

500

0 200 400 600 800 1000 1200
amplitude=[(m] powrer=|(fft(x)P s
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10000 A
o
= 5000 l -
N
\ Il
0k | I T N L
3350 3390 3430 3470
v (uH2)
1000 B
o
= 500 -
[al
\1 ““ }‘ ‘!‘If \\ l‘" fank I
(O AT T
4020 4060 4100 4140
v (uH7)

Power spectra of A) [ =50,m =—-32,n=12 and B)

[=50,m=0,n=16.

Excitation of Solar
Oscillations

Solar oscillations are

randomly excited by
turbulent convection. The
random excitation
function  appears  as

multiplicative noise in the
power  spectra.  This
represents ~ the  most
serious  problem  for
measuring mode
frequencies. This figure
shows examples of good
and poor fits of an
oscillation model to the
power spectra.

Modeling the oscillation power spectrum

Consider a harmonic oscillator with damping driven by a random forcing

d*x dx

function: a’ ydt

Solution:

+ayx=f(f)
x(t) = jf;h(f) F(t—tat'

where A(t) is the impulsive response function for f(t)=65().
Using the convolution theorem, the Fourier transform

of the solution: X(@) = hf

We find Fourier transform of the response function

—a)zl;—iy/a)l;-i-a)él;:l h=

~ 1

1

2 2 .
Wy — 0" —iyw

~ 1
WP
L

If yr<o |h [

INw)=

Lorentzian line profile:

A

2
a)—a)oj

y/2

Q) (@,—0) +(712)

1|
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Sample spectrum and true spectrum

We compute the power spectrum of a finite realization of x(t) of
length T - asample spectrum C, (@),

At frequencies separated by 1/T, the values of C,(®) are
independent and distributed as chi-squared with two degrees of
freedom.

We can define the spectrum of x(1) as:
L.(6) = limE[C] ()]

where E is the expectation operator, an average over many
independent realizations.

For a white noise, this is just a constant. As for the white noise, the
ratio (at a given frequency) of the sample spectrum divided by the
true spectrum is distributed as chi-squared with two degrees of
freedom.

Maximum likelihood

The probability density of the sample spectrum C; at a given
frequency &; is:
P(C)=—-exp(=C, /T))

i

The maximum likelihood technique is used to estimate the model
parameters of a spectral line. It consists of maximizing the joint
probability function:

P= Hp(C,.) =exp—[(InI, +C, /T))]

where C; is the sample spectrum,

r-—4 4

| 1+(w"_w°]2
y/2
is the Lorentzian profile plus background noise. This equivalent to
minimizing
M[A,0,,7,r1=-) [(InT,+C,/T))]

17



Example: analysis of global-Sun

oscillations from GOLF

* GOLF (Global Oscillations at Low Frequencies)
observes the Sun-as-a-star from SOHO
spacecraft.

 Calculate the power spectrum using the GOLF
data from April 11, 1996 to 2018
(22 years with 95% duty cycle).

* The data are available in the class webpage:
http://sun.stanford.edu/~sasha/PHYS747

Resonance-Scattering Spectrometer.

FILTER
POLARIZER

|

1
ELECTRO-OPTIC
MODULATOR

VAPOR CELL

S(N)
] O e /\
PHOTO - x
MULTIPLIER

This is a very accuitate method developed for obs(ebr)ving global oscillations
of the Sun in sodium line. The vapor cell with external magnetic field
provides signals of the light scattered in two wings, which are measured by
a photomultiplier. The difference of these signals is proportional to the
Doppler shift.

MAG.
FIELD

18



Resonance-scattering spectrometer- GOLF

instrument on SOHO (Global Oscillations at Low Frequencies)

filter Navapourcell
1i4 wave plates raagnetic
QP1 QP2 o 1}.}zsa'aon
A i -
t
MmN £ lens L2
ll\ I il ! ! —\t_rap

lens L1

polariser P1 pmm

S
solar image

ragnet

5000 G magnetic field

%E?g?l photoraultipliers

power

6x107°

4x107°

2x107°

GOLF Power spectrum, 1996—-2018

v(mHz)
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GOLF Power spectrum, 1996—2018

2.0x107°F -
1.5x107%F -
: [ 1=2,n=13 1=0n=14 j
= i ]
2, 1.0x10°° N
5.0%10" |- -
l
2.080 2.085 2.090 2.095
v(mHz)
=0, n=14, v=2.09351+ 0.00003 mHz
2.0x10°¢| -
1.5%10°°F -
g i 1
R 1.0x107° -
5031077 - .
I | l 0L I A A i A.Lﬂ M'J‘mn..hLu il

2.09256 2.0930 2.0935 20940 2.0945 2.0950
v, mHz
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GOLF Power spectrum, 1996—-2018

0.020 -

0.015
L i
G-) |-
% i
2 0.010F

0.005

I " YT PR  ARTO .‘.uu.l.khﬁ.MALUJJMMM“MJ“.IMLL..u".‘.i..d L e e s
=2.092 2.094 =2.096
v(mHz)
GOLF Power spectrum (smoothed)

0.004 |- =

0.003 [ ]
- F 3
Q C ]
3 B ]
C r ]
=0 0.002 - =

0.001F =

2.092 2.094 2.096
v(mHz)




Rotational frequency splitting

The modes with m # 0 represent azimuthally propagating waves. The
modes with m >0 propagate in the direction of solar rotation and, thus,
have higher frequencies in the inertial frame than the modes m < 0 which
propagate in opposite direction. As a result the modes with fixed »n and /
are split in frequency: Av, =v, —Vv,,. Thus, the internal rotation is

inferred from splitting of normal mode frequencies with respect to the
azimuthal order, m .

z iot yrm . m img+icot
E o e”Y"(0,6) = a,, - P (O)e
- displacement of the solar surface in solar modes

V= / 2 T Vv is cyclic frequency, measured in Hz
- The oscillation period is 1/v (in sec, min, etc).

o is the angular frequency, measured in rad/s

Cyclic frequency V = 2 1s often used as frequency variable.
Because only a hemisphere of the Sun is observed in the power spectrum
for a given mode of target /,m beside peaks corresponding to this mode

peaks of other modes appear (so-called ‘mode leaks’). The spherical
harmonics are not orthogonal on a hemisphere.
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Angular order, m
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Illustration of the frequency
shift due to the solar rotation

Typical power spectra of solar
oscillation data from the MDI
instrument on SOHO. Each
horizontal curve shows three
lines of the power spectrum for
different azimuthal order m
with radial order » =15 and
angular degree /=19,20, and 21
(from left to right). The slope of
the modal lines is due to the
rotational frequency shift:
prograde modes with positive

m have higher frequencies than
retrograde modes with negative
m.

log(Py)

Line Asymmetry and Pseudo-

modes

Velocity and intensity spectra from SOHO/MDI

Power spectra of / =200 modes
obtained from SOHO/MDI
observations of

i Velocity power spectrum

. pseudo-modes.

a Doppler velocity,
b continuum intensity.

Acoustic waves with frequencies

ling asymmetry

below the cut-off frequency are
completely reflected by the surface
layers because of the steep density
gradient. These waves are

trapped in the interior, and their

Intensity power spectrum

© revérse lineiasynimetry | G

frequencies are determined by the
resonant conditions, which depend
on the solar structure. But the waves

b)

i non-adiabatic modes:

with frequencies above the
cut-off frequency escape into the
solar atmosphere.

Above this frequency the power

spectrum peaks correspond to so-
called “pseudo-modes”
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log(P)

log(Py)

Line Asymmetry and Pseudo-

modes

a)

Velocity and intensity spectra from SOHO/MDI

i Velocity power spectrum

. pseudo-modes.

J

ling asymmetry
; ;

3.0
2.5
2.0
1.5
1.0

0.5

b)

i revérse line:asynimetr

Intensity power spectrum

Power spectra of / =200 modes
obtained from SOHO/MDI
observations of

a Doppler velocity,

b continuum intensity.

The line asymmetry is apparent,
particularly, at low frequencies. In
the velocity spectrum, there is more
power in the low-frequency wings
than in the high-frequency wings
of the spectral lines. In the intensity
spectrum, the distribution of power
is reversed.

The asymmetry is the strongest for
the f-mode and low-frequency p-
mode peaks. At higher frequencies
the peaks become more
symmetrical, and extend well above
the acoustic cut-off frequency:

o, ~5-5.5 mHz.

24



Lecture 4

Excitation of solar oscillations.
Line asymmetry and pseudo-modes.

(Stix, Chapters 5.1 and 5.4; Kosovichev, p.13-17)

Projects

Power spectrum: Ivan Oparin

Global modes from GOLF: Sheldon Fereira
Oscillation model, line asymmetry: Bryce Cannon
Power maps, acoustic halo: Bhairavi Apte
Time-distance helioseismology: Sadaf Igbal Ansari

Observational sensitivity of solar/stellar oscillations. Leakage
matrix:

Ray paths, travel times:
Propagation diagram for solar and stellar models:
Analysis of sunquakes:




Solar oscillations are stochastically
excited by turbulent convection

Power spectrum of solar oscillations

Velocity of oscillations v(x, y,7) can be represented in terms of its Fourier components:
i(kx+k,y+ot)
alk,.k,,@) = [[[v(x,p,00¢" " dxdyat,

where k_ and k, are components of the wave vector, @ is the frequency.

The power spectrum is:  P(k,,k,,®)=a a, where a’ is complex conjugate.
If there is no preference in the direction of the wave propagation then P depends on two

. . 2 2
variables, the horizontal wavenumber kh = kx + ky , and frequency.

Then, we calculate the angular average in the k-space:

2z
P(k,, )= i [ P(k, cos g,k sin g, )d
0

This is a local power spectrum. It allows us to investigate properties of various regions
observed on the solar disk.
Consider example using IDL codepower_spectrum.pro.




3D Power Spectrum

Spherical harmonics

For the global oscillations we must use the spherical coordinates (r,(9
and expansion in terms of spherical surface harmonics:

) /
w(0.6.0=2 > a,(1)Y"(0.4)
1=0 m=—-1
In the spherical coordinates, &,¢:

a(l,m,w) = m v(0,4,0)Y" (6, $)e™ sin(0)dOd gL,
where Y/m (9, ¢) = P;‘ml(e)eimj is a spherical harmonic of the angular degree / and

angular order m, P, (49 ) is an associate Legendre function.

Degree [ gives the total number of node circles on the sphere; order m is the number nodal
circles through the poles; m=-1,-/+1,...,I-1, | that is (2/+1) m-values on m for given /.




Spherical harmonics

The coefficients of the spherical harmonic expansion can be found by using
the spherical harmonic transform:

a(l,m,w) = j j j W(0,8,0)Y" (0,4)e sin(0)dOd pdt,

where Ylm (0 > ¢) is a spherical harmonic of the angular degree / and angular order m .

The power spectrum is:
P(l,m,w)=a"a.

For a spherically symmetrical star, P depends only on / and @.
In this case the power spectrum is ‘degenerate’ with respect of angular order m .

Then we can define the analog of the horizontal wavenumber:

L Jid+
h_T

We will derive this in a future lecture.

» where R is the solar radius.

Oscillation power spectrum

8 7

» The power spectrum represents
the oscillation signal in terms
of spherical harmonics of
angular degree / (and the
horizontal wavelength, ),
=2m/k,, ), and the oscillation
“cyclic” frequency, v=0/2n. .

[ is integer number
A, is measured in Mm
v is measured in mHz
o is measured in rad/sec

(sometimes called angular
frequency)




Rotational frequency splitting

The modes with m # 0 represent azimuthally propagating waves. The
modes with m >0 propagate in the direction of solar rotation and, thus,
have higher frequencies in the inertial frame than the modes m < 0 which
propagate in opposite direction. As a result the modes with fixed »n and /
are split in frequency: Av, =v, —Vv,,. Thus, the internal rotation is

nlm nlm

inferred from splitting of normal mode frequencies with respect to the
azimuthal order, m .

z iot yrm . m img+icot
E o e”Y"(0,6) = a,, - P (O)e
- displacement of the solar surface in solar modes

V= / 2 T Vv is cyclic frequency, measured in Hz
- The oscillation period is 1/v (in sec, min, etc).

o is the angular frequency, measured in rad/s

m

Angular order,

Ilustration of the frequency
shift due to the solar rotation

Typical power spectra of solar
oscillation data from the MDI
instrument on SOHO. Each
horizontal curve shows three
lines of the power spectrum for
different azimuthal order m
with radial order » =15 and
angular degree /=19,20, and 21
(from left to right). The slope of
the modal lines is due to the
rotational frequency shift:
prograde modes with positive

m have higher frequencies than

oM _m\/'\ ]
O S ST i i
20 [t rencmssensmrse b st B retrograde modes with negative
3040 3060 3080 3100 3120 m.

Frequency, puHz




log(P)

Line Asymmetry and Pseudo-modes

3.0
2.5
2.0
1.5
1.0
0.5

Velocity and intensity spectra from SOHO/MDI

i Velocity power spéctrum

pseudo:modes,

J

ling asymmetry

Intensity power spectrum

© reveérse lipeiasynimetry |

‘ndn-adiabatic modes:

adiapatic modes '

b)

)
w
o~
W
o
-
o0

Power spectra of / =200 modes
obtained from SOHO/MDI
observations of

a Doppler velocity,

b continuum intensity.

Acoustic waves with frequencies
below the cut-off frequency are
completely reflected by the surface
layers because of the steep density
gradient. These waves are

trapped in the interior, and their
frequencies are determined by the
resonant conditions, which depend
on the solar structure. But the waves
with frequencies above the

cut-off frequency escape into the
solar atmosphere.

Above this frequency the power
spectrum peaks correspond to so-
called “pseudo-modes”

log(P)

log(Py)

Line Asymmetry and Pseudo-modes

3.0
2.5
2.0
1.5
1.0
0.5

Velocity and intensity spectra from SOHO/MDI

i Velocity power spéctrum

pseudo:modes,

ling asymmetry

Intensity power spectrum

\ revérse lipeiasynimetry |

‘ndn-adiabatic modes:

adidpatic modes '

b)

)
w
o~
W
o
-
o0

Power spectra of / =200 modes
obtained from SOHO/MDI
observations of

a Doppler velocity,

b continuum intensity.

The line asymmetry is apparent,
particularly, at low frequencies. In
the velocity spectrum, there is more
power in the low-frequency wings
than in the high-frequency wings
of the spectral lines. In the intensity
spectrum, the distribution of power
is reversed.

The asymmetry is the strongest for
the f-mode and low-frequency p-
mode peaks. At higher frequencies
the peaks become more
symmetrical, and extend well above
the acoustic cut-off frequency:

v, ~5 mHz.




Physical interpretation

* Hydrodynamic equations

* Waves in the solar atmosphere: interpretation of
acoustic cut-off frequency

» Excitation of solar oscillations: interpretation of
modes, pseudo-modes and line asymmetry

Hydrodynamic Equations

Basic assumptions:

1. linearity: v/c, <<1

2. adiabaticity: dS/dt =0

3. spherical symmetry of the background

4. magnetic forces and Reynolds stresses are negligible
The basic equations are conservations of mass, momentum, energy and
Newton’s gravity law.
1. Conservation of mass (continuity equation):
The rate of mass change in a fluid element of volume V' is equal to the mass
flux through the surface of this element (of area 4):

0
= j pdV:—j pﬁd&:—j V(pv)dV. _
Then, o ) ) \ /pV

6_,0+ V(p) =0, divergence y
ot v

or

——+ pVv =0.
dt r




2. Momentum equation (conservation of momentum of a fluid

—

element): p% =-VP+ pg,

where P is pressure, g is the gravity acceleration.

v ov . .. . o
Also, d_‘t} = @ + (v-V)v. This is the 'material' derivative.

ov, ov,
+v, —+v, for v, component
ox Oy Oz

X

eg. v,

3. Adiabaticity equation (conservation of energy) for a fluid

element:
d(PY o . dP_.dp
dt\ p” dt dt

where ¢® = yP/p is the adiabatic sound speed. Finally,

oP _ 2(0p -
—+(V-V)P=c"| —+(-V)p |
5 TV (at ( )pj

Waves in the solar atmosphere:
initial state

Initial (hydrostatic) state:

X R _
ox 2920
Equation of state defines pressure in terms of

temperature, density and molecular weight:
2=2.74x10% cm/s?
T=6000 K M

where M is the molecular weight.

For non-ionized hydrogen gas £ =1, for fully
ionized hydrogen gas 4 =0.5. Because of
ionization the number of particles increases by 2

photosphere (ionstelectrons). R is the gas constant.

_x RT
Then, F,(x) = P(0)e “ where H :5 is the

pressure scale height.




Waves 1n the solar atmosphere:
initial equations

2=2.74x10* cm/s?

T=6000 K

photosphere

Continuity (mass conservation) equation:

op O
_p + ﬂ — O
ot Ox
Momentum equation:
o dv _ opP 2p
d ox
Velocity v can be expressed in terms of displacement
dg
& of fluid elements: V= E

Adiabaticity equation:
a—P+va—P—c2 (a—p+va—p): 0,
ot Ox ot Ox

y P

2
where € = 7 in the squared adiabatic sound speed.

Waves in the solar atmosphere:
linearized equations for small perturbations

2=2.74x10% cm/s?

T=6000 K

photosphere

Consider small perturbations:

pP=pytp, P=R+H,

0
v=v,+v, v,=0, v =—§
Ot
Continuity (mass conservation) equation:
a/01 + a100‘}1 =0
ot Ox
Momentum equation:
p B op
Yoo ax T

Adiabaticity equation:

6Pl+v ok, _62(5,01 %)20.

Lty =L L4y
ot ox ot ox




Waves in the solar atmosphere:
dispersion relation

Eliminating 0;, £7,V; we find that displacement & satisfies
the second-order PDE:

x 0E_ 0% 08
or ox’ ox’
using the substitution # = &£exp(ax) we eliminate the first-
2=2.74x10* cm/s? order term:
0*u _ 0*u o’u
T=6000 K o o e Us
where @, = is the acoustic cut-off frequency.

2c

For the dispersion relation we seek the solution in terms of
Fourier harmonics: # o€ exp(—iat + ikx) :

photosphere —0'u=—c*k’u - wlu

& =’k + o

The frequencies of plane-parallel acoustic waves traveling in
the atmosphere are higher than the acoustic cut-off frequency.

Waves in the solar atmosphere:
calculation of the acoustic cut-off frequency

w, = };—g is the acoustic cut-off frequency.

e
We assume that the Sun’s material is ideal gas with
¥ =5/3 and molecular weight 2.

The solar composition by mass is: 73% of H, 25%

=2 74x10% cm/s? of He, and 2% of heavy elements (C, O, Fe, Ni,...):
' X=0.73, Y=0.25, Z=0.02.

T=6000K When temperature is high (in the solar interior or

corona) the gas is fully ionized, and:

1

=—=0.6
2X+3Y+47

U

photosphere For non-ionized (or weakly ionized) gas (in the

photosphere and chromosphere):

1

=——=1.25
X+iv+4LiZ

Y7

10



Equation of state for solar composition
The pressure in the solar interior can be described by the ideal gas law:

P =nkT,

where k is the Boltzman constant and 72 is the particle density.
n=n,+n, +n,+n,

where 7, is the particle density of atom heavier than helium.

The particle density can be expressed in terms of fractional mass
abundances of hydrogen, X , helium, Y , and heavier elements, Z , such
as

X+Y+Z7Z=1.
_pX _pPY _pZ

Then, n s Ny, = , n,=

oM AaMT Y AM
where M is the proton mass, A is a mean mass of the heavy elements
(typically, A =16).

For fully ionized plasma (in the deep interior of the Sun or the corona):
1
n,=n, +2n,, +5Anz

Then

1 yo, 3 1+ A/2
n=2n,+3n, +1+—An, =—|2X+—-Y+——-—7
H He ( 2 ) A M( 4 A j

o nxPloxs3yilz]
M 4" "2

Finally, P =nkT =£pT(2X+§Y+lzj :M’
m 4 2 u
1
2X+3Y+1Z°
For pure hydrogen plasma, X=1, Y=7=0: £1&0.5.

where (¢ is the mean molecular weight: 1 =

11



For weakly ionized plasma (in the photosphere and chromosphere):
n,~=0

Yo, 1 1
Thenn=n, +n, +n,=—| X+—Y+—~2/
en H He 7 M( 4 4 J
oo nxPlxilyilz]
M 4 16
Finally, P:nszﬁpT X+1Y+LZ =M,
m 4 16 Y7,

where (4 is the mean molecular weight:

1
X+1ivy+Lz’

IL[:

Waves in the solar atmosphere:

calculation of the acoustic cut-off frequency
g

@, = 2 is the acoustic cut-off frequency.

In the photosphere: ) = 5/3, u=1.25
¢=2.74x10* cm/s?

oo [T p_ReT
T=6000 K P ’ H ’
RT
c= |75 £8.1%10° em/s ~ 8 ks,
7
photosphere v =, /27 =18 ~4.5x10° Hz = 4.5 mHz
4rc

The corresponding period 1/v, = 3.6 min.

12



Waves in the solar atmosphere:
measurements of the acoustic cut-off frequency

270 - Vv

X [ I
—180 ‘
g=2.74x10* em/s? 4 e—
=90 mm‘ It
© . L I
a 7 LY
/ LY
L po———— ‘
T=6000 K ] 1 ]
1 I
1 !
-90 l
0 5 v [mHz] 10
Ad Fig. 5.3. Phase difference,

Ao, of oscillations measured
in two lines originating deep
photosphere (Fel, . = 593.0nm) and
high (Na I, A= 589.6 nm) in
the solar atmosphere, as a
function of frequency. After
Staiger (1987)

Excitation of solar oscillations

* The primary source is turbulent convection. The basic
idea is that parcels of gas moving back and forth
during their convective motion provide perturbations
that lead to acoustic waves. However, the precise
mechanism is still not known. Numerical simulations
provide interesting examples.

* Formally we may describe such an oscillator by an
equation of type of the atmospheric wave equation
except that the right-hand side is not zero, but a given
(stochastic) function of frequency, the forcing
function.

13



Excitation sources are stochastic: rapid

Granule disappears ) i
downdrafts in dark intergranular lanes

Uz (8.7 Mm} Uz (0 Mm)

5 1
4 : ]

3 « b

2 l Intensity darkens . »
! = Velocity Pulse: up/down

Ve Vph Vph Ve e ..-) ‘-.,J ...

ar.ar ar e e I L 3 T
- - y
.ul-t"n"-l"f,.-@' T’ Bt B &
Tl

L

lcant
S AL

— k3 L = L0

prllz Flux

— Mg Gl s D

Kinetic flux

12340 12345 12343 12343 1
1

2345 12345 12345 12345
t=—1.5 min t=-0.5 min t=050 min t=1.50 min t=2

A0 min t=3.50 min  t=4.50 min t=5.50 min

Excitation of solar oscillations

* Kumar and Lu (1991) proposed a simple model where the forcing is
concentrated to a single surface, at » = re Although the excitation is not
stochastic in this model, the model illustrates some principle aspects of the
solar oscillations.

» Consider the wave equation with a forcing function:

ou  , 0
gr_pLs
or o’
and seek a solution in the form of Fourier harmonics:

- a)fu + f(x,1)

u(x,t) = [i(x,0)e " dt

. . - d*i .=
Then, for ii(x,w) we obtain: —@’i = ¢’ e @'t + f(x,0)

d 211 o -
or — g =——f(x,w
de c* f( )
We consider a solution for a localized source function in the form of a delta-
function: 6(r —r,) at all frequencies.
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Simple analytical model of solar oscillations:
excitation by a localized source located beneath
the surface

+ “Potential well model” Py o -
2 2 —u = f(l’)
dr c
(V) . —
Interior Excitation Atmosphere f(l’) = 5(1’ - I’S)
force 0
T Calculate
: the Green’s
wave propagation | function.
: exponential decay
T
1
|
i )
ry a r
Solar radius

Simple analytical model of solar oscillations

» “Potential well model” , .,
du + 2%, =o(r-r,)
dr’ c? ’

Consider general solutions in 3 regions:

0<r<r,, r<<r<a, and r>a, and match the
0 Interior Excitation Atmosphere . . ..
forcg — solutions and their first derivatives at r=r;
C
; and r=q, e.g.
1
1
u U u —
. Because of the d-function the first derivate
r, a r  du/dr is discontinuous at r=r,. Indeed,
Solar radius

integrating the equation over a small

region around r; we find:
2 2 2
redu O — @ e rte
.[ dr + > ‘I udrz.[ o(r—r,)dr
rs—e

e du® c rye

dul| _du,

For & —» 0 we obtain: ar v dr |r3. =1

15



Simple analytical model of solar oscillations

» “Potential well model”

(O Interior Excitation Atmosphere

forcg [oN d 2u

I —
2
| dr
ul | u2 u3
]
|
1
0 r, a r

The general solutions in the three regions are:

w(x) = C} sin (27‘) = () sin (ar),
¢
where a = w/e.
uy(x) = Cysin(ar) + Cj cos(ar)
2

uz(x) = Cyexp (—wcfbﬂ(r - a)) = Cyexp(—S(r — a)),

where 8 = /w? —w?/c

+ 2 =5
C

Simple analytical model of solar oscillations

» “Potential well model”

(O Interior Excitation Atmosphere

forcg [oN d 2u

I —
2
| dr
ul | u2 u3
]
|
1
0 r, a r

Matching u and du/dr at r = r:

C sin(ar,) — Cysin(ar,) — Cs cos(ar,) = 0
a(Cq cos(ar,) — Cycosar, + Cysin(ar,)) = 1
we find: Cy = sin(ar,)/a.

+ 2 =5
C

Matching u« and du/dr at r = a:
Cysin(aa) + C cos(aa) = Cy
a(C; cos(aa) — Cssin(aa)) = —BC,
S sin(aa)
« '
The solution at the surface point r = a is:
sin(ar;)
acos(aa) + Bsin(aa)

we find: C3 = Cy ( cos(aa) +

ula,w) =Cy =

16



Simple analytical model of solar oscillations
* “Potential well model”

@ Interior Excitation Atmosphere
forci ®¢ dzu wz _ a)2
1 > + —2Lu = 5(7‘ - )
: dr C
U W2 U
]
I
1
0 r a g
r s Finally,
’ . (wrs)
csimm | —
gt i u(a,w) = c

wa = . /wa
wcos (—) + /w? — w?sin (—)
c c
8t E Asymmetrical line profile
(Nigam & Kosovichev, 1998):
2 2

(1+ Bx) 2+B .y

1+x
J where x=2(v-v,)/y,

5 10 15 20 o5 80 v:.a)/27r is the cyclic frequency,

© B is the parameter of asymmetry

absf®x(ise)

o ] r=4

Power spectrum for the model

4 7 ] Pseudo-modes are
caused by the
interference of waves
3F 7 coming directly from the
/q-mf E source and after the
g E reflection in the interior.
= 3 2 E This is so-called “source
% 3 resonance’. observing
I A | height
£ ! «|
1k Pseudo-modes 4 i .
L 1
o, :
1
1
5 10 15 20 25 30 ]
w ry a r

Line asymmetry




Reversal of the line asymmetry 1s
caused by correlated noise

wW
T
|

abs(G+noise)
N

Pseudo-modes 1

—
T T

il

Line asymmetry

The correlated noise is added to
oscillation signal and uncorrelated
noise is added to the oscillation
power, so that the observed power
spectrum has two types of noise:

P, (@)= u(@) + N, (@) [ +N,,,, (@)

corr

Correlated noise means that in the
observed oscillation signal in additions
to wave signal there is a component that
comes directly from the source. When
the solar oscillations are observed in
intensity the correlated noise may be
caused by changes of brightness of
granules during the wave excitation
events.

Measurement of the acoustic cut-off

frequency
* The acoustic cut-off frequency can be determined
from a sharp decrease of the mode peaks in the power
spectra (marking a transition from modes to pseudo-

modes).

* From a change in the peak separation. Example,
measurements from stellar oscillation spectra

(Jimenez et al, 2015).

18



AvPSD

Measurement of the acoustic cut-off
frequency (Jimenez et al. 2015)
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Fig. 1. Top panel: smoothed averaged power Fig. 5. Consecutive frequency differences of KIC 3424541. The blue
spectral density of four-day subserics of KIC dashed and dotted lines are the weighted mean value of the frequency
1F1)244118 Th Y dline i t}l’,l differences in the p-mode (20.75 + 0.20 4Hz) and pseudo-mode regions

- Ihe red line 1s the severe (37.31 + 1.58 uHz). respectively. The red symbol represents the esti-

smoothing used to normalize the spectrum. mated cut-off frequency, v, = 1210.67 + 15.70 uHz.

Oscillation power spectrum

8

The ridges of the k-omega
diagram are extended above the
acoustic cut-off frequency
because of the pseudo-modes
caused by interference of waves
excited by sources located just
beneath the solar surface.
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Homework and quiz

* Download problem set #1 from:
http://sun.stanford.edu/~sasha/PHY S747/Homework

* Due date: Oct.4
* Quiz #1: Monday, Sept.20

— Topics: properties of solar oscillations (period, amplitude,
ridge structure); observations of solar oscillations (Nyquist
frequency); excitation mechanisms; acoustic cut-off
frequency.
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Lecture 5

Oscillation power maps.
Magnetic field effects.
Numerical simulations of solar
oscillations.



Projects

Power spectrum: Ivan Oparin

Global modes from GOLF: Sheldon Fereira

Oscillation model, line asymmetry: Bryce Cannon

Power maps, acoustic halo: Bhairavi Apte

Time-distance helioseismology:

Ray paths, travel times: Sadaf Igbal Ansari

Propagation diagram for solar and stellar models: Ying Wang
Analysis of sunquakes: Youra Shin

Asteroseismic analysis: John Stefan

Observational sensitivity of solar/stellar oscillations. Leakage
matrix:

Asymptotic sound-speed inversion:



Recap of L1-4



Solar oscillations are stochastically

Characteristic oscillation period: 5 min, amplitude ~300 m/s



Power spectrum of solar
oscillations

Velocity of oscillations v(x, y,¢) can be represented in terms of its Fourier components:
i(k.x+k,y+ot)
a(k,k,, ) = j j j v(x, y,0)e’ T dedydt,

where k, and &, are components of the wave vector, @ is the frequency.

The power spectrumis: Pk k ,®)= a’a, where a is complex conjugate.

If there 1s no preference in the direction of the wave propagation then P depends on two

. : 2 2
variables, the horizontal wavenumber kh = kx + ky , and frequency.

Then, we calculate the angular average in the k-space:

27
P(k,,w) = i j P(k, cos@,k, sin g, w)d¢
0

This is a local power spectrum. It allows us to investigate properties of various regions
observed on the solar disk.
Consider example using IDL codepower spectrum.pro.



3D Power Spectrum




Spherical harmonics

For the global oscillations we must use the spherical coordinates (7,24
and expansion in terms of spherical surface harmonics:

o [
v(0,¢,6)=>. > a,(DY"(6,0)
[=0 m=-I
In the spherical coordinates, 6, ¢ :

a(l,m, o) = [[[v(0.4.0Y"(0.9)e" sin(0)d0d g
where Y;m (9, ¢) — Pl|m|(6))€im¢ 1s a spherical harmonic of the angular degree / and

angular order m , Bm (€) is an associate Legendre function.

Degree [ gives the total number of node circles on the sphere; order m is the number nodal
circles through the poles; m=-1,-I+1,...,I-1, [ thatis (2/+1) m-values on m for given /.



Spherical harmonics

The coefficients of the spherical harmonic expansion can be found by using
the spherical harmonic transform:

a(l,m, ) = j j j W0,8,0)Y" (0, $)e™ sin(0)dOd dt,

where Ylm ((9 ) ¢) 1s a spherical harmonic of the angular degree / and angular order m .

The power spectrum is:

P(l,m,w)=a’a.

For a spherically symmetrical star, P depends only on / and w.
In this case the power spectrum is ‘degenerate’ with respect of angular order m .

Then we can define the analog of the horizontal wavenumber:

. Jid+
" R

We will derive this in a future lecture.

» where R is the solar radius.



Oscillation power spectrum

The power spectrum represents
the oscillation signal in terms
of spherical harmonics of
angular degree / (and the
horizontal wavelength, 3,
=2k, ), and the oscillation
“cyclic” frequency, v=0/27.

[ 1s integer number
M\, 1s measured in Mm
v 1s measured in mHz
o 1S measured in rad/sec

(sometimes called angular
frequency)

\\\\\\\\\\



The basic idea of helioseismology

« To measure travel times Tt or resonant frequencies ,
and to determine the internal properties of the Sun, such
as the sound speed c(r)

1/21/2022 10



Normal Mode of Solar Oscillations —
displacement eigenfunction: or(r,0,$)=&(r)*Y,(6,0)

=20, m=16

1/21/2022

11



Power (a.u.)

Low-Degree (Global) Modes
When the Sun is observed as a star (integrated whole-disk Doppler-shift
measurements) the power spectrum consists only of low-degree p-modes

of /=0,1,2 and 3.

GOLF Fourier spectrum
T T T T T T

0.0010 T T T T T T T T T T T

0.0008 —

0.0006 —

0.0004 —

0.0002 —

o.oooo: TR ﬂl ‘|1 , A M“

llm11m1¢mj

1500 2000 2500 3000 3500
Frequency (uHz)

4000

450C

The distance between main
peaks in the power
spectrum 1s about 68 xHz.
The corresponding time:
1/(68-10°)=245 min is
the travel time for acoustic
waves propagate through
the center of the Sun to the
far side and come back.
The low-degree mode
provide information about
physical conditions of the
solar core.

This figure is a Fourier spectrum of the longest continuous GOLF time series
(805 days). GOLF is an instrument on SOHQO that measures the oscillations in
the line-of-sight velocity of the solar photosphere from the whole Sun. These
oscillations appear at precise frequencies, visible as sharp peaks in this
spectrum, mainly around 3mHz, corresponding to periods about Smin.
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Power spectra of A) [/ =50,m =-32,n =12 and B)

[=50,m=0,n=16.

Excitation of Solar
Oscillations

Solar  oscillations are
randomly excited by
turbulent convection. The
random excitation
function  appears  as
multiplicative noise in the
power  spectra.  This
represents the most
serious  problem  for
measuring mode
frequencies. This figure
shows examples of good
and poor fits of an
oscillation model to the
power spectra.



Elements of signal processing

Forward and inverse Fourier transform

fo)= | x()e ™di

- w = 2xf
x(t) = —J‘ x(w)e'dw e'” = cos wt +isin wt
T —0
1
°
¢ ° ° °
| | | | | |
I  E R B f
Sample rate, f: fo=1/At
Duration T, number of samples N, Nyquist frequency:
fsT:N; fNyquist:fs/z
Time index j: Frequency resolution:
tjszt; j=0,1,2,...N —1; Af =1/T
Frequency index k:
f, =k /T; T =k; k=0,1,2,..N -1

G. Mendel, LIGO-G1200759



log(P)

Line Asymmetry and Pseudo-
modes

Velomty and 1nten51ty spectra from SOHO/MDI

\

Veloczty power Spectrum

pseudo-modes

line asymmetry

‘;‘
= i i 1

adiabatic modes

b)

T[T [rrr] \\\\‘\\\\‘\\\\‘\\AHH‘\HHHH‘H HHH‘HHH\H‘HHH
[ [ o
r r N

A e
;In}tertszly power spectrum

reverse . line asymmetry

inqm adzabatlc modes

| <

¢

[E—

Power spectra of / =200 modes
obtained from SOHO/MDI
observations of

a Doppler velocity,

b continuum intensity.

Acoustic waves with frequencies
below the cut-off frequency are
completely reflected by the surface
layers because of the steep density
gradient. These waves are

trapped in the interior, and their
frequencies are determined by the
resonant conditions, which depend
on the solar structure. But the waves
with frequencies above the

cut-off frequency escape into the
solar atmosphere.

Above this frequency the power
spectrum peaks correspond to so-
called “pseudo-modes”



Waves 1n the solar atmosphere:
dispersion relation

g=2.74x10* cm/s?

T=6000 K

photosphere

v

Eliminating p,, B,v, we find that displacement & satisfies
the second-order PDE:

0’ 0’ 0

—f: — c2 _f — yg_f ,

ot ox ox
using the substitution u = ¢&exp(ax) we eliminate the
first-order term:

2 2
ou _,0u

— =" ——-wu,
ot’ ox> ¢
where o, = Z—g is the acoustic cut-off frequency.
c

For the dispersion relation we seek the solution in terms
of Fourier harmonics: u oc exp(—iat + ikx) :
~w’u=—c"k’'u—a'u
2

o’ =k’ + @

The frequencies of plane-parallel acoustic waves traveling
in the atmosphere are higher than the acoustic cut-off
frequency.



Waves in the solar atmosphere:
calculation of the acoustic cut-off frequency

£

@, == 1s the acoustic cut-off frequency.
¥ 2
In the photosphere: ¥y =5/3, u=1.25
g=2.74x10* cm/s?
P RoT
oo [P p_ReT
T=6000 K p H
R
Y c= 122 d ~8.1x10° cm/s = 8 km/s.
u
v = /2r="5 ~45x10° Hz =4.5 mHz.
photosphere 4rc

N
7

The corresponding period 1/v,. = 3.6 min.



Simple analytical model of solar oscillations

e “Potential well model”

. Atmosphere
Interior Excitation P
forci (VI
|
|
|
U1 I U2 U3
I
|
_ L
rS a . r
s S Finally,
e u(a,w) =

abséBsDise)

2 2
W —w

2
du+ “u=0(r—-r,)

dr? ¢’

) Wrg
C S11
C

wa . /wa
W COS (—) + y/w? — w?sin (—)
C C
Asymmetrical line profile
(Nigam & Kosovichev, 1998):
2 2
F:A(1+Bx) 2+B np
I+x

where x=2(v-v,)/7,

v=w/2x isthe cyclic frequency,

B is the parameter of asymmetry




Power spectrum for the model

abstBsoise)

407

Pseudo-modes are caused by the
interference of waves coming

1 directly from the source and after
1 the reflection in the interior.

This is so-called “source resonance”’.

Line asymmetry

observing
A height

= Pseudo-modes - < |
L - I
§ ] |
5 A ] I
) ) ~

10 15 20 25 30 :

0 / re a r

Structural resonance



Reversal of the line asymmetry 1s
caused by correlated noise

o
\

abs(G+noise)
o0

Pseudo-modes

Line asymmetry

A O
| \ \ \
9] 10 15 20 25 30
CJ

The correlated noise is added to
oscillation signal and uncorrelated
noise is added to the oscillation
power, so that the observed power
spectrum has two types of noise:

Py (@) =lu(@) + N, (@) [ +N,,,, (@)

Correlated noise means that in the
observed oscillation signal in
additions to wave signal there is a
component that comes directly from
the source. When the solar
oscillations are observed in intensity
the correlated noise may be caused
by changes of brightness of
granules during the wave excitation
events.

http://sun.stanford.edu/~sasha/PHY S747/Projects/Simple oscillation_model




Oscillation power maps.
Effects of magnetic field.



Oscillation power maps

Magnetic field effects are displayed in the oscillation power
maps. These are calculated by performing Fourier transform for
each pixel, and averaging in different frequency intervals.

T

a(x,y,w) = jv(x, y,t)e " dt

0

P(x,y,w)=a a

http://sun.stanford.edu/~sasha/PHY S747/Projects/Power Maps/




Oscillation power maps for HMI
data of 09/06/16

http://sun.stanford.edu/~sasha/PHYS747/Projects/Power Maps/
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Using power maps to detect
emerging active regions

Power suppression in the oscillation power maps appears
prior emergence of active regions on the solar surface.

Example: AR 10488: in the frequency range 3-4 mHz the power 1n
the AR area was reduced 200 min prior the AR appearance ; outside
the AR area the signal remained constant.

(a) Acoustic power (2—3 mHz) (b) Acoustic power (3—4 mHz)

100 200 300 400 500 100 200 300 400 500
t [min] t [min]
(c) Acoustic power (4—5 mHz) (d) Unsigned Magnetic field

1.2f : - - 50 - - -
11
1.0 Ffins
09f
0.8F
0.7 . : . = 0 . : .

100 200 300 400 500 100 200 300 400 500

t [min] t [min]

Hartlep, T. et al. 2011 Solar Physics, Volume 268, Issue 2, pp.321-327



AR 9787, Ling-ol-51gn Magnetic Field

Magnetic field effects are revealed
in oscillation power maps

ﬂsclllﬂtmn Pﬂwﬂt’h‘L‘l]:l v=2.5-3.8 mIL: ﬂsclllﬂtmn Puwerh-m.p v 53—64 mIL:

50 100 150 200




Numerical simulations of solar
convection and oscillations.



3D radiative MHD simulations

* The mathematical model 1s based on first-
physics principles
* It takes into account all essential physical
Procecsscs.
— Conservation laws
— Maxwell equations
— Radiative energy transport

— Real-gas equation of state
* Models sub-grid scale turbulent dissipation



Numerical Model: Basic equations

The equations we solved are the grid-cell a"p

average conservation of mass: - (pu l) =0
opu.,
Conservation of momentum: Py (,Ou u.+ P, )
Conservation of energy: Eu,+Pu, —«T, +
OFE
—+ 2 1 — O
ot +( < j —(B,,-B,,)B,+F™
4r ) o ;
with P, (p+ 2,uukk : BkBkj&. —ufu,  +u, .)—LB.B_
3 872. y L] Jl 472. e
Conservation of magnetic flux: p(p.c)
O B o p denotes the average
l B —uB, (Bl ;—B j’l.) =0 mass density,
ot 4o y u,, the Favre-averaged velocity



“SolarBox” code: Basic characteristics of the code

AN NN

D N NI NN

3D rectangular geometry

Fully conservative compressible

Fully coupled radiation solver:

— LTE using 4 opacity-distribution-function bins
— Ray-tracing transport by Feautrier method

— 14 ray (2 vertical, 4 horizontal, 8 slanted) angular quadrature
Non-ideal (tabular) EOS

4th order Padé spatial derivatives

4th order Runge-Kutta in time

LES-Eddy Simulation options (turbulence models):
- Compressible Smagorinsky model

- Compressible Dynamics Smagorinsky model (Germano et a.,
1991; Moin et al, 1991)

- MHD subgrid models (Balarac et al., 2010)
MPI parallelization (plane and pencil versions)




Strategy of simulations

“quiet Sun”

uniform vertical weak
(0-1200 G) magnetic field

0.3 Mm
; Resolution:
1. 1283 (50% x 43 km)
5.5Mm 2. 2563 (25> x 21.7 km)
3. 5123 (12.5> x 11 km)
6.4Mm

6.4Mm



Magnetic field effects are explained by
changes 1n the excitation and interaction of
acoustic waves with magnetic field

&
10

Bz,=600

10"

scillation power (cm /s

0
=

0O 2 4 & & 10 12 0 2 4 & B® 10 12
2 vimHz) b vimHz)
The appearance of acoustic halo can be explained by changes in the
dynamics of granulations. In magnetic field granules becomes smaller
and faster and therefore excite high-frequency waves (Jacoutot et al,

2008)



Magnetic field effects are explained by changes in the
excitation (granulation properties) and interaction of

acoustic waves with magnetic field
Bzg=600 Bzg=1200___ vz (km/s)

e 0500
YEEE

-

-

Fi1G. 1.—Vertical velocity, Vz, and vertical magnetic field, Bz, distributions
at the visible surface for different initial vertical magnetic fields, Bz,




Magnetic field effects are explained by
changes 1n the excitation and interaction of
acoustic waves with magnetic field

1.2

Numerical simulations show that the power
reduction in sunspots can be explained by
suppression of acoustic sources.



“Quiet Sun” simulations
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Simulations of solar convection —Stokes I 4505.5A
(Kitiashvili et al, 2011)

{4504 5A } TOP
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Simulations of solar convection —Stokes I 4505.5A:
the line blue wing (Kitiashvili et al, 2011)

View at 60 degrees from the disk center reveals oscillations flowing
on top of the granulation

t= 0.00000 min




Observations of solar convection from Hinode
spacecraft in the photosphere (left — blue
continuum) and chromosphere (right — Call H line)




Observations of the individual acoustic events using

oscillation power maps
Goode et al., 1992
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The average excess power (v?)
in the neighborhood of more than 2000
seismic events (Goode et al, 1998)



Observations of the vortical structures

in photosphere (molecular G-bz(l&(}e)t et. al, 2008)

y [Mm]

-04 -02 00 02 04
X [Mm]

The vortex flows are created at the downdrafts where the plasma returns to the solar
interior after cooling down. It was detected because some magnetic bright points
follow logarithmic spiral in their way to be engulfed by a downdraft.

The G-band often shows bright points swirling around intergranular points where
several dark lanes converge. These motions are reminiscent of the bathtub vortex
flows predicted by numerical simulations of convection, and which are driven by the
granulation downdrafts.



Vortex tubes in the solar convection
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Vortex tubes dynamics:
images of vertical vorticity, curl(V)
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Excitation of individual acoustic waves

Density Vertical velocity




Excitation of individual acoustic waves when two
vortex tubes with opposite vorticity collide and partially
annihilate.

t= 0.00000

VorticityZ
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Excitation of individual acoustic waves due the vortex
annihilation

0.0 min 0.5 min 1.0 min
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fime, min

Examples of waves propagation
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distance, I\‘lm distance,—Mm dis tance,-Mm

Time-distance diagrams of the normalized density fluctuations show
inclined ridges, corresponding to acoustic waves. The slope of the ridges
corresponds to a mean speed of 7 — 14 km/s.



Process of annihilation of vortex
tubes
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Subsurface interaction of the vortices shown in at different stages: initial
structure of the vortices, closing-up stage, and after partial annihilation. Solid
and dashed isolines show the magnitude of the positive and negative vertical
vorticity (s).



Wave propagation in subsurface layers




Numerical simulation reveal the subsurface
structure of the oscillation modes

Resonant frequencies
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Lecture 6

Sunquakes

Propagation of acoustic waves excited
by impulsive localized source

The wave front on the surface
accelerates because it is formed
by acoustic waves propagating
through the solar interior where the
sound speed is higher.

The ray paths are perpendicular to
the wave fronts.




Seismic response to solar flares
(sunquakes)

100

50

-50

—100 -50

x,%hn
High-energy flare particles heat the solar chromosphere generating a shock
propagating downward and hitting the surface.

time

Time-distance diagram of the flare seismic
response calculated by averaging the wave front
over 360 degrees

The propagation speed
of the seismic wave:

V=§(distance)/5(time)

increases with time from
10 km/s to 100 km/s
because the sound
speed increases with
depth.

/W ‘ay

0 20 40 80 80 100 120
distance, Mm
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Energy transport in solar flares: thick-target model
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Field Lines
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High-pressure
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Exponential Downward Increase
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Standard model of solar flares
(Sturrock, Shibata et)

Magnetic reconnection Plasmoid
X-point
Conduction
Front

\ Reconnection Jet
Sl Hhog 77 Fast Shock

Flare ribbons expand
because the magnetic
reconnection regions

moves u
P chromosphere

Sunquake of January 15, 2005, X1.2 flare

15—-Jan—2005 00:30:00

T R B A

latitude, deg
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1v6é 1¥B 180 182 184 186
Carrington longitude, deg




January 15, 2005, X1.2 flare:
Magnetogram, soft and hard X-ray images

350

Soft X-ray source .
Location of the

initial impulse

300 of the sunquake

y, arcsec
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January 15, 2005, X1.2 flare:
Dopplergram and hard X-ray image
*;., 5 i = '“.... , T T

y, arcsec

Velocity source
(shock)

-200 -150 100 -50
X, arcsec




January 15, 2005, X1.2 flare: Doppler and

‘hard X-ray sources
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Anisotropy of sunquake waves

* The sunquake waves are anisotropic and
propagate mostly in the direction of the
expanding flare ribbons because they are
excited of moving sources associated with
series of pressure or momentum impulses

caused by energetic particles.

X17 flare October 28, 2003

latitude, deg




X17 flare October 28, 2003

28-Oct-2003

latitude, deg

source 3

source 1

20

P L | s,
282 284 286 288 290 292 294
Carrington flongitude, deg

Model of sunquakes with moving
source: wave interference effect




Great sunquakes of solar cycle 23

 July 23, 2002, X5.6

October 28, 2003, X17 — three events
October 29, 2003, X10

July 16, 2004, X3.6

January 15, 2005, X1.2 — last sunquake of
Cycle 23

No sunquake of comparable magnitude was
observed between 1996 and 2002.

Sunspot counts and X-flares during the
last three solar cycles.

o 10+ X-flares
¢ 3to 9 X-flares
o 1to 2 X-flares |

1501

100

50

sunspot number —=
1

1980 1985 1890 1895 2000 2005

Graphic courtesy David Hathaway, NASA/NSSTC.




Primary questions

sunquakes?
Can the hydrodynamic flare models explain sunquakes?

References
Sharykin, I. N. & Kosovichey, A. G. (2020), 'Sunquakes of Solar Cycle 24', Astrophys.J. 895(1), 76.

How frequent are sunquakes? What types of flares produce

What kind of flare perturbations can cause sunquakes?
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flares of the X-ray class greater than M1.0

1. Statistical analysis of sunquakes of Solar
Cycle 24

Catalog of Sunquakes of Solar Cycle 24
is obtained from analysis of HMI Dopplergrams of all

The catalog is available at http://sun.njit.edu
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94 flares among 507 flares of the X-
ray class greater than M1.0 were
seismically active.

There are many solar flares of
moderate class with strong
sunquakes, while in some powerful X-
class flares, helioseismic waves were
not observed or were weak.

During Solar Cycle 24, there were
several active regions characterized
by the most efficient generation of
sunquakes.
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Sunquakes of Solar Cycle 24

Sunquakes of Solar Cycle 24
L e

Sunquakes are associated with strong photospheric perturbations
observed by HMI in Doppler velocity and magnetic field data

One of the powerful sunquake of Cycle 24 was observed during X1.8 flare on 23 October
2012

Time-distance diagram

e
0 3 10 15 20 25 30
distance (Mm)

11



Most powerful sunquake of Cycle 24 was
observed during X9.3 flare on 6 September 2017

Sunquake energy correlates with impulsiveness of

the energy release
a)_2012.10.2:‘3‘x1.a. Total Acoustic Power in ROI73 g
3 S : e
. The sunquake total energy correlates
with the maximum value of the soft X-
ray time derivative better than with the
X-ray class (contrary to what one could
expect from the "big-flare syndrome"
idea). The impulsiveness of the energy
5 10 release plays an important role.
w e MBSO « The flares producing sunquakes are
ER 1 avanta 2o {0 co 2065 A more impulsive (shorter flare times and
T baer STy higher heating rate) compared to the
flares without sunquakes.
» The most evident difference between
distributions of the seismic and
nonseismic flares appears in terms of
1 the maximum values of the flare-energy
* ] release rate.
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2. Can hydrodynamic (RADYN) flare models explain
the photospheric perturbations and sunquakes?

*  SDO/HMI camera obtains filtergrams
in six wavelength positions across Fe
6173A line in two polarizations
(LCP&RCP) during approximately 45 s

* The flare hydrodynamic model
(RADYN) models are used to
synthesize Fe 6173A line Stokes
components using the radiative transfer

le-8  Time momentt=0s

1e-_ Time moment t=10s

— LCP (lne profile] = LCP (lne profile)
= RCP (line profile) 20 —— RCP (line profile)

8 LCP (HMI measurement) 8 LCP (HMI measurement)
RH1.5 COdC, and app]y HMI LOS % RCP (HMI measurement) % RCP (HMI measurement)

: . : ! 570 02 -0.01 0.00 0.01 0.02 E 570 0 -001 0.00 0.01 0.02
pipeline algorithm to model Wavlenath, i Viavelerath,
observables (line depth and continuum,

Doppler shift, magnetic field) Illustration of the synthesized Fe 6173A line profiles and

corresponding synthesized HMI measurements for 0 s
and 10 s snapshots of the RADYN model
val3c_d4_1.0e12_t20s_20keV augmented with 100 G

backgraund magnetic field
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The photospheric perturbations in the RADYN models are
too weak to explain the variations observed by HMI

Doppler velocity (100 G) Doppler velocity (1000 G)

0.50 === Derived from line profile 050- === Derived from I ne profile
g == nstantaneous HM| observable - == nstantaneous HMI observable
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g 025 / 3
H 2
5 >
2 000 2
3 \/ 3
o025 \/ $
-050{€)
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Time, s
Vertical magnetic field (100 G) 1 Vertical magnetic field (1000 G)
300 200
= Derived from line profie = Derived from Ine prfle
(9 250 w= Instantaneous HM| observable | 5 11507 = nstantaneous HMI observable
=Ml observable s — M observable

Simulated SDO/HMI observables for RADYN model: F=10'2 erg/cm?/s,
E_ .25 keV, t=20s, delta=3. for the vertical uniform 100 G and 1000 G.

The 1D radiative
hydrodynamic flare models
augmented with the uniform
vertical magnetic field setup
do not explain the strong
magnetic field transients,
sharp changes of the LOS
velocities, and continuum
enhancements observed
during solar flares by the
HMI instrument.
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3. What kind of flare perturbations can cause sunquakes?
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Figure . Time—distance diagrams of: (u) the hestit force case for the sunquake of the X 1.8 flare; (b) the sunquake produced by the X 18 flare; (c) the hest-fit
momentum case for the sunguake of the X1.8 flare; (d) the best-fit force case for the sunquake of the X9.3 flare; (¢) the sunquake produced by the X9.3 flare; (7) the
best-fit momentum case of the X9.3 flare. Darker pixels corsspond to more negative velocities, lighter pixels corspond 1o more positive velocities,

We developed 3D models of
the helioseismic and
atmospheric response to
localized impulsive
perturbations in the solar
atmosphere.

We explored two possible
excitation mechanisms of
sunquakes in the context of
the electron beam
hypothesis: an instantaneous
transfer of momentum and a
gradual applied force due to
flare eruption.

We modeled the sunquake
excitation and compare with
observed sunquake events
using a cross-correlation
analysis.

27

Best fit model parameters show that both the force maximum and the momentum impact are
within 2 min of the observed photospheric perturbations. The sunquake sources are located in
the low photosphere, but the uncertainty in the source location is rather large.

John Stefan, Estimation of Key Sunquake Parameters through

Hydrodynamic Modeling and Cross-correlation Analysis, X1.8(QS case) T0=03:13:30 UTC
2020, ApJ, 895,65 ey

Momentum Case =
Flare T (s) Height (km) | Amp. (gcms™) Energy (ergs) é
X8 45 104 33123 1.39¢30 “
X9.3 +112.5 -33 1.54€23 3.74¢29 E
X3.3 +67.5 +386 2.83¢22 6.57e28
X1.0 +78.75 -86 9.48¢23 1.21€31
M1.1 +135 -203 7.34e23 5.19¢30

¢) =200 100 0 100 200 300 400
Source Depth (km)
X1.8(QS case) T0=03:13:30 UTC
Force Case
Flare Ty (5) | Height (km) | Amp. (dyncm )| Energy (ergs)
X1.8 -157.5 -203 1.0le—1 5.58¢28 2 i
X9.3 -33.75 -203 2.29¢~1 12729 £
X33 +157.5 +255 1.30e-2 1.32¢28 e
X10 -157.5 +155 534e—2 473628 £
M1.1 -78.5 -203 2.59 -1 1.44¢29 100
Positive T, means a delay of the maximum forcing in the model relative to 150
the initial photospheric perturbation, observed by HMI. b) -200 -100 0 Soulclolgepth (kr%](i)o 300 400
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Lecture 7

Solar Oscillation Theory

(Stix, Chapter 5.1.2-5.1.4; Kosovichev, p.11-17;
Christensen-Dalsgaard, p. 5-24)

Projects

Power spectrum: Ivan Oparin

Global modes from GOLF: Sheldon Fereira

Oscillation model, line asymmetry: Bryce Cannon

Power maps, acoustic halo: Bhairavi Apte

Ray paths, travel times: Sadaf Igbal Ansari

Propagation diagram for solar and stellar models: Ying Wang
Analysis of sunquakes: Youra Shin

Asteroseismic analysis: John Stefan

Asymptotic sound-speed inversion: Yunpeng Gao

October 11: Tutorial on Python and Jupyter notebook in class
— Dr. Andrey Stejko




8. Thus, the oscillation theory is reduced to solving an eigenvalue problem for a

Solar oscillation theory

. Oscillations are small-amplitude perturbations to the Sun’s hydrodynamic
structure

. The oscillations are described by the 3D linearized hydrodynamics equations
and mathematically represent an eigenvalue problem for a system of linear
PDE:s in the spherical coordinates.

. The eigenvalues correspond to resonant oscillations frequencies and the
eigenfunctions describe the structure of the resonant modes (standing waves).
. The background model (the distribution of density, pressure, temperature with
the radius) is obtained from the stellar evolution theory applied to the Sun.

. We assume that the structure of the Sun is spherically symmetrical. This will
allow us to apply a method of separation of variables, and separate the angular
and radial components of the eigenfunctions.

. We find that the angular component is described by the spherical harmonics.

. The radial structure of the eigenfunctions is described by a system of ODEs.

system of ODEs. This is similar to finding the energy spectrum in quantum
mechanics.

. We perform quantitative and qualitative analysis of the oscillation equations
and, similarly to quantum mechanics, we apply the asymptotic JWKB theory
to obtain analytical eigenvalues.

Equations of Stellar Structure
1. Hydrostatic Equations

Basic assumptions:

1. hydrostatic equilibrium: gravity force = pressure

gradient;

2. thermal balance: energy generation rate = luminosity.
Consider a thin spherical shell of radius r, thickness dr, mass
dm , and density p . The mass equation is:

dm = 4mpr’dr
dm )
— =4npor-.
dr »
The balance between the pressure and gravity forces is:
2
4rr*dP = __Gm;i U—c ampr_dr ’; dr ,
r r
dP Gmp

or —=——
dr r




Energy transfer and balance equations

The total energy flux, L = 4z7°F , integrated over a sphere of radius 7 :
I _167z¢1cT3 dT

L+dL 3kp  dr
< If € is the energy release per unit mass then
the energy flux change in a shell dr is:
dL = gpdrr’dr

dL

— =4npris

dr
This is the equation for conservation
of energy (energy balance).

Equations of the stellar structure

dm ) ) .
— =4npr (1) These equations describe the
dr structure of stellar radiative
d_P __ Gmp ?) zones. In the convection zone
dr r Eq.(4) is replaced by an
dL 5 equation of convective energy
I =A4npre 3) transport, e.g. mixing length
d; theory.
K
= = —%L =—F (4)
dr l6zr-acT
RpT
Y7 A numerical code for solving
1 these equations is available in
H=—TTTT"T"T—" (6) the book: C.J. Hansen, S.D.
2X + %Y + %Z Kawaler, Stellar Interiors.
e=g¢, X2pT* 7 Physical Principles., Structure
s and Evolution, Springer,
k=K (X +DZpT™ ®) 1995.

Kramer’s opacity law




Abundances of the elements in the pp-chain are determined from the balance
equation, e.g. for hydrogen abundance, X = X :

_3/111X2 + 2133X32 = A X3X,),

*He, X{=Y is the *He abundance

Estimates from the balance
equations
Balancing the main terms in the
855, nuclear reaction equations we
e obtain relations among various
15% | elements.

e +'Be - TLitu, ppl:
"Li4(p) —» 2%He P XIT* o p* XIT"
p+ 'Be — By~ 0.02%
'8 o Bertet 4w, X, ¢ X,T
8B — 21FHe

Standard solar model

Temperature Density
T T T T
1.56x107 1 B 150 7
a E 100
o 1.0x107F 1 E
B ~
e ap
L <
5.0x108 - - 50 —
ol . . . . 0 . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
r/R r/R

Sound speed

Hydrogen abundance

02r 1

0.0 . I I I
0.0 0.2 0.4 0.6 0.8 1.0

r/R v ‘ A r/R




Standard solar model

Parameter of convective stability
3F T T T T ]
4 LdlogP dlogp Entropy density
RE y dlogr dlogr = ofideal gas

 S=¢,log(P/p")

A*

735 L L L L L L L L L L L L L L L L

0.0 0.2 0.4 0.6 0.8 1.0
r/R

N 1dlogP dlogp S .
=\ dogr diogr )" r Brunt—Viisila frequency
or buoyancy frequency

Basic Equations
Basic assumptions:

1. linearity: v/c, <<1

2. adiabaticity: dS/dt =0

3. spherical symmetry of the background

4. magnetic forces and Reynolds stresses are negligible

The basic equations are conservations of mass, momentum, energy and
Newton’s gravity law.

1. Conservation of mass (continuity equation):

The rate of mass change in a fluid element of volume V' is equal to the mass
flux through the surface of this element (of area A4 ): W

2 7
EJV pdV = —L pvda = —IV V(pv)dV.
Then, 4

divergence

v
op ~
——+V(pv)=0,
Py (pv)
or
dp

—+pVv=0. where ar = % +(v-V)p is the 'material' derivative
dt dt ot




2. Momentum equation (conservation of momentum of a fluid
element): p% =-VP+ pg,

where P is pressure, g is the gravity acceleration, which can be
expressed in terms of gravitational potential ®: g =V®.
av oV . : o
Also, & 8_v+(v -V)v. This is the 'material’ derivative.
dt
V. ov, ov,
eg. v,—+v, +v,
Ox oy 0z
3. Adiabaticity equation (conservation of energy) for a fluid
element:

d ( P J dP ., dp

—| —1=0, or —=Cc —,

dt\ p’ dt dt
where ¢® = yP/p is the adiabatic sound speed.

for v. component

4. Poisson equation: V'O =47Gp.

Plan to solve the solar oscillation
equations

Linearize - consider small-amplitude oscillations.

[a——

2. Neglect the perturbations of the gravitational potential (Cowling
approximation).

3. Write the linearized equations in the spherical coordinates: , 6, ¢.

4. Consider harmonic (periodic) oscillations

5. Separate the radial and angular coordinates.

6. Show that the angular dependence can be represented by spherical

harmonics.

7. Derive equations for the radial dependence, representing the
eigenvalue problem for the normal modes

8.  Solve the eigenvalue problem in the asymptotic (short wave-
length) JWKB approximation.

9. Investigate properties of p- and g-modes




1. Linearization
Consider small perturbations of a stationary spherically symmetrical star in
the hydrostatic equilibrium:

v, =0, p= p,(r). P= B (r).
If E (¢) is a vector of displacement of a fluid element then velocity of this
element:
dé o
dr o
Perturbations of scalar variables p, P,® are two types: Eulerian, at a fixed
position7 :

V=

p(F,1) = py(r)+ p'(F,0),
and Lagrangian perturbation in moving elements:

P +E) = py(r)+ (7 1).

The Eulerian and Lagrangian perturbations are related to each other:

' = ' z = d ’ d
Sp=p'+(E-Vp)=p'+(E ) L= pyg TP
dr dr

where g, is a radial unit vector. In our case, the density gradient is radial.

>

Then, the linearized equations are:

P +V( P,&)=0,  the continuity (mass conservation) equation

-
Lo (Z 25 =-VP' -g,é.p' + p,VD', the momentum equation
t

, dP, , d
P +& d—o = cé (p'+< dpo ), the adibaticity (energy) equation, or
r r

OP = Cé Jp for the Largangian perturbations of pressure and density.

V’®' =47Gp'. the equation for the gravitational potential

2. Cowling approximation: ®'=0.




3. Consider the linearized equations in the spherical coordinates
V,H,¢: §:é:rér+é:eéﬂ+§¢é¢5‘§rér+gha

where & ,=Spéot+S&,é, is the horizontal component of displacement.

VE = divé = r%%(ﬁ;)

10 ™M
=75(”2§r)+;vh§h-

4. Consider periodic perturbations with frequency o :

5 oC eia)l‘Y}m (0’ ¢) — Cle (e)eim¢+ia)t
v=aw/2m, where v is the cyclic frequency (measured in Hz),

and o is the angular frequency (measure in rad/s).

Then, in the Cowling approximation, we get (leaving out subscript 0 for
unperturbed variables):

1 .
p' + —282 (}”2 pfr) + Tad \Y% i é‘ W= 0, the continuity equation
r-or r

!

-’ pé = _8_ +gp, the radial component of the momentum equation
r
-0’ pg n = --V,P !, the horizontal component of the momentum equation
r
1 N?
p'==P+ P &, the adiabatic equation
c g
1 dP ldp). .
where N°=g — & 9P| is the Brunt-Vaisala frequency.
yPdr p dr

Boundary conditions:
& (r=0)=0, -displacement at the Sun’s center is zero,
(or a regularity condition for /=1).
O0P(r=R)=0, - Lagrangian pressure perturbation at the solar surface is zero.

(this is equivalent to absence of external forces).
Also, we assume that the solution is regular at the poles 8 =0, 7.




5. Consider the separation of radial and angular variables in the form:
p'(r,0,4)=p'(r)- £(0,9),
P'(r,0,9)=P'(r)- f(0,9),
¢ (r0,9)=¢,(r)- [(0,9),
£,(10.9)=&,(NV,[(0.9).

Then, the continuity equation is:
, 10
[p +—2—(r2p§,)} FO.0)+LEVif =0,
reor r
The variables are separated if
Vif =af.

where « is a constant.
This equation has non-zero solutions regular at the poles, 8 = 0,7 only when

a=-I(1+1),
where / is an integer.

6. The non-zero solution of equation V;f +/(/+1)f =0 represents the
spherical harmonics:
1(0,9)=Y"(6,¢)=CP"(9)e",

where B”(6) is the Legendre function.

7. Derive equations for the radial dependence,
representing the eigenvalue problem for the normal
modes

After the separation of variables the continuity equation for the
radial dependence p'(r) is
0

p’+%5[r2pé] pé, =0.

Compare with the original equation: p' +V( :005 ) =0,

I+

r

and with this equation in the spherical coordinates:
10 , Po z
"+——(r +=V, £ =0,
p 7"2 67" ( p éﬂ) 7 h é: h

Transform this equation in terms of 2 variables: é: and P’
- radial displacement and Eulerian pressure perturbation.




The horizontal component of displacement &, can be determined from the horizontal

component of the momentum equation:

e =-P0), o &=

/

o’ pr
Substituting this into the continuity equation p'+— ! 68 (rz p;,]— 1(1:1) pé&, =0.
2 2
we obtain: 5 ‘fhdp 2 §V+P pNgZ— L P'=0,
ro’p

where we define L2 =Il(l+1) (note the 51m11ar1ty to quantum mechanics).
Using the hydrostatic equation for the background (unperturbed) state

ar __
dr &P
finally get: ﬁ+E§,,—§2 1= % P — =0,
dr r c pc’
2 !
or R [I—S—ji—o,
dr pc
2.2
where S} = -— is the Lamb frequency, L’=I(I+1), ¢ (r)=yP/p is the squared
r

sound speed, g(r)=Gm(r)/i’ is the gravity acceleration at radius r.

Similarly, the momentum equation is:

di+£P'+(N2 —w’)pé =0,
dr ¢

where N is the Brunt-Vaisala frequency.
The bottom boundary condition (+=0): &£, =0, (or a regularity condition).

dP
The top boundary condition (=R): 0P =P "+ ;5, =0,
or using the hydrostatic equation: P-g pof, =0.

From the horizontal component of the momentum equation:

P ‘= wzp v th’
Then from the upper boundary condition: S = gz ,
or

that is the ratio of the horizontal and radial components of displacement is inverse
proportional to squared frequency. However, this relation does not hold in
observations, presumably, because of the external force caused by the solar
atmosphere.
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7. The derived equations with the boundary conditions
constitute an eigenvalue problem for solar oscillation modes
dg SI) P

-2 =0,
0 5 5 e

Properties of oscillations
dP' depend on the signs of
P g 2 2 these coefficients in
J +_2P +(N° —w”)pé, =0. brackets.
r C
L’c?

is the Lamb frequency.

N2 = [L dap ldp j is Brunt—Viisila frequency.

The bottom boundary condition (+=0): £ =0..

The top boundary condition (r=R): 6P =P+ il;—Pfr =0
r

Reduction to a 2-nd order equation — qualitative
analysis of solar oscillation modes

The reduction can be done via a transformation of variables to eliminate the first
derivatives. However, this is cumbersome (see lectures of Douglas Gough, “Linear Adiabatic
Stellar Pulsations” Ch.5)

It is most convenient to express the second-order equation in terms of the Lagrangian
pressure perturbation, JP.

By a transformation of variables: 5P = p"?-¥, the oscillation equations for & and
P’ can be reduced to:

2
¥ kw0

-

where ¢ is the sound speed, L’ =/(/+1)

2

2, C
0)(, - 2
4H

(1—262—1_1) is the acoustic cut-off frequency,
r

-1
H= M‘ is the density scale height,

'y

N (IW_W

g is square of the Brunt-Vaisala buoyancy frequency.
y dr dr
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Propagation of :high-frequency
oscillations: acoustic waves
X :M_ﬁ(l_N_zJ

2 2 2
C r a

Consider high-frequency oscillations: »* > N?.

The acoustic cut-off frequency is significant only near the surface (like in
the potential well model). In the interior, @ >> ,.

Therefore, the propagation condition for high-frequecy oscillation (acoustic
waves) is:

At the reflection point K> =0.

From this equation, we can find the wave propagation depth for oscillation
of frequency @ and angular degree [ (called the radius of the inner
turning point 1,):

_ L)

h

(0]

Propagation of low frequency
waves: internal gravity waves

2

dlfnth\I’:O

r

, o -w I N?
AR

For the low-frequency oscillations: @ < N°.
Consider the wave propagation condition: K*>0.
The parameters, ¢’(r), @’(r),and N’(r) are calculated from
a theoretical (standard) solar model.
therefore, the propagation condition is:
r N*
K’ z——(l——j>0 = o<N

2 2
r w
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Propagation diagram: o,
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frequency (mHz)

Propagation diagram: o, S,,N?
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frequency (mHz)

Propagation diagram: o, S,,N?
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Propagation diagram: o, S,,N?
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Propagation diagram
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Low angular degree modes (low-1 modes) may be mixed modes, which behave
like acoustic modes in the envelope and like gravity modes in the deep interior.
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v (uHz)

Propagation diagram of solar oscillations

5000 — : — : s
F N ~ < 4
. NS “~._  p-modes NN 12c?
\ N 1 ~ 2
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N T .20 B r
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g-modes \\\ N yPdr pdr
100 . '
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Buoyancy (Brunt-Vaisala) frequency N, and Lamb frequency S for /=1,5,20
and 100 vs. fractional radius /R for a standard solar model. The horizontal
lines indicate the trapping regions for a g mode with frequency v =100, Hz,
and for a p mode of degree / =20 and v =2000x Hz.

frequency, mHz

o o=
o o

Theoretical /-v diagram is obtained by solving
the eigenvalue problem numerically

L ip ' ' 0487 ]
——— N 0.44 / ]
- T g g-modes /-

- 5042 — ﬂj ]
/ = — i e — !j.i /‘// /"'/’r, ]
- £ 0.40 —

0.38

g-modes
0.36

! ' : 10 12 14 16 18 20 23
0 20 40 60 80 100 angular degree, /
angular degree, [
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Spatial structure of p- and g-modes

p-mode (/=20, m=16, n=14) g-mode (/=5, m=3, n=6)

/ lcgj;

‘B -EHI].{;' ! W\ i " s .
B
WLl sl B O
LY 4/ oy ' #
a) | —~ by

P-mode ray paths

o' -w S
c’ c’

* The waves propagate where
k.2>0.

* The waves are evanescent
where k 2<0

* The wave turning points are
located where k >=0.

* Because w =c/2H

has a sharp peak near the surface

the upper turning point (r,) is

where @ = @,

‘ The lower turning point (r,) is

l.-"‘ where @ = S, =(L/I’)C=khc

Inner turning point

k> =

where the horizontal phase speed @ / k, = c is equal to the sound speed.

17



John’s sunquake movie illustrate the wave behavior at
the inner turning points:
wave fronts are perpendicular to the ray paths

g-mode ray paths

Inner turning point

outer turning point

g-modes propagate only in the radiative zone which
is convectively stable N >0

18



Lecture 8

Solar oscillation theory
JWKB (Jeffreys-Wentzel-Kramers—Brillouin)
Solution

(Stix, Chapter 5.2; Kosovichev, p.29-34;
Christensen-Dalsgaard, Chapters 5.2, 7)

N —

AN

Plan to solve the solar oscillation
equations

Linearize - consider small-amplitude oscillations.
Neglect the perturbations of the gravitational potential (Cowling

approximation).

Write the linearized equations in the spherical coordinates: r, 8, @.
Consider harmonic (periodic) oscillations
Separate the radial and angular coordinates.

Show that the angular dependence can be represented by spherical
harmonics.

Derive equations for the radial dependence, representing the
eigenvalue problem for the normal modes

Solve the eigenvalue problem in the asymptotic (short wave-
length) JWKB approximation.

Investigate properties of p- and g-modes




The lower boundary condition: £, = 0, (or a regularity condition).

The upper boundary condition: oP=P'+ d—fr =0,
r

7. The derived equations with the boundary conditions
constitute an eigenvalue problem for solar oscillation modes

dé 2 S} ) P
£+—§r—%§,+ 1--L |—=0,
dr r c w" ) pc
Properties of oscillations
4P’ > depend on the signs of
, these coefficients in
d_ + %P + (N2 - wz)Pfr =0. brackets.
r C
L2 2
S12 — f is the Lamb frequency.
r
N = 1 dp ldp is the Brunt-Vaisala frequency.
yPdr p dr

dP

derivatives. However, this is cumbersome (see lectures of Douglas Gough, “Linear Adiabatic
Stellar Pulsations” Ch.5)

pressure perturbation, 6P.

Pl

where ¢ isthe sound speed, L’ =I(/+1)

can be reduced to:

Reduction to a 2-nd order equation — qualitative
analysis of solar oscillation modes

The reduction can be done via a transformation of variables to eliminate the first

It is most convenient to express the second-order equation in terms of the Lagrangian

By a transformation of variables: 6P = p"*- ¥, the oscillation equations for & and

2
g
¥ k-0
dr
2 2 2 2
om0
c r W

2

dH
0{2 = —| 1-2——| is the acoustic cut-off frequency,
4H dr
1 -1
H= ‘w‘ is the density scale height,

i

N = (ldlogP_dlogp

g is square of the Brunt-Vaisala buoyancy frequency.
y o dr dr




Propagation of acoustic waves:
high-frequency oscillations

The acoustic cut-off frequency is significant only near the surface (like in
the potential well model). In the interior, @ >> @, .

Therefore, the propagation condition for acoustic waves is:
o I
K'r—-=>0

2 2
C r

At the reflection point K> =0.

From this equation, we can find the wave propagation depth for oscillation
of frequency w and angular degree [ (called the radius of the inner
turning point 1,):

_ Le(r)

h

w

Propagation of internal gravity

waves — low frequency waves
da*y

e +K*¥ =0
r
2 9 2 2
oo 2]
C r (4]

Consider the wave propagation condition: K> >0.

The parameters, ¢’(r), @’ (r),and N°(r) are calculated from
a theoretical (standard) solar model.

For the low-frequency oscillations: @’ < N*,

therefore, the propagation condition is:

, 12 ( N2 j
K'r——|1-—|>0 = o< N

2 2

r 0




Propagation diagram of solar oscillations

5000 — : ~ : s
F N ~ < 4
\\ \\\ Sl \\\\ p_modes \\ ] S2 LZCZ
\\ \\\ S~ \\ l - 2
' . ~..20 \ r
1000 F = R . theLamb
~ Y S R .1 frequency.
= 500f S R .
3 [ ~ S \\
hY I \\\ \\\ \
i Tl B ] Mixed
/ Tee L . Imodes
100 g N x
g-modes AN a2 1 dP 1ldp
~ \ = _—
50 . . . RN \ yPdr p dr
0.0 0.2 0.4 0.6 0.8 1.0 the Brunt-Vaisalg
r/R

frequency.
Buoyancy (Brunt-Vaisala) frequency N, and Lamb frequency S for /=1,5,20
and 100 vs. fractional radius /R for a standard solar model. The horizontal
lines indicate the trapping regions for a g mode with frequency v =100, Hz,
and for a p mode of degree /=20 and v =2000x Hz.
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Asymptotic Theory.
JWKB (Jeffreys-Wentzel-Kramers—
Brillouin) Solution

General idea of the JWKB approximation

Consider a second-order oscillation equation in a uniform medium
without gravity: c¢=const, @, =0, N=0.

dZ\I] 2
—+K’¥=0, where Kzza)—2
r ¢

For a one-dimensional potential well of the length R with infinite walls,
the boundary conditionsare: ¥ =0 at =0 and r=R.
We seeks the solution in the form:
\P(l"): Aei[kr
Then, the solution satisfying the boundary conditions is:
Y (r)= Asin(kr)
where kR=7zn, n isaninteger number.

Thus, we obtain the oscillation spectrum (eigenvalues):
w, =nnc/R.




Then, we consider the wave equation with the coefficients varying with r:
a*y

—+ KXY =0
e
o' - L', N’
KZ(I"):—ZC——Z 1_—2 .
C r 9

If K(r) isaslowlyvarying function of » we can seek the solution in the form:
Y(r)=4e""”

where u(r) is aslowly varying function.We find u(r) by substituting this form

in the wave equation:

ﬂ = iﬂAei"(")
dr dr
2 2
d E’ zld_l:A iu(r) _ ﬂ A iu(r)
dr dr dr

Because u(r) isa slowly varying function, in the first approximation we neglect
the first term in this expression. Substituting in the wave equation, we obtain:

du ’ iu(r) 2 u(r) _
o A" + K(r) Ae""” =0
»
2
(ﬂj =K’ — du _ K — u(r)= ijkdr

The eigenvalues are determined by matching the boundary conditions:

kdr=n(n+a)
cavity
where «a is a phase shift due to imperfectly reflecting boundary conditions.
The JWKB approximation is valid if —‘Z—K <.
r

It can be improved considering A as a function of 7.




JWKB solution

+i |k dr
e ot

2ot P 2
where k(r)zzu__ l_N_
r

The wave propagation region is determined from k() >0.
The resonant condition is:

| k dr=r(n+a)
i

2 )

2 g2 2
J.z oo L [l—izjdr=7r(n+a)
gl c r @

8. JWKB (Jeffreys-Wentzel-Kramers—Brillouin) Solution
(short-wavelength asymptotic approximation —
similar to quantum mechanics)

We assume that only density p(r) varies significantly among the solar properties in
the oscillation equations, and seek for an oscillatory solution in the JWKB form:

£ = Ap_l/zei'[krdr’

i| k.dr
Pl — B p]/z e_[ ,
where the radial wavenumber £, is a slowly varying function of r.

s, =Ap™"? (ik,, + Lj eijkrdr,
2H

Then, dr

Lo,
dr 2H

dlogp’
where H = —( df pj is the density scale height.




From the oscillation equations we get a linear system:

2
(ik,+LjA—%A+i2 1-50 g =,
2H c c w

(ikr —L)B+%B+(N2 —0*)A=0.
2H c

The determinant of this system is equal zero when
Lo -wl S

k? - N’ -’

! c? o’ [ ]

where w, = ﬁ is the acoustic cut-off frequency

We use the relation: N° =g Lap_1ldp =g/H-g"/c*.
yPdr pdr

The solar waves propagate in the regions where &’ > 0.

If k* <0 , the waves exponentially decay (‘evanescent’).

Properties of Solar Oscillation Modes
o’ -o’
Equation kl=———<+

S/
' c? o
represents a dispersion relation of solar waves.
It relates frequency @ with radial wavenumber %, and angular order /.

w-a?

2

Consider two simple cases:

1: the high-frequency case. If @® >> N then
oo S
r cZ cZ
or o’ =w +kc*+kc,
I(1+1) . .
where k, =S, /c=—= RG] is the horizontal wave number.
r r

Then, k> =k +k, is the squared total wavenumber.
c . .
Finally, ®° = @} +k’c®, where @, = o5 8 the acoustic cut-off frequency.

This is the dispersion relation for acoustic (p) modes; @, is the acoustic cutoff
frequency. Physically, the waves with frequencies below the acoustic cutoff
frequency cannot propagate. Their wavelength becomes shorter than the density
scale height. For the Sun v. =w, /27 =5 mHz. (c~10 km/s, H~150km).




S/

c
+
2 2
c

o

2: consider the low-frequency case when o’ << S’

2
then k. = cf?(]\f2 - %) (remember S, =ck, =cL/r)

a)zzk’fN2=

K

Then,

N?cos’* 6, where k> =k’ +k;
where 6 is the angle between wavevector £ and the horizontal
direction.

This is a dispersion relation for internal gravity (g). modes.
They propagate mostly horizontally.

v (uHz)

Normal modes of solar oscillations

The frequencies of normal modes are determined for the Borh quantization
]

rule (resonant condition): _[r kdr=r(n+a),
1

where 7 and 7, are the radii of the turning points where k, =0, n is a radial order
-integer number, and « is a phase shift which depends on properties of the

. . 2 2 2
reflecting boundaries. , W —O S
_ c / 22
kr - 2 + 2 2[N @ ]
C cw
5000 r— - 155 ¢(r) is the sound speed
\ N8 AR AN
| . h— P c is the acoustic cut-off
. . ~~.20 o =— :
“ ~_ 5 < \ ¢ frequency; it has very
1000 N ~L. < g 2H .
N -~ R sharp increase at r/R=1
500 S~ BN AN -
\ dlo
] mo(dleer)
e N dr
100 & —=+ . " 5
\
S Lc
N 2 2
50 AN DA I Pty ey [ )
0.0 0.2 0.4 0.6 0.8 1.0 r
r/R

N?=g/H-g’/c’




P-mode ray paths

o' -w S
c’ c’

* The waves propagate where
k.2>0.

* The waves are evanescent
where k 2<0

* The wave turning points are
located where k 2=0.

* Because w =c/2H

has a sharp peak near the surface

the upper turning point (r,) is

where @ = @,

The lower turning point (r,) is

whereC()ZS[ Z(L/I")CZth

Inner turning point

k2 =

where the horizontal phase speed @/ k , = C is equal to the sound speed.

g-mode ray paths

g-modes propagate only in the radiative zone which
is convectively stable N >0
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Calculation of normal mode frequencies in
the JWKB Approximation

Estimate frequencies of normal modes for these 2 cases.

l. p-modes:
propagating region: k>0
L'c
turning points £’ =0: o' = + 7

For the lower turning point in the interior: @, << @ .

Le ) _o
]/' b

Then, @~ or = is the equation for the lower turning point.

7 L

1
The upper turning point: @,(7;) ® @ . Since w,(r) 1s a steep function of r
near the surface, r ~R.

R 2 2
" . w” L
Then, the resonant condition for p-modes is: J-r P r—zd” =7z(n+a)
1

Abel integral equation.

Frequencies of low-degree p-modes

_xn+Ll2+a)
S

e
That is the spectrum of low-degree p-modes is approximately equidistant with

-1
frequency spacing: Av = (4 J OR ﬂ) )
c

For [ <<n, 1, =0, and we obtain:

GOLF Fourier spectrum

- L ‘ 1" Maximum amplitude

| is around 3,300 pHz,
- or3.3 mHz. The

| corresponding

| oscillation period is

| 300 seconds or 5
minutes.

H““#uuAm

3000 350

11



Frequencies of the internal gravity modes (g-modes):

The turning points are determined from equation:

N(r) =o.

In the propagation region, k. >0, far from the turning

points (N >> ® ):

v (uHz)

LN
k.~ —.
re
Then, from the resonant condition:
n L dr
"ZN—=z(n+a).
nwr
L[ Ndr
we find: o~x—2 T
r(n+a)
Wavelength in Mm 30 20 10 5

1000

100

vl e nnl L]
10 100 1000
L

Spectrum of the normal
oscillation modes of the Sun
calculated by solving the
oscillation equations
numerically for a standard
solar model.

Note the ‘avoided crossing
effect’ for f and g-modes.
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Surface gravity mode (f-mode)
These wave propagate at the surface boundary where Lagrangian pressure perturbation
oP~0.
Consider the oscillation equations in terms of 6P by making use of the relation between
Eulerian and Lagrangian variables: P'=8P+ gp&,.

2 2.2
a, _Lg §r+(1_LC jé_P:()’

dr  o** *r? pc2

2
dopP + ngz SP— gpf gy =0,
dr  o°r r
2 L2
where f= or_ _2g
g or
These equations have a peculiar solution: 6P =0, f=0.
Lg
For this solution: ' === kg
R
-dispersion relation for f-mode.
. . . dé. L
The eigenfunction equation: d—’ -—£.=0
r

has a solution & o MR exponentially decaying with depth.

frequency, mHz

Theoretical /-v diagram: numerical
solution of the oscillation equations

048] ]
0.46 f-mode ]
0.44 / I
g,-mm!gs, -
042— / —

I S o
_— / f/_,,,f . B

o
040" / T

~

frequency, mHz

0 12 14 16 18 20 23
angular degree, /

0 20 40 60 80 100
angular degree, [ ) g )
Avoided crossing effect for mixed modes
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Lecture 9
Properties of acoustic waves

and p- modes; low degree modes
(Stix, Chapter 5.2; Kosovichev, p.29-34;
Christensen-Dalsgaard, Chapters 5.2, 7)

N —

AN

8.

9.
10.

Plan to solve the solar oscillation
equations

Linearize - consider small-amplitude oscillations.

Neglect the perturbations of the gravitational potential (Cowling
approximation).

Write the linearized equations in the spherical coordinates: r, 6, ¢.
Consider harmonic (periodic) oscillations

Separate the radial and angular coordinates.

Show that the angular dependence can be represented by spherical
harmonics.

Derive equations for the radial dependence, representing the
eigenvalue problem for the normal modes

Solve the eigenvalue problem in the asymptotic (short wave-
length) JWKB approximation.

Investigate properties of p-modes
Properties of g-modes




Overview of the Asymptotic Theory.
JWKB (Jeffreys-Wentzel-Kramers—
Brillouin) Solution

General idea of the JWKB approximation

Consider a second-order oscillation equation in a uniform medium
without gravity: c=const, @, =0, N=0.
2 2
Y kw=0, where K>=%
dr’ c’
For a one-dimensional potential well of the length R with infinite walls,
the boundary conditionsare: ¥=0 at =0 and »r=R.
We seeks the solution in the form:

Y(r)= de™
Then, the solution satisfying the boundary conditions is:
W(r)= Asin(kr)
where kR=7n, n isaninteger number.
Thus, we obtain the oscillation spectrum (eigenvalues):
w, = rnc/ R.




Then, we consider the wave equation with the coefficients varying with r:
a*y

—+ KXY =0
e
o' - L', N’
KZ(I"):—ZC——Z 1_—2 .
C r 9

If K(r) isaslowlyvarying function of » we can seek the solution in the form:
Y(r)=4e""”

where u(r) is aslowly varying function.We find u(r) by substituting this form

in the wave equation:

ﬂ = iﬂAei"(")
dr dr
2 2
d E’ zld_l:A iu(r) _ ﬂ A iu(r)
dr dr dr

Because u(r) isa slowly varying function, in the first approximation we neglect
the first term in this expression. Substituting in the wave equation, we obtain:

du ’ iu(r) 2 u(r) _
o A" + K(r) Ae""” =0
»
2
(ﬂj =K’ — du _ K — u(r)= ijkdr

The eigenvalues are determined by matching the boundary conditions:

kdr=n(n+a)
cavity
where «a is a phase shift due to imperfectly reflecting boundary conditions.
The JWKB approximation is valid if —‘Z—K <.
r

It can be improved considering A as a function of 7.




JWKB solution
£ 4o P

2 2
where k(r)=——-=|1-—

The wave propagation region is determined from k() >0.
The resonant condition is:

| k dr=r(n+a)
i

2 2 2
n |l —w L N
i C r w

Normal modes of solar oscillations
The frequencies of normal modes are determined for the Borh quantization rule

n
(resonant condition): _[r k.dr=n(n+a),
1

where 7 and r, are the radii of the turning points where k, =0, n is a radial order

-integer number, and ¢ is a phase shift which depends on properties of the

reflecting boundaries. ) o' -’ S [2 2 2
k. = —~+ [N - ]
C c @
5000 T — T — 2 _
\\\ s, U \1\00 c = ]/P / O - the squared sound speed
| . - *\_ c - the acoustic cut-off
ool N T '\ W, = H frequency; it has very
—~ AN Tse R ] sharp increase at r/R=1
= s00f N el N |
2 - N \\ B dlogp - the density
® S~ o] H=+ > scale height
R \\ ' dr
100 £ — ] re
N \ S]2 — =% -the Lamb frequency
50 R 2
. . . : r L =I1{+1)
0.0 0.2 0.4 0.6 0.8 1.0
r/R

5 / ) / 5 - the Brunt-Vaisala frequency after substituting / and
N = g H ~ 8 /€ the hydrostatic equation  @P/dr=—gp




v (uHz)

Propagation diagram of solar oscillations

5000 —

N N "~ 100

' AN ~ 2 2

X 8 >~._ p-modes " ) Lc

\\ \\ S~ \ Sl - P
N NN T~L 20 Y 7V
1000 =1 ~.5 | the Lamb

- A S N 1]

N AN S~ . 1 frequency.
500 N ~. S q y

N ] Mixed
/ RS . ‘| modes
100 g N x
g-modes N A (Ld_P_id_pj
50 ) . . L ! yPdr p dr
0.0 0.2 0.4 0.6 0.8 1.0 the Brunt-Vaisala
T/R frequency.

Buoyancy (Brunt-Vaisala) frequency N, and Lamb frequency S for /=1,5,20
and 100 vs. fractional radius /R for a standard solar model. The horizontal
lines indicate the trapping regions for a g mode with frequency v =100, Hz,
and for a p mode of degree / =20 and v =2000x Hz.

 -_\ \\@‘

Spatial structure of p- and g-modes is obtained
by multiplying the radial eigenfunctions by the
corresponding spherical harmonics

p-mode (/=20, m=16, n=14)

JER

_-).lo

o Y JU
11 W

a)

g-mode (/=5, m=3, n=6)

b)




Properties of Solar Oscillation Modes

2 2 2
0 - S
Equation k} =———<+—*
c cw

represents a dispersion relation of solar waves.
It relates frequency @ with radial wavenumber &, and angular order /.

2

o

Consider two cases:

1: the high-frequency case.
2 2 2
o -, S
If @ >> N’ then kfz—zL——’z
c c
or o’ =0 +kc’ +kc’,
I(I+1) . .
where k, =S, /c=—= UG is the horizontal wave number.
r r

Then, k* =k +k; is the squared total wavenumber.
c . .
Finally, @° =@’ +k’°c*, where @, = o s the acoustic cut-off frequency.

This is the dispersion relation for acoustic (p) modes; @ is the acoustic cutoff
frequency. Physically, the waves with frequencies below the acoustic cutoff
frequency cannot propagate. Their wavelength becomes shorter than the density
scale height. For the Sun v =w /27 ~5 mHz. (¢~10 km/s, H~150km).

o' -w S

B0, S )
’ ¢’ c’w’
2: consider the low-frequency case when o’ << S}
S2
then k= = (N? - o) (remember S, =ck, =cL/r)
cw
k;N*
Then, o’ =-L——=N?cos’ 9, where kK’ =k’ +k;

k2
where 6 is the angle between wavevector £ and the horizontal
direction.

This is a dispersion relation for internal gravity (g). modes.
They propagate mostly horizontally.




Calculation of normal mode frequencies

Estimate frequencies of normal modes for these 2 cases.

l. p-modes:
propagating region: k>0
L'c
turning points £’ =0: o' = + 7

For the lower turning point in the interior: @, << @ .

~Lc <) o . . .
Then, @~ . sor p = 7 s the equation for the lower turning point.
1

The upper turning point: @,(7;) ® @ . Since w,(r) 1s a steep function of r

near the surface, r ~R.

R 2 2
" . w” L
Then, the resonant condition for p-modes is: J-r P r—zd” =7z(n+a)
1

Abel integral equation.

Waves in the solar atmosphere:
initial state

Initial (hydrostatic) state:

X R _
ox 2920
Equation of state defines pressure in terms of

temperature, density and molecular weight:
2=2.74x10% cm/s?

T=6000 K P

where M is the molecular weight.

For non-ionized hydrogen gas £ =1, for fully
ionized hydrogen gas 4 =0.5. Because of

ionization the number of particles increases by 2
photosphere

(ionstelectrons). R is the gas constant.

_x RT
Then, F,(x) = P(0)e “ where H :5 is the

pressure scale height.




Waves 1n the solar atmosphere:
initial equations

Continuity (mass conservation) equation:
op Opv
_p + L — O.
ot Ox

Momentum equation:

g=2.74x10% cm/s? dv oP
p—=——-gp.
dt ox

Velocity v can be expressed in terms of displacement
_dg
dt

T=6000 K

& of fluid elements: vV

Adiabaticity equation:

hotosphere
p p a_P+va_P_c2(a_p+va_p):0’
ot ox ot ox

yP

2
where € = 7 in the squared adiabatic sound speed.

Waves in the solar atmosphere:
linearized equations for small perturbations

Consider small perturbations:

pP=pytp, P=F+F,

0
v=v,+Vv, v,=0, v _%
ot
0=2.74x10% cm/s? Continuity (mass conservation) equation:
T=6000 K 22 + 9P _ 0.
ot ox
Momentum equation:
o, oF,
P T B
photosphere

Adiabaticity equation:
P
R v a—(’—cz(%ﬂ/ %jzo.

o e o ' ox




Acoustic waves in the solar atmosphere

The linearized system of 1D hydrodynamic equations describing vertical propagation of
acoustic waves in a stationary isothermal atmosphere can be reduced to a single PDE in terms

. . . : d
of the vertical displacement & of a mass element. The velocity of the elementis v, = —5 The

linearized equations of the conservation of mass, momentum and entropy are:

op, o,
S8 L, Y0
ot o ox
om __0h _
Po o o gp
%‘*"1%_02(%*"’1%):0'
ot ox ot ox

where p,(x) and F(x) are the equilibrium distributions of the density and pressure,

defined by the hydrostatic equation: ?:—gpo, where g is the gravity acceleration;
x

¢ =yPB,/ p, is the sound speed which is constant because the atmosphere is isothermal, y
is the adiabatic exponent. From these two equations, we obtain:

Substituting v, :% and the hydrostatic equations in the linearized

equations, we obtain:

0
p|+pn£=0
Fs_ om

Por T 8P
R=c'p+gpsé
Substituting p, and A in the second equation, we obtain:
8 _ L8 o¢
or ¢ ox’ &

ox




Waves in the solar atmosphere:
dispersion relation

Eliminating 0;, £7,V; we find that displacement & satisfies
the second-order PDE:

X Fe_p08 08

o C o e

using the substitution # = & eXp(ax) we eliminate the first-

2=2.74x10* cm/s? order term:
ou  ,0u )
T=6000 K ¥=C y—a)vu,
where @, = 2_§ is the acoustic cut-off frequency.

For the dispersion relation we seek the solution in terms of
Fourier harmonics: # o€ exp(—iat + ikx) :

photosphere —0'u =—*k’u - wlu

& =’k + o)

The frequencies of plane-parallel acoustic waves traveling in
the atmosphere are higher than the acoustic cut-off frequency.

Problem 1.5. (extra credit). Consider acoustic waves in the solar atmosphere
excited by an impulsive force:
» show that the solution of Eq.1 for acoustic wave excited by an impulsive
delta-function force described by the initial conditions:

0
£lam0. 2= o

is written in terms of the Bessel function, J:

0, ift<x/c
X,t)= 2
s(wn) 1exp Lgf J, re tz—x—z ,ift>x/c
2 2¢ 2¢ c

* plot &(r) for several values of x, and &(x) for several ¢ for
parameters corresponding to the solar atmosphere, and explain the solutions from the
physics point of view'.

* show that the frequency of oscillations behind the wave front approaches
the acoustic cut-off frequency.

! Hint. For explanation calculate the phase and group velocities using the dispersion relation (Eq.2).
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Propagation of acoustic wave in the atmosphere
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Time-distance diagram of atmospheric waves

30
o5 c=8 km/s
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Physical interpretation of acoustic cut-off frequency
The acoustic waves propagate only when their frequency is higher than the
acoustic cut-off frequency:

w =
‘ 2H
where H is the density scale height:
-1
= _[ dlog p]
dr

Consider a high-frequency acoustic wave with frequency « and wavenumber & .
In this case, from the wave dispersion relation we have:
w

The corresponding wavelength is:

When o> aw,:

A<i =2ZC_ary
This means that the acoustic waves propagate if their wavelength is substantially
shorter than the density scale height. For the waves with shorter wavelength, the
background density and pressure substantially decrease on the scale of a
wavelength, so that the wave compression becomes insufficient for building the
pressure restoring force and maintaining the wave propagation.

Phase and group velocities
Consider the acoustic wave dispersion relation:
o =a’ +kc

The phase velocity:
o Ja! +kc?
W R
[ 2 2
Substituting & = N2 7% e obtain:
c
wc

v, = ——

S P

We find that if w>> w, then v, =c,and if >, then v, —>o.
The wave group velocity:

We find that if w>> w, then v, =c,if o —>w, then v, —>0.

12



Interpretation of the lower turning point of acoustic waves in

the Sun
The dispersion relation for acoustic (p) modes is:
= o' -l S
r CZ CZ

where S, :E, L =11+1).
r
& =& +k+S;
In terms of the horizontal wavenumber:
S, L I(I+1)

[ —
k=2r=2=N2T0
c r r

the dispersion relation:
& = +kC k= +kE
where k*=k’+k; is the total wavenumber.
At the lower turning point of acoustic modes @, < @, and the dispersion
relation is: @ ~k’c* +S;. The wave propagates where k. >0, and the lower turning
point is where &, =0, thatis o=S,. The horizontal component of the phase velocity

at this point:

h_®_S _

ph *k**kfhlfc(’”)
At the lower turning point, the horizontal phase speed is equal to the local sound
speed.

Low-degree p-modes (1=0,1,2, and 3)
N z(n+ L2+ )
kdr

0 ¢
That is the spectrum of low-degree p-modes is approximately equidistant with

For I <<n, r,=0, and we get:

-1
frequency spacing: Av = (4]: ﬂ) v, RAVvQ2n+1+ % +2a)=~Av(2n+1+ %
c

Large frequency separation: Av=68 uHz

GOLF Fourier spectrum
0.0010 T T

OV =Vy =V, 11 ®

RO
| g e

2
oooos|— 7 272— an 0 dr r

o - Small frequency separation :
T ' dv=9uHz

0.0002 — —

Solar -modes from 1979 days of the GOLF
ﬁ 1 experiment, B. Gelly - M. Lazrek- G. Grec -
Ldiiaias]  AAyad -F X Schmider- C. Renaud - D.
3500 4000 4s0¢ Salabert - E. Fossat: A&A 394, 285-297
(2002)
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Low-degree p-modes
Consider acoustic modes (p-modes) of low angular degree
¢=0,1,2, and 3. These oscillations modes are observed in oscillations of
the Sun as a star, and often called global oscillation modes.
We start from the JWKB equation for the p-mode frequencies.
[“kdr=z(n+a)

where r, is the radius of the lower turning point of the oscillation modes,
which is determined from the equation: &, =0, or

a)Z 3 L2

) K
. For the low-degree modes, the turning point is located close to the solar
center, so that 5 /R < 1. Assuming that the sound speed is constant near

the center of the Sun: c(r) ~¢,, where ¢, is the sound speed at the solar

Lc
center. Therefore, r ~—>.
w

In this case, we can calculate the p-mode frequencies by transforming
the JWKB integral

2 2.2
R @ R Lc dr
| —kdr=o 1}1— —=wl
'[’1 I " '[’1 e :

Rdr Rdr R I} dr
L= — | —+ 1- —=
! J.'] c e W\ e e

Rdr endr R e \|dr
= =-|'"==| |1-1-=5 |—

0 ¢ 0 ¢ il wr” | c

We estimate the second integral as: L

in the following way:
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The integrand of the third integral is substantially different from zero
only in the vicinity of the turning point, where we assume c(r)~c, .

Substituting » with x=r/5 and Lc/®=r,, we obtain:

2.2 2
jklzl_\ll_chzi|£z R|:1_\/1_1’1_2}£z
i or e i e
S e =L ﬂ—z)—ﬁ(f—lj
c! X c 2 o\ 2

where, in the upper limit, we replaced R/7 with infinity.
Thus,

11=IR£_£_£ T ql= kdr L7
o ¢ w2

Then, from the equation for p-mode frequencies,
ol =r(n+a)

we find:

Approximating

L_Jli+1) 1+1/2

2 2 2
the frequencies @, of the oscillation modes of angular degree /
and radial order » are:

_x(n+l/2+1/4+a)
nl "~ Rdl" .
0o ¢
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The corresponding cyclic frequencies:
_ o, _n+l/2+1/4+a

v,,,fng:Av(2n+l+l/2+a)
0 c
where
Av = :d =1/T,
af*dr
0 c

is equal to the inverse time for the acoustic waves travel through the center of the
Sun to the antipodal point on the far side of the Sun and come back to the front
side.

This equation shows that in the low-degree p-mode frequencies are
approximately equidistant, and separated by Av, which is called ‘the large
frequency separation’. For the Sun, Av ~ 68 yHz.

It also shows that in the first order: v, =v, ..

In the next order of
approximation this frequencies are separated by:
B Av  rdc dr
Vit =V = Vg2 ® —(4/+6) 27[21/”1 o ;7 ~9 uHz
which is called ‘the small frequency separation’, which primarily depends on the
gradient of the sound speed in the central regions of the Sun.
The large and small frequency separations are among the primary tools of

asteroseismology.

oo L+ = o Lr 1= r S = LCtr Ut
[ T
Large frequency 1=0,n=21 1=1,n=21
separation: A
Av=68 Hz R 3,n=20

v,=Av(2n+1+1/2+2a)

Small frequency separation:
dv=9uHz

5an = an _anl,l+2 ~

R
~ (4l +6) DY [dedr

2rv, o dr r
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Frequency table for /=0, 1, 2, and 3 with associated error bars. Frequencies listed in here are

the average of determinations over 16-month data span. Above 4400 uHz, and /=0 and 2
cannot be separated clearly.

n f‘o To l’[ ol f‘: o [}. (25
16 254155 + 007
17 2559.20 + 004 2619.64 + 0.04 2676.22 + 006
18 2629.72 + 0.04 2693.38 + 004 275439 + 0.04 281148 + 006
19 2764.17 + 0.04 2828.15 + 004 2889.57 + 0.04 2947.00 + 005
20 2899.05 + 0.04 296329 + 004 302471 + 005 308224 + 006
21 3033.77 + 0.03 3098.14 + 005 3159.84 + 0.04 3217.84 + 006
22 3168.65 + 0.04 3233.10 + 004 329506 + 0.05 3353.54 + 0.10
23 3303.39 + 0.04 336848 + 006 343075 + 0.09 3480.51 + 009
24 3439.02 + 0.05 3503.89 + 007 3566.68 + 0.12 3625.99 + 020
25 3574.68 + 0.09 364022 + 008 3702.84 + 0.14 3763.11 + 032
26 371075 + 0.12 377640 + O.Ll 3839.11 + 021 390044 + 048
27 384679 + 0.17 3913.03 + 0.3 397641 + 026 4037.02 + 0.60
28 398445 + 022 4049.91 + 0.6 4114.13 + 029 417446 + 096
20 4121.30 + 0.34 4187.18 + 020 4249.90 + 0.33 4312.98 + 104
30 4259.77 £ 0.34 432571 + 025 4389.30 + 0.37 445411 + 183
31 4397.43 + 0.60 4462.00 + 039 452571 + 0.65'
32 4534.65 + 0.70' 4599.03 + 033 4663.86 + 0.65'
33 467552 + 0.95' 4737.61 + 040 4806.45 + 1.70'
34 4808.60 + 3.96' 4875.75 + 059 494488 + 0.81!
35 495559 + 2.31' 5016.82 + 082
36 5086.18 + 0.98' 515708 + L.10
37 523068 + 1.23' 5308.08 + 222
38 5371.29 + 2.59' 5452.50 + 3.66
T L T T T T T 17717 I7
£ Hydrae ]
Asteroseismology :
PPRART NV} Bl
¥ Indus ]
L ot T
Bedding & A ]
Kjeldsen &

(2003)

a Centauri A

The Sun

ol s e

SR PR

‘HJ“

0.1

1.0

Frequency (mHz)
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Asteroseismic calibration of stellar masses
and ages

15 1 0.9 08 0.7

15, 0.5 0
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-] -0.2
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-
o
[Fe/H]

Small frequency separation <8vy,>/pHz
4
0
|
-

X.=0.1

5‘0 I(I)O 1:"50 20‘0
Large frequency separation <Avg>[uHz
Small frequency separations against large frequency separations with [Fe/H]
abundance indicated by color for 52 main-sequence Kepler LEGACY stars
overplotted on top of evolutionary models varied in mass and core hydrogen
abundance.

(Bellinger et al 2017)
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Lecture 10

Properties of high-degree p- and f-modes
(Stix, Chapter 5.2; Kosovichev, p.29-34;
Christensen-Dalsgaard, Chapters 5.2, 7)

The nature of solar oscillations

Acoustic and surface gravity waves stochastically excited by turbulent convection
in the upper convection zone.

1/21/2022 2




Spherical harmonic transform

For the global oscillations we must use the spherical coordinates (7,4
and expansion in terms of spherical surface harmonics:

o0 /
w0.4.0=2, > a,(nY"(6.9)
1=0 m=-1
In the spherical coordinates, 6,¢:

a(l,m,@) = [[[v(6,8,07" (0, $)e'd0d g,
where Y;m (0, ¢) = B\m\(g)eimf is a spherical harmonic of the angular degree / and

angular order m , le (0) is an associate Legendre function.

Degree [ gives the total number of node circles on the sphere; order m is the number nodal
circles through the poles.

Spherical harmonic power spectrum

The coeftficients of the spherical harmonic expansion can be found by using
the spherical harmonic transform:

a(l,m,®) = j j j v(0,4,0)Y" (6, $)e dOd pdt,

where Y[m (A ¢) is a spherical harmonic of the angular degree / and angular order m .

The power spectrum is:
P(l,m,w)=a"a.

For a spherically symmetrical star, P depends only on / and @.
In this case the power spectrum is ‘degenerate’ with respect of angular order m .

Then we can define the analog of the horizontal wavenumber:

L D)
=R

» where R is the solar radius.




Oscillation power spectrum

8

+ The power spectrum represents
the oscillation signal in terms
of spherical harmonics of
angular degree / (and the
horizontal wavelength, ),
=2r/k,, ), and the oscillation
“cyclic” frequency, v=0/2n.

[ is integer number
A, is measured in Mm
v is measured in mHz
o is measured in rad/sec

(sometimes called angular
frequency)

Low-degree p-modes (1=0,1,2, and 3)
N z(n+ L2+ )
Rdr

0 ¢
That is the spectrum of low-degree p-modes is approximately equidistant with

For [ <<n, =0, and we get:

-1
frequency spacing: Av = (4]: ﬂ) v, RAVvQ2n+1+ % +2a)=~Av(2n+1+ %
c

Large frequency separation: Av=68 uHz
GOLF Fourier spectrum

OV =Vy =V, 11 ®

0.0008 [— -

Ry
A, dc dr
, (46 [
oo~ ] 2y, o drr
P 4 Small frequency separation :
B dv=9uHz
0.0002 — —
Solar -modes from 1979 days of the GOLF
[ ﬁ ] experiment, B. Gelly - M. Lazrek- G. Grec -
il ‘ Uddidaiaasd  AAyad -F X Schmider-C. Renaud - D.
1500 2000 2500 _s000 3500 4000 4s0¢ Salabert - E. Fossat: A&A 394, 285-297

quency (uHz)
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Normal modes of solar oscillations
The frequencies of normal modes are determined for the Borh
n
quantization rule (resonant condition): J.r k.dr=r(n+a),
1

where 7 and r, are the radii of the turning points where £, =0, n is a

radial order -integer number, and « is a phase shift which depends on
properties of the reflecting boundaries. . ¢*-@’ S’

_ . 2 2
k, =———+—5— Z[N —a)j
5000 — , — r — ¢ caw
VoS e ~ 100 c(r) is the sound speed
| . - *\_ c is the acoustic cut-off
" 5 <0 V| @ =755 frequency; it has very
1000 F . S~ k 2H harp i =
~ N ~.. N sharp increase at r/R=1
N N N < N b
S 500 S Tl N\ -1
2 Y dlo
A \\\\\ \\\ | H — i R
. dr
100 & — . T 5
s ' Lc
N \ 2 2
50 ) . ) AN S =—; L =[(l+1)
0.0 0.2 0.4 0.6 0.8 1.0 r
/R 2 1 dP 1ldp JH=g" /¢
yPdr pdr

Properties of Solar Oscillation Modes. I

2 2 2
. 2 W — 0O, S 2 2
Equation k; =———<+—¢ 2M—w ]
c cw

represents dispersion relation of solar oscillations.

It relates frequency e with radial wavenumber &, and angular order /.
Consider two cases:

1: p-modes (acoustic modes): the high-frequency case. If @* >> N’ then
_@0 o S

k2
' c? c?
or o' =0 +kc+kc’,
L JI(+1) . .
where k, =S, /c=—= UG is the horizontal wave number.

r r
Then, k*> =k +k, is the squared total wavenumber.

c . .
Finally, @ = @’ +k’°c®, where @, = SH is the acoustic cut-off frequency.

This is the dispersion relation for acoustic (p) modes; @, is the acoustic cutoff
frequency. Physically, the waves with frequencies below the acoustic cutoff
frequency cannot propagate. Their wavelength becomes shorter than the density
scale height. For the Sun v. =w /27 =5 mHz. (c~10 km/s, H~150km).




Calculation of p-mode frequencies

. . 2
1 g \ \ | o, -~ Wave propagation region: k, >0
50 ] 13 4 \‘ \\ . . .
b \ \ \ =100 Turning points are determined
Y \ =500 . 2
40 ~ '\ ! from equation k&, =0:
' ! =20 DR )
= e 0B \ N 22y Lc
T 3ES | + ! w = C()C 7 -
EN N R r
R ' S For the lower turning point in the
RN interior: @, << @ .
\ S p-modes N o
e SR pole ) _o
Yol Then, @3 5F or ==
0/ D — T o ST h
0-0 0.2 04 o 06 0.8 1.0 is the equation for the lower

turning point.

The upper turning point: @,(%,) ® @ . Since @,(7) is a steep function of »
near the surface, 7, ~R.

R 2 2
... . o L
Then, the resonant condition for p-modes is: J.r P r—zdl’ =r(n+a)
1

. High-degree modes (/ >>1)

The wave propagation region is a shallow
R subsurface layer.
We consider it as a plane-parallel layer of
z=R-r depth z.
The density stratification in the convection zone that occupies
z the top 30% of the Sun’s interior is almost adiabatic:

P(z)= A4p(z)
where 4 is a constant.

Using the equation for hydrostatic equilibrium: P _ gp Wwe obtain:
zZ

dp _gp
dz Ay
1/(7-1)
z (y—1
= p(z){g——” )j
4 y

4 7
uP _pd o p(r-Dg
R:p R; Ry
where R, is the gas constant.

Then, temperature 7(z) =

b}




The sound speed: ¢ 7RI _ (y-1)gz.
u
Calculation of mode frequencies (z=R-7):
[ kdz = (n+a)
A

1(+1)

RZ

2
w

where k’=—--k; and k, ~
C

Find the depth of the lower turning point (k> =0):
a)ZRZ
Z =
(r=Degl(l+1)
Calculate the integral:

_J-O N ((ER)) = 7w°R _
A\(y-Dgz R 2y —)g Il +1)
Then, the frequencies of high-degree modes (/> 1) are:
(o,i = @\/Z(Z+l)(n+a) =2(y-Dgk,(n+a)

This explains the parabolic shape of the p-mode ridges in the power spectrum
(I-v diagram):

r(n+a)

> <l or @, ol

nl nl

Power spectra of / = 200 modes obtained from SOHO/MDI
observations of a) Doppler velocity, b) continuum intensity.
Velocity and intensity spectra from SOHO/MDI

E :‘ ‘ Vkl{)uty}wwer spécfrum E
4= A
= 3F 3
- E
on E |
2 E E
2E E
A dneasymmeny 3
E ?Infterfisit‘y‘ power § E .
3.0F R 1 Fora given value of /
25 reverse line asymmeny | the picks are almost
F [ d b L d Lo 1 equidistant, and
20K < im}m—‘a fabatic mo ?Sj : - separation between the
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1L0F | 3
) : 1
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Surface gravity waves (f-mode)

At the visible surface of the Sun (the photosphere), the density drops so fast
that the photosphere can be considered as a free surface of the Sun, without a
substantial external force. This means that the Lagrangian pressure variations on the
surface: sP=0.

The oscillations associated with the free surface are called ‘surface gravity
waves’, and the corresponding normal oscillation modes are called f-mode (or
‘fundamental mode’). The surface gravity waves are similar to ocean waves. The
frequencies and the penetration depth of these waves depend on the horizontal
wavenumber.

To describe the surface gravity waves, we consider the general oscillation
equations in the Cowling approximation:

2.2 ’
%+2—§ r+[1 Le ] P =0

dr r r’e’ ) pc’

ar' g ' 2 2
> P +(N" —w =0
dr ( ) p5
and replace the Eilerian pressure varlatlons P', with the Lagrangian variations, 5P :
P
5P:P’+§,i: P'-&pg
dr

Near the surface, » ~ R, g~ const.

Substituting P'=5P+ pgé,,

(s
rw pc

Neglecting the sphericity term frf, we obtain:
r
2 2.2
dé,  L'g 5,4{1 e j(sp_o

dr o’ 0w’ ) pc

Substituting P, N>°=g L¢P _1dp and —=—-gp, in the second equation:
yPdr pdr dr
ar' g ., 2 2 _
;‘F?P +(N — @ )p§,—0

we obtain:

djf)_'_g\% d§ 5P+ §+g%§ g}\? o’ pé =0

After substitution of de, from the first equation:
r

dspP r re oP |
7+gp zgzgr_gp(\‘\_ 2 2 5P a)pg =0
dr r r’e’ ) pc’




Finally, we obtain the oscillation equations in terms of 6P and &, :

2 2.2
dg,__LgéJ{l_Lc ]51)_0

This system has a solution: 5P =0 and & =0, at the surface r=R if

o’R I'g _
g R
Thus, we find the f-mode frequencies:

I(1+1
w[z _Lg _ _ (I+Dg
R R

. This is a dispersion relation for the surface gravity waves (f-modes) traveling at
the solar surface.

k,-g

The f-mode eigenfunctions can be found from the equation for & at r~R

dé, I'g . _

o R’
or

aé, L, _

dr R*7
The solution is:

L
§ oce*;(R*V)

The eigenfunctions exponentially decay with the depth.
The characteristic penetration depth is: R/L (equal to
the horizontal wavelength).

For high values of the angular spherical harmonic degree 1/,
the f-modes are concentrated near the surface.

However, for low / they penetrate in the deep interior
where they interact with the internal gravity waves,
and their properties are calculated numerically.




frequency, mHz

Theoretical /-v diagram: numerical
solution of the oscﬂlatlon equations

0 20 40 60 80 100
angular degree, /

0487

0.46 f-mode
o 0.44 / R
g s.,-modt:s
2042 — -- —
P! . -
=3 / —
£ 0.40 "

/
0.38
0.36
14 16

18 20 23
angular degree, /

Avoided crossing effect for mixed modes

Seismic radius
The f-mode frequencies can be expressed in terms of the solar mass and

radius:
- Jliin&=te
R R

where g is the gravity acceleration on the surface of the Sun:

_GM
e
thus
, LGM
o= 7

The value of GM is known with very high precision from interplanetary spacecraft
orbits. The f-mode frequencies are determined from helioseismic measurements by
fitting the f-mode lines in the oscillation power spectra for various values of angular
degree /. Then, we can calculate the solar radius radius as:

LGM 1/3
@,
ot in term of the cyclic frequencies v, =@, /27 :

173
_(LGM
a7’}

Thus, the measurements of the f-mode frequencies allow us to estimate the solar
radius, called ‘the seismic solar radius’.
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There is no sharp solar surface. The standard measurements of the solar radius
are based on determining the locations of the inflection point in the solar brightness
profile, which depends on the radiation bandwidth and the structure of the
atmosphere.

The seismic radius provides the radius of the sharp density decrease at the
surface. It can be directly compared with the solar models.

It turned out that the solar radius was overestimated by about 300 km. The
deviations of the seismic radius from the model can be calculated from the
perturbation equations:

R 3,
This relation is also use to estimate the variations of the seismic radius during the
solar activity cycles. However, evolving magnetic fields also affect the f-mode and
their effects have to be taken into account.

Because the f-mode penetration depth depends on the mode angular degree,
the f-mode measurements can be used for measuring the displacement of subsurface
layers of Sun.

Measurements of the seismic radius
relative to the standard solar model

4x107 . - model S
2x10™
seismic model
0 e
% 107
= -2x10” 5
£ =
> P
L -4x107 g
&
Z 6x10* model S
e i
-8x10° 107
-1x107°0 ]
10 1.1 12 1.3 14 15 1.6 694.5 695.0 695.5 696.0
a) : ’ N (mHz] : T b) radius (Mm)
AR 2 Ay This means that the seismic radius is
—__= ~4.4x% 10—4 approximately equal to 695.68 Mm, which is about
R 3 v 0.3 Mm less than the standard radius, 695.99 Mm,

used for calibrating the model calculation.
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Cyclic Changes of the Sun's Seismic Radius

Seismic solar radius

110* E 2001.10.02 - 1996.06.06
> 510° F e
>
o OFF 888 R =
-510° F 3
a) 150 200 250 300
Angular degree, /
110* | 2009.06.10 - 1996.06.06 &
2 510° F 4
>
2=

b) 150 200 250 300
Angular degree, /
110* £ 2014.05.15 - 1996.06.06 .
> 510°
>
w
-510° F 3
) 150 200 250 300

Angular degree, /

’
1,
ol
4F I bl ‘:Y }:klc
% 0
a) 2000 2005 2010 2015
Year
Surface perturbation
510
410°
_310°
= 210"
110°
0
-1-10°
b) 2000 2005 2010 2015
Year
Sunspot number
200
5 150
“ 100
50
0
) 2000 2005 2010 2015
Year

(Kosovichev & Rozelot, 2018)

Sensitivity kernels

0.00
-0.05F :
‘f; -0.10F =137
S -0.15F )
< -020F =200 :
2 025k =250 :
030F =299 ;
a) -20 -15 -10 -5 0
Depth (Mm)
Averaging kernel
-5
£ 0
=
-15
=20
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Variations of the seismic radius at different depths:
inversion of the f~-mode frequencies

Seismic radius, 1996.10.28

-15 -10 -5 0
Depth (Mm)

Seismic radius, 2001.10.02

-15 -10 -5 0
Depth (Mm)

Seismic radius, 2014.05.15

-15 -10 -5 0
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Variations of the seismic radius with time and depth

a)

Depth (Mm)
=

Seismic solar radius at the depth of 5 Mm
E T E]

2000 2005 2010 2015
Year

Variations of the seismic radius &r (km)

2000 2005 2010 2015
Year
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Lecture 11
Internal gravity waves and g-modes

Overview of the Asymptotic Theory.
JWKB (Jeffreys-Wentzel-Kramers—
Brillouin) Solution




General idea of the JWKB approximation

Consider a second-order oscillation equation in a uniform medium
without gravity: c=const, @, =0, N=0.

2 2
¥ k*w=0, where K*=<
dr c

For a one-dimensional potential well of the length R with infinite walls,
the boundary conditionsare: ¥=0 at =0 and »r=R.
We seeks the solution in the form:

Y(r)= de™
Then, the solution satisfying the boundary conditions is:

W(r)= Asin(kr)

where kR=7zn, n isaninteger number.
Thus, we obtain the oscillation spectrum (eigenvalues):

w, = rnc/ R.

Then, we consider the wave equation with the coefficients varying with r:

2
d ‘f—i-Kz(r)‘{’:O
2
o'-ao L', N’
KZ(I"): cz —r—z I_F .

If K(r) isaslowlyvarying function of » we can seek the solution in the form:
P(r)= A4e""”
where u(r) is aslowly varying function.We find u(r) by substituting this form
in the wave equation:
4
dr dr

oA L
d - — id_l;Ae’u(’) _ ﬂ Aem(l)
dr dr dr




Because u(r) is a slowly varying function, in the first approximation we neglect
the first term in this expression. Substituting in the wave equation, we obtain:

du ’ iu(r) 2 u(r) _
|\ A" + K(r) Ae""” =0
1

2
(%j =K’ — Z—u =K — u(r)= ijkdr
r r

iiJ‘kdr
Y(r)= Ae
The eigenvalues are determined by matching the boundary conditions:

kdr=n(n+a)
cavity

where «a is a phase shift due to imperfectly reflecting boundary conditions.
1 dK

3
It can be improved considering A as a function of ».

The JWKB approximation is valid if <.

JWKB solution

+i |k dr
e ape

2_p 2 2
where k(r)2=u—— l—N—

2 2
C r

The wave propagation region is determined from k(r)>0.
The resonant condition is:

| “k dr=r(n+a)
i

| C r

. —o? I 2
J.z w—zwc——z[l—%jdr=7z(n+a)




Normal modes of solar oscillations
The frequencies of normal modes are determined for the Borh

7
quantization rule (resonant condition): J.r k.dr=r(n+a),
1

where 7 and r, are the radii of the turning points where £, =0, n is a
radial order -integer number, and « is a phase shift which depends on

properties of the reflecting boundaries. | @’ -@’ S7 ,
k==t 55 (N -0
5000 - — .c cao
VoS e ~ 100 c(r) is the sound speed
\ AN —— P c is the acoustic cut-off
. . ~~.20 o =— .
. <. 5 <. \ c frequency; it has very
1000 N ~L. ~ £ 2H .
— AN . AN ; sharp increase at r/R=1
N N N S N 1
T 500 h S~ .
2 B N ' dlogp)’
N S~ Sl Y —
. N H=|———]|,
Y dr
100 £ —\ ] L,
R ! Lc
N \ 2 2
50 A AN I Pty ey [V )
0.0 0.2 0.4 0.6 0.8 1.0 r
/R 1 dP 1d
N'=g|— 8P \_o/H g le
yPdr pdr
Internal gravity waves (g-modes)
5000 SE] . : ;
s, . The acoustic (p) waves propagate in the region
=Tz ~| Where their frequency is greater than the Lamb and
woop 1 2 ] acoustic cutoff frequencies: w>S, and w>a,.
5 N -
T 500 N JII+1
f . where S, _Le_Jl+De )C.
Y r r
100 A Tl .| Consider low-frequency waves: o <.
s ‘| In this case, the second term in the dispersion equation
0 02 04 06 } 0.8 1o is dominant: R
/R 2 51 2 2\ _ l(l+1) 2 2
Y k!~ o (N - )— - (N - )

g-mode cavity

The propagation region region, k>0 is where w<N.
The wave turning points, k' =0, are determined from
the equation: N(r;,)=o.

Thus, the resonant condition is:

-~ 10+1) J-rzmﬂ =x(n+a)
[0} i r




Assuming that far from the turning points, @< N°, we obtain the resonant
mode frequencies:

Dy = l_(l+1 Ierﬂ
r(n+a)’n r
These resonant modes are called internal gravity modes, or g-modes. They are

driven by the buoyancy force. The g-mode are non-radial, />1.
The periods of the g-modes:

2r z(n+a)

o T
it ,/1(1+1)j N
i

fora given / are equidistant in terms of the radial order, » . This property is often
used for searching of g-modes in the noisy power spectra of solar oscillations, by

performing a Fourier transform and searching for a signal corresponding to the
period separation, or applying a ‘comb’ filter.

. . 1
The frequency separation decreases for higher » values as Aw~—,

forming a dense spectrum.
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Spatial structure of p- and g-modes is obtained
by multiplying the radial eigenfunctions by the
corresponding spherical harmonics

p-mode (!=_20,_m=16, n=14) g-mode (:’=51 m=3, n=06)
4 "h% \\\\% | ('

0" O s . ‘ |.|%3;;.:.‘.

AN “

a) NI b)

g-mode ray paths

g-modes propagate only in the radiative zone which
is convectively stable N° >0




Simple description of internal gravity waves

Consider a displacement, 67, of a small fluid
element along the radius. If the density inside
the displaced element, p+Jp, is smaller the
density of surrounding plasma, p+ Jdp, then
the element will continue moving up under
the buoyancy force. Therefore, the condition
of the convective instability is:

Ap=dp,—dp<0.

Physical conditions inside the element obey the adiabatic law because the
characteristic time for heat exchange is much longer than the dynamic time. Then,

p, =(d—pj 5r=ﬁ(di)5r,
dr ) yP\ dr

where y is the adiabatic exponent.
The density variation in the surrounding plasma is: Jp = d—pé'p.
r

Finally, the instability condition is: A= 1dlogh dlogp

"y dlogr dlogr
Parameter 4" is called the Ledoux parameter of convective stability.

<0.

If A"> 0 then the fluid element will move downward and start oscillating.

Oscillations of a fluid element
The momentum equation of a fluid element moving under the
buoyancy force, F,,,,., =g(dp-dp,) is:
Tor dp_p dPYo s,
t dr yP dr

where 7 is displacement of a fluid element from its equilibrium state,

P =p(5p—§p,)=g[

N2 = g[?j—jj is the Brunt-Vaisala frequency.
v r r

d’or
ar
For N*>0, the general solution is:
Or = Asin(Nt)+ B cos(Nt)
- the fluid elements oscillate with frequency W~ , representing the internal
gravity oscillations.
lg If N*<0, then 6r~e™" . This solution contains an exponentially
growing perturbations, representing the convective instability.
If the fluid displacement & is not vertical, then the vertical
or component of the displacement is &r=¢&cos(d), where ¢ is the angle
& between the displacement vector and the vertical.
0 In this case, the equation of motion is:

The equation of motion is: +N?6r=0

d’¢
W+Nzcoszg-§:0
and the oscillation frequency is @ = Ncosd.




Propagation of internal gravity waves
To analyze wave properties, we calculate the phase and
group velocities from the dispersion relation:

K= Szz N2

" cza)z( @ )
o , I,

Substituting S = = =k;c

where k,=L/r is the horizontal wavenumber defined in the

previous lecture, we obtain:
k2
K= 7;,7 N —@?)=
=k )

k2
W2 g2
SN =k
@

We find

a):iNk—"
k

where & is the total wavenumber, k*=k; +k”.

If 6 is the angle between the wave vector k = (k,.k,) and the
horizontal direction, then &, /k =cos8, and
@ = N’cos’0
If 6=0, thatis k=k,, and the waves travel horizontally, o> =N>.

The wave phase velocity is:

. _o_or
vph:fzﬁk

or in terms of the horizontal and vertical components:

. _(wk, ok \_( Nk; Nkk,
O ey B e
The group velocity:

s 0o (N[, k) Nkk|_(NK Nk
“ ook kU K) kK Br

Note that the vertical component of the group velocity has the opposite
sign to the vertical component of the wavevector, %, .

We find that v, -v, =0, that is ¥, 1v,. This means that the
wave energy is transported perpendicular to the wave propagation.




Calculating the amplitudes of the group and phase velocities, we find:
2 2 2 7272 2
g N N ER) N
ko k

Kokt K

Ni N .
[V, |=k—2’=;sm0

Similarly, [v,, = %cos 0

Consider propagation of a wave front from an impulsive source.
The radius of the wave front expands with the group velocity:

r =vg,t=Esin0t=N£sin0,
where A=27/k isthe wavelength.
Laboratory experiments are performed in a stratified salt solution with a constant
Brunt-Vaisala frequency N . A horizontal cylinder vertically oscillating with frequency

o generates a wave pattern with constant phases at angle cos™'(@/N) to the vertical,
resembling the St.Andrew’s Cross pattern.

Internal gravity waves experiment

Atank about 30 cm deep is filled with a salt stratification of buoyancy period 2n/N of about 6 seconds. A solid cylinder
of a few cm diameter runs across the tank at mid depth, in the right of the field of view (see diagram). This cylinder is
oscillated horizontally (to the left and right in the diagram) at frequency less than N, generating internal waves. The
flow is visualized with a schlieren system that shows regions of positive isopycnal (constant density) slope in red, and
negative isopycnal slope in green. Slopes close to zero show as yellow. The movie is in time lapse, so that the waves
appear to have higher than real frequency. The movie starts from rest, and after the paddle motion begins, the wave
field starts to fill the tank outwards from the paddle. In the movie clip, wave energy appears to travel at an angle from
the horizontal, and the wave crests sweep at right angles to this direction.

http://www.phys.ocean.dal.ca/programs/doubdiff/demos/IW1-Lowfrequency.html
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Internal gravity waves excited by
oscillating source

314 Internal waves [4-4

Figure 76. Schlieren picture of waves generated in stratified fluid of uniform
Viisili-Brunt frequency N by oscillation of a horizontal cylinder at frequency
o.7olN. Note that surfaces of constant phase stretch out radially from the source.
[Photograph by D. H. Mowbray.]

Lighthill, James, 1978. (Chapters 3 and 4.) Waves in fluids. Cambridge University Press.

Internal gravity waves excited by impulsive
source

)  Figure 77. Schlieren picture of waves d by a brief horizontal displ ©®) ‘
|
|

of a circular cylinder (a) after 10 seconds, (b) after 25 seconds. Note that the
angle between crests decreases with time and is greatest, at any one time, for
crests nearest to the vertical. [Photograph by T. N. Stevenson.] “

A localized source of finite duration generates waves of various wavelength
and frequencies. The wave frequencies obey the dispersion relation: o= Ncosé, so
that the waves with different frequencies travel in different directions. The waves
of wavelength 1 travel to the distance proportional to the wavelength:
(NAt/27)sin@. The waves with frequency o traveling in direction ¢ become
spread out in wavelength. The waves with shorter wavelength travel slower. The
neighboring wave crests are separated by the wavelength 1. Therefore, over time,
the distance between the crests decreases.
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Numerical model of internal gravity waves

excited by impulsive source

http://web.khu.ac.kr/
~magara/pagel7/pag
e5/page5.html
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Detection of g-modes on the Sun

The g-mode can be excited by the turbulent convection, like the p-modes.
Theoretical calculations show that, the expected surface amplitude is less than 1
mm/s. The g-mode has not been reliably detected. The upper observational limits
are greater than 1 mm/s. The main difficulty in the g-mode detection is the high

background convective noise.

Theoretical prediction of the mode amplitude

g-moce frequency (uHz)

Kumar et al, (1996)

1000

amplitude[mm/s]

Observational limit

100, . ’ i F=l- w=!J-

£ . ;hl m=1

1=3. m=0

10 1

E'=3 g /:j.m:i‘

I=1, m=l
1=2,m=2 |
3, m=3
0 200 400 600
frequency[u Hz]
(Wachter et al, 2002)
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Numerical simulations of excitation of modes by
convection at the bottom of a stellar convection zone

The video shows volume rendering of density fluctuations in 3D simulations of the
convection zone in a solar-type star with 1.47 solar masses. Fast flickering in the upper
part is caused by acoustic (p) modes. Slow variations in the lower part are caused by the
internal gravity waves (g-modes) traveling in the radiative zone where N>0.

Convection zone

Radiative zone
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Lecture 12
Asymptotic raypath approximation

(Stix, Chapter 5.2; Kosovichev, p.31-36, 41-44;
Christensen-Dalsgaard, Chapters 5.2, 7)

Projects

*Power spectrum: Ivan Oparin

*Global modes from GOLF: Sheldon Fereira

*Oscillation model, line asymmetry: Bryce Cannon

*Power maps, acoustic halo: Bhairavi Apte

*Propagation diagram for solar and stellar models: Ying Wang
Ray paths, travel times: Sadaf Igbal Ansari -today

Asymptotic sound-speed inversion: Yunpeng Gao -tomorrow
Analysis of sunquakes: Youra Shin

Asteroseismic analysis: John Stefan

November 29-30: Work on the Python and Jupyter notebooks
in class — Dr. Andrey Stejko




N

Sk w

8.

9.
10.

The solar oscillation theory

Linearize - consider small-amplitude oscillations.

Neglect the perturbations of the gravitational potential (Cowling

approximation).

Write the linearized equations in the spherical coordinates: r, 6, @.

Consider harmonic (periodic) oscillations

Separate the radial and angular coordinates.

Show that the angular dependence can be represented by spherical

harmonics.

Derive equations for the radial dependence, representing the

eigenvalue problem for the normal modes

Solve the eigenvalue problem in the asymptotic (short wave-

length) JWKB approximation.

Investigate properties of p-modes

Properties of g- and f-modes

Solar oscillation spectrum obtained
from the HMI instrument on Solar
Dynamics Observatory.

I

1
]

Spectrum of normal modes calculated
for a standard solar model. Note the
‘avoided crossing effect’ for f and
g-modes.
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Spatial structure of p- and g-modes is obtained
by multiplying the radial eigenfunctions by the
corresponding spherical harmonics

p-mode (/=20, m=16, n=14) g-mode (/=5, m=3, n=6)

977 BRN /
W IT %} \\.\\\\\ﬁ\' | "' ’
FeR e JLU . 1 ||£;s::o )

il
L L

a) T— b)-.

Calculation of p-mode frequencies

. . 2
A, | | o, ~ Wave propagation region: &, >0
sio | SN . . .
I .\ Vg NI Turning points are determined
1 1 . AN o 1 . 2
AT \ | from equation &, =0:
l\ \l “e=20 \\ ' )
£ | 65 ' \ Lc
— e | 22
'ij 30 \‘ - \\ w = a)c + r2 .
AR s \ For the lower turning point in the
E . .. | interior: @, << @.
Eooy N p-modes “\ L
I - — o~le ) _o
[ — .t Then, == or — =
L eemodes - - — e < r },i L
0 M I .
0.0 0.2 04 R 00 0.8 1.0 is the equation for the lower

turning point.

The upper turning point: @,(%,) = @ . Since @,(7) is a steep function of »

near the surface, 7 =R.

R 2 2
... . o L
Then, the resonant condition for p-modes is: J.r P 7611’ =r(n+a)
1




Properties of Solar Oscillation Modes. I

2 2 2
. 2 _ W~ O, S 2 2
Equation k; =———<+—5 [N - ]
c cw
represents dispersion relation of solar oscillations.

It relates frequency e with radial wavenumber &, and angular order /.

Consider two cases:
1: p-modes (acoustic modes): the high-frequency case. If @” >> N’ then
ool S

2 2
" c c

or o' =0 +kc+kc’,
L _\li+)

I" r

where k, =S, /¢ is the horizontal wave number.

Then, k*> =k +k, is the squared total wavenumber.
c . .
Finally, @ = @’ +k’°c’, where @, = SH is the acoustic cut-off frequency.

This is the dispersion relation for acoustic (p) modes; @, is the acoustic cutoff
frequency. Physically, the waves with frequencies below the acoustic cutoff
frequency cannot propagate. Their wavelength becomes shorter than the density
scale height. For the Sun v. =w /27 =5 mHz. (c~10 km/s, H~150km).

Frequencies of g-modes:
The turning points are determined from equation:
N(r)=ow.
In the propagation region, k£, >0, far from the turning
points (N >> o ):

re
Then, from the resonant condition:

I N—-7z(n+a)

LJ' Ndl”

we find: o~x——
w(n+ a)




Surface gravity waves (f-mode)
These wave propagate at the surface boundary where Lagrangian pressure perturbation
oP~0.
Consider the oscillation equations in terms of §P by making use of the relation between
Eulerian and Lagrangian variables: P'=0P + gpé,.

2 2.2
%_ Lg éy‘f‘[l—LC j”:()’

dr  o'r’ o’r’ ) pc’
2
dop ngz sp_8PS £ =0,
dr r r
2 2
where f= or_ LTg
g or
These equations have a peculiar solution: 6P =0, f=0.
Lg
For this solution: o' = R =k,g
-dispersion relation for f-mode.
. . . dé. L
The eigenfunction equation: ———£ =0
dr r
has a solution & o "R exponentially decaying with depth.

Asymptotic raypath approximation

Ray paths for:
a) two solar p-modes of angular degree [ = 2, frequency v = 1429.4 u Hz (thick
curve), and / =100, v = 3357.5 x4 Hz (thin curve);

b) g-mode of / =5, v =192.6 u Hz (the dotted curve indicates the base of the
convection zone). The lower turning points, 7, of the p-modes are shown by arrows.
The upper turning points of these modes are close to the surface and not shown. For
the g-mode, the upper turning point, 7,, is shown by arrow. The inner turning point is
close to the center and not shown.




P-mode ray paths

o' -w S
c’ c’

* The waves propagate where
k.2>0.

* The waves are evanescent
where k 2<0

* The wave turning points are
located where k 2=0.

* Because w =c/2H

has a sharp peak near the surface

the upper turning point (r,) is

where @ = @,

The lower turning point (r,) is

! where @ = S, Z(L/F)CZth

where the horizontal phase speed @/ k, = ¢ is equal to the sound speed.

Inner turning point

k2 =

John’s sunquake movie illustrate the wave behavior at
the inner turning points:
wave fronts are perpendicular to the ray paths




Theory of the raypath approximation

The asymptotic approximation provides an important representation of solar oscillations in
terms of the ray theory. Consider the wave path equation in the ray approximation:

or _Jw
or  ak’
Then, the radial and angular components of this equation are:
dr _Ow dé ow
—=—, r—=—.
dt Ok, dt 0ok,

1. Consider p-modes.
Using the dispersion relation for acoustic (p) modes: o' =c’ (k,2 + k;,z ),
in which we neglected the , term. (It can be neglected everywhere except near the upper
turning point, R), we get equation for the acoustic ray path is given by the ratio of equations:
d@[aw]/[awj:k
ar \ok, ) \ok ) k~°

or
4o _k,_ L

dr k. ot iP-1 17
For any given values of w and /, and initial coordinates, » and @, this equation gives trajectories
of ray paths of p-modes inside the Sun.

Acoustic travel time

The distance, A, between the surface points for one skip can
be calculated as the integral:

R L/r

R clr
'\/a)z/cz—Lz/rz i

Azzj:dezzjl drEZ‘[I NPT

The corresponding travel time is calculated by integrating

ti . ﬂ = aﬁ . dt = dr
CquanOm T ok, c(1-kic* 1 ?)”
R R dr R dr
r=2("dr= =
Joa=] I

1 c(lfk,fc2 | & )1/2 1 c(lszc2 /e’ )LZ .

These equations give a time-distance relation, 7 - A, for
acoustic waves traveling between two surface points through
the solar interior. The ray representation of the solar modes
and the time-distance relation provided a motivation for
developing time-distance helioseismology




Calculation of p-mode ray paths:
1) Isolate the singularity at r,

Use the sound-speed profile, c(r), from the standard solar model to
calculate the integral:

RL 1 d
no-[tle L&
L2c2
- 0*r?
Integrand is singular (division by zero) at the lower turning point, * = 7;,
Le(r) _
where =

7
We divide the integration interval in two parts: 1) [r,71+x], 2) [r1+x,R],
where x is small compared to ry:
rl+x ]/‘
/ _ 7]+‘( _

AG = j —_50 AO'

Calculation of p-mode ray paths:
2) Use Taylor expansion in the vicinity of 1,

To calculate integral 8 use the Taylor expansion in the vicinity of r;:

nx Lc 1 dr

00 = I —_—
LZCZ 7
1- o*r’
: Le(r) _
The first term of the integrand: o =1
1

Expand the denumerator:

I’c¢? lJ{dlogczj X
1
| re _1 dlogr ) n {2_(dlogczj ]x_ x

_Le X_
dl
@r a)zrf(uzxj 8"/,
7

h h




Calculation of p-mode ray paths:
3) Outside singularity use numerical integration

Substitute the expansion in 66

& el B By N
0 X K ar 0 /x ar,
ai
h

Define x, calculate 30, and evaluate integral ® numerically.

so=[" 1 dx 1 J~xdx X

7

=

N

[ IS I S I O | T |1
e ! )
n+x R
A9=ILC 1 dr+ch 1 dr:59+A9’
L ro L’ r S ro ’c? r
! l-— ! 1-
’r

2.2
r

Ray paths of g-modes

For the g-modes, the dispersion relation is:

2 _ kN
K +k
Then, the corresponding ray path equation:
do k, N?
y—=—-—-—-=— —2 - 1
dr k, W

Note that the g-mode travels mostly in the
central region.

Therefore, the frequencies of g-modes are
mostly sensitive to the central conditions (the
energy-generating core).




Duvall’s law (asymptotic p-mode relation)

Consider the p-mode dispersion

relation: R T T IIIIIII T T TTTTIT T T IIIIIII T T TTTTIT
j k dr = r(n+a) .
i 108 -
1/2 1
Rl @ I
j ——— | dr=r(n+a)
i\ c r Q
Dividing left and right-hand sides by ® ?
we get: +
5 5 \112 S r
R " L dr rm(n+a) \
J - _—=— - | p-mode . \
i\ c 0] r 0] frequencies form
Radius r, (or r,) of the lower a single curve in
turning pOint depends Only On 11 tlr?ﬁﬁle Vlarllaltl)llﬁf. 111 Illlll 11 1111
ratio L/w. Hence, the left-hand 100, 5 100 1000 100 10
side is a function of L/w: Vi(+1)/0
L T(n+a
TH _rnta)
w w where L=./I([+1]) a=l1.5

Duvall's law

wn+o)/w

1000

1ot 10°

L/
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Duvall's law (without f—mode)

T T T L T
3
Py
5
p
g IOOOj 7]
ol Ll ool Lo
10! 10% 10® 10t 10°
L/w
Duvall's law for n> 4 and nu > 2mHz
3
e
)
R
= 1000_— 7]
Ll Ll Ll L
10! 107 10? 10* 108
L/w
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mn+o)/w

1000 -

Duvall's law for turning peint radius, ri

e T R S S S s B
I \M‘HH‘\‘ |
T
C
0.0 0.2 0.4 0.6
T/Rsun

A(mn+o)/w)/ar,

N 11 L I S B I B A T S Ch A TR S B CI T

—8x107%-
—6x107% -
—4x107% -

—2XIO_E— . Sehs’ . “ i

Derivative of Duvall's law with respect ri
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Determination of the sound-speed profile from Duvall’s law
The asymptotic relation for the p-mode frequencies in the form of the
Duvall’s law:

ch2 dr _n(n+a)

allows us to determine the sound-speed proﬁle inside the Sun. It was the first
determination of the Sun’s internal structure to test the stellar evolution theory.

2
Substitute new variables: x=_- and y= L , and consider the right-hand side
c

J- ,1 ﬂ(n+a) = F(y)

2

as a function of y:

where X is the value of x at the solar surface: X =

(R
This equation can be rewritten as:
J-X ,—x_y dlnrdx=F(y)
y dx

The parameter y and function F(y) are known from observation. Our task is to
find » asafunction of x by solving this integral equation. Once we know r(x) we
can reconstruct the sound-speed, ¢, as a function of radius r.

First, we differentiate this equation with respect to y :
lex 1 dinr,  dF
29 x— y dx dy

By introducing f(x)= % and ®©(y)= —Zc;—F, we write it in the form
X 'y

of the Abel integral equation:

)
) s e 00)

To solve this equation, we multiply both sides by

and integrate
y—u

N Rt

over y from u to X:
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In the left-hand side, we change the order of integration —
first, integrate over y and then over x:

f(x) dy ¥ y=x dy
x O f e ol e e
X b , This transformatlon is easy to understand by plotting the
i integration region in the x—y diagram.
- y=x The integration region covers the gray triangle. Before the
’ j transformation, the integration over x was along
B7] I . the vertical lines, and then horizontally over y.

After the transformation, the inner integration is along the
i horizontal lines from y=u to y=x.
' This integral is calculated analytically:
Xy | A—
N G=y)(y—u)

y=u

Thus,
()

7Z'J’ f(x)dx = j \/y_ dy

dlnr

Substituting back f(x) =

and @(y)z—zd—F we get:
dy

dx
Cdx  fy—u

”.[Xdlnr :72.[XdF/dydy

Integrating the left-hand side:

{ln R —Inr(u)] = 2j f/ dy

NV~
where R is the solar radius. Replacing independent Varlable u with x:
r X dF | dy
In| —|=— dy
(Rj I Ny—x
The solution is often represented in terms of variables w and a defined in terms of
x and y as:

dy

IA dF/dw

where a=r/c , w=L/w and A—R/c(R) . The integral is calculated by
approximating F(w)EF(L/a))zM by a smooth function of w, differentiating
(2]

with respect to w and calculating the integral numerically, taking into the
singularity at the lower limit. The singularity is of the type of 1/+/x and the integral
is calculated analytically in the vicinity of the singular point . This type of integrals
are called the Abel integral equation. It gives the relationship between r and
a=r/c,from which ¢(r) can be calculated by interpolation.




Taking into account the Brunt-Vaisala frequency and the
surface phase shift

An application of short-wave asymptotic theory to the non-radial adiabatic
oscillation equation yields, in the first-order approximation, the dispersion
relation which includes the Brunt-Vaisala frequency N :

2 2 1/2 2 1/2
z(nta) _ [ oL (LN dr
® A o’ r

where N is the buoyancy frequency and  1s radius of the turning point of the
mode, (r/c(r)=L/w).In general, the phase shift «, which depends on the wave
reflection at the solar surface, is a function of frequency: «=a(w).

In this case, the Duvall’s law depends not only on the parameter y=L/o

but also on the frequency, w:

7(n+a) - F(no)

For high-frequency p modes o’ > N, and therefore, by using the Taylor
expansion, the dispersion equation can be rewritten as:

gra) oo S\Tdr 1 (Y dr

@ J@[cz yj r 20,2.[@1\/ [cz yj B
. 1 )

or f(3@) = F(y)=—W(y) - f() where f(y,0)=""

1/2
R(7? dr
F(y)=| [c—fyzj -~

1/2
1¢r r dr
v 35

Ble)="=
[0)
All terms on the RHS of the equation for f(y,») have different functional

dependencies on y and @, and therefore derivatives of F,¥ and g can be
determined separately.
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By differentiating equation: f(y,w)=F(y)— ﬁ‘l’( ») - B(w)

The application of the natural parameters of the asymptotic theory (n/e) and

(L/w) simplifies the calculations of the derivatives. We obtain an improved

estimate of the derivative ar which is needed for determining the sound-speed
'y

profile.
A numerically stable method of evaluating the partial derivatives of the

function f(y,w) is provided by least-squares fitting of a bicubic spline to the
observational data. The method employs products of B-splines to represent the
bicubic splines. The positions of the B-spline knots are used to control the
smoothing process, which is dependent on observational errors.

Result of the asymptotic inversion

3‘-' D.D4| 3 T g T I T
|
<2 N\ 002 :
% ¢ I %

| |
s | \\‘ B
a 1 s ol g
I \H‘"‘-\-.\_

k“‘“

0 . . . ) . . 0,02 I i 1 1

1] 02 04 0.6 08 1 0 0.2 0.4 0.6 0.8 1
a) /R b) /R

a) Result of the asymptotic sound inversion (solid curve) for the p-mode
frequencies. It confirmed the standard solar model (model 1) (dots). The large
discrepancy in the central region is due inaccuracy of the data and the asymptotic
approximation. b) The relative difference in the squared sound speed between the
asymptotic inversions of the observed and theoretical frequencies.
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Lecture 13
Mode-ray duality.
3D ray paths

(Stix, p.202-203; Chapter 5.3.2; Kosovichev, p.34-41;
Christensen-Dalsgaard, Chapter 7.7)

HW1 presentations (Oct. 25+ quiz)
* 1.1 (a) Bryce

* 1.1 (b-d) Youra

* 1.2 (a) John

* 1.2 (b) Sadaf Igbal

* 1.3 (a-c) Yunpeng

1.3 (d-f) Bhairavi

* 1.4 Ying

e 1.5 Ivan




Asymptotic raypath approximation

Ray paths for:
a) two solar p-modes of angular degree [ = 2, frequency v = 1429.4 u Hz (thick
curve), and / =100, v = 3357.5 x4 Hz (thin curve);

b) g-mode of / =5, v =192.6 u Hz (the dotted curve indicates the base of the
convection zone). The lower turning points, 7, of the p-modes are shown by arrows.
The upper turning points of these modes are close to the surface and not shown. For
the g-mode, the upper turning point, 7,, is shown by arrow. The inner turning point is
close to the center and not shown.

Theory of the raypath approximation

The asymptotic approximation provides an important representation of solar oscillations in
terms of the ray theory. Consider the wave path equation in the ray approximation:

or _Jw
ot ak’
Then, the radial and angular components of this equation are:
dr _Ow do ow

a okt ok,
1. Consider p-modes.
Using the dispersion relation for acoustic (p) modes: o =c (k,2 + k;,z ),
in which we neglected the », term. (It can be neglected everywhere except near the upper
turning point, R), we get equation for the acoustic ray path is given by the ratio of equations:
d@[aw]/[awj:k
ar \ok, ) \ok ) k~°

or
4o _k,_ L

AN S T
For any given values of w and /, and initial coordinates, » and @, this equation gives trajectories
of ray paths of p-modes inside the Sun.




Calculation of p-mode ray paths:
1) Isolate the singularity at r,

Use the sound-speed profile, c(r), from the standard solar model to
calculate the integral:

RL 1 d
no-[tle L&
L2c2
- 0*r?
Integrand is singular (division by zero) at the lower turning point, * = 7;,
Le(r) _
where =

7
We divide the integration interval in two parts: 1) [r,71+x], 2) [r1+x,R],
where x is small compared to ry:
rl+x ]/‘
/ _ 7]+‘( _

AG = j —_50 AO'

Calculation of p-mode ray paths:
2) Use Taylor expansion in the vicinity of 1,

To calculate integral 8 use the Taylor expansion in the vicinity of r;:

nx Lc 1 dr

00 = I —_—
LZCZ 7
1- o*r’
: Le(r) _
The first term of the integrand: o =1
1

Expand the denumerator:

I’c¢? lJ{dlogczj X
1
| re _1 dlogr ) n {2_(dlogczj ]x_ x

_Le X_
dl
@r a)zrf(uzxj 8"/,
7

h h




Calculation of p-mode ray paths:
3) Outside singularity use numerical integration

Substitute the expansion in 66

& el B By N
0 X K ar 0 /x ar,
ai
h

Define x, calculate 30, and evaluate integral ® numerically.

so=[" 1 dx 1 J~xdx X

7

=

N

[ IS I S I O | T |1
e ! )
n+x R
A9=ILC 1 dr+ch 1 dr:59+A9’
L ro L’ r S ro ’c? r
! l-— ! 1-
’r

2.2
r

Ray paths of g-modes

For the g-modes, the dispersion relation is:

2 _ kN
K +k
Then, the corresponding ray path equation:
do k, N?
y—=—-—-—-=— —2 - 1
dr k, W

Note that the g-mode travels mostly in the
central region.

Therefore, the frequencies of g-modes are
mostly sensitive to the central conditions (the
energy-generating core).




Solar oscillation spectrum obtained Spectrum of normal modes calculated

from the HMI instrument on Solar for a standard solar model. Note the

Dynamics Observatory. ‘avoided crossing effect’ for f and
\p Mm g-modes.
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Spatial structure of p- and g-modes is obtained
by multiplying the radial eigenfunctions by the
corresponding spherical harmonics

p-mode (!=_20,_m=16, n=14) g-mode (ff:Si m=3, n=6)




Compare the p-mode eigenfunction and raypaths
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Compare the p-mode eigenfunction and raypaths




Mode-ray duality
Oscillations of the Sun are described in terms of the ‘normal modes’

which represent standing resonant waves in side the Sun. The resonant cavity
is the region where wave of specific nature propagate. The physical nature of
oscillations and waves depends on the restoring force. We considered
oscillations of three types: 1) acoustic waves (p-modes)are associated with
fluctuations of gas pressure; 2) buoyancy force in the Sun’s radiative zone
causes internal gravity waves (g-modes); 3) surface gravity waves (f-modes)
traveling on the solar surface and driven by the surface gravity.

The oscillation modes are described in terms of eigenfunctions of a
system of linearized hydrodynamic equations, which can be written in an

operator form: LE = a)zé?
where L is a differential operator, E(r,0,¢)e™  describes oscillatory

displacements of fluid elements in the spherical coordinates. We showed that
this equation has non-zero solution (eigenfunctions) in the form:

E(r0.9)=¢58 + &,

where » is the radial order, / is the angular degree, m is the angular order,
& (r.0.4)=¢,,,(r)-Y"(0,9)

E(r0.0)= &8, +E8, = &, ,(NV,Y"(0.9)

1. Linearization
Consider small perturbations of a stationary spherically symmetrical star in
the hydrostatic equilibrium:

v, =0, p= p,(r). P= B (r).
If E (¢) is a vector of displacement of a fluid element then velocity of this
element:
dé o0&
dt ot
Perturbations of scalar variables p, P,® are two types: Eulerian, at a fixed
position 7 :

V=

p(F,1) = py(r)+ p'(F, 1),
and Lagrangian perturbation in moving elements:

P +E) = py(r)+ (7, 1).

The Eulerian and Lagrangian perturbations are related to each other:

12 z ’ r = d 2 d
Sp=p +(E-Vp)=p +(E-e) L= pre T
dr dr

where g, is a radial unit vector. In our case, the density gradient is radial.




1. Linearization
Consider small perturbations of a stationary spherically symmetrical star in
the hydrostatic equilibrium:

v, =0, p= p,(r), P=B(r).
If E (¢) is a vector of displacement of a fluid element then velocity of this
element:
dé _o¢
dr o
Perturbations of scalar variables p, P,® are two types: Eulerian, at a fixed
position7 :

V=

p(F,0) = py(r)+ p'(F, 1),
and Lagrangian perturbation in moving elements:

P +E) = py(r)+ (7, 1).

The Eulerian and Lagrangian perturbations are related to each other:

' = ' z = d ’ d
Sp=p'+(E-Vp)=p'+(E8) L= pyg TP
dr dr

where g, is a radial unit vector. In our case, the density gradient is radial.

>

Then, the linearized equations are:

P +V( P,&)=0,  the continuity (mass conservation) equation

-
Lo (Z 25 =-VP' -g,é.p' + p,VD', the momentum equation
t

, dP, , d
P +& d—o = cé (p'+< dpo ), the adibaticity (energy) equation, or
r r

OP = Cé Jp for the Largangian perturbations of pressure and density.

V’®' =47Gp'. the equation for the gravitational potential

2. Cowling approximation: ®'=0.




3. Consider the linearized equations in the spherical coordinates
V,H,¢: §:é:rér+é:eéﬂ+§¢é¢5‘§rér+gha

where & ,=Spéot+S&,é, is the horizontal component of displacement.

VE = divé = r%%(ﬁ;)

10 ™M
=75(”2§r)+;vh§h-

4. Consider periodic perturbations with frequency o :

5 oC eia)l‘Y}m (0’ ¢) — Cle (e)eim¢+ia)t
v=aw/2m, where v is the cyclic frequency (measured in Hz),

and o is the angular frequency (measure in rad/s).

Then, in the Cowling approximation, we get (leaving out subscript 0 for
unperturbed variables):

1 .
p' + —282 (}”2 pfr) + Tad \Y% i é‘ W= 0, the continuity equation
r-or r

!

-’ pé = _8_ +gp, the radial component of the momentum equation
r
-0’ pg n = --V,P !, the horizontal component of the momentum equation
r
1 N?
p'==P+ P &, the adiabatic equation
c g
1 dP ldp). .
where N°=g — & 9P| is the Brunt-Vaisala frequency.
yPdr p dr

Boundary conditions:
& (r=0)=0, -displacement at the Sun’s center is zero,
(or a regularity condition for /=1).
O0P(r=R)=0, - Lagrangian pressure perturbation at the solar surface is zero.

(this is equivalent to absence of external forces).
Also, we assume that the solution is regular at the poles 8 =0, 7.




5. Consider the separation of radial and angular variables in the form:
p'(r,0,4)=p'(r)- £(0,9),
P'(r,0,9)=P'(r)- f(0,9),
¢ (r0,9)=¢,(r)- [(0,9),
£,(10.9)=&,(NV,[(0.9).

Then, the continuity equation is:
, 10
[p +—2—(r2p§,)} FO.0)+LEVif =0,
reor r
The variables are separated if
Vif =af.

where « is a constant.
This equation has non-zero solutions regular at the poles, 8 = 0,7 only when

a=-I(1+1),
where / is an integer.

6. The non-zero solution of equation V;f +/(/+1)f =0 represents the
spherical harmonics:
1(0,9)=Y"(6,¢)=CP"(9)e",

where B”(6) is the Legendre function.

7. Derive equations for the radial dependence,
representing the eigenvalue problem for the normal
modes

After the separation of variables the continuity equation for the
radial dependence p'(r) is
0

p’+%5[r2pé] pé, =0.

Compare with the original equation: p' +V( :005 ) =0,

I+

r

and with this equation in the spherical coordinates:
10 , Po z
"+——(r +=V, £ =0,
p 7"2 67" ( p éﬂ) 7 h é: h

Transform this equation in terms of 2 variables: é: and P’
- radial displacement and Eulerian pressure perturbation.

10



The horizontal component of displacement &, can be determined from the horizontal

component of the momentum equation:

e =-P0), o &=

/

o’ pr
Substituting this into the continuity equation p'+— ! 68 (rz p;,]— 1(1:1) pé&, =0.
2 2
we obtain: 5 ‘fhdp 2 §V+P pNgZ— L P'=0,
ro’p

where we define L2 =Il(l+1) (note the 51m11ar1ty to quantum mechanics).
Using the hydrostatic equation for the background (unperturbed) state

ar __
dr &P
finally get: ﬁ+E§,,—§2 1= % P — =0,
dr r c pc’
2 !
or R [I—S—ji—o,
dr pc
2.2
where S} = -— is the Lamb frequency, L’=I(I+1), ¢ (r)=yP/p is the squared
r

sound speed, g(r)=Gm(r)/i’ is the gravity acceleration at radius r.

Similarly, the momentum equation is:

di+£P'+(N2 —w’)pé =0,
dr ¢

where N is the Brunt-Vaisala frequency.
The bottom boundary condition (+=0): &, =0, (or a regularity condition).

dP
The top boundary condition (=R): 0P =P "+ ;5, =0,
or using the hydrostatic equation: P-g pof, =0.

From the horizontal component of the momentum equation:

P ‘= wzp v th’
Then from the upper boundary condition: S = gz ,
or

that is the ratio of the horizontal and radial components of displacement is inverse
proportional to squared frequency. However, this relation does not hold in
observations, presumably, because of the external force caused by the solar
atmosphere.

11



7. The derived equations with the boundary conditions
constitute an eigenvalue problem for solar oscillation modes
df SI) P

-2 =0,
0 5 5 e

Properties of oscillations
dP' depend on the signs of
P g 2 2 these coefficients in
J +_2P +(N° —w”)pé, =0. brackets.
r C
L’c?

is the Lamb frequency.

N2 = [L dap ldp j is Brunt—Viisila frequency.

The bottom boundary condition (+=0): £ =0..

The top boundary condition (r=R): 6P =P+ il;—Pfr =0
r

Using the JWKB (asymptotic short-wavelength approximation) theory for the radial
eigenfunctions ¢ () and P'(r), we found the solution in the form:

iJ.k dr

r

E(r)ce

where the radial wave vector, k, is determined from the wave dispersion relation:

a)a)

k= -k}
. e
The horizontal wave vector, k,, can be expressed in terms of the spherical harmonic
degree, I: k, =£, r=I1(I+1).
r

The wave propagation region (the resonant cavity) is where k> >0, and the
resonant oscillation frequencies are determined from the quantization rule:

j “kdr=n(n+a).
i

Using the wave dispersion relation and the ray theory, we described the
propagation of wave fronts in terms of acoustic rays. The acoustic rays are calculated
from the wave group velocity. They are perpendicular to the traveling acoustic wave
fronts. The solar oscillations can be described in terms of the resonant (normal) modes,
and in terms of the acoustic rays trapped in the propagation regions inside the Sun.
These two descriptions can be considered as the mode-ray duality.

12



JWKB solution for the angular eigenfunctions
We have found that the angular structure of the oscillation modes is described
by the spherical harmonics, Y, (8,4), which are solutions of:
VY +I1(+1)Y" =0
where V; is the angular part of the Laplacian operator in the spherical coordinates.
1 0 ( . 6)’1”‘] 1 2y
———| sin@ +
sin@ 06 00 sin’0 o4°
The spherical harmonics are represented in terms of the associated Legendre
functions:

+I(l+1)Y" =0

1

Y (0.4) = ——
Substituting this equation and defining variable x=cosé (dx=sindd6) we get an

equation for P"(x):
d ,.dP" m?
—| A=x)—|+| 11 +1)- P"=0
dx{( x) l } {( ) 1_x2}1

P (cos 9)e™

Substituting: g(x)=+/1-x’P"(x), we obtain:

d’ m* -1
L] I

Thus, we get a second-order ‘wave-like’ equation for function g(x):

2 2_
d’g 1 [Lz m 1}g:0

dx*  1-x* i

Using the analogy with the wave equation, we define the longitudinal

2
wave vector k, as: k= L jpom -]
1-x? 1-x?
2
or substituting x=cosé for /,m >1: k2= Ljpom
sin’0 sin’0
dZ

The solution of E‘;gﬂcjg =0 is oscillatory when &, >0,
. ) m2 m
that is when sin 9>?, or [sing > -
0 e1 This defines the propagation region with
— the turning points:
[sind,, |= %; 6, = arcsin% and @=7-4.

For m=0 (zonal spherical harmonics) the resonant

/’ cavity is extended from the pole to pole.
For m=1 (sectoral harmonics), the resonant
92 cavity is near the equatorial regions.
Latitudinal
propagation region

13



Three types of spherical harmonics

=140

(a)n=3 (b) n=3, m=2 (¢) n=m=2

Spherical harmonics: a) zonal, b) tesseral, c) sectoral

Example of latitudinal

eigenfunction
p-mode (1=20, m=16, n=14) Lty .‘??%?T?T}’. '.‘.?.t.'.‘?l.”.: An A Tl
L o | |
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3D propagation region

.m
6, = arcsin —
L

cn) _o
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L
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Propagation

- R
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3D raypaths

We considered the ray paths for p- and g-mode in a two-dimensional plane
defined by the radial and horizontal wave vectors, k4 and k,. Now, we consider
the p-mode ray paths in the 3D Sun. The ray paths correspond to the coordinates
of the wave front defined by the wave group velocity, which can be determined
by integrating the Hamilton equation:

oF  ow
o ok
In the spherical coordinates (r,0,¢), the horizontal wave number: k; =k; +k,’,
and the relation between @ and k& is given by the dispersion relation:
o =0 +k =] + (k] +ky + k)
In terms of the spherical harmonic angular degree / and angular degree m :

2 2
p=L, kal[ﬁ— n } and k, =
r

r sin ¢ rsin@

Thus, the time evolution of the wavefront in these coordinates is given by:

c
ov_00_¢ 4 C |k
a ok, o " o\r rsin’d
2 2
rsing2f 0@ _c 4 ¢ m
ot ok, o ® rsin@

¢
The + signs in the first two equation determine the direction of wave propagation
between the inner turning point and the surface, and between the hemispheres. The
wave propagation in the azimuthal (¢ ) direction depends on the m sign.
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The relationship between the angles ¢ and ¢ along the ray path can be
determined analytically by solving the equation:

k
sined—z=k—”’— - !
L
" Fysind-1
¢:J—d9 = —arcsin __cotf +C
r/m* -1

e
sin @ Wsirﬁ@—l

2 2 L 9
1L—2—1:1 —m—z—=&:cot6'1

m L' m sin§,

where we used the turning point equation: sin6, =m/ L. Thus, we find:

cotd

cot6,
This is the great circle equation (the intersection of the sphere and a plane that passes
through the center point of the sphere).

sin(¢p+C) =

3D propagation region

ray paths fpllow 6, = arcsin%
the great circle -

) _o
v noL
Propagation
region - 6, , ]
h =~

17



3D propagation region

ray paths f.ollow 6, = arcsin%
the great circle (e

) _o
v i L
Propagation .
region P 0, , ’
AT

These equations are reduced to a system of ODE:

2.2
£=i 1_Lc
dt ro’

2 2
a0_cLfm

dt re L'sin’0

d¢ _ m

dt wr? sinza
For numerical integration it is convenient to introduce variables:
€ pe cL

a=<,p=% and ="
r ro Lsind

ﬂ:i\n—bz

dt

%:iabxll—dz

d¢  abd

dt siné
For the initial condition, we can choose at the surface equator: r(zr=0)=R,
O(t=0)=x/2, ¢(t=0)=0. During the integration, we change the sign at the turning
points, 5 and R, in the first equation, and at 6, and 6, in the second equation.

18



The integration results show that the ray paths gradually fill in the
3D region defned by the radial and Ilatitudinal turmning points,
corresponding the 3D structure of the mode eigenfunctions.

3D ray paths of the oscillation mode: 1=20, m=16, n=14

Top view

3D ray paths of the oscillation mod’e: 1=20, m=16, n=14

19



EBK quantization

* The Einstein—Brillouin—Keller method (EBK) is a
semiclassical method (named after Albert Einstein,
Léon Brillouin, and Joseph B. Keller) used to compute
eigenvalues in quantum-mechanical systems. EBK
quantization is an improvement from Bohr-Sommerfeld
quantization which did not consider the caustic phase
jumps at classical turning points.

* It can be applied to 3D systems, for which the number
of the quantization rules is equal to the number of the
space dimensions.

* (see Course materials:

Gough Linear Adiabatic Stellar Pulsations.pdf)
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Lecture 14

Differential asymptotic inversion.
Effects of solar asphericity, rotation
and magnetic field

(Stix, Chapter 5.3.1; Kosovichev, p.34-41, 44-48;
Christensen-Dalsgaard, Chapters 5.5)

Solar oscillation spectrum obtained Spectrum of normal modes calculated
from the HMI instrument on Solar for a standard solar model. Note the
Dynamics Observatory. ‘avoided crossing effect’ for f and
. I g-modes.
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Asymptotic raypath approximation

Ray paths for:
a) two solar p-modes of angular degree / = 2, frequency v = 1429.4 u Hz (thick
curve), and / =100, v = 3357.5 x Hz (thin curve);

b) g-mode of / =5, v =192.6 u Hz (the dotted curve indicates the base of the
convection zone). The lower turning points, 7, of the p-modes are shown by arrows.
The upper turning points of these modes are close to the surface and not shown. For
the g-mode, the upper turning point, 7,, is shown by arrow. The inner turning point is
close to the center and not shown.

Duvall’s law (asymptotic p-mode relation)

Consider the p-mode dispersion

relation: R BRI B B AL IR
j k dr=rn(n+a)
i 108 -
12 r 1
R a)z L2 :
I ——— | dr=r(n+a) ]
i\ c r Q
Dividing left and right-hand sides by ® § j
we get: +
5 NI Er .
R(r® L dr rm(n+a) \
I - _—_—— | p-mode \ i
i\ c ) r 0] frequencies form
Radius r, (or r,) of the lower ahs'”gle ‘?U'B’le In
turning pOint depends Only On 11 tl Iﬁﬁle VIar.llal 1 Iﬁl?. 111 IIIIII 11 1111
ratio L/w. Hence, the left-hand 100, > 100 1000 1o° 10

side is a function of L/w:

F(éjzm

VI(1+1) /@

w (0 where L= l(l+1) a~l1.5




Acoustic travel time

The distance, A, between the surface points for one skip can be
calculated as the integral:

XN a=2f"a0=2[" —LL___agr=af' L4
A i (NP Ry "No' I D=7
The corresponding travel time is calculated by integrating equation:
ﬂ = 6_60 . dt = dr
dt ok, c(l—/’c,fc2 /&’ )1/2'
R dr R dr
T_2rdt:2r 2 2 21/252-[7' 22, 2 2\
! lc(l—khc /a)) lc(l—Lc /ra))

These equations give a time-distance relation, ¢ — A, for acoustic
waves traveling between two surface points through the solar
interior. The ray representation of the solar modes and the time-
distance relation provided a motivation for developing time-distance
helioseismology

Differential asymptotic sound-speed inversion. 1

To find corrections to the standard solar model we consider small
perturbations to the sound speed profile and oscillation frequencies, and
linearize the dispersion relation by using the first-order Taylor expansion:

(w+Aw)? I "
I{m—r—z} dr=7r(n+0(+Aa).

i

2
J‘rl c—z—i £2 12 = 7TAO£
kot
Ao (r dr _[kAc dr TAa
» I (1 L2 > jl/Z - noc (1 chz jl/Z @
T2 2 T2 2
, , "0 ro ), -
7, is a function of L/. Y f Ll(w)




Differential asymptotic sound-speed inversion. 2

The p-mode travel time is calculated by using the ray-path theory.
It corresponds to the half-skip time: T=1/2, and is a function of L/m.
Therefore, the observed frequency difference can be represented in the form:
Aw L
Cr_oo (—J + B(o)
w

(4
L R Ac dr
@ (—] T Ay
0 i c | Le
C _—
Once the function ®(L/w) is determined from the observed frequency difference we

can find Ac/c as a function of radius by solving the integral equation. This equation
is reduced to the Abel integral equation, and has an analytical solution.

Functions ®(L/w) and B(w) are determined by fitting (Aw/®)T which depends on
both L/® and o.

Differential asymptotic sound-speed inversion. 3

L\ fAc dr
(LRt
M Lc
]/_2 0)2

Here c(r) is the sound-speed profile of the standard solar model, and w(l,n) are
the p-mode frequencies calculated for the standard solar model. This equation
can be reduced to the standard Abel integral equation by making a substitution
of Vari%bles. The new Vzariables are:

c
xX= 7 and y= —» where x is a measured quantity, y is unknown function
x can be considered as a continuous function according to the Duvall’s law
x d 1
F(x)=| SV here F(x) = D (x)—=,
O Jx—y Jx
Ac 1
JO)=— :
c 272 1 dlogc
dlogr




Solution of the Abel integral equation

Fio = [ LD
(0= [ LY

NXTY
To solve for f(¥) we multiply both sides of this equation by dx/~/z —x
and integrate with respect to X from O to z:

:F(x)dx _ = S (y)dy
'[0 Jz—x 0z - xj

Here we changed the order of integration.

z z d
R =)

z dx _
Note that J.y m =
then et AT

Differentiating with respect to z, and replacmg z with y we obtain the final
solution:
1d J-y F(x)dx

(= :
PN

ﬂdy

Asymptotic sound-speed inversion. 4

The asymptotic inversion is performed in 3 steps:

1) Find ®(£j and f(w) by fitting A—T CD( j+ﬂ(0))

f )y ®
2) Solve F(x)=| NEET where F(x) = ®(x)——, x=2
y NEI
v F(x)dx

f““_y o fy—x

3) Calculate Ac_, 1)y [1 -
C

cZ
where y =—,
r

dlogc
dlogr
¢(r) is the sound speed from the standard model.

Finally, we find the difference in the sound speed between
the Sun and the model.




Abel integral equation and fractional calculus

Consider the Abel integral equation in the operator form:
1 ~f(y)d
Fey=—=[ L2 — 4. 1),
Vo Jx—y
where A is the integrating operator with the weighting function 1/ x—y
. By applying operator 4 to the Abel equation we obtain:

A-F(x)=[ ().

Hence,

L f)=[ ().
This means that operator A° is integral, and 4 can be interpreted as half-
integral.
Therefore, the solution of the Abel equation is a half-derivative:
f()=4"-F(z)|_=D"F.

Example: D"*x = 2 e Roughly, Ac o D2 [A_a)j

Nral c o

Test of the differential inversion technique

For small deviations of the solar structure from a solar model this technique is
substantially more accurate than the original (non-linear) asymptotic inversion.

0.12| - s

o;
L

-0.04

0.04

| ; : . i
0 0.2 04 06 038 10
r/R

Figure 7. The exact fractional sound-speed difference (dashed line) between the homogeneous model and
Model 1, as a fraction of the sound speed of the latter, and the estimate (solid line) inferred using a 28 w-, 20
w-spline knot fit and the mode set defined at the beginning of Section 5. The functions are plotied against
fractional radius r/R.

(Christensen-Dalsgaard et al 1989)




[llustration of asymptotic sound-speed
inversion

Codes:

1) Time-distance diagram for p-modes
(travel time.pro)

2) Frequency difference, determination of
functions ®(L/w) and B(w)
(frequency _difference.pro)

Input data:

1. SOHO/MDI frequency measurements of
Johann Reiter

2. Standard solar model (Christensen-Dalsgaard
et al)
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frequencies vs r, for v<2 mHz
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Effects solar asphericity

For a spherically symmetrical solar structure, when the sound speed is a
function of radius, c=c(r), the p-mode frequencies are determined from the Bohr
quantization rule:

JRk,,dr =z(n+a)
g

2
[0}

2
where k, = —Z—L—z ,and I’ =[(l+1). The RHS of this equation can be considered
C r
as averaging of the radial wave vector, k., within the wave propagation region,
[5,R].
If the sound-speed variations are not spherically symmetric, e.g. due internal
flows and magnetic fields, c=c(r,0,¢4), then we have to use the EBK quantization

rule, and average the wave vector over the 3D wavepath great circle:
1 p(27¢R ,
gfo jq kdrdg' = m(n+a)

where ¢’ is the polar angle along the great circle.

3D propagation region

ray paths fpllow 0, = arcsin%
the great circle [l

crh) _o

h

Propagation

region —




3D raypaths

We considered the ray paths for p- and g-mode in a two-dimensional plane
defined by the radial and horizontal wave vectors, &, and k,. Now, we consider
the p-mode ray paths in the 3D Sun. The ray paths correspond to the coordinates
of the wave front defined by the wave group velocity, which can be determined
by integrating the Hamilton equation:

o _dw

o ok
In the spherical coordinates (r,6,4), the horizontal wave number: k; =k +k,’,

and the relation between @ and k is given by the dispersion relation:
@ = +k = + Pk + K +k;)
In terms of the spherical harmonic angular degree / and angular degree m :

2 2
k,f=%, kj—l[f— = } and k, =
r r sin’@

rsin @

Thus, the time evolution of the wavefront in these coordinates is given by:

o _do_c, ¢ o I
o ok, o o\ 7
0 _ow _c _ L
a ok, o’ T o\r rsind
2
rsing22 02 _C 4 ¢ _m

ot ok, * o rsing
The + signs in the first two equation determine the direction of wave propagation
between the inner turning point and the surface, and between the hemispheres. The
wave propagation in the azimuthal (¢ ) direction depends on the m sign.

12



The relationship between the angles ¢ and ¢ along the ray path can be
determined analytically by solving the equation:

k
sianZ:k—"f < !
! %sinz9—1
do . cotd
p=|——= —arcs1n[}+c
'[ NI m* -1

r L
/72_1: o L _cosh_ g
m L m sin§

where we used the turning point equation: sin6, =m/ L. Thus, we find:

cotd

cotd,
This is the great circle equation (the intersection of the sphere and a plane that passes
through the center point of the sphere).

sin(¢p+C) =

The integration results show that the ray paths gradually fill in the
3D region defined by the radial and latitudinal turning points,
corresponding the 3D structure of the mode eigenfunctions.

3D ray paths of the oscillation mode: 1=20, m=16, n=14

13



Top view

3D ray paths of the oscillation mod’e: 1=20, m=16, n=14

If the sound-speed
variations are not spherically
symmetric, e.g. due internal flows
and magnetic fields, c¢=c(r,0,4),
then we have to use the EBK
quantization rule, and average the
wave vector over the 3D wavepath
great circle:

1 porpr ,
ﬁj" J‘/]k,_drd(é =x(n+a)

. m
6, = arcsin—
L

The 3D ray tracing shows that each of the
wavepath great circles, filling in the 3D
propagation region, is inclined relative to the polar
axis by the angle, ¢ . This angle represents the
co-latitude of the angular turning point, and
depends on the mode angular degree, /, and order,
m: 6 =arcsin(m/L).

Thus, the angle ¢’ can be determined as the
distance from the angular turning point with
coordinates (6,,7/2) and a point on the great
circle with coordinates (0,¢) in the coordinate
system shown in the figure.

This angle is determined from the spherical
triangle equation:

cos¢@’ = cos, cos@+sin g sinOcos(z /2 - @)

cos ¢’ = cos 6, cos 6 +sin g, sin Osin(g)
Then, substituting the great circle equation:

cotd cosé

sing = we get: cosg’ = .
cotf,’ & cos b,

14



Differentiating this equation, we find d¢' as a function of colatitude &:

sing'dg' = — S(‘:z de.
1
d¢,:_sin¢9 1 d0=— sin 0d 0 __du
cos 6 \/1—00529/005291 \/coszel —cos’d \/M2 -’ '

2
where p=cos6, and M? = cos™, =1-5in’6, = 1—%.
Substituting in the 3D quantization equation:

4 d¢j kdrzfj. Jijkdr—ﬁ(rwa)

or

——dr =r(n+a)

I \/MZ j C(ru)

In this case, the oscillation frequencies depend on all three quantum numbers:
radial order n, angular degree /, and angular degree m .

Because all the ray paths sample the sound speed over the whole range of
longitude ¢, only the azimuthally averaged 2D sound-speed component c(r,6) or
c(r,u) can be determined from the oscillation frequencies. However, this is valid
only when the deviations from the sphericity are small.

Repeating the linearization procedure for the case of small deviations Ac(r, 1)

from a spherically symmetrical solar model, we obtain the equation for the 2D
differential asymptotic inversion:

Aa)”,m _ J~ Ac(r,u)/c dr

@y 1 1\/M2 u \/1 et lwy,r* ¢

where Aw

nim

=,

nlm

-,, 1s the difference between the observed frequencies ,,, and
model frequencies a,, .

The model frequencies are calculated for a spherically symmetric solar model
and do not depend on m. The latitudinal dependence of the sound speed (solar
asphericity) lifts the frequency degeneracy with respect to m .

This equation represents a 2D Abel integral equation, and can be solved
similarly to the 1D equation.

15



Effects of rotation

Solar rotation and other plasma flows inside the Sun cause Doppler shift of

the wave frequencies. The dispersion relation for the acoustic waves becomes:
(0—kv) = @ +k*c?
where k is the wave vector, and v is the plasma velocity.

Because of the acoustic ray paths travel in the great circles, they sample the
radial and latitudinal components of velocity twice in the opposite directions. Thus,
the contribution of these components to the quantization integral is canceled in the
first approximation, and the mode frequencies depend only on the azimuthal
component, v,:

(0—ky,) =@ +k°c?

where &, = “ rk Representing v, in terms of the angular velocity, Q(r,0):
rsim

v, = rsind Q(r,0),
we get:
(0-mQ)’ = +k°c?

The EBK quantization equation takes form:

A — QZ ;
EJ-’VI du IR\/Wdrzﬂ(n+a)
70 \/MZ—,UZ 7 C r

Assuming that mQ/ o,

<1 and that the background solar structure is spherically
symmetric, we represent o,, in terms of the frequency deviations from the model

nlm

frequencies: Aw,, =®,, —@,, -

" \/(w +A@,, -mQ) I

2 M dp _
;JO \/MZ_#Z 'Ll = 7r—2dr77r(n+a)

Performing the first-order Taylor expansion and subtracting the quantization rule
for the background state, we get:
|:Aa)n[m mQ}
, | 2 T2
oL e 9lg-o

2 du__ro
790 \/MZ—/JZ 0ol PR

2 2
C r

where for simplicity we drop subscript for the model frequencies: w=a,,.

16



Thus, we obtain:
2 MR mQ(r, u)drd u
Aw,, :7.[0 I 2 2 22,2 2
aT 2% e\ JM? - )P \1- ¢ 1 e

where T = J‘RL is the "half-skip" travel time of acoustic waves.

1 eVl- L e’

The solar rotation causes ‘rotational frequency splitting’ proportional to the
mode angular degree m .

The physical interpretation is that the modes with positive m travel in the
same direction as the solar rotation and thus have higher frequencies then the modes
with negative m traveling in the opposite direction.

Recall that that the oscillation modes are represented in terms of the spherical
harmonics: &.(r,0,4,t) < P"(0)exp(img—iot), and thus, in the form of azimuthal
traveling waves

: T T "\ ‘ T T “ T “,‘ T ‘ V—'_'_Yii
20 el oo .
TN b ke Tlustration of the frequency
o “M.M SRSV UTRIo |, SR |

- shift due to the solar rotation

il ]

Typical power spectra of solar
oscillation data from the MDI
instrument on SOHO. Each
horizontal curve shows three
lines of the power spectrum for
different azimuthal order m

- with radial order »=15 and

il —— angular degree /=19,20, and 21
~ (from left to right). The slope of
the modal lines is due to the
rotational frequency shift:
prograde modes with positive
m have higher frequencies than
o0 b2 retrograde modes with negative

3040 3060 3080 3100 3120 m.
Frequency, uHz

m

Angular order,

BT |
jﬁm ”w(‘ oo
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(F. Hill)

By comparing the effect of the sound-speed asphericity and rotation:

%:iIMI” [Ac(r, )/ c]drd i
o AT oM - 1-1¢ o'

2 (MR mQ(r, p)drd y
Aw”"”:7.[o J- 2 2 22,2 2
zT 'lc\/M —-u \/l—Lc /riw
where M =~/1-m*/
We notice that the frequency splitting due to the sound-speed asphericity is an even
function of m and an odd function of m due the rotation.

This difference allows us to separate effects of the solar asphericity and rotation in
the observational data.

18



The a-coefficients

The observational data are often represented as an expansion in terms of the
Legendre polynomials:

@,y LZa:IPA( j

For a more accurate (non-asymptotic) representation, the expansion is performed in
terms of Clebsch-Gordon coefficients, which will be considered later.

In this representation, the ‘even’ a-coefficients represent effects of the solar
asphericity, and the ‘odd’ a-coefficients represent the internal solar rotation and its
variations with latitude (zonal flows). In addition, the representations in the form of
the a -coefficients allows us to replace the 2D inversions of Aw,,, with a series of 1D
inversions of the a-coefficients.

Specifically, representing the sound-speed perturbation in terms of the
Legendre polynomials:

=T, R, 0

where s =cosé.

Substituting this representation of E(r, ) in the equation for Aw,, /w, we
c

obtain:
A, ,(r)dr w B(p)
nlm J d
z j \/1 e 2/r2w2[ J. \/Mz 2 ]
The second integral is calculated analytically:

J' (,U)

\/F
Thus, both the observational data and the angular integral of the sound-speed
asphericity are represented in terms of the series of Legendre polynomial P, ,(m/L).

=(-1Y P, (0)h,;(m/L)

We obtain a series of the Abel integral equations for the radial functions of
the asphericity, 4,,(r):
1 cr AZ/(r)dr - 1)/ a
TNI=-Dc* o'’ (0)
These equations establish a relatlonshlp between the even a-coefficients and the
solar asphericity expressed in terms of the Legendre polynomials.
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A similar type of solution can be obtained for the angular velocity Q(r, ).

In this case, it is convenient to use the expansion in terms of associate Legendre
functions:

J (cos0)
Qr,u)=3 0, Biulc0s6)
(r, 1) /Z:(; 2,+1( r) sind
Substituting in:
B mQ(r, u)drd u

i = ”TJ. J.’l c\/M2 - 1Pe

we obtain:

_ S 1 2,+1(r)dr 21+1
Aw, _Z?J-r ( J. \/l 2

7 16\/1 1’ | P a? Y7 \/sz,u

The second integral is calculated analytically:
2m 2/+l T . (mj
—(2j+1 0
SN WJF -5 @j+DP, () | T
Both the observational data and the angular integral of the solar rotation are
expressed in terms of the odd Legendre polynomial of m /L.

Thus, we obtain a series of the 1D Abel integral equations for the radial
functions of the solar rotation expansion'

1 2J+1(r)dr/c a;Im
T ) ' (2./+1)Pz_, 0)
”za)(inz

In the asymptotic JWKB/EBK approximation, the a-coefficients are the functions
of the ratio L/ or the lower turning point radius, 7. This helps to identify ‘outliers’
in the observational data.
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Effects of magnetic field
In the presence of magnetic field, acoustic waves become fast-
magnetoacoustic waves with the dispersion relation:
- o’ =k*c? +/€2VA2 sin’¥
k where V,=B/.[4zp is the Alfven speed, ¥ is teh angle between the
wave vector, £ and magnetic field B.
Assuming V, < ¢ and applying the same procedure as for the
sound-speed perturbations, we obtain:
Boy, 2 pny or 5127)in  ar
7T 70 i

[ \/Mz—,uzx/l—chz/a)zr27

2

1% V2 k-B 1 o
Tszsinh{’ :T;z(l—cosz‘]’) _[1— ((szz)):| = FYE [szz —(k'B)J =

1 1
=——[BX (k= k) +B, (K’ —k))+ B; (k* —k})] = 3

8rc’k? wctk? [by Ty b¢]

2
Substituteing the wave vector k* = w—z and its components:
C

, o I , I m’ ) m?
k===, k== ——5 = k=5
¢ ¢ ¢” r’sind r“sin'@
2
and using the definitions: x=cos¢ and M* =1-—,

we calculate:

a)z LZ mZ LZ(,Z Mz_ﬂz

bg_B; BV 2 . 2 :B;kz 1- 22 2
r r 51n9 a'r 1—,u

2 2 2 2 2

b, =Bk | 1- 5 |= Bk 1—ch2 ! Mz
®° r’sin’@ o’ \ 1-u
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Putting it all together:

Awn,,,,:ij‘”r? B! (L¢), B [, LeM-p),
o aT% 9|8z \ r’e’® ) 8mpc’\ r@’ 1-4°

. s (LS 1-M? dp(dr/ c)
8mpc* | r'e’ 1-p2 )| M= 2 -2 T o'
There is no simple separation of the radial and angular variables in terms of the
Legendre polynomial and a-coefficients.
However, the magnetic frequency splitting can be calculated for solar-cycle dynamo
models and compared with helioseismic observations.

By the order of magnitude, the magnetic frequency splitting:
Aw, B B 1Bl 1
@ 8zpc>  8myP 2y P 2)8

4z P

BZ

where g = is the plasma parameter B - ratio of the gas pressure to the

magnetic pressure.
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Lecture 15
Effects of solar asphericity, rotation
and magnetic field
The a-coefficients

(Stix, Chapter 5.3.1; Kosovichev, p.34-41, 44-48;
Christensen-Dalsgaard, Chapters 5.5)

Solar oscillation spectrum obtained Spectrum of normal modes calculated
from the HMI instrument on Solar for a standard solar model. Note the
Dynamics Observatory. ‘avoided crossing effect’ for f and
g-modes.
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Acoustic travel time

The distance, A, between the surface points for one skip can be
calculated as the integral:

L
_Lir dr=2 J- clr
2/c2 L/ iNo® /L= 7’
The correspondlng travel time is calculated by integrating equation:

dr _Ow P dr

_— =

dt 6kr ) C(l_kh202 /wz)l/z'

R R dr R dr
r=2[dt=2 =2f
5 i 2.2, 2\? i 22, 2 2\
cll-k,c”/w c(l-Lc’/re
These equations give a time-distance relation, ¢ — A, for acoustic
waves traveling between two surface points through the solar
interior. The ray representation of the solar modes and the time-

distance relation provided a motivation for developing time-distance
helioseismology

Duvall’s law (asymptotic p-mode relation)

Consider the p-mode dispersion

relation: R T T IIIIIII T T IIIIII] T T lllllll T T T TTITIm
j k dr=rn(n+a) .
i 108 -
1/2 1 1
Rl L l :
[15-5| dr=r(+a) _ _
i c r N
Dividing left and right-hand sides by ® "‘E L j
we get: +
5 NI Er .
R(r® L dr rm(n+a) \
I - _—_—— | p-mode \ i
i\ c ) r 0] frequencies form
Radius r, (or r,) of the lower ahs'”gle ‘?U'B’le In
turning point depends only on t esf varia e?' ]
ratio L/o. Hence, the left-hand 100, > 100 1000 1o° 10
side is a function of L/w: Vi(+1)/0

(0] (0

F(éjzm

where L=./I(l+]) a~1.5




Differential asymptotic sound-speed inversion. 1

To find corrections to the standard solar model we consider small
perturbations to the sound speed profile and oscillation frequencies, and
linearize the dispersion relation by using the first-order Taylor expansion:

(w+Aw)? I "
I{m—r—z} dr=7r(n+0(+Aa).

i

» I (1 chz jl/Z - noc (1 chz jl/z + @ .
=% ==
\ rw ) rw | \—‘,—}

7, is a function of L/. Y f L(w)

Differential asymptotic sound-speed inversion. 2

The p-mode travel time is calculated by using the ray-path theory.
It corresponds to the half-skip time: T=1/2, and is a function of L/m.
Therefore, the observed frequency difference can be represented in the form:

Ao, CD(A}L,B(a))
w w

X (£j - E ar 12
In) noe LZCZ

Once the function ®(L/w) is determined from the observed frequency difference we
can find Ac/c as a function of radius by solving the integral equation. This equation
is reduced to the Abel integral equation, and has an analytical solution.

Functions ®(L/w) and B(w) are determined by fitting (Aw/®)T which depends on
both L/® and o.




Effects solar asphericity

For a spherically symmetrical solar structure, when the sound speed is a
function of radius, c=c(r), the p-mode frequencies are determined from the Bohr
quantization rule:

JRk,,dr =z(n+a)
g

2
[0}

2
where k, = —Z—L—z ,and I’ =[(l+1). The RHS of this equation can be considered
C r
as averaging of the radial wave vector, k., within the wave propagation region,
[5,R].
If the sound-speed variations are not spherically symmetric, e.g. due internal
flows and magnetic fields, c=c(r,0,¢4), then we have to use the EBK quantization

rule, and average the wave vector over the 3D wavepath great circle:
1 p(27¢R ,
gfo jq kdrdg' = m(n+a)

where ¢’ is the polar angle along the great circle.

3D propagation region

ray paths fpllow 0, = arcsin%
the great circle [l

crh) _o

h

Propagation

region —




Differentiating this equation, we find d¢' as a function of colatitude &:

sing'dg' = — S(‘:z de.
1
d¢,:_sin¢9 1 d0=— sin 0d 0 __du
cos 6 \/1—00529/00529] \/coszel —cos’d \/M2 -’ '

2

Where ,LI=COSQ, and M? :(:()5201 :1—sin29l :1—%.

Substituting in the 3D quantization equation:

erdr =rz(n+a)
i

1 Ea , 1 A d
—la0 f:"»d’:;ﬁﬁﬁ

or

2 2
Ej‘” du [ L= rn+a)
AN FVEE O e () B

In this case, the oscillation frequencies depend on all three quantum numbers:
radial order n, angular degree /, and angular degree m .

Because all the ray paths sample the sound speed over the whole range of
longitude ¢, only the azimuthally averaged 2D sound-speed component c(r,6) or
c(r,u) can be determined from the oscillation frequencies. However, this is valid
only when the deviations from the sphericity are small.

Effects of the sound-speed aspericity

Repeating the linearization procedure for the case of small deviations
Ac(r, 1) from a spherically symmetrical solar model, we obtain the equation for the
2D differential asymptotic inversion:
Ac
Aw,,, :i wdﬂJ.R 7(“”) ﬂ
VI N N (Y

where Aw

wim = Dnim

and model frequencies ,,, .

nlm

-w,, 1s the difference between the observed frequencies o

The model frequencies are calculated for a spherically symmetric solar
model and do not depend on m. The latitudinal dependence of the sound speed
(solar asphericity) lifts the frequency degeneracy with respect to m.

This equation represents a 2D Abel integral equation, and can be solved
similarly to the 1D equation.




Effects of rotation

Solar rotation and other plasma flows inside the Sun cause Doppler shift of

the wave frequencies. The dispersion relation for the acoustic waves becomes:
(0—kv) = @ +k*c?
where k is the wave vector, and v is the plasma velocity.

Because of the acoustic ray paths travel in the great circles, they sample the
radial and latitudinal components of velocity twice in the opposite directions. Thus,
the contribution of these components to the quantization integral is canceled in the
first approximation, and the mode frequencies depend only on the azimuthal
component, v,:

(0—ky,) =@ +k°c?

where &, = “ rk Representing v, in terms of the angular velocity, Q(r,0):
rsim

v, = rsind Q(r,0),
we get:
(0-mQ)’ = +k°c?

The EBK quantization equation takes form:

A — QZ ;
EJ-’VI du IR\/Wdrzﬂ(n+a)
70 \/MZ—,UZ 7 C r

Assuming that mQ/ o,

<1 and that the background solar structure is spherically
symmetric, we represent o,, in terms of the frequency deviations from the model

nlm

frequencies: Aw,, =®,, —@,, -

" \/(w +A®,, —mQ)’

2 du r.,
;JO \/MZ_#Z 'Ll 3 7r—2dr77r(n+a)

C
Performing the first-order Taylor expansion and subtracting the quantization rule
for the background state, we get:
|:Aa)n[m mQ}
, | 2 T2
eLe 9 dg-0

2 du__ro
790 \/MZ—/JZ 0ol PR

2 2
C r

where for simplicity we drop subscript for the model frequencies: w=a,,.




Thus, we obtain:
2 MR mQ(r, u)drd u
Aw,, :7.[0 I 2 2 22,2 2
aT 2% e\ JM? - )P \1- ¢ 1 e

where T = J‘RL is the "half-skip" travel time of acoustic waves.

1 eVl- L e’

The solar rotation causes ‘rotational frequency splitting’ proportional to the
mode angular degree m .

The physical interpretation is that the modes with positive m travel in the
same direction as the solar rotation and thus have higher frequencies then the modes
with negative m traveling in the opposite direction.

Recall that that the oscillation modes are represented in terms of the spherical
harmonics: &.(r,0,4,t) < P"(0)exp(img—iot), and thus, in the form of azimuthal
traveling waves

: T T "\ ‘ T T “ T “,‘ T ‘ V—'_'_Yii
20 el oo .
TN b ke Tlustration of the frequency
o “M.M SRSV UTRIo |, SR |

- shift due to the solar rotation

il ]

Typical power spectra of solar
oscillation data from the MDI
instrument on SOHO. Each
horizontal curve shows three
lines of the power spectrum for
different azimuthal order m

- with radial order »=15 and

il —— angular degree /=19,20, and 21
~ (from left to right). The slope of
the modal lines is due to the
rotational frequency shift:
prograde modes with positive
m have higher frequencies than
o0 b2 retrograde modes with negative

3040 3060 3080 3100 3120 m.
Frequency, uHz

m

Angular order,

BT |
jﬁm ”w(‘ oo




(F. Hill)

By comparing the effect of the sound-speed asphericity and rotation:

%:iIMI” [Ac(r, )/ c]drd i
o AT oM - 1-1¢ o'

2 (MR mQ(r, p)drd y
Aw”"”:7.[o J- 2 2 22,2 2
zT 'lc\/M —-u \/l—Lc /riw
where M =~/1-m*/
We notice that the frequency splitting due to the sound-speed asphericity is an even
function of m and an odd function of m due the rotation.

This difference allows us to separate effects of the solar asphericity and rotation in
the observational data.




The a-coefficients

The observational data are often represented as an expansion in terms of the
Legendre polynomials:
Av,, =Ao,, [27= LZ P, [ J
k=1 L
For a more accurate (non-asymptotic) representation, the expansion is performed in
terms of Clebsch-Gordon coefficients, which will be considered later.

In this representation, the ‘even’ a-coefficients represent effects of the solar
asphericity, and the ‘odd’ a-coefficients represent the internal solar rotation and
its variations with latitude (zonal flows). In addition, the representations in the
form of the a-coefficients allows us to replace the 2D inversions of Aw,,, with a

nlm
series of 1D inversions of the a-coefficients.

Specifically, representing the sound-speed perturbation in terms of the
Legendre polynomials:

%(r,u) =34, (IR, (1)

where z=cos@.

Substituting this representation of & (r ) 1in the equation for Aw,,, /o, we
obtain:
Aw,, Ay, (r)dr Py (1)
—_nim_ d#
; .[rl \/1 3¢ | 1 .[ \/
The second integral is calculated analytlcally.

2 rz(“ Ldu=c1ye,00,
Thus, both the observational data and the angular integral of the sound-speed
asphericity are represented in terms of the series of Legendre polynomial
P, (m/L).
We obtain a series of the Abel integral equations for the radial functions of
the asphericity, 4, (r):

(m/L)

J- Az/(r)dr _ 71)1- La In
Vi-Lc? o’ (0)
These equations establish a relationship between the even a-coefficients and the
solar asphericity expressed in terms of the Legendre polynomials.




A similar type of solution can be obtained for the angular velocity Q(r, ).
In this case, it is convenient to use the expansion in terms of associate Legendre
functions:

,(cos6)
Qr, p) = ZQZM( )2“?
Substituting in:

_ mQ(r, p)drd y

Onim = IITJ J.’1 (;\/M2 2\/l—ch2 /e’

we obtain:

J’R sz (r)dr 2/+1

51
Aw,, =Y —
Dt Z;T f - P J. N \/M -

J=

The second integral is calculated analytically:
J‘ 21+l %(2j+1) (O) Z/H(m)

l 2 Mz 2 L
Both the observational data and the angular integral of the solar rotation are
expressed in terms of the odd Legendre polynomial of m/L.
Thus, we obtain a series of the 1D Abel integral equations for the radial
functions of the solar rotation expansion:

J-R (Q,,,(r)/2z)dr/c ai’jﬂ
r? S @j+DHP, ;)
Cza)g,n/

In the asymptotic JWKB/EBK approximation, the «-coefficients are the functions
of the ratio L/w or the lower turning point radius, r . This helps to identify

‘outliers’ in the observational data.

Q /27 is the rotation rate. It is measured in nHz as well as the a-coeffients.

N
AV, =A@, 21=LY a/'F, [_%j

k=1
The minus sign was instroduces to get the a-coefficients of the same sign as the corresponding
rotation law terms.




Solar rotation law
Consider a special case of a three-term solar differential rotation law:
Q/2zx=a+bcos’ @+ccos’

where a, b, and ¢ are measured in nHz. The corresponding representation in
terms of the associated Legendre polynomials: Consider the intergrals for the
4,,.,(r) as averaging over the propagation regions, [7,R].

Zlflk A(r)  dr T:IR;@

T l-r /i c 1=/ C

- a ‘half-skip’ travel time, 7, =c(;;)®, /L is the turning point radius.
Then, we write the integral equatlons in terms of the averaged A coefﬁcientS'

A=a"/P(0)=a =a! /3P(0) = _2, a /5P(0)=—a
Substituting P'(cos @) = —sin @ P! (cos ) =— % sin @(5cos’0 1)
Psl (COS 9) = —%Sil’l 9(2 100549 - 1400529 + 1)

we get: Q/27 = (a, +a, + a;) — (5a, + 14a;)cos’0 + 21a, cos'd
where I dropped the mode indexes n,/,m.

Effects of magnetic field
In the presence of magnetic field, acoustic waves become fast-
magnetoacoustic waves with the dispersion relation:
a) = k7C +k- V:sinhy
k where V, =B/ /4np isthe Alfven speed, ¥ is the angle between the
wave vector, k and magnetic field 3.
¥ Assuming ¥, < ¢ and applying the same procedure as for the
sound- speed perturbations, we obtain:
V / 26‘ )Sinz\{l dr

® ﬁTI IM/MZ 2N-p 1o ¢

oo
|

nlm —

V: v} k-B 1 -
TSZSinz\P - 2—;2(1 meos) = {1 ((szz))} 8mpc’k’ [szz —(k 'B)J -

% 2kz[B (K> =k))+ B, (k> k) + B} (k> —k})] = Zkz[b +b,+b, ]
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2
Substituteing the wave vector k* = w—z and its components:
C

270)2 LZ 2_L2 mZ 5 mZ
k===, kK==-75 = k=5

C c C I sin 0 7 sin 0

and using the definitions: x=cosé and M’ = I_HZT’

we calculate:

Putting it all together:

Awn,,,,:ij‘”r? B! (L¢), B [, LeM-p),
o 2T 9|8z’ \ r’e’ ) 8mpc’\  r'@’ 1-4°

B; I} 1-M? dp(dr/ c)
+ 2 1- 2 2 2
8moc ro’ 1-p* ) |\IM? - 2 1= ¢ | 'F?
There is no simple separation of the radial and angular variables in terms of the
Legendre polynomial and a-coefficients.

However, the magnetic frequency splitting can be calculated for solar-cycle dynamo
models and compared with helioseismic observations.

By the order of magnitude, the magnetic frequency splitting:
Aw, B B 1Bl 1
® 8zpc>  8myP 2y P 2)8
P

where ﬂ:% is the plasma parameter B - ratio of the gas pressure to the

magnetic pressure.

12



Observational data

g, GONG Data Archive Reference |

Documentation
Y Science
2 Status: ONLINE
NISF:i; 188,634,435 Fil 124.31 Terabyt SUPPORT:
88, r iles -- 5 erabytes data@nso.cd
Current Time: 2021/10/15 17:21 UTC | “opan e

Rrchive Updated: 2021/10/15 17:18 UTC

Acknowledgement

Welcome to the GONG Data Archive.
Use this page to access most GONG data products from 1995* to present.
* Note that observations from before February-July 2001 (depending
on the site) were made with lower-resolution 256x236 pixel cameras.

Full Calib M Velocity & Intensity  Global Heliosersmol Local Hel 1 Magnetic
Products Field Products
.Q e e Magnetogram & Intensity Farside Images  Corrected Magnetic Field Products
Near Real Time
Uncorrected Magnetic Field Products
Products
‘Global iosei: Data | Doc | ETP Site

» Fill Factor / Duty Cycle Info
Tnstructions: Click the calendar icon [ below for a quick view of
availability. -OR- Select a product and date range to search. The Search
results page will appear along with directions for staging and download your
data request
Time Series

£ ©36-Day GONG Month Time Series

Mode Frequencies

D O Legendre Coefficients

£ O Clebsch-Gordon Coefficients
ORitzwoller-Lavely Coefficients
@®Mode Frequency Tables

Select Date: (YYMMDD HHMM)
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#1Id: leg.readme,v 1.2 2018/11/29 19:30:25 dsdsops Exp
Frequency and splitting coeffcients table for GONG 3-month data

Frequencies and splitting coefficients have been obtained by
fitting Legendre polynomials to the frequencies for
individual modes, i.e.

\nu_{n,l,m}=\nu_{n,I}+L\sum ia {i,n,I}P i(m/L)

where L=\sqrt{l(1+1)} and a_{i,n,l} are the splitting coefficients
which are tabulated in these tables.

The error estimates given in these tables are those estimated from
the errors in individual modes and do not include any other systematic errors, that may be present.

For those (n,l) values where the number of modes is not sufficient

to determine all the five splitting coefficients, some of the higher

ones are not determined and in those cases the corresponding errors# are set to zero.
Table Legendrefh.tab Thu 15:14:40 22-Jul-2021

B I T T T S S S S e S A I

# n 1 nu  dnu al dal a2 da2 a3 da3 a4 da4 as das a6
da6 a7 da7 a8 da8 a9 da9

# microHz microHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz
nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz

13 0 1957.3079 0.0976 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 14 0
2093.3416 0.1845 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

v, 4 Hz

é errorbars E

4000 [ G
e _

ol 7 o
B # ”
] ﬁﬁ*ﬂ :

2000 iiﬁﬁ%ﬁ% *’*‘*i;
E + + +¥ e W*W”?
0 - ‘EOI | ‘4DI | IBOI | ‘80‘ . ‘100‘ I IlBO‘ I I14O

angular degree, 1
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Lecture 16

Stellar structure.
General helioseismic inverse
problem.

(Stix, Chapter 5.3.1; Kosovichev, p.34-41, 44-48;
Christensen-Dalsgaard, Chapters 5.5)
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The Main Sequence

60 Mg,
30,

.
10,
Y Sun
Lifetime /

10 yrs

Li!glilne/
108 yrs

¥

Lifetime *
10" yrs

10,000 6000 3000
surface temperature (Kelvin)

The main sequence shows how
masses and lifetimes vary along it.
Notice that more massive hydrogen-
fusing stars are brighter and

hotter than less massive ones, but
have shorter lifetimes. (Stellar
masses are given in units of solar
masses: 1 Mg, =2 * 1030 kg.)
At the upper end of the main
sequence are the hot, luminous O
stars, with masses as high as 150
times that of the Sun.

On the lower end of the main
sequence are the cool, dim M stars,
with as little as 0.08 times the mass
of the Sun.




Sun’s Evolution on HR Diagram
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Equations of Stellar Structure
1. Hydrostatic Equations

Basic assumptions:

1. hydrostatic equilibrium: gravity force = pressure

gradient;

2. thermal balance: energy generation rate = luminosity.
Consider a thin spherical shell of radius 7, thickness o7,
mass om , and density o . The mass conservation equation is:

dm = 4zpr’dr
or dm = 47p1°.
dr dp
The balance between the pressure and gravity forces is:
2
Arr*dP = — szd " _Gm 47p }; dr ,
r r
aP _ Gmp

or

2
dr r




Energy transfer and balance equations

The total energy flux, L = 4z7°F , integrated over a sphere of radius 7 :
_lérmacT >dT

L+dL 3kp  dr

/

If € is the energy release per unit mass then
the energy flux change in a shell dr is:

dL = gpdnr’dr

dL

— =4npric

dr
This is the equation for conservation
of energy (energy balance).

Equations of the stellar structure

dm
—= 47rpr2 @) These equations describe the
dr structure of stellar radiative
dapP __ Gmp @)  Zones. In the convection zone
dr 7’ Eq.(4) is replaced by an
dL 5 equation of convective energy
d_ =4dnpr'e (3)  transport, e.g. mixing length
d;’ theory.
Kp —
dr T 167r°acT’ L=-f @
_ Bl ®)
U A numerical code for solving
1 these equations is available in
H=——— 6) the book: C.J. Hansen, S.D.
2X+3Y+57 Kawaler, Stellar Interiors.
= X2pT* 7 Physical Principles, Structure
ot P ) and Evolution, Springer,
k=x,(X+1)ZpT™’ (8) 1995

Kramer’s opacity law




Scaling Laws
Simple estimates can be obtained without solving the equations for solar
structure numerically.
Temperature inside the Sun can be roughly estimated from the equation
of hydrostatic balance and the equation of state.

Using Eq.(1-2) and (4) we obtain the following relations:

d—m—47z P’ N%
dr » R
dP _ Gmp P GM®
dr r R R®
S
p=Rpl p_ el
H Hy

The molecular weight for X ~0.7 , ¥ ~0.28 , and Z~0.02 is:
H, ~0.6.
GMu, 6.67x107*-.2x10%.0.6

RR 831x107-7x10" ~14x10°K. (9)

Then, T ~

Low-degree p-modes (/=0,1,2, and 3)
_an+L2+a)
Sy
0o ¢
That is the spectrum of low-degree p-modes is approximately equidistant with
-1
frequency spacing: Av = (4!: %) v, RAV2n+l+ % +2a)=Av(2n+I1+ %

Large frequency separation: Av=68 uHz

For I <<n, 1, =0, and we get:

0.0010 T T ——

51/"/ = Vn/ _Vn—l,l+2 ~

A,y ' dedr

nl

27y, Y dr

o008~ ] nl 0

EoT 1 Small frequency separation :
s | Sv=0uHz

ﬁ } 1 experiment, B. Gelly - M. Lazrek- G. Grec -

[ I TTTOTTO A.Ayad - F. X. Schmider- C. Renaud - D.

2008 2000 oo 500 4s0¢ Salabert - E. Fossat: A&A 394, 285-297
requency (uH2) (2002)

[ ‘ ' H Solar -modes from 1979 days of the GOLF
L HULHA ‘\




Asteroseismology Scaling Law

Using the scaling laws:

M P _GM®
R’ R K

we obtain the scaling law for the speed of sound:

eo 1P M
Yo, R

Then, the scaling law for the oscillation frequencies is:

c M
V~_~ R

R R’
Since for the Sun the large frequency separation: Av=68 pHz we can estimate
Av for other stars:

Iy /2 R -3/2
Av =68 — — Hz
IY; (uHz)

O] O]

Using the Scaling Law to estimate stellar
radius and mass

If we measure the stellar mass and radius in the solar units:

Mo =1, Ro =1, then:
Av=Av MR

Spectroscopic observations provide estimates of the gravity acceleration, for
which the scaling law is:

g=g ,MR™

Therefore, from the observed AV and R we can estimate the stellar radius

and mass:
g AV@ ’ g p2
R = — 5 M = _R
go\ AV go




Standard solar model
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Basic Equations
Basic assumptions:

1. linearity: v/e, <<1

2. adiabaticity: dS/dt=0

3. spherical symmetry of the background

4. magnetic forces and Reynolds stresses are negligible

The basic equations are conservations of mass, momentum, energy and
Newton’s gravity law.

1. Conservation of mass (continuity equation):

The rate of mass change in a fluid element of volume V' is equal to the mass
flux through the surface of this element (of area A4 ):

—

0 7 7
EIV pdV = —L pvda = — jV V(pv)dV. )
Then
9 ) V
a_p FV(p¥) =0, divergence
ot
or
dp

—+pVv=0. where ar = % +(V-V)p is the 'material' derivative
dt dt ot

2. Momentum equation (conservation of momentum of a fluid

element): p;‘; =-VP+ pg,

where P is pressure, g is the gravity acceleration, which can be
expressed in terms of gravitational potential ®: g =V®.
Also, Cé—v = v + (v - V). This is the 'material' derivative.
V. ov, ov,
eg. v, +v, +v,
Ox oy 0z

3. Adiabaticity equation (conservation of energy) for a fluid

element:
A(P) .y . A _pdp
dt\ p’ dt dt
where ¢ = yP/p is the adiabatic sound speed.

for v, component

4. Poisson equation: VO =47Gp.




Then, the linearized equations are:

p' +V( pogz )=0, the continuity (mass conservation) equation

o°&
Lo a—f =-VP' -g,é.p + p,VD', the momentum equation
t

dP, d
P'+¢& d—o =ci(p +& dpo ), the adibaticity (energy) equation, or
r r

OP= Cé Jp for the Largangian perturbations of pressure and density.

V’®' = 472G p'. the equation for the gravitational potential

2. Cowling approximation: @®'=0.

5. Consider the separation of radial and angular variables in the form:
p'(r,0.9)=p'(r)- £(0.9),
P'(r,0,4)=P'(r)- £(6.9),
6. (r.0,9)=c,.(r)- (0.9),
&,(r0,9)=E,(NV, [(6.9).

Then, the continuity equation is:
, 10
{p +—2—(FZP§,.)}f(9, »+LEVif=o0.
r-or r
The variables are separated if
Vif=af.

where o is a constant.
This equation has non-zero solutions regular at the poles, & = 0,7 only when

a=-I(l+1),
where / is an integer.

6. The non-zero solution of equation V;f +/(/+1)f =0 represents the
spherical harmonics:

f(0.4)=Y/"(8,4)=CE"(0)e"™,
where B"(0) is the Legendre function.




General helioseismic inverse
problem

1) Variational principle

2) Perturbation theory

3) Kernel transformation

4) Solution of inverse problem
A. Optimally Localized Averages Method
B. Regularized Least-Squares Method

5) Inversion results for the solar structure

6) Inversions for solar rotation

Generalized Helioseismic Inverse Problem

In the asymptotic (high-frequency of short wavelength) approximation the oscillation
frequencies depend only on the sound-speed profile. This dependence is expressed in terms of
the Abel integral equation that can be solved analytically.

In the general case, the relation between the frequencies and internal properties is non-linear,
and there is no analytical solution. Generally, the frequencies determined from the oscillation
equation depend on the density, p(r), the pressure, P(r), and the adiabatic exponent, y(r).
However, p and P are not independent, and related to each other through the hydrostatic

equation:

ar__
dr &P
where
_ Gm _ r 12 g0
g77, m747zJ-0 pr'dr'.

Therefore, only two thermodynamic (hydrostatic) properties of the Sun are independent, e.g.
(p,7), (P,y), or their combinations: (P/p,y), (c*,7), (¢, p) etc.

The general inverse problem in helioseismology is formulated in terms of small corrections to
the standard solar model because the differences between the Sun and the standard model are
typically 1% or less. When necessary the corrections can be applied repeatedly, using an
iterative procedure.




Variational Principle: Rayleigh’s Quotient

Consider the oscillation equations as a formal operator equation in terms of the vector
displacement, f :

0 =1(),
where L in the general case is an integro-differential operator. If we multiply this by
E " and integrate over the mass of the Sun we get:

wzjy pE -Eav = jyg -Lépdv,
where p, is the model density, V' is the solar volume.
Then, the oscillation frequencies are:

Y
O ==
J,pi e

The frequencies are expressed in terms of eigenfunctions 5 and the solar properties
represented by coefficients of operator L .

Sometimes, this equation is called Rayleigh’s Quotient (the original formulation: for
an oscillatory system the averaged over period kinetic energy is equal the averaged
potential energy).

THE

THEORY OF SOUND

BY

JUHN WILLIAM STRUTT, BARON RAYLEIGH, $c.D. F.RS,

HONORARY FELLOW OF TRINITY €OLLEGE, CAMBRIDGE

1877

88. The interpretation of the equations of motion leads to a
theorem of considerable importance, which may be thus stated<.
The period of a conservative system vibrating in a constrained type
about a position of stable equilibrium is stationary in value when
the type is normal. .We might prove this from the original
equations of vibration, but it will be more convenient to employ
the normal co-ordinates. The constraint, which may be supposed

10



Orthogonality of the eigenfunctions
Consider the general oscillation equations in the operator form:

& =1I[&]
where £=(&,¢&,) is the displacement vector (which we expressed in terms of the
radial and horizontal components, & and ¢&,).

Non-zero solution, &=0 , exists only for a discrete number of
eigenfrequencies o, and eigenfunctions &,.

It can be shown that for the ‘zero’ boundary conditions: £=0 at »=0 and
SP=0 at r=R,operator L is Hermitian, that is for two eigenfunctions ¢ and &,
the integral over the stellar volume:

_[Vgl 'ngpdV = L;—z 'LglpdV
Using this property, we can show the oscillation eigenfunctions for different
oscillation modes are orthogonal:
[ éxéipdv =0
if 7#0' and n=n'.

Proof

Multiplying equation: @& = Lé,
by &, integrating the product over the stellar mass and
using @&, = L&,
we get:
2 =% 2 _ =k - _ = =% _ 2 = =%
@, J-ng : é:lpdV - J-ng : LglpdV - J.V§1 : Lé:z pdV =0, J.V§1 : 52 pdV

Thus,
(@ —)| &-&pdV =0

If w #w, then IVE, EpdV =0

11



Variational Principle

Consider small variations of the squared frequency and eigenfunction
in the Rayleigh equations:

(@ +A0")[ (E+AE) -(E+Ad)pdV = [ (E+AZ) - LE +AE)pdV
Because L is a linear operator: L(Z +A&)=L(E)+L(AE).
Keeping the first-order terms:
a)zhgt\fpdVﬁ— wzjV(f* AE+AE" E)pdVJrAa)ZIfopdV =

= jyg*ﬁgdrf +IVA§*L§pdV+ [VE*(LAE) pdV
After the cancellation of the terms satisfying the oscillation equation
and using the Hermitian property of L, we obtain:

A& IVE*EpdV = jVAE*(—wZE +LE)pdV + jVAE(—wZE* +LE)pdV =0
Thus, variations of the oscillation frequencies, Aw”, do not depend
on the variations of the eigenfunctions, A, to the first order.

In other words, »° is stationary with respect to perturbations of & .

Variational Principle

For small perturbations of the solar parameters the frequency change will depend
on these perturbations and the corresponding perturbations of the eigenfunctions,

e.g.
Sw* =Y[Sp,Sy,5E].

The variational principle states that the perturbation of the eigenfunctions
S constitutes second-order corrections, that are in the first-order
approximation:

0w’ =~ Y[dp,or].

This allows us to neglect the perturbation of the eigenfunctions in the first-order
perturbation theory.

w2 §E2
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Derivation of the variational principle for solar oscillations
Consider the linearized hydrodynamic equations for oscillations
with frequency o:
conservation of mass: p' =—divpé

momentum equation: —w’pé =-Vp'+ pﬂ;VP + pVO'

conservation of entropy: p'=-&VP-yPdivé

equation for gravitational potential: V*®'=47zGp’

where p and P are unperturbed distributions of density and pressure
inside a star.

An integral equation for the frequency can be obtained by multiplying the
momentum equation by 7 =&, eliminating perturbations of density, o' and
pressure p' and integrating over the volume.

(7. E2oav = [ |7y - L7 .vP— o VO

0] J.anpdV—J.V{n Vp pzn VP-pn V(I)jdV

Transform the first integral in the RHS by integrating by parts:
jyﬁ Vp'dV =- IVp’diVﬁdV + Lﬁ p'ds = jy [&-VPdivij+yPdiviidivé |av

Here we assume that the pressure perturbation on the stellar surface, p'=0.

Eliminating p’ in the second integral, we write:

f L_(5-vP)ay = —j 1(5 -V p)(#i-VP)dV - j divE(7j - VP)dV
P Y p v

Integrating by parts the third term and using the solution for the Poisson

equations: @’(F)=GI &dVE—GJ' d_Lp_édV’ we obtain:
VE =7 rE =
.[Vpﬁ DAV =— IVQ'divpﬁ + jsqa'pﬁds
We assume that the density on the stellar surface is zero, so that the surface
integral is zero.

13



Getting all terms together: o’ = 1((5 77)) where: 1(&,7)= I pE-Fdv

>

W(E,ij)= j{ypdivédivﬁ +& - VPdivij +7j-VPdivé +l(5-Vp)(ﬁ : VP)}JV—

‘GH div pé Aivlpe1divipi]

|F=F|
Substituting 7=£", we get:
W= j [yP(divE) +2(& - VP)divé +7(§ Vp)&E-VP)dV -G j j %‘V‘(pé)dmw
I" —-r
is a quantity proportional to the potentlal energy of the mode averaged over the
period of the oscillation.
1=[pIEFar
is the mode inertia, «°7 is the averaged over the period kinetic energy.

Perturbation theory

Perturbations of the solar structure properties, sp and &y can be
considered as a perturbation of the operator, L: LE =L +LE, where L, describes
oscillations of a solar model: w2 =L¢, , and », and & are unperturbed

eigenfrequency and eigenfunction.
The corresponding frequency perturbation can be determined from the
Rayleigh’s quotient, in which we neglect the perturbation of the eigenfunction:

E (L&, + L&) pdV
(@, +6w)’ = -[Vé: ( ”{O*t 1$0) P
J‘Vfo EpdV
,[Vg*(ngo)pdV
20,00 = F—F————
,[V%go SpdV

where 1= J.IEO g pdv is called the ‘mode mertia’ or ‘mode mass’.

The quantity E=7e; is the oscillation mode energy.

14



Calculation of the mode inertia
We express the mode inertia in terms of the radial and horizontal
components of the displacement: £ = [fr(r)Y,m(H,qﬁ), gh(r)VhY,’”(H,@]

In the spherical coordinates: dV =sin0d6dr .
I= jVE* EpdV =1 +1,

* * . R
1= [ &40y sin0d0dgyr’dr = [[|&, [ pridr
where we used the normalization condition for the spherical harmonics:
27 e *om .
_[0 Iol’,'")’, sinfd@d¢=1.
Similarly,
* — m\* — m . R
1, =J‘V§;,§;,(V;,Y/ ) (VY )Slflgdea'f/’,orzdr=1(1+1)I0 &, ()" prdr

where to calculate the angular integrals we used the integration by parts and the
equation for spherical harmonics: V*Y" =/(/+1)Y,".

Finally, 7= j(f[e;f HIA+DE | pridr.

Perturbation theory

We consider a small perturbation of the operator L caused by variations of the
solar structure properties:

L($) = Ly(&)+ Li(S).
Then, the corresponding frequency perturbations are determined from the following
equation:

,_[E - wE+LdHpar

(@, + 6) —
[ p&-Zav
or
5&) 1 =k =
—=——| & Lépav,
> 2w [&-Lé
where
1= pE Eav

is so-called mode inertia or mode mass.

The mode energy is E =Ia)§a2, where a is the amplitude of the surface

displacement. The mode eigenfunctions are usually normalized such that & (R) =1.
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Rayleigh’s Quotient for normal
modes

For a normal mode, i, the variational principle gives an integral relation
for the eigenfrequency, @

o =W/,
where
W, =[, lyp(divg )} +2(,-Vp)divE + o™ (Z,-VP)E, VP)laV -
~GJ, [ |Fi=F.[" divlpg Jdivip'E Javdy"

is a quantity proportional to the potential energy of the mode averaged
over the period of the oscillation, and

I, :IV pEdV

Sensitivity kernels

Using explicit formulations for operator L, the variational principle can be

reduced to a system of integral equations for a chosen pair of independent
variables, e.g. for (p,y)

(n.0)
oo = ["xo P g+ K 7 g,
@™ p y

where K(” ”(r) and K (. ”(r) are sensitivity (or ‘seismic’) kernels. These are
calculated using the initial solar model parameters, p,, F,, 7, and the

oscillation eigenfunctions for these model, & .

16



Explicit form of sensitivity kernels in terms of
oscillation eigenfunctions for mode i=(n,l)
, J—a)f &2+ 10+ |+ 24 (g, +47Gpé, - Fg)+

Ko ()=
E l +M77iq)'i_cl,ig+4ﬂ-G(S" _Sl’ij
r

i

where ¢ is the vertical displacement, and 7 is the horizontal displacement.

E=a} [ [ +10+ ] pridr

is proportional to the energy of mode i ;
F=a[26-l04m);  C == yKar

2
r
R R
Sl’i - J.r pcl’idr'; Si = _2,'-7 ple;dl",
2
= (divg i)z

K, = ﬁ"'E
dr

2
K" (r) ="y pK
;) =rp

i

i

Examples of the sensitivity kernels
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Equation for the sensitivity kernels

If we define:

_ _(5/9 5yj
Z1— | T s
py

[—<~§1) _ (Ki(p,y)’Ki(y,p)j
then the perturbation equation can be written in the form:

50),-2 _ /=0 =
2 K "zi1),
W

i
R

where <uv> =I uvdr .

0

Kernel Transformations. 1

The sensitivity for various pairs of solar parameters can be obtained by using the
relations among these parameters, which follows from the equations of solar
structure (‘stellar evolution theory’).

A general procedure for calculating the sensitivity kernels can be illustrated in
an operator form. Consider two pairs of solar variables, X and Y , e.g.
g -[% o) y:(&ﬁ_’/}
Py u Y
where u = P/p, Y is the helium abundance.

The linearized structure equations (the hydrostatic equilibrium equation and the
equation of state) that relate these variables can be written symbolically:

AX =Y.

18



Kernel Transformations. 2

Let g, and g, be the sensitivity kernels for X and Y , then the frequency
perturbation is:

ow (R S P

;—jOKX-Xdr=<KX~X>,

where <-> denotes the inner product. Similarly,
ow = s
; = <K y . Y > .

Then from the stellar structure equation AX =Y :

(R, T)=(R, 4%)=(4E, ),
where 4" is an adjoint operator.
Thus: < EY .

)

)=(K, - X).

P
This is valid for any X if 4K, =K,.

That means that the equation for the sensitivity kernels is adjoint to the stellar structure
equations.

Examples of the sensitivity kernels

-1.0¢ . . . . .
0.0 02 04 06 08 1.000 02 04 06 08 1.0
/R r/R
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Lecture 17
General helioseismic inverse
problem. Perturbation theory. Kernel
transformations

(Stix, Chapter 5.3.1; Kosovichev, p.34-41, 44-48;
Christensen-Dalsgaard, Chapters 5.5)

General helioseismic inverse
problem

1) Variational principle

2) Perturbation theory

3) Kernel transformation

4) Solution of inverse problem
A. Optimally Localized Averages Method
B. Regularized Least-Squares Method

5) Inversion results for the solar structure

6) Inversions for solar rotation




Generalized Helioseismic Inverse Problem

In the asymptotic (high-frequency of short wavelength) approximation the oscillation
frequencies depend only on the sound-speed profile. This dependence is expressed in terms of
the Abel integral equation that can be solved analytically.
In the general case, the relation between the frequencies and internal properties is non-linear,
and there is no analytical solution. Generally, the frequencies determined from the oscillation
equation depend on the density, p(r), the pressure, P(r), and the adiabatic exponent, y(r).
However, p and P are not independent, and related to each other through the hydrostatic
equation:

dP

dr &P,
where

_Gm _ r 12 g0
g—r—z, m—47zJ‘0 pr'dr'.

Therefore, only two thermodynamic (hydrostatic) properties of the Sun are independent, e.g.
(p,7), (P,y), or their combinations: (P/p,y), (c*,7), (¢*, p) etc.

The general inverse problem in helioseismology is formulated in terms of small corrections to
the standard solar model because the differences between the Sun and the standard model are
typically 1% or less. When necessary, the corrections can be applied repeatedly, using an
iterative procedure.

Variational Principle: Rayleigh’s Quotient

Consider the oscillation equations as a formal operator equation in terms of the vector
displacement, & :

@& =L(E),
where £ in the general case is an integro-differential operator. If we multiply this by
g " and integrate over the mass of the Sun we get:
2 —x — % =
o jV pE -ngzng LEpdV,
where p, is the model density, V' is the solar volume.
Then, the oscillation frequencies are:

L& ey
J, & Ear”

2

The frequencies are expressed in terms of eigenfunctions § and the solar properties
represented by coefficients of operator L .

Sometimes, this equation is called Rayleigh’s Quotient (the original formulation: for
an oscillatory system the averaged over period kinetic energy is equal the averaged
potential energy).




Variational Principle

For small perturbations of the solar parameters the frequency change will
depend on these perturbations and the corresponding perturbations of the
eigenfunctions, e.g.

Sw® =Y[Sp, Sy, 5.

The variational principle states that the perturbation of the eigenfunctions
SE constitutes second-order corrections, that are in the first-order
approximation:

0w’ = P[dp,or].

This allows us to neglect the perturbation of the eigenfunctions in the first-order
perturbation theory.

Perturbation theory

We consider a small perturbation of the operator £ caused by variations of the

solar structure properties:

L&) = L&)+ L(5).
Then, the corresponding frequency perturbations are determined from the following
equation:

. _[E - (LE+LdHpav

w, + 0w e
( ) [oF Zav
do_ 1tz z
PRy [ € -Ldpar,
where o
1=]p& Eav

is so-called mode inertia or mode mass.

The mode energy is E =1a)(fa2, where a is the amplitude of the surface

displacement. The mode eigenfunctions are usually normalized such that & (R) =1.




Sensitivity kernels

Using explicit formulations for operator £, the variational principle can be

reduced to a system of integral equations for a chosen pair of independent
variables, e.g. for (p,y)

(n.1)

80 a2y P e
(1) Py 7P >

® 0 P 0 y

where K"(r) and K{"(r) are sensitivity (or ‘seismic’) kernels. These are

calculated using the initial solar model parameters, p,, F,, 7, and the

oscillation eigenfunctions for these model, E .

Inversions for the solar structure

Variational principle for oscillation frequencies

The motions in a star in the simplest case with no heat sources and no heat
exchange and extra forces (such as magnetic and Reynolds stress forces) are
described by the hydrodynamic equations of conservation of mass, momentum,
energy and by Poisson’s equation:

% +div(pv)=0
ot

p(?+v~ij=—Vp—pV<I)
t

§+V~VS:0
ot

VD =47Gp.
Here p , v, p, ®, T and S are the density, fluid velocity, pressure, gravitational
potential, temperature and specific entropy, respectively, and G is the gravitational
constant. These equations are complemented by the equation of state: S=S(p,p),
and boundary conditions of regularity at the star center.




Since the amplitude of solar oscillations is small they can be described in
terms of small perturbations to a stationary equilibrium state which in the first
approximation is a function of only radius . The perturbation equations are

op'

+div(pv') =0
ot
pé(;‘; =-Vp' = pVO' - p'VOD
al-kv“Vp— P> [%+v'-Vp) =0
Ot op )\ ot
V' =4zGp',

where the variables without subscript denote properties of the equilibrium state, and
the prime sign refers to small perturbations of the properties due to oscillations;
(@p/op)s =c* is the adiabatic sound speed, which is also represented in terms of the
adiabatic exponent, y =(dlogP/dlogp),: ¢’ =yP/p. This system of equations is

complemented by boundary conditions describing regularity of the solution at the
star center, » =0, and the absence of external forces (6p =0 )on the surface r=R.

The oscillatory solution of this system has time dependence exp(iewt), and
can be expressed it terms of Fourier components of the fluid displacement, &,
V'= 08 /0t = ik,
where o in the oscillation frequency.
As a result, we obtain an eigenvalue problem for a fourth-order system of
ordinary linear differential equations.

In this formulation, the eigenvalue problem is non-linear in terms of the
squared eigenfrequency, o*, and typically solved by iterations for a given initial
equilibrium state.

The inverse problem of helioseismology is to estimate the properties of the
equilibrium state from a set of observed eigenfrequencies. The standard approach
to this problem is to find corrections to models of the equilibrium state which are
sufficiently close to the real Sun, so that a perturbation theory can be employed.




The oscillation equations together with the boundary conditions can also be
represented in a linear operator form:
LE+@’E=0,
where L is a self-adjoint (Hermitian) integro-differential operator. Therefore, the
eigenfunctions & are orthogonal. Eigenvalues «” are real and obey a variational
principle.
For a normal mode, i, the variational principle gives an integral relation for
the eigenfrequency, @, (Rayleigh’s Quotient):
o =W, /1,
where
W, = [ [y p(divg,)’ +2(, -Vp)divg, + p (& -V p)(&, - Vp)ldV
=G[ [ e, —x, " div[p&, 1div p'8, 1aVay"
is a quantity proportional to the potential energy of the mode averaged over the
period of the oscillation, and
1= pgrav
can be regarded as mode inertia. Physically this equation represents the balance

between the potential and kinetic energies averaged over the period of the oscillation
modes.

In a spherically-symmetric star, the displacement eigenfunctions, &, can be
expressed in terms of spherical harmonics Y,,(6,4):
§(r.0.9)=e., (1Y, (0,9)+&, (rV Y, (0,4),
where ¢ .(r) and & () represent the radial dependence of the radial and
horizontal components of the displacement vector, V, =e, D te . Li
00 sin@ 0¢
angular part of the gradient in spherical coordinates, (r,6,4), and e,,e,.e, are units

is the

vectors in the directions of r,0,¢.

Thus, the equations and the variational principle for a oscillation mode with
frequency, @,, can be written in term of &£, and &, and perturbation of the
gravitational potential @’:
dé, 28, II+DE, Y

Sri + s U )@,.j e+

w,=ax["
i ﬂjﬂ}’p dr r r

oy LRpr2 {i Q& +&., (gl +4nGpe. ) +1(1+ 1)@(@ +2g¢& )}l}g
r r

1= 4zzI:pr2 (& +1a+Dé;, Jdr,

where
,_ 00" I . _Gm _4AnGr .,
g =5 VO'=4rGp'; gfr—zz = L}pr dr';
R is radius of the Sun, and m is the mass within a sphere of radius r.




The variational principle asserts that the eigenfrequencies are stationary with
respect to variations in &, i.e., if a perturbation in an eigenfunction is O(¢), then the
perturbation in the corresponding eigenfrequency, @, is O(¢?).

Consequently, one can calculate small corrections to the frequencies due to
changes in the physical conditions inside the Sun by linearizing the Rayleigh
Quotient in terms perturbations of the structure properties, e.g. density p, pressure
p, and the adiabatic exponent, y, and using the unperturbed eigenfunctions.

From the variational principle one can obtain:

50); _ J.RKI'“)’”@Q'F—FJ‘RK{(M) &d}’,
; 0 P 0 v

where K»” defines the sensitivity of the mode frequency to perturbations of the
density, p, at constant y, and K”” is the sensitivity (‘kernel’) function for
variations of y at constant p.
2
K0 ) =B [ 8410408, |42, (8] + 476Gk, ~ Fe) +

&P -C g+ 47[G(Si - Sl,i)}

20(1+1)
r

and E = wfj':[ff, +1(I1+1)&;, | prdr is proportional to the energy of mode i ;

1 r
F = %[2;1 —Z(Z+1)§,u.]; C,= —r—zfoyKi,r'zdr'; N J.’_RpCUdr';

ds, Y ?
S, = —Zj.:epfr’iF;dr'; K, = {:Zl + EJ =(dg); K77(r)= %7[71{1"

i




Examples of the sensitivity kernels for p and
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If we define vector functions: zl=( , J, K" =(K"",K0),
P 7

2
then equation &02" = J'RKI.‘”*” P g +J'RK,-(”’) er,
o 0 P 0 /4
2
can be written in the form: 5% =(K{".z,), where (uy)= Lku -vdr .
.

These equations provide integral constraints on unknown functions dp/ p
and Jy/y with kernels K“” and K" . These kernels determine the sensitivity of
the oscillation frequencies to density variations at constant adiabatic exponent y
and to variations of y at constant p respectively. The similar integral equations
can be obtained for some other parameters of solar structure. These equations are
used for inferring the structure parameters from the relative differences between
the observed frequencies and frequencies of a reference solar model. For a given
reference model eigenfrequencies o, and kernels K”” and K7 can be
computed numerically with standard methods.




Kernel transformation. Method of adjoint equations.

The hydrostatic structure of the Sun is uniquely determined by the two ’primary’
properties: density p(r) and the adiabatic exponent y(r). Other, ‘secondary’
properties of the solar structure, such as the squared sound speed ¢*=yp/p, the
parameter of convective stability

A =——L_ , temperature 7 or abundances of helium, Y, and

y dlogr dlogr
heavier elements, Z, can be determined from p and y using the equations of
stellar structure.

These equations describe the hydrostatic and thermal equilibria and the
thermodynamic state of the solar plasma. Some of the ‘secondary’ properties (e.g.
¢* and A4") can be determined using only the hydrostatic equations, while others
(e.g. T and Y) require both the hydrostatic and thermodynamic equations.

In the helioseismic applications, it is often of interest to obtain direct
estimates of these (‘secondary’) properties from the oscillation frequencies. Such a
situation arises, for instance, when the available frequency information allows the
determination of solar properties only in some particular regions of the solar
interior. The integral equations which relates the variations of the ‘secondary’
properties to the frequency difference can be obtained by the method of adjoint
functions.

In mathematics, an ajoint operator A" (or Hermitian conjugate operator) is
defined according to the rule: (Ax,y)=(x,A’y).

For matrix 4: (4x,y)=(x,4"y) where A"is matrix transposed to A

The idea of this method is very simple. The relation between the ‘primary’,
z,, and ‘secondary’, z,, properties that follows from the linearized stellar structure
equations can be written in the following symbolic form:
Az, =1,,
where A is a linear operator. If K® is the integral kernel for z, then the relative
frequency differences can be expressed in terms of both z, and z,:
60 | 0 =(K"z,) = (K%z,).
Then, substituting z, from the structure equations, we obtain:
(K"2,) = (K7z,) = (K?, Az,) = (A'’K?,z,).
where operator A" is adjoint to operator .A. Comparing the first and last terms we
obtain the equation for the ‘secondary’ kernels, K®:
A‘K(Z) — K(l),
which is adjoint to the structure equation.

The sensitivity kernels can be interpreted as a ‘response’ of the oscillation
frequencies to point perturbations. If an i-component of the structure variables
2, =0(r-r,) then 6w’/ w* =(K"z,)=K" ).




Generally, the relation between the ‘primary’ and ‘secondary’ properties of
the solar structure is obtained from the equations of hydrostatic and thermal
balance and constitutes a system of linear differential and algebraic equations:

dy

—=Ay+Bz
e y 2
z,=Cy+Dz,,

where x=1log(r) and y(x) is a vector-function of some properties of the stellar
structure different from z, and z, (e.g. gas pressure and fractional mass). The
equations are complemented by the boundary conditions of regularity at the stellar
center and surface.

These equations represent an explicit form the operator equation:
Az, =1z,
. If the function z, is known then z, can be determined by solving these
equations. Our task is to find the explicit form of the adjoint operator 4", such as
A*K(Z) — K(l)

where K" and K® satisfy the equation: (K"z,)=(K%z,)

To find a kernel function K® for z, we introduce a new vector-function
w=(w,w,) and calculate the inner product of w with the first equation:

dy
—=Ay+ Bz
dx y 2

<w-%>=<w~Ay>+<w~Bzz>.

Using integration by parts and assuming that
w-y=0 at both r=0 and r=R
we find
dw r
—(y - —)=(y-4'w)+(w-Bz,),
(-5 )= (v "))
where 4" is transposition of matrix 4.

10



Then, we calculate the inner product of K® with the second eqution:
z,=Cy+Dz,,

and use the equation (K" -z)=(K? -z,)
(K?-2,)=(K"-Cy)+(K"-Dz,).
If w is such that
<K(l) . Cy> = <w 'BZ2>,
then the inner product equation

T et

can be written as:

_}y.d_w>:/gy.ATw>+§‘y-CTK(1)>, d_W:—ATw—CTK(l)

dx x ’
<Z2 -K(2)>—<Zz .DTK(1)> ZSZZ ~BTW>, K?® =D'K® + B™w.
7 /

These equations are valid for arbitrary structure variables z, and vy, if
MW _ - CTKO,
dx

K? =D'K" + B'w.
These two relations together with the boundary conditions for w:
w-y=0 at r=0 and r=R
determine kernels K® for the ‘secondary’ structure variable z,.

Thus, to find the kernels K® one has to solve the differential equations
for w with the boundary conditions, and then use of the second equation.

Compare these adjoint equations with the equations for the structure
variables:

dy

—=Ay+Bz
e y 2
z,=Cy+Daz,,

11



Examples of the kernel transformation
Kernels for isothermal sound speed and helium abundance.
As an example, we derive kernels K® for function z,=(5lnu,5Y), where

u=p/p,theratio of the gas pressure to density, which is approximately proportional
to the ratio of the temperature to the molecular weight, and Y is the abundance of
helium. These ‘secondary’ properties are related to the ‘primary’ properties, p and
v, through the hydrostatic equations:

dp  Gmp dm _

=, — =4zmpr’,

dr r dr
and the equation of state y = y(p,p,Y).

The corresponding linearized equations are:

g(@jz,y(@,@@}

dx\ p m p p
di(@j:(,[_ﬁ"ﬁﬁ} ou_9op_dp
X

m mop u p op’
5}/_[8ln}/] @J{amj @J{am) 57,
4 Olnp oy P olmp) . p oY J,,
3
where x=Inr, V=7m:Gmp,and U:dlnm:“”pr .
dinr rp dinr m

Boundary conditions are the regularity conditions at » =0, and ém/m=0 at r=R.

These equations can be written in the matrix form:
d
d—i =Ay+Bz +B,z,,
Dz, =Cy+D,z,,
where y=(8p/ p,dm/m), z,=(3p/ p,6y ! y), z, = (Su/u,8Y),
4, B, B,, C,, D, and D, are (2x2)-matrices:
0 0
0 0)

4 -V 0

4= , B = , B,
0 -U u o0

1 0 1 0

D =| (Jdlny e C,=|(0ny ol
olnp) , Olnp o




Since det(D,) =0 we can reduce the equations to the standard form:
dy
—=Ay+Bz,,
dx Yy 2
z, =Cy+Dz,,
where
A=A+BD;'C,, B=BD'D,+B,,
c=D'C,, D=D/'D,.
Thus, the kernel functions K® =(K“",K"*") can be found by solving
the corresponding equations with the matrices, 4, B, C and D:

W - CTKY,
dx

K?®=D"K" + B"w.

Examples of the sensitivity kernels for u=p/pand Y

10F k., 1=5, n=8 1 K, x5 1=5, n=8

u

| K,y 1=10, n=6 1 Ky,x51=10, n=6
? .

P VATA 'll |

10 S

00 02 04 06 08 1.0.0 02 04 06 08 1.0
r /R r/R
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Kernels for the parameter of convective stability.

The parameter of convective stability 4" = ldlogp dlogp
y dlogr dlogr
plays an important role for the internal structure of the Sun. When this parameter is
positive the solar structure is stable against convection, and when it is negative the
structure is unstable. In the bulk of the convection zone 4" is negative and close to
zero, in the upper convection zone this parameter experiences a sharp minimum near
the surface where highly unstable convective motions (granulation) are developed.
In this case, we add to the previous hydrostatic solar structure equations the
linearized equation for 4°:
i(iﬂ): v (@_ﬁn_@ﬂj_m
a\p) *\p m p 7y
where V,=V/y.  Defining y=(p/p,dm/Im,plp), z,=(8p/p,Syly),

z,=(64,9y/y), we obtain the adjoint equations the kernel function

K® = (K “‘*'”,K ‘“*’) in the standard form with the following matrices:

Vo 0 0
00 1 00
A=|0 U -U|, B=|0 0| C= , D= :
000 01

Vé’ _Vg _Vg _1 V;’

Examples of the sensitivity kernels for parameter of
convective stability 4* and y

30 -
2OF _.f’/ \}\',\-,Txmal 5, n=8 { K

g/ N i |

D ...... \\\ ........ i
—10¢ \J\_/\ -*u'r] 1 _
-20 VY
48
20
10F PR 1 il
ok ' N S L
~10¢ |3
—20} NPV

0.0 02 04 06 08 1.00 02 04 06 08 10
r /R r /R

A

14



Similar transformations of integral kernels can be derived for other
appropriate pairs of unknown functions of solar structure.

It is important to note that the integral kernels for temperature and
element abundances in the solar radiative core, which are important in
astrophysical applications (e.g. the solar neutrino problem), can be
determined by including the equations of thermal equilibrium in addition
to the hydrostatic equations.

Equations of the stellar structure

dm

— =4xpr’ (1)  These equations describe the
dr structure of stellar radiative
d_P — Gmp @)  Zones. In the convection zone
dr 7’ Eq.(4) is replaced by an
dL s equation of convective energy
d_ =4rpr-e (3)  transport, e.g. mixing length
d; theory.
Kp —
dr T 167r°acT’ L= @
RoT
p=2P" )
U A numerical code for solving
1 these equations is available in
U= 6) the book: C.J. Hansen, S.D.
2X+3Y+57 Kawaler, Stellar Interiors.
c=e X2pT* 7 Physical Principles, Structure
ot P 15 ™ and Evolution, Springer,
K=Kk,(X+1)ZpT™ (8 1995.

Kramer’s opacity law
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Examples of the sensitivity kernels
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Lecture 18
Solution of the helioseismic inverse
problem.
Optimally localized averaging
method.

(Stix, Chapter 5.3.1; Kosovichev, p.34-41, 44-48;
Christensen-Dalsgaard, Chapters 5.5)

General helioseismic inverse
problem

1) Variational principle

2) Perturbation theory

3) Kernel transformation

4) Solution of inverse problem
A. Optimally Localized Averages Method
B. Regularized [ east-Squares Method

5) Inversion results for the solar structure

6) Inversions for solar rotation




Variational Principle: Rayleigh’s Quotient

Consider the oscillation equations as a formal operator equation in terms of the vector
displacement, 92 :

o’ =L(&),
where L in the general case is an integro-differential operator. If we multiply this by

g " and integrate over the mass of the Sun we get:

a)z_[y pE -EdV :J.VSE -LEpdV,
where p, is the model density,  is the solar volume.
Then, the oscillation frequencies are:

2 IV§*~L§pdV
O ==
J,picar

The frequencies are expressed in terms of eigenfunctions é and the solar properties
represented by coefficients of operator L .

Sometimes, this equation is called Rayleigh’s Quotient (the original formulation: for
an oscillatory system the averaged over period kinetic energy is equal the averaged
potential energy).

Variational Principle

For small perturbations of the solar parameters the frequency change will
depend on these perturbations and the corresponding perturbations of the
eigenfunctions, e.g.

Sw’ =Y[Sp, Sy, 5.

The variational principle states that the perturbation of the eigenfunctions
SE constitutes second-order corrections, that are in the first-order
approximation:

0w’ = P[dp,or].

This allows us to neglect the perturbation of the eigenfunctions in the first-order
perturbation theory.




Perturbation theory

We consider a small perturbation of the operator L caused by variations of the
solar structure properties:

L(&)=Ly(S)+ Li(S).
Then, the corresponding frequency perturbations are determined from the following
equation:

,_JE W Ldpar

(e, + o) E—
,pg-dav
or
ow 1 =z
—=——| & -LépdV
~ 26%1[; EpdV
where
1= pE Eav

is so-called mode inertia or mode mass.

The mode energy is E =Ia)gaz, where a is the amplitude of the surface

displacement. The mode eigenfunctions are usually normalized such that & (R) =1.

Sensitivity kernels

Using explicit formulations for operator L, the variational principle can be

reduced to a system of integral equations for a chosen pair of independent
variables, e.g. for (p,7)

(nd)
o0 _ IR KD 5—'0dr + JOR K" er,

o o Ber T, »

(n,l) (n,0) s . I
where K 7(r) and K" ’(r) are sensitivity (or ‘seismic’) kernels. These are
calculated using the initial solar model parameters, p,, F,, ¥, and the

oscillation eigenfunctions for these model, cf .




Operator form of the linearized stellar
structure equations

The sensitivity for various pairs of solar parameters can be obtained by using the
relations among these parameters, which follows from the equations of solar
structure (‘stellar evolution theory’).

A general procedure for calculating the sensitivity kernels can be illustrated in
an operator form. Consider two pairs of solar variables, X and Y , e.g.

o2 2)oe(22)
Py u Y

where u = P/p, Y is the helium abundance.

The linearized structure equations (the hydrostatic equilibrium equation and the
equation of state) that relate these variables canbe written symbolically:

Az, =zZ,.

Equation for the sensitivity kernels
in the operator form

If we define:

B (5/) 5y}
1= =
P 7
() _ (K(p,y) KV”’)]
then the perturbation equation can be written in the form:
5o o
0)2 - <K, Zl>:

1

R
where operator <ﬁ\7> = IO u-vdr.




Kernel Transformations. Method of Adjoint
Functions.
The idea of this method is very simple. The relation between the ‘primary’, z,, and

‘secondary’, Z,, properties that follows from the linearized stellar structure equations
can be written in the following symbolic form:

Az, =z,, (1)
where A is a linear operator. If K @ s the integral kernel for z, then the relative

frequency differences can be expressed in terms of both z; and Zz,:
2 2 _ )] — (@]
ow” | @ —<K -zl>—<K -zz>.

Then using the structure equation (1) and operator A adjoint to 4 we obtain:
M - @ - = 4 K@
(K©-z)=(K® z,)=(K, - A4z,) = (4K® -z,).
Comparing the first and last terms we obtain the equation for the ‘secondary’ kernels,
K(Z) .
AK® = K(l),

which is adjoint to the structure equation (1). This means that the equation for the
sensitivity kernels is adjoint to the stellar structure equations.

Examples of the sensitivity kernels

LOP K | T Ve
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Inversion methods

The variational principle and the method of adjoint functions allow us to
determine linear integral relations between the observed quantities, relative
frequency differences between the Sun and a reference solar model, and the
deviations of solar properties, f(r) and g(r), (such as density, pressure, sound

speed, y, etc.)from this model.

5—0);:J'RK,‘"'g)ﬁdrﬂ-jRKi‘g""%dr,
o 0 S 0 g

These relations constitute a linear inverse problem of determining the solar
structure.

Mathematically, it belongs to the class of ill-posed problems because it does
not have a unique solution. Rapidly oscillating with radius functions can be added
to the solution without changing the integral values.

This problem can be solved by regularization methods, such as the method
of optimally localized averages or the regularized least-squares method. A specific
feature of this inverse problem is that it contains two unknown functions.

Idea of Optimally Localized Averages (OLA)

The idea of the OLA method is to find a linear combination of data such as the
corresponding linear combination of the sensitivity kernels for one unknown will
have an isolated peak at a given radial point, r,, (resemble a o -function), and the
combination for the other unknown will be close to zero. Then this linear combination
provides an estimate for the first unknown at 7.

S R op R oy
(n,0) _ (n,0) gr(n,l) (n0) p-(n,0)
Za R —.[0 Za Kp_y ;dr+jo Za Ky_p 7dr.
If the coefficients are such that a" K ()~ 8(r—1,),

and Za‘”’”Ki,”;f)(r) ~0,

then the linear combination gives an estimate of the density perturbation at r =17;:

(n.0) 2
Yol [

¢ "are different for different target radii 7.

The coefficients, a




Method of optimally localized averages

From a finite number of measured frequencies with errors, the unknown
functions can be determined only with a finite spatial resolution; in other words,
only certain average values of these functions can be determined.

The idea of the Backus-Gilbert inversion method is to determine the
optimally localized averages of the solar parameters at a target location along the
radius.

If f(r) and g(r) are two independent properties of the solar structure,
which are related to the variations of eigenfrequencies via the integral relations:

507 _ s 8L gy ['gien 92 4
o o f ot g
where K/¥ and K®/ are the corresponding seismic kernels, then the localized

averages of the variations of these properties at r=r, are estimated as linear
combinations of the frequency variations:
Sr 2

[5-}{‘]!0 ) gal(/yg)(r()) 560’ ’

?

i

og i OO
~ Ea. Hr =,
[ g ] )

where a®(r,) and a*/(5;) are the averaging coefficients.

The localization of the averaged properties around the target positions r=r,
can be expressed in terms of the averaging kernels: 4% (s,,r) and 4" (5,,r):

(iff} = JORA(/’g) (7, r)%dr

"0

[csgj =JRA(g’f)(r0,r)5—gdr
g ), 0 g

The averaging kernels are represented by the corresponding linear combinations of
the sensitivity kernels:
N
AV (rm r)= Zal_(f,g) (},0 )K‘_(f.g) "),

i=1

N
A(g,f) (ro’ V) — Zal(g.f) (ro )Ki(g,.f') (V)

i=1




By applying the averaging procedure to the equation:
6—(0‘2 = IRK,(f"g> ﬂdr+jRK}g'f) 5—gdr,
A 0

w
and changing the order of summation and integration, we find that the linear
combination of the frequency perturbations depends on both structural properties, /

and g:

N 2 N o N
zyyw“Jﬁz:szpwﬁmym%%W+K2kpw%m¥wéfw
= i i=1 . i1

N ) 5@2 R Sf B 5S¢
Z;af/'“(ro)? = IO A”‘g)(ro,r)Tdr+J.0 B”’g)(ro,r)?dr

i

i=

N

2
Zaf’~g’(ro)5“§"—[
a)i

i=1

of

/

where kernel B(/'”(ro,r)=Zila}’"’“(rn)K,.‘”"’(r) defines the contribution of the

property g in the localized average estimates of f.

J +J.RB”’3)(r0,r)§—gdr
! g

0

Our goal is to find such coefficients a'/*'(r,) that they provide localization
of the averaging kernel 4"¥(s,,r) around r=7 while minimizing the kernel
BY9(r,r) everywhere along the radius.

Such coefficients are obtained by making the averaging kernel close to a
delta-function by applying a ‘& -ness constraint’ for the averaging kernels for one
of the variables while minimizing the contribution of the other variable.

Thus, for estimating &f/f , the & -ness criterion for AY%(s,r) is
complemented by the minimization of the averaging function of the other variable,
oglg:

N
B(/‘g)(ro,r) — za;/,g)(ro)K[(g,/)(r).
i=1




Formulation of the s5-ness measure by Backus and Gilbert

There are different measures of & -ness of the averaging kernels. Following
the Optimally Localized Averaging (OLA) method of Backus and Gilbert (1970)
we consider the ‘spread’ of function A(r) around a target point 7,:
s(r,, A) = IZIOR(r —1,) A(r)*dr
The averaging are normalized, like a & -function, to unity:
[Fatryar=1
The motivation is that if A(r) is a step-like function with a width /:

IAf e 1/2
VI === : A(r) = it fr=r |
: 0 otherwise

'”+I/2

(rfrg)zdr =1.

For this function: s(r,, 4) = 121’2j'

071 2

 —

ro-l/2 1y toH/2

Thus the ‘spread’ of this function is equal to the function width, and the center of
this function coincides with the target position 7.

For any fixed 4, s(rﬂ,A)=12j0R(r—rn)2A(r)2dr is a quadratic function of 7,
with a minimum at ., which we find by differentiating s(r,,4) with respect to 7,
and finding the minimum:
ds(ry, A) _ R 2 B
S 24 jo (r=r)4*(r)dr =0l
thus
_ (R 42 R 2
T —jlo r4 (r)dr/j.oA (rydr
is the ‘center’ of the function A(r).
We define the ‘width’ of 4 as the value of the spread at the center:
w=s(r.,A4).
w=12[ (r=r.)* Adr
The function spread at the target position 7, can be calculated in terms of w and
r. by adding and subtracting r in the definition of s(r,,4) and opening the
rearranging the terms:

s(r,, A) = IZIUR(r - rn)zAzdr = IUR(V —r 47— rO)ZAzdr =

= w120, ~1,) || Adr

Thus, the spread calculated at the target point measures both the function width
and the deviation of the center from the target.




The OLA method

A set of such optimal coefficients a/* can be determined by minimizing
the following quadratic function:

MGy A )= [T [ 479 Gyor) [ dr+ B[ [ B9 (o) | dr +a Y Eyal2a/,
ij

where J(r,r)=12(r-1,)*, E

,; 1S a covariance matrix of observational errors, a

and g are the regularization parameters.

The first integral represents the Backus-Gilbert criterion of & -ness for 4% (r,r);
the second term minimizes the contribution of BY#¥(s,r) , thus, effectively
eliminating the second unknown function, 5g/g; and the last term minimizes the
errors.

The numerical procedure to compute «”*(r,) for given « and g is to
substitute the equations for 4Y(r,r) and BY*(s,r) and minimize M as a
positively defined quadratic function of a//® subject to the normalization constraint
(corresponding to the & -ness of 4V (r,,r)):

N
IORA(f,g)(,b’r)dr = Za’(f,g)(rb)J'ORK(f,g)(ro,r)dr =1.
i=1

The minimization of the constrained quadratic function by the method of Lagrange
multipliers leads to a system of linear equations:
z W[/aj."’g) +Av, =0, z v/.aj(."’g) =1

J=ILN J=ILN
where 2 is a Lagrange multiplier, v, = jORK,‘-’ ) (r)dr

— Q(/.8) (g./)
W, =S8 +pS;*" +ak,,
. ;. R . .
(f.g) — ,2¢(f.8) (f.2) (f.8) (g.f) — (&./) (g./)
S =S = 2n S + S, SED =12 KD (DK (r)dr

SUe) lzfokeri(f.g) (r)K;f.g) (rydr,

P
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These equations can be written in the matrix form:
Wa+Av=0
v-a=1,

where a=(a’*,...a{*), v=(v....v,),and 4 isa Lagrange multiplier.

Substituting a=-AW"'v=-1y, where y=W"'v, in the second equation,

we obtain: 1= L

yv

Then, substituting the value of 1 in the first equation, we find the
coefficients a:
y
(y-my)

Using these coefficients, we estimate the localized averages of 51/ f:

[i{l} _Zvl:aff,m(%)izf_J-ORA(/,g)(,,O,,,)‘S;dVJr[ggg}

i

where [@JLRB"*“(rU,r)g‘gdr is the contribution of the second, ‘eliminated’,
g g

variable. This contribution causes errors in the estimated localized averages of the
first function, and, therefore, has to be made sufficiently small, e.g.

(égj .,
g max

3 12 . . . . .
where ¢ = (Z jai" “qf ’g)El./.) is an estimate of random errors in the inversion results.

If we assume that | 5g/ g |< C, then we obtain the following criterion for choosing the
regularization parameter 3:

J.ORB(”g) (1, r)dr < Cle.
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The regularization parameter « 1is determined as a trade-oft
between the spatial resolution and error magnification.

The resolution of inversions is characterized by the spread of the

averaging kernels
S, = Za’_(fqg)a;f,g)sij(_f,g)
ij

and their width

2
(f.8) (/&) Q(f-8)
{Z"f a; "8y }
_ (/) ,(f8) qUfsg) _ LEJ
w Zai a; "8y Za(/”g)a(f’g)S(f’g)
i,j i j

J 0,ij

i
The central location of the averaging kernels can be estimated from

Za[(f,g)(ro )aﬁ;/,g)(ro)sl(’é,g)
r.(r) = , —.
Yo al(,/,g) (”0 )a;_./,g) (VO)Sé;;/’g)
ij

L-curve method for choosing the regularization parameter

Regularization parameter « is chosen from the trade-off between the resolution
and error magnification: smaller « leads to higher resolution but larger errors.

Eijai(.f',g)a;.f}g)

I e
8 small &
<
(&) .
= optimal
= /
an
<
£
5 large «
=
D)

Spread error magnification

\

My, 4,a, B) = IOR(r —1)’ [ 479 (5. r)]2 dl + [J’LR [B(f‘f”)(ro,r)J2 dr+ay E,a’a\/?,
i
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Nonadiabatic (surface) effects

Nonadiabatic effects near the solar surface cause systematic frequency
shifts which may affect the inversion results. If the observed frequencies are
@y = Wy + 0O,

obs,i nonad i ®

then the localized averages of 5f/ f are

[é‘f] _(M] +ia§/-g)5wr?omd.i
! obs ! ad =i iz

2]

where o, =o,

ad,i *

Therefore, the nonadiabatic effects cause systematic errors in the
localized averages estimated by using the adiabatic variational principle. In the
Sun, most non-adiabatic effects occur near the solar surface. In this case, the
non-adiabatic frequency shift can be approximated by a smooth function of
frequency, F(w) scaled with the factor, Q=1I(w)/I,(w), where I(w) is the

mode inertia, and 7 (w) is the mode inertia of radial modes (/=0), calculated

at frequency o, that is:
2

OD,nad i
Shts - [ (0) Q@)

i

Function F(w) can be approximated by a polynomial function
of degree K:

K
F(wl) = cha)ikn
k=0

then the influence of the nonadiabatic effects can be reduced by
applying K +1 additional constraints for «,:

N
D 4w 0(@)=0, k=0,..,K.
i=1

The function F(w) can be also represented in terms of
Legendre polynomials:
F@)=YeP (M—W—M—WJ
k

max a)min
where w,, and «,, are the boundaries of the observed frequency
range.
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These equations are considered as additional constraints in
the minimization procedure of M(r,, 4,c, ). If we represent these

K +1 constraints together with the constraint previously derived
from the kernel normalization equation ( IORAdr= 1) in the matrix
form: Ba=c,

then the minimization procedure leads to the equation:

Wa+AB=0,
where A=(4,....4.,,) are Lagrange multipliers.

Solving these equations we obtain the coefficients of the
optimally localized averages:

a= (W"BT)(BW’IBT)_I c.

where B is a matrix transposed to B.

The SOLA (Subtracting Optimally Localized Averages) method

The OLA methods at each target location 7y involves inversion of (N+1)x(N+1)
matrices, where N is the number of observed frequencies, which can be very large.
A modification of this method with a different d-ness criterion leads to a less
computationally expensive procedure, where the matrices do not depend on the
target location. In this method, we minimize the squred difference between the
averaging kernel and a target 8-like function, e.g. a localized Gaussian.

A set of such optimal coefficients ¢ can be determined by minimizing the
following quadratic function:

MGy, A, )= [ [ 479031 =T | dr+ B [BY 9G] dr +a Y Ea9a ),
ij

1 9 . . . . .
where T(r,,r) = XCXP[_(r -r,)*/A’] is the target 8-like function, E; is a covariance

matrix of observational errors, « and g are the regularization parameters.

The first integral minimizes the deviation of the averaging kernel from the target
function; the second term minimizes the contribution of BY(r,r) , thus,
effectively eliminating the second unknown function, 5g/g; and the last term
minimizes the errors.

14



Regularized Least-Squares Techniques

The Regularized Least-Squares (RLS) method is based on
minimization of the quantity

. 2
pey L0001 e 38y, _F@)]
Toi e U S I 0o

g
X S 2 5 2
+J a (Ll f] +a, (Lz g] dr,
0 J g
. . . . of og
in which the unknown structure correction functions, v and —=
. g
both represented by piece-wise linear functions or by cubic splines, and
the coefficients in these expansions are determined together with

coefficients ¢, in the presentation of the surface effects .

The second integral specifies smoothness constraints for the

unknown functions, in which Z, and L, are linear differential operators,
2

e.g. Lu:;—z; o, are error estimates of the relative frequency
r
differences.

, are

In this inversion method, the estimates of the structure corrections are,
once again, linear combinations of the frequency differences obtained from
observations, and corresponding averaging kernels exist too.

However, unlike the OLA kernels A(r;r), the RLS averaging kernels

may have negative sidelobes and significant peaks near the surface, thus making
interpretation of the inversion results to some extent ambiguous.

If the variations of the structural properties are represented in a
parametric form then the unknown parameters can be evaluated from the
helioseismic equations by using a least-squares technique. This approach was
applied this parametric inversion technique for determining the depth of the
convection zone and the helium abundance.

Finally, ‘super-resolution’ techniques can be developed by applying, for
instance, nonlinear constraints in order to study some particular features of the
interior structure, like overshooting and other sharp variations of the interior
properties. In addition to the inversions, model calibrations are used to estimate
the parameters of the solar structure.
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Results
As an example, I present the results of inversion of the recent data obtained
from the SOI-MDI instrument onboard the SOHO space observatory. The data
represent 2176 frequencies of solar oscillations of the angular degree, /, from 0 to
250. These frequencies were obtained by fitting peaks in the oscillation power
spectra from a 360-day observing run, between May 1, 1996 and April 25, 1997.

Two different methods have been used to estimate the frequencies of the
solar normal modes from the oscillation power spectra. In the first so-called
“mean-multiplet” method, the power spectral peaks are assumed to have a
symmetric Lorentzian shape, and a maximum likelihood method is employed to
determine the parameters of Lorentzian profiles.

The peaks are fit simultaneously in all of the 2/+1 individual power spectra
for each rotationally split multiplet so that the effects of overlapping peaks can be
included in the fits. These 2/+1 frequencies are effectively averaged to yield a
single mean frequency, o,, for that multiplet. The second frequency estimation
technique employs the m -averaged power spectra rather than the 2/+1 individual
power spectra.

The reference solar model

The reference standard solar model chosen for this inversion used the OPAL
equation of state and opacity tables. Nuclear reaction parameters were obtained from
the work of Bahcall (1992). Helium and heavy-element gravitational settling was
included, using the Michaud and Proffitt coefficients. The present value of the ratio
of the heavy element abundance to the hydrogen abundance on the solar surface is
0.0245, while the age of the present Sun was assumed to be 4.6 Gyr.

16



The relative frequency difference between the Sun and the model

0.0010F""T ’
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m /27 mHz

The figure shows the relative frequency difference scaled with the factor Q , which
varies between 0.28 and 1. This difference depends mainly on frequency alone
meaning that most of the difference between the Sun and the reference solar model
is in the near-surface layers. However, there is also a significant scatter along with
the general frequency trend. This spread is due to the variations of the structure in
the deep interior, and it is the primary task of the inversion methods to uncover the
variations.

Optimally localized averaging kernels

80 B T T T l T T T T T T l T T T [ T T T I T _‘
— - ]
9 C ]
s 40 ]
o - ]
= 20— —
< C ]
0 ]

0 0.2 0.4 0.6 0.8 1

r/R

A sample of the optimally localized averaging kernels for the structure
function, « = P/ p, the ratio of pressure, p, to density, p.
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Test inversion

0.004 + écz/cg - 57/7 40.
0.002
0.000
-0.002
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0.000
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The results of test inversions (points with the error bars, connected with dashed
curves) of frequency differences between two solar models for the squared sound
speed, ¢?, the adiabatic exponent, y, the density, p, and the parameter of
convective stability, 4°. The solid curves show the actual differences between the
two models. Random Gaussian noise was added to the frequencies of a test solar
model. The vertical bars show the formal error estimates, the horizontal bars show
the characteristic width of the localized averaging kernels. The central points of the
averages are plotted at the centers of gravity of the averaging kernels.

Inversion of the solar data
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The relative differences between the Sun and the standard solar model in the
squared sound speed, ¢?, the adiabatic exponent, y, the density, p, and the
parameter of convective stability, 4", inferred from the solar frequencies
determined from the 360-day series of SOHO MDI data.
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Interpretation of the inversion results: 3D modeling

¥ Compressible fluid flow
in a highly stratified
medium

¥ 3D multi-group radiative
energy transfer between
the fluid elements

¥ A real-gas equation of
state

¥ lonization and excitation
of all abundant species

¥ Small-scale turbulence
¥ Magnetic effects

Radiative
Zone

Core

KIC9962653, M=1.47Mgx

Vertical slice through the computational domain shows:
a) vertical velocity, b) density, c) temperature and d) sound speed perturbations
from the stellar photosphere to the radiative zone.
Large-scale density fluctuations in the radiative zone are caused by internal
gravity waves (g-modes) excited by convective overshooting.
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KIC9962653, M=1.47Mgx

For this star we model the whole 30 Mm deep outer convection zone, including the
overshoot region. Left panels show variations of the convection structure at
different depths of the convection zone and in the overshooting region.
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KI1C9962653, M=1.47TMyyn

Vertical slice through the computational domain shows:
a) vertical velocity, b) density, c) temperature and d) sound speed perturbations
from the stellar photosphere to the radiative zone.
Large-scale density fluctuations in the radiative zone are caused by internal
gravity waves (g-modes) excited by convective overshooting.

z (Mm)

LbbhbLONPO®
IS
S

o

1.47M,,
0.10 E 0.10 20 02

5cc? dplp Syly
0.05 0.05 10 0.1
0_007/—\ ———————————— 0.00‘—\/ 0 H 00
0.05 -0.05 -10 0.1
-0.10 -0.10 =20 0.2

40730730770 0 40 3020 10 0 4030 20 <100 40 3020 <10 0
a) z, Mm b) z, Mm c) z, Mm d) z, Mm

Sun
0.04f §.2/.2 0047 N 1 0.004
04 §c’/c 2 Sp/lp 0.04f 5A 5 FI_‘ - Syly
0.02 0.02 1 0.002

el g By

0.00 g (X — L L 0.000} -

+ . | ‘!
0,02} S -0.02 31 1 -0.002

i
-0.04 IR -0.04 B 1.0004
02 04 06 08 L 0204 06 08 1.0 0 02 04 06 08 1. 0 02 04 06 08 1.

e) /R 1) /R 2 /R h) /R

The deviations between the 3D simulation and 1D model of a star with mass
M=1.47 M, as a function of depth, z=r-R, for: a) the squared sound speed,
3c?/c?; b) density, 5p/p; c) the Ledoux parameter of convective stability, A*; and d)
the adiabatic exponent, y. Panels e-h) show the corresponding deviations of the
solar properties obtained by helioseismology inversion (Kosovichev 1999, 2011)
from the 1D standard solar model (Christensen-Dalsgaard et al. 1996). Vertical
dotted lines show the location of the bottom boundary of the convection zone.
Kitiashvili et al., 2016
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Theoretical adiabatic exponent (Rogers F.J., &
Iglesias C.A. 1992)

20 T T
OPAL model
5/3
_0F Hell ionization = | -
H & Hel ionization

Two models of the equation of state:

1. “"MHD” - Mihalas D., Dappen W., & Hummer D.G.
(1988)
- The chemical picture assumes a factorizable
canonical partition function, allowing the total free
energy to be written as the sum of the internal free
energy, the translational free energy, and the free
energy of the interactions between the electrons and
nuclei; the ionization state of the plasma is found by
minimizing the total free energy with respect to the
occupation numbers of the different possible ionization
levels.

2. "OPAL" - Rogers F.J., & Iglesias C.A. (1992)
- The physical picture describes the plasma in terms of
its fundamental constituents, electrons and nuclei,
without dealing explicitly with atoms or molecules -
the latter are embodied in the many-body interactions
included between electrons and nuclei.
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Relativistic effect on

The number density of ionization electrons, #n,, can be written:
87 Jﬂw pldp
n=—| ——,
VAR S|

where p and & are the electron momentum and energy in units of mc and mc’
respectively, T’ is the temperature in units of mc’/k, y is the degeneracy parameter,
and A, is the Compton wavelength 4/mc of the electron. In the non-relativistic case,

2e=p°,
_ 87 (= N2ede
= A0 e T 41
In the relativistic case, the relation between energy and momentum becomes:
2e+& =p°,

and the corresponding equation for the electron density is:
87 (= 2e(1+84)(1 +6)de
= 73 0 e+l ’
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(Elliott and Kosovichev, 1998)
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The relativistic corrections and the age of the Sun
(Bonanno, Schlattl, Patterno, 2002)

Gyr

ol v v T T NI RTRTI B
4.2 4.4 4.6 4.8 4.4 4.6 4.8 5.0
Age [Gyr] Age [Gyr]

Helioseismic calibration of the Sun’s age: reduction by 0.05-0.08 Gyr

in agreement with the meteoritic estimates of the solar age.

Revision of solar surface
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Lecture 19
Inversion for solar rotation.
Regularized least-squares method.

(Stix, Chapter 5.3.8; Kosovichev, p.53-57;
Christensen-Dalsgaard, Chapter 8)

Please, upload in Canvas your HWfiles and
presentations by tomorrow

1.1 (a) Bryce

1.1 (b-d) Youra

1.2 (a) John

1.2 (b) Sadaf

1.3 (a-c) Yunpeng

1.3 (d-f) Sheldon

1.4 Ying

1.5 Ivan




Please, upload in Canvas HW?2 files by tomorrow
HW?2 presentations (Monday Nov.22+ Quiz 3)

2.1 (a) Ying
2.1 (b) Sheldon
2.2 Sadaf

2.3 Bhairavi
2.4 Yunpeng

General helioseismic inverse
problem

1) Variational principle

2) Perturbation theory

3) Kernel transformation

4) Solution of inverse problem
A. Optimally Localized Averages Method
B. Regularized Least-Squares Method

5) Inversion results for the solar structure

6) Inversions for solar rotation




Solution to the Inverse Problem
We have a system integral equations

()11)
J’ K;rjl) 5Pd +J‘ K(;zl)57d

for a set of observed mode frequen01es. If the number of observed frequencies is
N (typically 2000), then we have a problem of determining two functions from
this finite set. In general, it is impossible to determine these functions precisely.
We can always find some rapidly oscillating functions, f(r), that being added

to the unknowns, dp/p and 6y , do not change the values of the integrals, e.g.
R
[ K@) (rdr =0

Such problems without an unique solution are called "ill-posed". The general
approach is to find a smooth solution that satisfies the integral equations by
applying some smoothness constraints to the unknown functions. This is called a
"regularization procedure".
There are two basic methods for the helioseismic inverse problem:
1. Optimally Localized Averages (OLA) method - (Backus-Gilbert
method)
2. Regularized Least-Squares (RLS) method - (Tikhonov method)

(n 1)

Optimally Localized Averages Method
The idea of the OLA method is to find a linear combination of data such as the
corresponding linear combination of the sensitivity kernels for one unknown
will have an isolated peak at a given radial point, 7,, (resemble a J -function),
and the combination for the other unknown will be close to zero. Then this linear
combination provides an estimate for the first unknown at 7; .

Z (nl)5 (nl) _
(" !)
= JR Za(”’l)K("»/) 5—pdr + IR Za(n,l)K(n,z) er'
0 Py p 0 VP }/

If 2 a" KD ()~ S(r =),
and

2" K ()~ 0,

) % 60"
(_] - Za (nvl) |
p ) @

is an estimate of the density perturbation at r =7;.
(n)

then

The coefficients, a'"", are different for different target radii 7,




Averaging Kernels

The functions,
2K () = A, r),

Za(n’”K;y)(r) = B(}/b’ V),
are called "averaging kernels".

The coefficients, a’, are determined my minimizing a quadratic form (here, we
use index i instead of double index (n,/) ):

M(ry, A, B) = || T (o) G, )] dr +

+'B.[0R [B(ry, )] dr + ay Ed'a’,
i

where J(7,7) = 12(r—r0)2 , E; is a covariance matrix of observational errors,
a and f are the regularization parameters. The first integral in this equation
represents the Backus-Gilbert criterion of ¢ -ness for A(r,r) ; the second term
minimizes the contribution from B(r,r) , thus, effectively eliminating the

second unknown function, (d)/y in this case); and the last term minimizes the
errors.

Optimally localized averaging kernels
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Inversion results for the observed solar

frequencies
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Inversions for solar rotation

* Measurements of

— Solar differential rotation

— Tachocline

— Torsional oscillations




Inversions for solar rotation

In the absence of rotation, the oscillation
frequencies are degenerate with respect to the
azimuthal order m. Rotation removes the degeneracy
and leads to ‘rotational frequency splitting’.

The angular velocity of the Sun is not uniform.
It varies with the radius and latitude, Q(r,8), where
6 is colatitude. The corresponding flow velocity in
the spherical coordinates has only the azimuthal
component:

v, =(0,0,7sin )
We substitute it in the linearized momentum
equation:
av'

P~ Vp'+gp'+p, VO’

Because of this background flow, in the LHS, we have to consider the full
material derivative:

v oV

dt ot

+(V,V)V'

In terms of the displacement & :

podE_o

\Y%
dt atJr(Vn g

2
o) [% + VUVJ E=-Vp'+gp'+ pVO'

Perturbations p’, p' and @' can be determined in terms & from the continuity and
energy equations and the equation for gravitational potential. We define the RHS as
operator L(&):

Po (% + Vov) E=L(&)




We seek periodic solutions &oce™, and assume that the rotational velocity

causes only small corrections to = @, + Aw. Then, to the first order:
p(-o+ VV)2 ® Po (a)z —2iwv,V)§
Substituting @, we get:
Lol —2wA0 - 2iw,(v,V)]E = L(E)

We cancel the first term in the LHS and the RHS because they satisfy to the
unperturbed equation: -p,w €= L(&).

Multiplying by complex conjugate & and integrating over the volume, we
obtain:

20,00 p&EAV = 2o, ng*(vOV)ng

i| P& (vV)EDY
o P05 VoISV
[ p&edr

In this derivation, we apply the variational principle and neglect the variations
eigenfunctions caused by rotation.

A

Expressing the rotational flow velocity vecv, in terms of the angular
velocity Q= vxr, where vecr is the radius-vector:

(VOV)ng%Jerg

Because the unperturbed eigenfunctions are expressed in terms of the spherical

harmonics: &« Y,"(0)e™, Z—Z =im€ . Thus,

m( Q&.&,pdV ~i[ &, (QxE,)pdV
Ao, = 7 -

nl

=[&.&pdv is the mode inertia. If Q=const then the first term:

where 1

nl

AQ=mQ can be interpreted as a result of wave advection by flows (in analogy to
the Doppler effect).
Indeed & o exp(—imt+img) because of rotation the wave phase changes as

¢=0Qt. Thus, & ocexp[—i(w, —mQ)] < exp(—iwt), where o= a,+mQ.
The second term in Aw

.. describe the effect of the Coriolis forcs and is
relatively small.




If the angular velocity depends only on the radius, », Q=Q(r), then
AWy, = ]ﬂj.oRQ(r)':é:V2 +I(1+ 1)5/12 =258, - ég;,z:|,0r2dr
nl

where &.(r) and &, () are the radial and horizontal components of the displacement.

1, =[[& +1a+0g ] prdr
The rotational frequency splitting can be written as
A@,, = m| KiQ(r)dr
=mQ, where Q is a weighted average of the angular velocity, and K/ (r) is
the averaging kernel.
In the general case, Q=Q(r6):

Ao, =m| K" (r0)r,0)drd6
@, =m], [ K2 (r.0)Qr, O)dr

or Aw,

nlm

nlm

Effects of rotation (asymptotic JWKB approximation, Lec.15)

Solar rotation and other plasma flows inside the Sun cause Doppler shift of

the wave frequencies. The dispersion relation for the acoustic waves becomes:
(0—kv)’ = @ +k*c?
where & is the wave vector, and v is the plasma velocity.

Because of the acoustic ray paths travel in the great circles, they sample the
radial and latitudinal components of velocity twice in the opposite directions. Thus,
the contribution of these components to the quantization integral is canceled in the
first approximation, and the mode frequencies depend only on the azimuthal
component, v,:

(0—kw,) =) +k*c’
m

where k, = L Representing v, in terms of the angular velocity, Q(r,0):

v, =rsin Q(r,0),

we get:
(0-mQ)’* =@} +k°c’




The EBK quantization equation takes form:

— 2 2
EIM du J‘R\/Wdr=7z(n+a)
7 do \/MZ—,UZ 7 c r

Assuming that mQ/ e,

<1 and that the background solar structure is spherically
in terms of the frequency deviations from the model

Im

symmetric, we represent o,

nlm

frequencies: Aw,, =®,, —®,,; -

) o,  +Aw, —mQ)* ;
EJ-M du JR\/( 0.0l ;lm ) _%dr:ﬁ(n+a)
70 \/MZ*,UZ 7 c r

Performing the first-order Taylor expansion and subtracting the quantization rule
for the background state, we get:
{Awnlm mQj‘
, _mi
oL e 9lg-o

EIM du__ro-
90 \/Mz—,le qo? ai_li

2 2
C r

where for simplicity we drop subscript for the model frequencies: w=a,, .

Thus, we obtain:
2 MR mQ(r, p)drd 1
Aw”l"’_7jo -[r BN Ry e
7 lc\/M —uNI-Lc’/ro

where T = is the "half-skip" travel time of acoustic waves.

f_dr
T el-L? Pt e?

The solar rotation causes ‘rotational frequency splitting’ proportional to the
mode angular degree m .

The physical interpretation is that the modes with positive m travel in the
same direction as the solar rotation and thus have higher frequencies then the modes
with negative m traveling in the opposite direction.

Recall that that the oscillation modes are represented in terms of the spherical
harmonics: &.(r,0,4,t) < P"(0)exp(img—iot), and thus, in the form of azimuthal
traveling waves




By comparing the effect of the sound-speed asphericity and rotation:

%:ifwjk [Ac(r,,u)/c]drd,u
@ A qc\/Mz—#Z\/l—chz/wzrz
2 (MR mQ(r, p)drd p
A =<
@, 7T J‘o J.r] C\/Mz—yz \/I—LZCZ /rza)z

where M =+1-m*/ I*

We notice that the frequency splitting due to the sound-speed asphericity is an even
function of m and an odd function of m due the rotation.

This difference allows us to separate effects of the solar asphericity and rotation in
the observational data.

The a-coefficients

The observational data are often represented as an expansion in terms of the
Legendre polynomials:

N m
p0 =LY aR (2]
k=1 L

For a more accurate (non-asymptotic) representation, the expansion is performed in
terms of Clebsch-Gordon coefficients, which will be considered later.

In this representation, the ‘even’ a-coefficients represent effects of the solar
asphericity, and the ‘odd’ a -coefficients represent the internal solar rotation and its
variations with latitude (zonal flows). In addition, the representations in the form of
the a-coefficients allows us to replace the 2D inversions of Aw,,, with a series of 1D

nlm
inversions of the a -coefficients.
Specifically, representing the sound-speed perturbation in terms of the

Legendre polynomials:
A J
0 = XA, (P, (1)

where z=cosé.

10



Substituting this representation of —(r u) in the equation for Aw,, /@, We

nlm

obtain:

A, (r)dr 2 n By
J “ du
Z J. \/1 127 | o [ﬂ.l.o \/Mz_ﬂz
The second integral 1s calculated analytically:
( )
= j 4= (1) BB, (m/ L)
Thus, both the observat1onal data and the angular integral of the sound-speed
asphericity are represented in terms of the series of Legendre polynomial P, ,(m/L).
We obtain a series of the Abel integral equations for the radial functions of
the asphericity, 4,,(r):
1 ¢r Azj (r)dr ¢ 1)] aé’i
To J1-12¢* | o*r? (0)
These equations establish a relationship between the even a-coefficients and the
solar asphericity expressed in terms of the Legendre polynomials.

A similar type of solution can be obtained for the angular velocity Q(r,u).

In this case, it is convenient to use the expansion in terms of associate Legendre
functions:

3 P}, (cos6)
Q(r, 1) /Z:(;Qzlﬂ(r) sing
Substituting in:
B mQ(r, p)drd u
nim = ”TJ‘ J.’l c\/M2 2\/l—ch2 /r e’
we obtain:

Ao = l R 2J+|(r)dr J‘ 2/+1
" =T C\/l—LZCZ /e’ \/1 \/MZ — i’

11



The second integral is calculated analytically:

2an z/n __%(2j+1) ;0 — M(m)

=2 M =1 L
Both the observational data and the angular integral of the solar rotation are

expressed in terms of the odd Legendre polynomial of m /L.
Thus, we obtain a series of the 1D Abel integral equations for the radial

functions of the solar rotation expansion:

J-R Qz/ﬂ(r)dr / c_ a;’jﬂ
L’ (21+1)Pz,~(0)
rzwg,nl

In the asymptotic JWKB/EBK approximation, the a-coefficients are the functions
of the ratio L/ or the lower turning point radius, 7. This helps to identify ‘outliers’

in the observational data.

The second integral is calculated analytically:
[ == du =-2@j+Dp (0) (’”)

l 2 [ M2 — 2 L
Both the observational data and the angular integral of the solar rotation are

expressed in terms of the odd Legendre polynomial of m/L.
Thus, we obtain a series of the 1D Abel integral equations for the radial

functions of the solar rotation expansion:

®(Q,,,(r)/ 2)dr/c a;//ﬂ
T | 142 (2j+1P,;(0)
oy,

In the asymptotic JWKB/EBK approximation, the a-coefficients are the functions
of the ratio L/w or the lower turning point radius, . This helps to identify

‘outliers’ in the observational data.

Q /27 is the rotation rate It is measured in nHz as well as the a-coeffients.

Avn[m @,y /27 = Lza:ZPA [_Zj

The minus sign was 1nstroduces to get the a-coefficients of the same sign as the corresponding
rotation law terms.

12



Solar rotation law (asymptotic JWKB approximation — ray theory)
Consider a special case of a three-term solar differential rotation law:
Q/2zr=a+bcos’ @+ccos* O
where a, b, and ¢ are measured in nHz. The corresponding representation in
terms of the associated Legendre polynomials: Consider the intergrals for the
4,,,(r) as averaging over the propagation regions for each mode, [#,R].
R Ay () dr (R 1 dr
— T= I —_—
T l-r 1=t/ ¢
- a ‘half-skip’ travel time, 7 =c(;)w, /L is the turning point radius.
Then, we write the integral equations in terms of the averaged A coefficients:

Ai=a'/P0)=a" A =a /3P(0)——§ K As—a”l/SP(O)—— "

A2;+1 :7

Substituting P'(cosf) =—sin @ P!(cos @) =— % sin O(5¢cos’0—1)

Psl (COS 9) = —%Ssin 9(2 100549 -1 4c0529 + 1)

we get: Q/2r= (@, +a, +a,)—(5a, +14a,)cos’0 + 21a,cos*0
where I dropped the mode indexes n,/.

Solar rotation law (variational principle — wave theory)
Consider a special case of a three-term solar differential rotation law:
Q/2r=a+bcos’@+ccos' O
where a, b, and ¢ are measured in nHz. The corresponding representation in
terms of the associated Legendre polynomials: Consider the intergrals for the
4,,,(r) as averaging over the voliume:

Arjor = K prar 100 = [UEDY +10+1)EY Jprdr

- the mode inertia, / is the mode angular degree, n is the radial order.
™D and £ are the radial and horizontal components of displacement.

Then, we write the integral equations in terms of the averaged A coefﬁcientS'

=q"/P(0)=a" =a" /3P,0) = 7551;” =a!' /5P0)=—a'
Substituting ~ P'(cos@)=-sin@  P'(cosf)= —%Sin O(5c0s0-1)

P (cos8) = —%Sin 6(21cos'd —14cos0+1)

we get: Q/27 = (a, +a, +a;) - (5a, +14a,)cos’0 + 21a,cos 0
where I dropped the mode indexes n,/,m .

13



Theory of Rotational Frequency Splitting. 1

The eigenfrequencies of a spherically-symmetrical static star are degenerate with respect to the azimuthal
number m. Rotation breaks the symmetry and splits each mode of radial order, n, and angular degree, /, into
(21 +1) components of m=—/,...,/ (‘mode multiplets’). The rotational frequency splitting can be computed

using the variational principle. From this variational principle, one can obtain mode frequencies ®,,, relative to

nlm

the degenerate frequency w,, of the non-rotating star:

Ao

nlm

=0y~ = [ [m & Evien(Ex £ |opar,
nl

where ¢, is the unit vector defining the rotation axis, and Q=Q(r,6) is the angular velocity which is a

function of radius » and co-latitude @, and /,, is the mode inertia.

Using the eigenfunctions in terms of the radial and horizontal displacements, & =¢ & +¢,&,, this equation

can be rewritten as a two-dimensional integral equation for Q(r,6):

Aw,, = [ [ K .00, 0)d0dr.

0 nlm

where K'?)(r,0), the rotational splitting kernels:

nlm

2
dP" dP" cosf® m’
KD(r,0) =L angpr? (£ 2 -2 Py g2 || | —opr dh + P |bsine.
aim (156) I P (é,nz §r,n1§h,nl)( ™) ‘f/,,n/ 40 " 740 sind Sinze( ")

Theory of Rotational Frequency Splitting. I1

Here &, and &, are the radial and horizontal components of eigenfunctions of the

mean spherically symmetric structure of the Sun, B"(¢) is an associated normalized

Legendre function ( IOH(P;’” Y sinfd@=1).

The kernels are symmetric relative to the equator, & =7 /2.

Therefore, the frequency splittings are sensitive only to the symmetric component of
rotation in the first approximation. The non-symmetric component can, in principle, be
determined from the second-order correction to the frequency splitting, or from local
helioseismic techniques, such as time-distance seismology and ring-diagram analysis.

For a given set of observed frequency splittings the equation for Aw,,, constitutes a

nlm

two-dimensional linear inverse problem for the angular velocity, Q(r,6).
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Optimally Localized Averaging Methods

Similarly to the 1-D solar structute inversions these methods explicitly form
linear combinations of the data and corresponding kernels such that the resulting
averaging kernels are, to the extent possible, localized near the target positions, 7,6,

, through appropriate choice of the coefficients a“”(7,,6,):
— M z
Q1,6 = D a®(1,,6,)d, = j: [T K (,0,,7,0)2(r, 0)d0dr,
i=1

where d, is the observed property, frequency splitting Aw, or splitting

m >

coefficients a,(n,/) (83), K(r,.6,,7,0) is the averaging kernel given by

M
K(1,,60,,7,0)= Y a! (1,,0)K !V (r,0),

i=1

and M is the total number of data points. However, the application of the
Backus-Gilbert & -ness criterion leads to M xM linear equations at each of the
target positions.

A modification called ‘Subtractive Optimally Localized Averaging’ (2dSOLA)
allows to keep the same matrix for all target points, and, thus, is computationally
more efficient. In this formulation, sometimes the goal is to approximate K to a
prescribed target 7(r,,6,,r,0), by minimizing

[T 100,700 K(3.0,r.00] a60r + 23 [ 0™ ,.6,) |
i1

subject to K being unimodular.

Here the first term ensures that the averaging kernel is close to the target form, while
the second controls the error in the inferred solution, the trade-off between the two
being controlled by the parameter 1.

The results of this method depend on the choice of the target function, 7(7,.6,,7.0),
and, currently, there is no general recipe for choosing this function. One of
approaches is to employ Gaussian targets symmetrized around the equator, with
the radial width chosen proportional to the local sound speed and constant width in
latitude.

15



Regularized Least-Squares Method

The goal of this method is to obtain a smooth solution that fits the data rather than to
construct well localized averaging kernels. This solution is obtained by minimizing the
following functional:

> —2[ ['["k.Qe-.0)d0dr - d[T ‘a, I:j:ﬁ(r,ﬁ)[

1 Q
i=1 o-,'

02
or’

2
j dadr +

R QY
agjo jﬂ fg(r,ﬁ)(ﬁ] dodr,

where d, are the observed frequency splittings or splitting coefficients, K, are the
corresponding seismic kernels, o, are the error estimates of the data, and «, and «, are
the regularization parameters, and f, and f, are some weight functions which can be
used to regulate the degree of smoothing in different regions. The last two terms provide

smoothing using the second-derivative constraints, which provided good results for
artificial and real data .

For the numerical solution function Q(r,8) is represented in the form of a discretized
piece-wise linear functions with unknown coefficients or local splines. The coefficients
are calculated using the standard methods of linear algebra.

Rotational frequency splitting

The modes with m # 0 represent azimuthally propagating waves. The
modes with m >0 propagate in the direction of solar rotation and, thus,
have higher frequencies in the inertial frame than the modes m < 0 which
propagate in opposite direction. As a result the modes with fixed »n and /
are split in frequency: Av,, =v, —Vv,,. Thus, the internal rotation is

inferred from splitting of normal mode frequencies with respect to the
azimuthal order, m .

5 o e—la)t )/lm (0, ¢) _ CBm (0)61m¢_lwt
- displacement of the solar surface in solar modes

V= / 2 T Vv is cyclic frequency, measured in Hz
- The oscillation period is 1/v (in sec, min, etc).

o is the angular frequency, measured in rad/s
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Observations of the Sun as a star
rotational frequency splitting is observed only for ‘even modes’, for which
I+m is even because the rotation axis is almost perpendicular to the ecliptic.
The ‘odd modes’ are antisymmetric relative to the equator, and their signal is

canceled.
+
=3 —— l
m=0«_ = m
l-m=3 s I—m
\____/

[ = - - [
m = m

l—-m=1 i [ —

I
[

o ww
|

I=1, m=1 I=1m=0 I=1,m=1

=2, m=-2 [=2,m=1 [=2m=0 [=2m=1 [=2,m=2

m

)

5

Angular order

:wwmwm\wf L
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o

)
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Voo
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Frequency, puHz

Ilustration of the frequency
shift due to the solar rotation

Typical power spectra of solar
oscillation data from the MDI
instrument on SOHO. Each
horizontal curve shows three
lines of the power spectrum for
different azimuthal order m
with radial order » =15 and
angular degree /=19,20, and 21
(from left to right). The slope of
the modal lines is due to the
rotational frequency shift:
prograde modes with positive

m have higher frequencies than
retrograde modes with negative
m.
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JWKB solution for the angular
equation. 3

p-mode (1=20, m=16, n=14)

The propagation region k, >0 is where
2
r>="
sin

. m
or |sind > —.
L

.om .

Therefore, the ratio Z determines the

latitudinal turning points &, and 6, for the
. . m

acoustic modes: |sind,, |= T

If m=0 then the mode propagation
region is extended from the pole to pole.

If m =1 then the modes are confined in a
narrow equatorial strip.

Comparison of solar modes

=19, m=19

=19, m=15 =19, m=15,n=11
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Inversion of MDI data by two different techniques

2dSOLA

2dRLS

[ o = 3.846

—

1dx1dSOLA

o = 6.778

Averaging -
kernels for
the solar

(0.69R, 0°)

rotation rate

(0.69R, 60°)

(0.95R, 0°)

(0.95R, 60°)
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Solar tachocline

T T

tachocline

old flux

New flux

T
0°

:Convection zone

26
30°

60°

1 1 1 1

W o N N N
S © & N ©°
Sidereal period, days

L
0.60

L 1 1
0.70 0.80 0.90
r/R

Torsional oscillations
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Torsional oscillations (Howard & LaBonte 1980)

Evolution of surface velocity field (upper panel) and surface
magnetic field (lower panel)

Velocity fields (torsional oscillations)
plus or minus 7.5 misec CARRINGTON ROTATION
1780 1800 1620 1840 1860 1680 1900 1920 1949 1960

1780 1800 1820 1840 1860 1880 1500 1920 1940
ETTTRTY T g y Ty w TR g ; e

8 87 88 89 [ a1 92 R S 03 00
Magnetic fields - plus or minus 2 gauss YEAR
1986 2000

Ulrich 2001

LATITUDE

Variations of the differential rotation
(“torsional oscillations”) provide insight
in the dynamo mechanism

PHOTOSPHERIC VELOCITY FIELDS
Extended solar cycle 23

CARRINGTON ROTATION

1780 1800 1820 1860 1880 1900

R R

_50"‘ ”'v‘ al M @'k ” C 0
LY o‘" e' .‘4 ! ~"’v1‘ bl 5§j ) 1 ! \ ilik AhrM.!“hn‘A *A.u b aif ‘/ alieM

1989 YEAR 2008

Courtesy of Roger Ulrich (http://obs.astro.ucla.edu/torsional.html)

Torsional Oscillations were discovered by Carnegie astronomers Robert Howard and Barry
LaBonte using 150-Foot solar telescope data in 1980.
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SOLAR MAGNETIC CYCLES

It was found that the strength of polar magnetic field
measured at a solar minimum predicts the next solar maximum.
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i e i | M A _100
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Cycle 23 Cycle 24

Variations of the depth of the meridional
flows with the solar activity cycle
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y o w o
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w
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&
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a) year

Vorontsov et al. 2002
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Two paradigms in solar dynamo

Flux-transport theory (Babcock-Leighton)

* The dynamo process is controlled .
by meridional circulation.
» Toroidal magnetic field is generated .

and stored in the tachocline region.
Meridional flow in the tachocline
produces the butterfly diagram.

o e

e
’
i
)
A
~

’
i
4
)
~

Meridional oL
circulation -

06R O7R

0.0 02

== Tachocline Mean Rotation: 2010 — 2018

Dynamo-wave theory (Parker)

The butterfly diagram is produced by
dynamo waves.

Theoretical argument: “Dynamo waves
propagate along isorotation surfaces”
(Parker, 1955; Yoshimura, 1975).

Because of the
subsurface shear
layer the dynamo
wave can
propagate towards
the equator
(Brandenburg 2005;
Pipin & Kosovichev,
2011; Paradkar, Chitre,
& Krishan, 2019).

04 06 08 1.0
r/R

Torsional oscillations at

different depth are measured
by global helioseismology for

two solar cycles

* Comparison of the magnetic butterfly diagram
with the corresponding maps of the zonal flows
(torsional oscillations) at five different depth in
the convection zone during Cycles 23 and 24.

* Inclined dashed lines illustrate an apparent
migration of the flow pattern with radius. They
are drawn through the points where the

accelerated equatorial branch crosses the equator

(around the solar maxima).

i i |
2000 2005 2010 2015
Zonal subsurface flows (m/s) /R
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Analysis of zonal flow acceleration

Zonal acceleratio

The zonal flow acceleration

calculated after applying © 50
Gaussian spatial and temporal E 0
filters to smooth noise and small- §

scale variations and reveal large- 50

scale patterns

Overlay of the zonal acceleration
(color image) and the radial
magnetic field (gray-scale) reveals

that the regions of magnetic field 50
emergence at mid and low E 0
latitudes coincide with the zones &

of flow deceleration. 50

(Kosovichev & Pipin, 2019)

n, dV/dt (10°m/s%), r/R=
— ’ - |

| S i

\

PObN=oSoooe

— S . -
2000 2005 2010 2015
Overlay of B_and dV/dt
[ "W

lu [

Do

|
g

2000 2005 2010 2015
year

ZONAL ACCELERATION REVEALS PATTERNS OF

DYNAMO WAVES

Measurements of the zonal
acceleration revealed zones of
deceleration, caused by internal
magnetic fields (blue areas in the
movie).

The flow deceleration originates at the
base of the solar convection zone,
200 Mm beneath the solar surface, at
about 60 degrees latitude.

Zonal acceleration, dV/dt (10'8m/52)8 i
]_0 — T T T 0

1996.06.06
0.8~

0.6

r/R

0.4 %

0-0 1 1 1 (-
00 02 04 06 08
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Principal component analysis (PCA)

PCA converts " PCA cigenvalues Principal componien.ts k=0,1,2
observational dataintoa ¢,
set of linearly R
uncorrelated orthogonal ¥ o4t
components called 92r
principal components, I e

which are ordered so that

Principal component k=1
1.0

year

Principal component k=2

2x10*

the first few retain most
of the variation present
in the original data

0.0
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>
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g
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100
-2x10¢
-3x10*
-dx10*
-sx10¢
o il-6x10%
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/R /R

X 0.0
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MIGRATION OF DYNAMO WAVES

The dynamo waves originate at the
base of the convection zone (in the
“solar tachocline”) and migrate
towards the poles and the equator
with a speed of 1-2 m/s.

It reaches the surface near the
poles in 1-2 years, but it takes about
10 years to reach the surface at low
latitudes where it forms sunspots.

This explains why the polar
magnetic field predicts the next
sunspot maximum.

Local correlation tracking
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Tracking the zonal acceleration through
the convection zone

PCA[dV/dt (10*m/s?)]

| Intitude

r/R=0.85

| latitude

r/R=0.75

2000 2005 2010 2015
year

HELIOSEISMOLOGY CAN DETECT THE NEXT SOLAR
CYCLE IN THE INTERIOR

. . -8 2
> In the solar interior we already see the PCA[dV/dt (10" m/s")]
signal associated with the next 0,95 A=15° - /"' E
sunspot cycle (Cycle 25). o 090F ‘. // 3
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Abstract Anexperiment carried out at the Brookhaven National Laboratory over a period of
almost 8 years acquired 364 measurements of the beta-decay rates of a sample of *2Si and,
for comparison, of a sample of **CIl. The experimenters reported finding “small periodic
annual deviations of the data points from an exponential decay... of uncertain origin”.
We find that power-spectrum and spectrogram analyses of these datasets show evidence
not only of the annual oscillations, but also of transient oscillations with frequencies near
11 year—" and 12.5 year—'. Similar analyses of 358 measurements of the solar neutrino flux
acquired by the Super-Kamiokande neutrino observatory over a period of about 5 years yield
=1 and another near 9.5 year—'. An oscillation near

evidence of an oscillation near 12.5 year
12.5 year~! is compatible with the influence of rotation of the radiative zone. We suggest

that an oscillation near 9.5 year~! may be indicative of rotation of the solar core, and that
an oscillation near 11 year™" may have its origin in a tachocline between the core and the
radiative zone. Modulation of the solar neutrino flux may be attributed to an influence of the
Sun’s internal magnetic field by the Resonant Spin Flavor Precession (RSEP) mechanism,

suggesting that neutrinos and neutrino-induced beta decays can provide information about

the deep solar interior.

Inner tachocline?

P.A. Sturrock ef al.

the Sun.
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Lecture 20
Overview of local helioseismology

(Stix, Chapter 5.3.8-5.3.9; Kosovichev, p.53-64;
Christensen-Dalsgaard, Chapter 8)

Class plan

Nov.22 - HW2+Quiz3. Lec. 21. Local Helioseismology I.
Nov. 23 — Lec. 22 Local Helioseismology II.

Nov. 29 — Work on the final projects in class

Nov. 30 — Lec. 23 Solar interior modeling (Prof. Guerrero)
Dec. 6-7 - Presenation of the final projects




Overview of local
helioseismology

Two principal approaches

* Global Helioseismology

— measure global
oscillation modes from
the oscillation power
spectra obtained by
applying the spherical
harmonic transform to
the full-disk oscillation
data

* Local Helioseismology

- measure variations of
oscillation frequencies
in local areas by
applying the Fourier
transform to the
oscillations in these
area, or by measuring
the travel times of phase
shifts in local areas.




Methods of local-area helioseismology:

Method Observable Inferences
Ring-diagram analysis | Local variations of Large-scale sound
(Gough, Hill, November, | oscillation frequencies speed perturbations and
Toomre, 1981) horizontal flows

3D sound speed, density
and flows

Time-distance
helioseismology

(Duvall et al. 1993)

Phase and group travel
times of acoustic and
surface gravity waves

Acoustic Imaging 3D sound speed and

Phase and amplitude

(Chou, LaBonte, et al. L flows

1990) variations

Acoustic Holography Phase and amplitude Phase variations and

(Lindsey & Braun, 1990) | variations amplitude maps
Input Data

Dopplergrams-

observational requirements:

* long duration (>4 hours)

* high-resolution (0.5 arcsec per
pixel)

» high-cadence (45-sec cadence)

* stability

il

SDO high-resolution Dopplergrams




3D Power Spectrum

Velocity of oscillations v(x, y,f) can be represented in terms of its Fourier
components:

a(k,.k,, )= j j j v(x, )¢ axdydt,

where &, and k, are components of the wave vector, @ is the frequency.

The power spectrum is:
P(k,.k,,0)=a’a,

* . .
where @ is complex conjugate.

Compare with the global oscillation
power spectrum

Spectrum of global oscillations of the sphere
" 1m Spectrum of oscillations in a local area




Cuts of the local power spectra at constant
frequencies produce rings

3.6 mHz

Flows cause displacement of rings
(Doppler shift of solar waves)

(0-k U)?=m2+c?k?
Frequency shift caused by flow with velocity U along x-axis.

By measuring the shift for various modes one can determine the
depth dependence of U.




Ring-Diagram Analysis

The ring-diagram method is based on
inversion of the local dispersion relation
(3D power spectrum) for acoustic waves.

Perturbation to the local variation in
frequency of the component of the wave
pattern whose local horizontal wave
number is k is given by

Aa)k
w

U is the horizontal component of flow
velocity, 5c*/c*and Oy /y are
perturbations to the local sound speed
and adiabatic exponent; B(z), F(z), and G(z) are of horizontal wave numbers
the sensitivity functions that are similar to the % k (horizontal d
global helioseismology Using this equation one can ¥  (horizontal axes) an
infer the horizontal flow velocity and sound-speed frequency o (vertical axis).
perturbations averaged over some areas (15°x15°)
as a function of depth.

jBUdz+jF—dz+jG—dz

Local 3D power spectrum of
acoustic waves as a function

Time-distance helioseismology

Measures travel times of
acoustic or surface gravity
waves propagating between
different surface points
through the interior. The
travel times t depend on
conditions, flow velocity U
and sound speed variations ¢
along the ray path I

In practice, travel-time
variations are measured:

_[ k oc d J.Mds w/k is the wave phase speed

7 is a unit vector along the ray path.




Time-distance diagnostics

+ Using the time-distance
diagram one can measure the
travel time of acoustic waves
for various distances, and then
infer the sound speed along
the wave paths.

+ Can we measure the travel
times by using the stochastic
wave field continuously
generated by the turbulent
convection?

Time-distance
helioseismology

J A remarkable discovery was made by
Tom Duvall in 1993 that the travel times of the
solar waves can be measured by using a cross-
covariance function of the stochastic wave

field:

Te— Integration time

w(r.A) = [ f(Lr) [ (t+7,r+N)dt

or C(s; ¢) 0 \\

Oscillation signal (Doppler velocity, intensity

Time Distance etc) at two points on the Sun’s surface




time, min

Time-distance measurements

Travel times are determined from
the cross-covariance function:

W(T,A)ZJT.f(t,I”)f*(Z‘+T,I”+A)dt

Observational Time—Distance Diagram

50 200

Time, min
s s w0 150 Cross-covariance function for a particular distance (30

distance, deg degrees in this case) represents a series of wave packets.

Simple interpretation of time-distance

measurements
* The cross-covariance function collects
Observational Tire_Distance Diagrem coherent signals for solar waves excited
at a given point and traveling to another
point

* The cross-covariance signal corresponds
to a strong point source (similar to the
flare signal) — Claerbout’s conjecture

* The cross-covariance signal corresponds
to a wave packet of waves in a finite
. frequency range. The solar oscillations
Diréct waves =%z Second-bounce Nave periods around 5 min. Thus, we see
or : waves the 5-min periodicity in the wave packet.

* The cross-covariance function can be
05 used for measuring group and phase
travel times.

time, min

nce fun

We measure the group and
phase travel times from these
ol P diagrams.




Two levels of time-distance
helioseismology

* Minimalist approach (the next 3 slides)

» Lots and lots of math
— relationship between oscillation frequencies and travel times (ray-mode
duality)
— calculations of the ray paths
— Fermat’s principle
— magnetic field effects and diagnostics
— finite wavelength effects (Born approximation, banana-doughnut kernels)
— phase-speed filtering
— inversion methods (multi-channel deconvolution, LSQR), etc
— Ref. http://soi.stanford.edu/papers/dissertations/
* Peter Giles, Thesis, 1999
* Aaron Birch, Thesis, 2002
* Laurent Gizon, Thesis, 2003
e Junwei Zhao, Thesis, 2004

Time-distance inferences of the sound
speed and flow velocity

Measures travel times of acoustic or surface gravity waves propagating between
different surface points through the interior. The travel times depend on
conditions, flow velocity and sound speed along the ray path:

0T = J-kécd des

w C

The sound speed and flow velocity signals are separated by measuring
the travel times for waves propagating in the opposite directions along
the same ray paths and calculating the mean travel times and the differences:

TN A g jﬁﬁd
r
/©\ Oy =T, = —des




Vector velocity measurement scheme

NS
T gifr
N
EW
T i
E
S
01
T gifr

Typically, we measure times for acoustic waves to travel
between points on the solar surface and surrounding
quadrants symmetrical relative to the North, South, East
and West directions. In each quadrant, the travel times are
averaged over narrow ranges of travel distance A.

Then, the times for northward-directed waves are
subtracted from the times for south-directed waves to yield

the time, 7, which predominantly measures north-south
E

W motions. Similarly, the time differences, 7.y , between

is a travel time difference
averaged over the

full annulus.

westward- and eastward directed waves yields a measure
of east-ward motion. The time, 7, , between outward- and
inward-directed waves, averaged over the full annuli, is
mainly sensitive to vertical motion and the horizontal
divergence.

This provides a qualitative picture of the motions, and is
useful for a preliminary analysis. However, in numerical
inversions, all three components of the flow velocity are
properly taken into account. The averaging procedure is
essential for reducing noise in the data.

Tomographic Inversion

We assume that the convective structures and flows do not change during the observations and repre-
sent them by a discrete model. In the model, the 3D region of wave propagation is divided into rectan-
gular blocks. The perturbations of the sound speed and the three of the flow velocity are approximated
by linear functions of coordinates within each block, e.g.

Se(x,y, 2) = zc’_jk[l_x\x_x,-l J[l_ -y }[1_ |z -z J

i1~ X Zk+1 " %k

yj+1_yj

According to the averaging procedure of the cross-covariance function, the travel time measured at a
point on the surface is the result of the cumulative effects of the perturbations in each of the tra-
versed rays of the 3D ray systems (see Figure below). Therefore, we average the equations for 871
over the ray systems corresponding to the different radial distance intervals of the data, using approx-
imately the same number of ray paths as in the observational procedure. As a result, we obtain two
systems of linear equations that relate the data to the sound speed variation and to the flow velocity,
e.g. for the sound speed

- ik
51, > 4% Bey
ij

where matrix 4 maps the structure properties into the observed travel time variations, Aand
define the location of the central point of a ray system on the surface, and v labels surrounding

annuli. The equation is solved by a regularized least-squares technique.

@

Surface t
V measure
(u,2) for

avel times y Subsurface
at location A4 ok pcrtqrbatpn
distance v M at grid point
N - (1,j.k)

A
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Deep- and surface-focusing observing schemes

Surface focusing

o = -
5E E
5E E

-40 -20 0 20 40
a) radial distance, Mm

Deep focusing

depth, z Mm
o
5

£ o —F
N SE
£ -10E
& -15F
© 20
-40 20 0 20 40
b) radial distance, Mm

Helioseismic holography

The idea of helioseismic holography observer
is to reconstruct the acoustic wave

field at particular locations beneath T
the surface by using measurements

on the surface and a theoretical pupil pupil

Green’s functions for the wave — 1 — —
ropagation from point sources.

The ingression and egression e .

estimate of the wave field at some T

point in the solar interior assuming e

that the observed wave field resulted UL A (depth = 7 Mm)

entirely from waves diverging from —

that point (for the egression) or . .

waves converging towards that point _

(for the ingression). Egression

propagates signals back in time. H, (l', z, l‘) = .[P d’r’ G, (I', r,z, t) l//(l", t)

(z = depth, r = horizontal position, y= surface amplitude, G,= Greens’ functions)
) The ingression and egression power is sensitive to
(Lindsey & Braun, 1990) g5 rces, sinks at focus.

11



Far-side imaging with helioseismic holography
Helioseismic holography is used to obtain
images of solar active region on the far-side
of the Sun by placing the focal point on the
far-side surface.

The analysis on calculations of the phase
shift (or equivalent travel time) between the
ingression and egression signals.

1. egression, ingression:
H. (r,z,v)= .[szr' G.(r,r',z,v)p(r,v)
2. correlation:
C(r,z,v)=H (r,z,v) H (r,z,v)
3. correlation phase:
o(r,z) =arg ((C(r, z, V)>AV )
4. travel-time perturbation: Lindsey & Braun 2000,
St(r,z) = p(r,2)[27v, Science 287, 1799

Daily far-side imaging data are used for space-weather forecasts
because most solar storms are produced by active regions

ﬁsecg

2015-09-20.5 B(Gauiﬁ})

50

120 180 240 300 360

Composite Map of Far and Near Solar Hemispheres. Line-of-sight magnetic field in the Sun's near
hemisphere is rendered in blue-gray, in Gauss. Seismic map of the Sun's far hemisphere is rendered in
yellow. The far-side seismic image maps a phase shift between solar acoustic noise with periods of
about five minutes embarking into the solar interior from the Sun's near hemisphere and its echos
from respective locations in the far hemisphere. This phase shift is expressed here as a travel-time

perturbation in seconds. 41y /150 stanford.edu/data/farside/

http://gong.nso.edu/data/farside
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Diagnostics of sunspots and
emerging active regions
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Flow patterns under the sunspot

Depth 0-3 Mm, Vmax=1 km/s
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Subphotospheric imaging of active regions
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Evolution of AR 10486-488: October 24 — November 2, 2003
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Sound-speed map and magnetogram of AR 10486 on October 25, 2003, 4:00 UT

(depth of the lower panel: 45 Mm)
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Sound-speed map and magnetogram of AR 10486 on October 26, 2003, 12:00 UT
AR 10488 is emerging
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Emergence of AR 10488, October 26, 2003, 20:00 UT
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Emergence of AR 10488, October 26, 2003, 20:00 UT
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Emergence of AR 10488, October 27, 2003, 4:00 UT

04:00:00
27 Oct 103
— 7 of 231
Mo::day UH —

csdd_abs ma _ﬁ.d“‘,@n csdd_abs
" 1.45 {ifﬁm.w— 1.45

- 0.87 934.75 | 0.87

0.29 -/ 18.50 0.29
—0.29 . -897.75 | .-0.29
-0.87  _-1814.00  _—0.87

18



Growth and formation of sunspots of AR 10488, October 29, 2003, 4:00 UT
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Growth and formation of sunspots of AR 10488, October 31, 2003, 12:00 UT
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Cut in East-West direction through both magnetic polarities, showing a loop-like structurg
beneath AR 10488, October 30, 2003, 20:00 UT
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New helioseismology method of detection of
emerging magnetic flux inside the Sun

Deep-focus Time-Distance Helioseismology: solar oscillation signal is
filtered to select acoustic waves traveling to depth 40-70 Mm (right),
averaged over arcs (left), and cross-correlated for opposite arcs. Travel-
time perturbations are measured by fitting Gabor wavelet. This method has
been tested with 3 different instruments (MDI, HMI, GONG) for many quiet
and emerging flux regions.

— 1 Mm
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Emerging Flux

llonidis, et al., 2011; Stefan, 2020
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Total Flux (5 x 10% Mx)

Total Flux (5 x 10% Mx)

Results of ARs 10488, 8164, 8171, 7978
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Solar Subsurface Weather
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Similar maps are obtained from the ring analysis (Haber et al 2002
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Global characteristics of the synoptic
flows for CR 1923

Differential Rotation B _Meridional circulation

Vorticity Torsional oscillations

Large-scale flows around active regions:
(example AR9433, April 2001)

e converging 40 m/s flow toward the neutral line in the upper layers
e diverging flow below 9 Mm
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Lecture 21
Time-distance helioseismology

Quiz 3 1 Canvas 1:05-1:20pm

Please, upload in Canvas HW?2 files by tomorrow
HW?2 presentations (Monday Nov.22+ Quiz 3)

2.1 (a) Ying
2.1 (b) Sheldon
2.2 Sadaf

2.3 Bhairavi
2.4 Yunpeng




Class plan

Nov.22 — Quiz3+HW3. Lec. 21. Local Helioseismology I.
Nov. 23 — Lec. 22 Local Helioseismology II.

Nov. 29 — Work on the final projects in class

Nov. 30 — Lec. 23 Solar interior modeling (Prof. Guerrero)
Dec. 6-7 - Presenation of the final projects

Overview of local
helioseismology




Two principal approaches

* Global Helioseismology

— measure global
oscillation modes from
the oscillation power
spectra obtained by
applying the spherical
harmonic transform to
the full-disk oscillation
data

* Local Helioseismology

- measure variations of
oscillation frequencies
in local areas by
applying the Fourier
transform to the
oscillations in these
area, or by measuring
the travel times of phase
shifts in local areas.

Methods of local-area helioseismology:

Method

Observable

Inferences

Ring-diagram analysis | Local variations of
(Gough, Hill, November, | oscillation frequencies

Toomre, 1981)

Large-scale sound
speed perturbations and
horizontal flows

Time-distance
helioseismology

(Duvall et al. 1993)

Phase and group travel
times of acoustic and
surface gravity waves

3D sound speed, density
and flows

Acoustic Imaging

(Chou, LaBonte, et al.
1990)

Phase and amplitude
variations

3D sound speed and
flows

Acoustic Holography

Phase and amplitude
(Lindsey & Braun, 1990) | variations

Phase variations and
amplitude maps




3D Power Spectrum

Velocity of oscillations v(x, y,f) can be represented in terms of its Fourier
components:

a(k,.k,, )= j j j v(x, )¢ axdydt,

where &, and k, are components of the wave vector, @ is the frequency.

The power spectrum is:
P(k,.k,,0)=a’a,

* . .
where @ is complex conjugate.

Compare with the global oscillation
power spectrum

Spectrum of global oscillations of the sphere
" 1m Spectrum of oscillations in a local area




Cuts of the local power spectra at constant
frequencies produce rings

3.6 mHz

Flows cause displacement of rings
(Doppler shift of solar waves)

(0-k U)?=m2+c?k?
Frequency shift caused by flow with velocity U along x-axis.

By measuring the shift for various modes one can determine the
depth dependence of U.




Ring-Diagram Analysis

The ring-diagram method is based on
inversion of the local dispersion relation
(3D power spectrum) for acoustic waves.

Perturbation to the local variation in
frequency of the component of the wave
pattern whose local horizontal wave

number is k is given by

Aa)k
w

jBUdz+jF—dz+jG—dz

U is the horizontal component of flow
velocity, 5c*/c*and Oy /y are
perturbations to the local sound speed

and adiabatic exponent; B(z), F(z), and G(z) are
the sensitivity functions that are similar to the
global helioseismology Using this equation one can
infer the horizontal flow velocity and sound-speed frequency o (vertical axis).
perturbations averaged over some areas (15°x15°)

as a function of depth.

Local 3D power spectrum of
acoustic waves as a function
of horizontal wave numbers
k, k,(horizontal axes) and

Time-distance helioseismology

Measures travel times of
acoustic or surface gravity
waves propagating between
different surface points

through the interior.

The

travel times t depend on
conditions, flow velocity U
and sound speed variations ¢
along the ray path I

In practice, travel-time

variations are measured:

w/k is the wave phase speed
7 is a unit vector along the ray path.




Time-distance diagnostics

+ Using the time-distance
diagram one can measure the
travel time of acoustic waves
for various distances, and then
infer the sound speed along
the wave paths.

+ Can we measure the travel
times by using the stochastic
wave field continuously
generated by the turbulent
convection?

Time-distance
helioseismology

J A remarkable discovery was made by
Tom Duvall in 1993 that the travel times of the
solar waves can be measured by using a cross-
covariance function of the stochastic wave

field:

Te— Integration time

w(r.A) = [ f(Lr) [ (t+7,r+N)dt

or C(s; ¢) 0 \\

Oscillation signal (Doppler velocity, intensity

Time Distance etc) at two points on the Sun’s surface




time, min

Time-distance measurements

Travel times are determined from
the cross-covariance function:

W(T,A)ZJT.f(t,I”)f*(Z‘+T,I”+A)dt

Observational Time—Distance Diagram

50 200

Time, min
s s w0 150 Cross-covariance function for a particular distance (30

distance, deg degrees in this case) represents a series of wave packets.

Simple interpretation of time-distance

measurements
* The cross-covariance function collects
Observational Tire_Distance Diagrem coherent signals for solar waves excited
at a given point and traveling to another
point

* The cross-covariance signal corresponds
to a strong point source (similar to the
flare signal) — Claerbout’s conjecture

* The cross-covariance signal corresponds
to a wave packet of waves in a finite
. frequency range. The solar oscillations
Diréct waves =%z Second-bounce Nave periods around 5 min. Thus, we see
or : waves the 5-min periodicity in the wave packet.

* The cross-covariance function can be
05 used for measuring group and phase
travel times.

time, min

nce fun

We measure the group and
phase travel times from these
ol P diagrams.




Time-distance inferences of the sound
speed and flow velocity

Measures travel times of acoustic or surface gravity waves propagating between
different surface points through the interior. The travel times depend on
conditions, flow velocity and sound speed along the ray path:

0T = J-kécd des

w C

The sound speed and flow velocity signals are separated by measuring
the travel times for waves propagating in the opposite directions along
the same ray paths and calculating the mean travel times and the differences:

@ Sty = (r, 47 = jﬁﬁd
r 2
/©\ Oy =T, = _I wds

is a travel time difference

Vector velocity measurement scheme

Typically, we measure times for acoustic waves to travel

NS between points on the solar surface and surrounding
leff quadrants symmetrical relative to the North, South, East
and West directions. In each quadrant, the travel times are
N averaged over narrow ranges of travel distance A.
EW Then, the times for northward-directed waves are
Tdiff subtracted from the times for south-directed waves to yield

W the time, 7>, which predominantly measures north-south
motions. Similarly, the time differences, 7,y , between
westward- and eastward directed waves yields a measure

S of east-ward motion. The time, 7} , between outward- and
inward-directed waves, averaged over the full annuli, is

> mainly sensitive to vertical motion and the horizontal
diff divergence.

This provides a qualitative picture of the motions, and is
useful for a preliminary analysis. However, in numerical
inversions, all three components of the flow velocity are
properly taken into account. The averaging procedure is
essential for reducing noise in the data.

averaged over the
full annulus.




Tomographic Inversion

We assume that the convective structures and flows do not change during the observations and repre-
sent them by a discrete model. In the model, the 3D region of wave propagation is divided into rectan-
gular blocks. The perturbations of the sound speed and the three of the flow velocity are approximated
by linear functions of coordinates within each block, e.g.

Beey,2) = 3 1 - L2 1 o AL

i1~ X yj+1_yj Zk+1 " %k
According to the averaging procedure of the cross-covariance function, the travel time measured at a
point on the surface is the result of the cumulative effects of the perturbations in each of the tra-
versed rays of the 3D ray systems (see Figure below). Therefore, we average the equations for 871
over the ray systems corresponding to the different radial distance intervals of the data, using approx-
imately the same number of ray paths as in the observational procedure. As a result, we obtain two
systems of linear equations that relate the data to the sound speed variation and to the flow velocity,
e.g. for the sound speed

= ik
6T)\pv zA AMN ey
ijk
where matrix 4 maps the structure properties into the observed travel time variations, Aand
define the location of the central point of a ray system on the surface, and v labels surrounding
annuli. The equation is solved by a regularized least-squares technique.

Surface travel times 3y Subsurface
A7

V measured at location Aav
u @ (w,A) for(distance v
k

A

(..k)

perturbation
at grid point

Deep- and surface-focusing observing schemes

Surface focusing

£ o - -
N SE i
£ -10E E
& -15F =
© 20
-40 -20 0 20 40
a) radial distance, Mm
Deep focusing
E
s 0 R ——
N SE E
£ -10E E
& -15F E
© 20
-40 20 0 20 40
b) radial distance, Mm
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Definition of normal modes

One way to represent the oscillations is as a sum of standing waves or normal
modes, where the signal observed at a point (r,0,¢) at time ¢ is given by

[,0.6.0=2a,,,,(r.0,8)exp(il®,,1 +a,,]). 1)

nlm

In this equation, the three integers n, /, and m identify each mode and are
commonly called the radial order, angular degree, and azimuthal order
respectively. For each mode, 4., is the mode amplitude, @,, is the
eigenfrequency, and «,, is the phase.

The spatial eigenfunction for each mode is denoted by &, . For an
axisymmetrical Sun, the eigenfunctions can be separated into radial and
angular components:

gn]m (I", 0’ ¢) = én] (F)Ylm (0’ ¢)7 (2)
where Y, is the spherical harmonic and the radial eigenfunction is denoted
now by &,(r).

Cross-covariance function in terms of
normal modes

The cross covariance function of the oscillation signals f for two points at

coordinates Iy and T, on the solar surface is defined as the integral

V(@A) = [ ) (. 0d, ®

Here A is used to denote the angular distance between the two points and T is the
total length of the observations. The time delay 7 measures the amount that one
signal is shifted relative to the other. In practice, it is quite time-consuming to
compute the cross correlation with the integral in equation 3. Fortunately, the
convolution theorem allows us to change the integral into a product in the Fourier
domain,

Y(w,7,A)=F(r,,0) F'(r,,). )
Here W is used to represent the temporal (7) Fourier transform of y, and F'
represents the temporal Fourier transform of f*. The length T of the observations
is assumed to be long compared to any time lag 7 of interest. Since Fourier

transforms can be computed very efficiently, equation 4 provides a relatively fast
way to compute cross correlations.

11



Calculation of the cross-covariance function

Convolution theorem: the Fourier transform of a convolution of two
functions is the product of their Fourier transforms.
Using the convolution notation, we write:

W, 0)= [ £+ A f(r0)de

as Y(r,A)=f*f,.
If F is the Fourier transform in time, then the according to the convolution
theorem:
F[¥(r,0]=Ff,* f,1= FIA-FL£ ]

The cross-covariance of two functions is calculated using the inverse
Fourier transform of the product of the Fourier transforms of these
functions:

WY(z,A)=F'[F[£]-FLf; 1]

The oscillation signals f, and f, can be represented in terms of the
superposition of the normal modes with random phases «,,, . The phases are random
because of the stochastic excitation of solar oscillations.

f(V, 9, ¢,l) = Zanlmgnlm (V)Y,m (9,¢)eiimn/'+w’nlm

nlm

The eigenfunctions are normalized as &,(R)=1.
Thus, at the surface (r=R):
Ff1= 2 Y (0, 9) " 5(0 - ,,,)

nlm

nlm

Here we used

L (2 —io-ap,)r
— nmdt = 6(w,,, — @
e (@, ~®)
Because the solar oscillation spectrun has a shape close to a Gaussian with the central
frequency w, (the corresponding cyclic frequency is about 3 mHz), we approximate

the mode amplitudes as:

12



Then,

F[f]= AZexp{ 5w 2) }5((0 ,,,m)e iy (6,4)
2
Defining G,,,(a))—exp{— (w—a)g) }5((0 w,,), we get:
20w

FIA1FIf1=4 {Zan(w)e"’”’” Y, (0.4 )H ZG,,r,w)e"’“""""'Y,rm,wz,m}

nlm n'l'm'

Because the mode frequencies w,, are different for different »,/, and ¢, is

nlm

random function, all terms except n'=n,/'=1,m'=m are canceled.

Thus,

F[fl]-F[.ﬁ]=AzZexp{(“’2;&“)’3) }S(w ,,1,,,>Z 6,.4)Y,,(6,.4,)

m=-1

a

Using the addition theorem (Jackson, Classical Electrodynamics):

DY, (6.4)Y, (92,¢2)f P(oe)

m=-1
where A is the great circle distance between the pomts:
cos A =cos 6, cos 8, —sin 6, sin &, cos(¢, — ¢,)

and performing the inverse Fourier transform, we obtain:

W(z,A)= AZU 'wreXp[(‘"Z;:‘?)zja(w M)dw} f; >(cos A)

the real part of the Fourier transform:

Y(r,A)= AZZCOS(CU,,,T) exp(_(a)nzlé‘—z)J%P( A)

13



Following Jackson, for A/>>1 we approximate:

A 2
P(cosO)~J,| (2[+1)sin— |~ cos(LA—rm /4
7(cos &) o[( ) 2} ./”LA ( )

where J, is the Bessel function, and L=/+1/2~/l(I+1).
Then,

2 L (0, —m,)*
Y(r,A)x 42— —exp| ——2L—2 Icos(w,7)cos(LA
(z,4) ; L 27 p( 250 (@,,T)cos(LA)

_ 2
Y(r,A)~ 4, ZL”Z exp [— (C";d—wz())] cos(w, v)cos(LA)
@

nl
Now the double sum can be reduced to a convenient sum of integrals if we
regroup the modes so that the outer sum is over the ratio v=w/L and the
inner sum is over .

We have learned that the radius of the lower turning point is determined by the ratio
v=w/ L. Thus, the travel distance A of an acoustic wave is also determined by this ratio v;
A is otherwise independent of @.

In this case, given the band-limited nature of the function G, only values of L which are
close to L,=w,/v will contribute to the sum, and we can expand L near the central
frequency o, :

LAzA{L(wo)ﬁ(w_wo)]:A{%M}
ow v u

where u =0w/0L.

Furthermore, the product of cosines can be changed into a sum; one term is

(et

and the other term is identical except that 7 has been replaced with —z (i.e. the time lag is
negative). The result is that the double sum becomes

-t

CoS

(0=o)"

w(r,A)= Z ﬁz exp(— (;;2)0) ]cos

14



The inner sum can be approximated by an integral over w:

r da)exp[—(wé_a;o)z}os [r—A}a)—[l—l}Awo]:
= u u v

@

o 8212 ol

The limits (—o0,0) pose no particular problem since the amplitude function 6* is
essentially zero for very large and very small frequencies.

Lor

Finally, then, the cross correlation can be expressed as

w(z,A)oc Y exp| — 52)2 {r ié} cos(a)o {r iéD

|
‘.

|
Sl ‘F‘ m\u pﬁ‘“\\"n MW
R 400
I

V' |

u \%

where v=w/ L and u =0w/0L.

The cross correlation function at any particular distance is thus described by two
characteristic times; the group fime, defined as 7, = A/u, and the phase time, defined

as 7, = A/v. Furthermore, the cross correlation will have two peéks; one near +7,,
and the other near —z,. These two peaks correspond to the two directions of
propagation.

Two representations of the covariance

function
. (@, — wo)z
w(r,A) oc Z exp 5 cos(w,7)cos(LA).
nl w

-in terms of the normal mode frequencies. (Once you know changes in mode
frequencies you can find the corresponding changes in the cross-covariance
function and travel times.)

l//(r,A)ocZexp ———| 7t —| |cos| w,| Tt —
" 4 u v
- in terms of the phase and group velocities or travel times.

The key difference between “global” helioseismology and time-distance
helioseismology is the mode coupling in the cross-covariance function.

Thus, we can apply time-distance helioseismology to the non-axisymmetrical Sun.
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Summary

Y(r,4)= IOT SWr) S (t+7,r)dl, G(w)= exp|:—[ a)5— il ” - frequency filter
w

f(t,r,0,4)= z @& (1,0, ) explio, , t +id,,.), & (1,0,8) =&, (1Y, (0,9),
i

F(o,r,0,9)~ Y. a,&, (Y, (6,6)5(w - w,)exp

nlm

Y(r,A) = _f:F(a),;A,)F*(a),rz)exp(ia)z')dw, [ [wfw 2}
U b0 j

2 !
 — ), . *
Y(z,r,r2) = z O, exp|:—[ 50 Uj 'Hwﬂ/‘[} Z Y, (6,,8)Y,,(6,,8,).
ol

m=—1

1 . .
Z Y,,(6,,4)Y,.(0,.4,) = ,P(cos A), cosA = cost), cos 0, +sin @, sind, cos(¢, — 4))
" a,=Ql+1)/4r
@, — By "
Y(r,A) = Zaﬂ,a,fj(cos A)exp| — - +io,T |
©

nl

Phase speed:

z( A]z:l v=wm,/L L=l+%

u

Y(z,A)oc z ag, cos{(u0 (r —éﬂ exp {— 52)
ov v

u - group velocity

Ray approximation

Originally, time-distance
helioseismology was intuitively
derived from the picture of
acoustic ray paths.

In fact, the acoustic waves
observed on the Sun can be
considered high-frequency
acoustic waves. In most of the
region in which these waves are
confined, their wavelengths are
short compared to the local
temperature and density scale
heights. In this wavelength regime,
the wave propagation can be
approximated with ray theory.
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Time-distance diagnostics

Fermat’s Principle

A powerful property of ray paths is that they obey Fermat’s
Principle, which states that the travel time along the ray is
stationary with respect to small changes in the path. This implies
that if a small perturbation is made to the background state, the

ray path is unchanged.
The perturbation to the travel time can then be expressed as
1
T—1,=—|_ Okds.
@ 7o

Here Ok is the perturbation to the wavevector due to
inhomogeneities in the background state, and Fermat’s principle
allows us to make the integral along the unperturbed ray path I'.

In the solar convection zone, the Brunt-Viisdld frequency N is small
compared to the acoustic cutoff frequency and the typical frequencies of solar
oscillations. Neglecting this frequency, the dispersion relation can be written as

K2 :Ciz(wz_wg]_k;,
I(+1)

2
7

K2 =

If we allow small perturbations (relative to the background state) in @, ¢, and
@, , then the integrand in Fermat’s equation can be written to first order as

Skds | dw (dc\k [do.\ of \o
i e Bl T 3|7 |9
@ ck \c)o o \co )k

where I have neglected terms which are second-order in dc/c and |u | /c.
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Effect of velocity field

One possible perturbation to the spherically symmetric background state is a
velocity field. If the flow field is described by u then the observed frequency
will be Doppler shifted by the advection of the oscillations,

Sw =—kn-u,

so that the Fermat’s equation becomes

A 2
Ti_TOZ_J' u-(fn)+(§)£+ 228 Z"cz @ ds,
Tl ¢ c)o o, \co )k

where 1 is a unit vector tangent to the ray path. Here I have defined the
quantity 7" as the perturbed travel time in one direction along the ray path
(unit vector +1i) and 7~ as the perturbed travel time in the opposite
(reciprocal) direction (unit vector —n).

Separation of the velocity field signal
from the other perturbations

To separate the effects of the velocity field from the other perturbations, we thus
define

u-n
> ds
c

— - _
0Ty =T —T ——2J.r
0

N - 2
Frpm =TT | (@jL doc | o Je |y
2 Wi\lc o \o. \co |k

This equation thus provides the link between the measured travel time differences
and the flow field along the ray path. This simple equation is in the heart of the
time-distance helioseismology.
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Magnetic field effects

Magnetic field in sunspots, particularly, in the sunspot umbra may
significantly affect the time-distance diagnostics for 3 main reasons:
— The standard Doppler shift measurements may not provide accurate estimate of
the actual line-of-sight velocity
— Magnetic field inhibits convection (reducing excitation) and presumably
absorbs waves causing inhomogeneous distribution of the acoustic power on
the solar surface, resulting systematic shifts in the standard travel times
(Woodard’s effect)
— Magnetic field causes changes in the dispersion properties of acoustic waves
resulting in anisotropy in the travel times

Magnetic effects are particularly strong when plasma parameter is of the
order of unity or smaller: B=4rp/B>.

For most sunspot models this happens above the photosphere. This regime
is poorly understood, and avoid this we mostly work with low-frequency

waves that are reflected below the photosphere.

CEINT3

At high frequencies, magnetic effects (“shower-glass effect”, “inclined
field effect”) become strong, particularly, in acoustic holography (Doug
Braun’s talk tomorrow). Our tests show that for time-distance
measurements these are much less significant.
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Sensitivity kernels for travel-time measurements in the
Born approximation

Properties of the solar interior are related

to the measured travel times through “Banana-dou%h_néj(tieléernel"

sensitivity kernels (e.g. for sound speed):

¥, Mm

ST(A) = j K, (7, A)ﬁdV
C

. N
where integration is over the whole
volume of the Sun.

These kernel are calculated in the Born
approximation as in terms as a
combination of normal mode
eigenfunctions.

y, Mm

The sound-speed variations, flow velocity
and other solar properties are determined
from this equation by inversion.

Examples of travel-time sensitivity kernels for the first
and second bounces calculated in the Born
approximation. The black curves show the
corresponding ray paths.

Testing the ray and Born approximations
for a simple spherical sound-speed
perturbation

Wave source

20



Banana-doughnut structure of the travel-time sensitivity
kernels is caused by the wave-healing effect

Comparison of the ray and Born approximations with
numerical simulations

A=10.05, Smooth Sphere

A=10.1, Smooth Sphere

100

Ray theory
50

Numerical
modeling |

dt (s)
o

-50

-100

200¢

1007

-100¢

—-200¢

Ray approximation
overestimates travel

times for small structures.

This means that such
structures are
underestimated in the
inversion results.

Born approximation is
sufficiently adequate
when diffraction effects
are not significant.
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Sound-speed structure beneath a sunspot (Couvidat

Ray approximation (old)

0 50 100 150 200
x (Mm)

et al 2005)

Born theory (new)

22/229
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0 50 100 150 200
x (Mm)
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Lecture 22
Time-distance helioseismology 11

time, min

Time-distance measurements

Travel times are determined from
the cross-covariance function:

W(T,A)ZJT.f(t,I”)f*(Z‘+T,I”+A)dt

Observational Time—Distance Diagram

50
Time, min
5 " 00 150 Cross-covariance function for a particular distance (30
distance, deg degrees in this case) represents a series of wave packets.




Simple interpretation of time-distance
measurements

Observational Time—Distance Diagram

time, min

Second-bounce

. \ waves
= / °
C 50 00 7’7 J\ 0

o
Direct waves stance. see

The cross-covariance function collects
coherent signals for solar waves excited
at a given point and traveling to another
point

The cross-covariance signal corresponds
to a strong point source (similar to the
flare signal) — Claerbout’s conjecture
The cross-covariance signal corresponds
to a wave packet of waves in a finite
frequency range. The solar oscillations
have periods around 5 min. Thus, we see
the 5-min periodicity in the wave packet.
The cross-covariance function can be
used for measuring group and phase
travel times.

We measure the group and
phase travel times from these
diagrams.

Definition of normal modes

One way to represent the oscillations is as a sum of standing waves or normal
modes, where the signal observed at a point (r,0,¢) at time ¢ is given by

f(r,0,0,t)= Z Al (7,0, explil @, + ), ]). (1)

nlm

In this equation, the three integers n, /, and m identify each mode and are
commonly called the radial order, angular degree, and azimuthal order
respectively. For each mode, 4., is the mode amplitude, @,, is the
eigenfrequency, and «,, is the phase.

The spatial eigenfunction for each mode is denoted by &, . For an
axisymmetrical Sun, the eigenfunctions can be separated into radial and
angular components:

gnlm (7", 05 ¢) = §n1 (r)YIm (05 ¢)’ (2)
where Y, is the spherical harmonic and the radial eigenfunction is denoted
now by &,(7).




Cross-covariance function in terms of
normal modes

The cross covariance function of the oscillation signals f for two points at

coordinates Iy and T, on the solar surface is defined as the integral

V(@A) = [ () (. 0d, ®

Here A is used to denote the angular distance between the two points and T is the
total length of the observations. The time delay 7 measures the amount that one
signal is shifted relative to the other. In practice, it is quite time-consuming to
compute the cross correlation with the integral in equation 3. Fortunately, the
convolution theorem allows us to change the integral into a product in the Fourier
domain,

‘I’(a),r,A)=F(r1,a))F*(r2,a)). @)
Here W is used to represent the temporal (7) Fourier transform of y, and F'
represents the temporal Fourier transform of f*. The length T of the observations
is assumed to be long compared to any time lag 7 of interest. Since Fourier

transforms can be computed very efficiently, equation 4 provides a relatively fast
way to compute cross correlations.

Calculation of the cross-covariance function

Convolution theorem: the Fourier transform of a convolution of two
functions is the product of their Fourier transforms.
Using the convolution notation, we write:

W, 0)= [ £+ A f(r0)de

as Y(r,A)=f*f,.
If F is the Fourier transform in time, then the according to the convolution
theorem:

FI¥(z,0)]= FLf,* £,]= FLA]-FL, ]

The cross-covariance of two functions is calculated using the inverse
Fourier transform of the product of the Fourier transforms of these
functions:

WY(z,A)=F'[F[£]-FLf; 1]




The oscillation signals f, and f, can be represented in terms of the

superposition of the normal modes with random phases «,, . The phases are

nlm *

random because of the stochastic excitation of solar oscillations.

f(r.0.6.0=a,,E, (Y, (0.p)e "

nim

The eigenfunctions are normalized as ¢&,(R)=1.
Thus, at the surface (r=R):
FUf1= 2 ,,Y,,(0.0)e " 5(0 - @,,)

nlm
Here we used
L e e d = 5w, - w)
2=
Because the solar oscillation spectrun has a shape close to a Gaussian with the
central frequency o, (the corresponding cyclic frequency is about 3 mHz), we
approximate the mode amplitudes as:
(64)76()0)2
a, =Aexp| ——————
nlm p|: 256()2

Then,

SGED) exp[—(“’zgjg)} (0w, ™Y, (6.9)
_(0-a)’

Defining G, (w) =exp{ 250’

}6(0)—@”,) , we get:

FIf1-FIf1=4° [ch,(w)e"“"“" Y,,.(6,.4 )}[ > G,y (w)e nmwz,@)}

nim n'l'm'

Because the mode frequencies o, are different for different »,/, and ¢, is a

nlm

random function, all terms except »n'=n,I'=1,m'=m are canceled.

Thus,
FIA)FLA 1= AZZeXp{(m%)}?(w%) 2 Y,.(6,4)Y,,(0,,4,)

2
nl 20w m=-1




Using the addition theorem (Jackson, Classical Electrodynamics):

S8, (047, (0, ) 2Z”P(oA)

m=—1

where A is the great circle distance between the two points:
cos A =cos, cos d, —sin G, sin b, cos(¢, — ¢,)

and performing the inverse Fourier transform, we obtain:
Y(r,A) = Azz [Cemexp _(e-a) S(o—a, Yo | 2L p(cos A)
® 250)2 nlm 4

the real part of the Fourier transform:

W(r,A) = 4°Y cos(w,7) eXp[_(ng—z)J%P( A)

Following Jackson, for A/>1 we approximate:

. A f 2
B(cosA)=J, [(21+ l)sma} ~ A cos(LA—7/4)

where J, is the Bessel function, and L=/+1/2~/l(I+1).
Then,

2 L (v, — ,)’
Y(r,A)x A2 [— ¢ L0 = D) cos cos(LA
(z,4) ; L 2m XP{ 5w j (@,7)cos(LA)

Y(r,A) =4 > L"*e (@, —@) @) cos(w LA
(7.8) Z xp{ o (@,7)cos(LA)

Now the double sum can be reduced to a convenient sum of integrals if we
regroup the modes so that the outer sum is over the ratio v=w/L and the
inner sum is over .




We have learned that the radius of the inner turning point is determined by the ratio
v=wm/ L. Thus, the travel distance A of an acoustic wave is also determined by this ratio v;
A is otherwise independent of w.

In this case, given the band-limited nature of the function G, only values of L which are
close to L,=w,/v will contribute to the sum, and we can expand L near the central

frequency @, :
LA~ A{L(wow (0- a)o)} A[&Jrﬂ},
v u
where u = 0w/0L is the group angular velocity (recall ky=L/r).

Furthermore, the product of cosines can be changed into a sum; one term is

COSKT —éja)+(l—lew0
u u v

and the other term is identical except that 7 has been replaced with —z (i.e. the time lag is
negative). The result is that the double sum becomes

e -2

s

w(z,A) = Z\/_Zex[ (@-, )zjcos

The inner sum can be approximated by an integral over w:

r da)exp[—(a)é_a;o)z}os [r—A}a)—[l—l}A%]:
= u u v

2]

o 8212 ol

The limits (—o0,0) pose no particular problem since the amplitude function 6* is
essentially zero for very large and very small frequencies.

Finally, then, the cross correlation can be expressed as . ‘

\\WMJ\

\ I
-

2 2
w(z,A)oc Y exp —52) {rié} cos a){rié}
- u v

where v=w/ L and u =0w/0L.

The cross correlation function at any particular distance is thus described by two
characteristic times; the group fime, defined as 7, = A/u, and the phase time, defined

as 7, = A/v. Furthermore, the cross correlation will have two peéks; one near +7,,
and the other near —z,. These two peaks correspond to the two directions of
propagation.




Two representations of the covariance

function
. (®, — a)o)z
w(r,A)oc Z exp 5 cos(w,7)cos(LA).
nl w

-in terms of the normal mode frequencies. (Once you know changes in mode
frequencies you can find the corresponding changes in the cross-covariance
function and travel times.)

2T AT A
t//(r,A)ocZexp —% Tt— | |cos| w,| TE—
. u %

- in terms of the phase and group velocities or travel times.

The key difference between “global” helioseismology and time-distance
helioseismology is the mode coupling in the cross-covariance function.
Thus, we can apply time-distance helioseismology to the non-axisymmetrical Sun.

Ray approximation

* Originally, time-distance
helioseismology was intuitively
derived from the picture of
acoustic ray paths.

* In fact, the acoustic waves
observed on the Sun can be
considered high-frequency
acoustic waves. In most of the
region in which these waves are
confined, their wavelengths are
short compared to the local
temperature and density scale
heights. In this wavelength regime,
the wave propagation can be
approximated with ray theory.




Time-distance diagnostics

paths is that they obey Fermat’s Principle, which

states that the travel time along the ray is stationary

with respect to small changes in the path. This
implies that if a small perturbation is made to the
background state, the ray path is unchanged.

I

Fermat’s PrincipleA powerful property of ray

The perturbation to the travel time can then be
expressed as

T—T,= 1 ok ds.
@ *To
Here Ok is the perturbation to the wavevector due
to inhomogeneities in the background state, and
Fermat’s principle allows us to make the integral

along the unperturbed ray path I .

In the solar convection zone, the Brunt-Viisdld frequency N is small
compared to the acoustic cutoff frequency and the typical frequencies of solar
oscillations. Neglecting this frequency, the dispersion relation can be written as

K2 :Ciz(wz_wg]_k;,
I(+1)

2
7

K2 =

If we allow small perturbations (relative to the background state) in @, ¢, and
¢, then the integrand in Fermat’s equation can be written to first order as

Skds | dw (dc\k [do.\ of \o
i e Bl T 3|7 |9
@ ck \c)o o \co )k

where I have neglected terms which are second-order in dc/c and |u | /c.




Effect of velocity field

One possible perturbation to the spherically symmetric background state is a
velocity field. If the flow field is described by u then the observed frequency
will be Doppler shifted by the advection of the oscillations,

Sw =—kn-u,

so that the Fermat’s equation becomes

A 2
Ti_TOZ_J' u-(fn)+(§)£+ 228 Z"cz @ ds,
Tl ¢ c)o o, \co )k

where 1 is a unit vector tangent to the ray path. Here I have defined the
quantity 7" as the perturbed travel time in one direction along the ray path
(unit vector +1i) and 7~ as the perturbed travel time in the opposite
(reciprocal) direction (unit vector —n).

Separation of the velocity field signal
from the other perturbations

To separate the effects of the velocity field from the other perturbations, we thus
define

u-n
> ds
c

— - _
0Ty =T —T ——2J.r
0

N - 2
Frpm =TT | (@jL doc | o Je |y
2 Wi\lc o \o. \co |k

This equation thus provides the link between the measured travel time differences
and the flow field along the ray path. This simple equation is in the heart of the
time-distance helioseismology.




Magnetic field effects

» Magnetic field in sunspots, particularly, in the sunspot umbra may
significantly affect the time-distance diagnostics for 3 main reasons:

— The standard Doppler shift measurements may not provide accurate estimate of
the actual line-of-sight velocity

— Magnetic field inhibits convection (reducing excitation) and presumably
absorbs waves causing inhomogeneous distribution of the acoustic power on
the solar surface, resulting systematic shifts in the standard travel times
(Woodard’s effect)

— Magnetic field causes changes in the dispersion properties of acoustic waves
resulting in anisotropy in the travel times

» Magnetic effects are particularly strong when plasma parameter is of the
order of unity or smaller: B=4np/B2.

» For most sunspot models this happens above the photosphere. This regime
is poorly understood, and avoid this we mostly work with low-frequency
waves that are reflected below the photosphere.

* At high frequencies, magnetic effects (“shower-glass effect”, “inclined
field effect”) become strong, particularly, in acoustic holography (Doug
Braun’s talk tomorrow). Our tests show that for time-distance
measurements these are much less significant.

Sensitivity kernels for travel-time measurements in the
Born approximation

Properties of the solar interior are related B )
to the measured travel times through Banana-doughnut kernel
sensitivity kernels (e.g. for sound speed):

y, Mm

ST(A) = j K, (7, A)ﬁdV
C

. N
where integration is over the whole
volume of the Sun.

These kernel are calculated in the Born
approximation as in terms as a
combination of normal mode
eigenfunctions.

y, Mm

The sound-speed variations, flow velocity
and other solar properties are determined
from this equation by inversion.

Examples of travel-time sensitivity kernels for the first
and second bounces calculated in the Born
approximation. The black curves show the
corresponding ray paths.
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Testing the ray and Born approximations
for a simple spherical sound-speed
perturbation

Wave source
=)

Banana-doughnut structure of the travel-time sensitivity
kernels is caused by the wave-healing effect

11



Comparison of the ray and Born approximations with
numerical simulations

A=%0.05, Smooth Sphere A=10.1, Smooth Sphere

Ray approximation
100 200l overestimates travel
Ray theory times for small structures.
This means that such
50 1001 structures are
Numerical underestimated in the
O modeling | o inversion results.
© Born \

50 '/ PP ool Born approximation is
sufficiently adequate
when diffraction effects

100 200 are not significant.
0 10 10

5
R (Mm)

Sound-speed structure beneath a sunspot (Couvidat
et al 2005)

Ray approximation (old) Born theory (new)

22/229
2°/a29

0 50 100 150 200 0 50 100 150 200
x (Mm) x (Mm)
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led maps of subsurface flows
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A small sample of a synoptic map of subsurface flows
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Solar Subsurface Weather
Synoptic maps of subsurface flows (0-20 Mm)

Carrington Rotation 1923
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Carrington Rotation 1975
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— 30 m/s Carrington Longitude

Similar maps are obtained from the ring analysis (Haber et al 2002)

Large-scale flows around active regions:
(example AR9433, April 2001)

converging 40 m/s flow toward the neutral line in the upper layers
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Sunspot structure and dynamics

Parker’s model

FiG. 1.—A sketch of the conventional idea of the magnetic
field oonﬁ%uraticn of a sunspot. The heavy line represents the
visible surface of the Sun.

Monolithic model

|
t I||

Y

| l

Fia. 2.—A sketch of the proposed magnetic field configura-
tion, in which the field divides into individual flux tubes some
distance below the visible surface, The dashed arrows represent
the presumed convective downdraft which helps to hold the
separate flux tubes together in the tight cluster that constitutes
the sunspot.

Cluster Model

Helioseismology provides strong evidence for the cluster model.




Observations of emerging active region by time-distance
helioseismology

0.00:0¢
/ an

08:00:00
e 12 Jan 98
8of23
s Monday
(km) ‘

-RI0p
longitude (deg)

Observation of emerging active region with 2-hr resolution
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Evolution of AR 10486-488: October 24 — November 2, 2003
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Sound-speed map and magnetogram of AR 10486 on October 25, 2003, 4:00 UT
(depth of the lower panel: 45 Mm)
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Sound-speed map and magnetogram of AR 10486 on October 26, 2003, 12:00 UT
AR 10488 is emerging
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Emergence of AR 10488, October 26, 2003, 20:00 UT
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Emergence of AR 10488, October 27, 2003, 4:00 UT
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Growth and formation of sunspots of AR 10488, October 29, 2003, 4:00 UT
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Growth and formation of sunspots of AR 10488, October 31, 2003, 12:00 UT
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Cut in East-West direction through both magnetic polarities, showing a loop-like structurg
beneath AR 10488, October 30, 2003, 20:00 UT
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Detection of Emerging Active Regions
in the Deep Interior

New methodology of detection of
emerging flux

Deep-focus Time-Distance Helioseismology: solar oscillation signal is filtered to
select acoustic waves traveling to depth 40-70 Mm (right), averaged over arcs (left),
and cross-correlated for opposite arcs. Travel-time perturbations are measured by
fitting Gabor wavelet. This method has been tested with 3 different instruments
(MDI, HMI, GONG) for many quiet and emerging flux regions

— 1 Mm

/——198 Mm—-\

Emerging Flux

llonidis et al (2011) _
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Example: Emergence of AR 10488: Oct 24 — Nov 2, 2003

24-0ct-2003 00:00 UT
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Travel-time maps of AR 10488
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Active region NOAA 11158, February
2011
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Example of analysis of subsurface
flows 1n flaring AR 11158
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18, 2011

February 10

Photospheric magnetic field and subsurface flows at depth 0-
1 Mm in AR 11158,
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Subsurface converging flows and X2.2

AR11158, S_DO/HMI and GOES-_15

divU (depth 0-1 Mm)

05

- blue, log(X-ray flux) - red

|
0.0
|

)
W

flow divergence (depth 0-1 Mm)
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[
Converging flows / X2.2 flare

Ll A
M

14 1
date, February 2011

»Approximately one day
before the X-class flare
strong shearing flows are
developed 0-3 Mm below
the surface. This is
reflected in a sharp
increase of the flow
convergence.
»Potentially new method
of forecasting flaring and
CME activity of active
regions based on
helioseismology analysis
and MHD modeling of
subsurface flows.




Lecture 23
Time-distance helioseismology:
Fermat principle
Inversion results

(Stix, Chapter 5.3.8-5.3.9; Kosovichev, p.53-64;
Christensen-Dalsgaard, Chapter 8)

Solar oscillation spectrum obtained Spectrum of normal modes calculated
from the HMI instrument on Solar for a standard solar model. Note the
Dynamics Observatory. ‘avoided crossing effect’ for f and

\ ( g-modes.
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Low-degree p-modes (1=0,1,2, and 3)
For I <<n, 1, ~0, and we get: wzw
ar

0 C
That is the spectrum of low-degree p-modes is approximately equidistant with

-1
frequency spacing: Av = (4_[: ﬂj v, RrAvQ2n+1+ % +2a)=Av(2n+1+ %
c

Large frequency separation: Av=68 pHz

GOLF Fourier spectrum
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Small frequency separation :
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(2002)
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Asteroseismology Scaling Law

Using the scaling laws:

M P GM?

"R RER

we obtain the scaling law for the speed of sound:

el 1P M
Yo, R

Then, the scaling law for the oscillation frequencies is:

c M
V~—~

R R’
Since for the Sun the large frequency separation: Av=68 nHz we can estimate
Av for other stars:

Y, 1/2 P -3/2
Av =68 — — Hz
iY; 7 (uHz)

© ©




Solution to the Inverse Problem
We have a system integral equations

()11)
J’ K;rjl) 5Pd +J‘ K(;zl)57d

for a set of observed mode frequen01es. If the number of observed frequencies is
N (typically 2000), then we have a problem of determining two functions from
this finite set. In general, it is impossible to determine these functions precisely.
We can always find some rapidly oscillating functions, f(r), that being added

to the unknowns, dp/p and 6y , do not change the values of the integrals, e.g.
R
jo KU (r) f(r)dr =0.

Such problems without an unique solution are called "ill-posed". The general
approach is to find a smooth solution that satisfies the integral equations by
applying some smoothness constraints to the unknown functions. This is called a
"regularization procedure".
There are two basic methods for the helioseismic inverse problem:
1. Optimally Localized Averages (OLA) method - (Backus-Gilbert
method)
2. Regularized Least-Squares (RLS) method - (Tikhonov method)

(n 1)

Examples of the sensitivity kernels

1.0 f\/‘

02 04 06 08 10




Optimally Localized Averages Method
The idea of the OLA method is to find a linear combination of data such as the
corresponding linear combination of the sensitivity kernels for one unknown will
have an isolated peak at a given radial point, 7, (resemble a ¢ -function), and the
combination for the other unknown will be close to zero. Then this linear
combination provides an estimate for the first unknown at 7; :

(n,0)
Za(n,/) 5&)_ _ J.OR Za(n’l)K(p}f;l)%)dr +j‘OR Za(n,/)Kif’/;/) %dr.

w(”J)
If 2 a" K ()~ S(r—ry), and  2La""K ") () ~0,
then
) _S 50"
() -2 o

is an estimate of the density perturbation at r =7, .

(n.0)

The coefficients, a'""’, are different for different target radii 7, .

Averaging Kernels
The functions,

za(n,/)K;’j;’)(}") = A(”b’r%

2" K () = B,
are called "averaging kernels".

The coefficients, a', are determined my minimizing a quadratic form (here, we
use index i instead of double index (n,7)):

M, A,a, ) = J-OR J(ro,r)[A(n),r)]zdr +
+B] [BU]dr+ay Eda’,

where J(#,r) = 12(r—r0)2, E, is a covariance matrix of observational errors,
a and f are the regularization parameters. The first integral in this equation
represents the Backus-Gilbert criterion of & -ness for A(7,r) ; the second term
minimizes the contribution from B(,r), thus, effectively eliminating the
second unknown function, (dy/y in this case); and the last term minimizes the
errors.




Optimally localized averaging kernels
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Inversion results for the observed solar
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Theory of Rotational Frequency Splitting. I
The eigenfrequencies of a spherically-symmetrical static star are degenerate with
respect to the azimuthal number m. Rotation breaks the symmetry and splits each mode
of radial order, n, and angular degree, [, into (2/+1) components of m =—1,...,I (‘mode
multiplets’). The rotational frequency splitting can be computed using the variational
principle. From this variational principle, one can obtain mode frequencies o,

nim

relative

to the degenerate frequency @,, of the non-rotating star:

1 .
Ao, =, —o,= [—Mm E-Eriey(Ex EN|par,
nl

where ¢, is the unit vector defining the rotation axis, and Q= Q(r,6) is the angular

velocity which is a function of radius » and co-latitude &, and 7, is the mode inertia.

The first term is due to the wave advection by rotation; the second term represents
the Coriolis effect.

Aw,, =mQ where Q is a mean angular velocity.
For the rotational frequency splitting measured in Hz:

Av,,, =mQ/27 . For the Sun: Q/27 ~ 460 nHz

The corresponding mean period of rotation: P =27/Q

m

)

5

Angular order

Ilustration of the frequency
shift due to the solar rotation

Typical power spectra of solar
i oscillation data from the MDI
B - e instrument on SOHO. Each

ot betBne
fji:w St N horizontal curve shows three
o v : lines of the power spectrum for
different azimuthal order m
with radial order » =15 and
angular degree /=19,20, and 21
(from left to right). The slope of
the modal lines is due to the
rotational frequency shift:
prograde modes with positive
o— - e m have higher frequencies than
20 }MXM‘WMM««waf‘j‘”‘~-w~w«-~~f-~f~»“m‘“"“»w~w«! retrograde modes with negative

3040 3060 3080 3100 3120 m.
Frequency, puHz




Inversion results for solar rotation
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The radial profile of solar rotation




Two principal approaches

* Global Helioseismology

— measure global
oscillation modes from
the oscillation power
spectra obtained by
applying the spherical
harmonic transform to
the full-disk oscillation
data

* Local Helioseismology

- measure variations of
oscillation frequencies
in local areas by
applying the Fourier
transform to the
oscillations in these
area, or by measuring
the travel times of phase
shifts in local areas.




Time-distance
helioseismology

J A remarkable discovery was made by
Tom Duvall in 1993 that the travel times of the
solar waves can be measured by using a cross-
covariance function of the stochastic wave

field:

Te— Integration time

w(r.A) = [ f(Lr) [ (t+7,r+N)dt

or Cs; ¢) 0 \\

Oscillation signal (Doppler velocity, intensity

Time Distance etc) at two points on the Sun’s surface

Definition of normal modes

One way to represent the oscillations is as a sum of standing waves or normal
modes, where the signal observed at a point (r,0,¢) at time ¢ is given by

[(r.0.6.0=3a,,£,,(r.0.9)exp(il@,, +a,,]). (1)

nlm
In this equation, the three integers n, /, and m identify each mode and are
commonly called the radial order, angular degree, and azimuthal order
respectively. For each mode, 4., is the mode amplitude, ®,, is the
eigenfrequency, and «,,, is the phase.

The spatial eigenfunction for each mode is denoted by &, . For an
axisymmetrical Sun, the eigenfunctions can be separated into radial and
angular components:

é:nlm(r’ 0’ ¢) = é‘:nl(r)Y]m (Ha ¢)5 (2)
where Y, is the spherical harmonic and the radial eigenfunction is denoted
now by &,(r).

Is the Sun axisymmetrical?
What happens to the normal modes if the structure is not axisymmetrical?




Cross-covariance function in terms of
normal modes

The cross covariance function of the oscillation signals f for two points at

coordinates Iy and T, on the solar surface is defined as the integral

V(@A) = [ () (. 0d, ®

Here A is used to denote the angular distance between the two points and T is the
total length of the observations. The time delay 7 measures the amount that one
signal is shifted relative to the other. In practice, it is quite time-consuming to
compute the cross correlation with the integral in equation 3. Fortunately, the
convolution theorem allows us to change the integral into a product in the Fourier
domain,

‘I’(a),r,A)=F(r1,a))F*(r2,a)). @)
Here W is used to represent the temporal (7) Fourier transform of y, and F'
represents the temporal Fourier transform of f*. The length T of the observations
is assumed to be long compared to any time lag 7 of interest. Since Fourier

transforms can be computed very efficiently, equation 4 provides a relatively fast
way to compute cross correlations.

Assuming that the oscillation signal f can be written in the form of equation 1, the
Fourier transform F of the observed oscillation signal is given by

F(o,R ,0,¢)= Z a,, &, (R)Y, (0,9)e (- aw,,). ©)

nlm

Here the solar surface is denoted by 7 = R . The power spectrum of solar oscillations
is band-limited. For convenience, let us assume that the amplitudes depend on n and
[ in the following way:

nlm nlm

where G} (@)=~2[+1 exp( (w5 )’ J 7

If I then compute the product in equation 4 and perform the inverse Fourier integral,
the result is

y(z,A)= Z G/ (@,)explio, 1) 3 Y, (0, 4™ Y, (0.4, )e . ®)
Since the phases are random, we assume that on average the terms ¢
tend to cancel, except of course when m = m'. In this case, equation 8 becomes

w(r,A)= z G/2 (a)n,)exp(ia)n,r)z Y[ ¢1) lm( 2’¢2)- ®

(@t =Gt )

will
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The addition theorem for spherical harmonics
]

Z Y,,(0,,4)Y,,(6,.8,) = a,F)(cos A),

me—l

(see, for example, Jackson, Classical Electrodynamics) allows the simplification

(z,A)= Z G2<wm)exp(zm,i,r)( jP(cosA), (10)
where A is the dlstance between the two points (6,,4,) and (6,,4,):
cos A = cos0, cosb, +sinb, sinb, cos(4 — @,), an

and £, is the Legendre polynomial of order /.

Again following Jackson we can approximate

A 2 T
B(cosA)~J0([21+l]sm5j~ fmcos(LA—Zj, (12)

where J is the Bessel function of the first kind. We have introduced the new symbol
L =1+1/2; these approximations are valid where A is small, but LA is large.

Then we have
2 (®,~®,)’
(r,A) =) ———exp| — (0 = @) cos(w, 7)cos(LA). (13)
4 ; TA S0’ !
Now the double sum can be reduced to a convenient sum of integrals if we regroup the
modes so that the outer sum is over the ratio v = /L and the inner sum is over @.

You have learned that the radius of the lower turning point is determined by the ratio v=aw/L.
Thus, the travel distance A of an acoustic wave is also determined by this ratio v; A is
otherwise independent of .

In this case, given the band-limited nature of the function G, only values of L which are close
to L, = w,/v will contribute to the sum, and we can expand L near the central frequency @, :

LA~ A[L(wo)+ (0~ wn)} A{&+m} (14)
v u
where u=0w/0OL.

Furthermore, the product of cosines in equation 13 can be changed into a sum; one term is

(T_éjm[l_l]mo , (15)
u u %

and the other term is identical except that 7 has been replaced with —z (i.e. the time lag is
negative). The result is that the double sum in equation 13 becomes

w(r,A)= ZJ_Zexp[ (- wO) J cos [irfg}w{if%}m%]. (16)

Ccos

11



The inner sum can be approximated by an integral over @; it can be shown that

Ji da)exp[—(w;;:‘))z]cos [r —%}a) —D—HA%} =

76w’ exp[— 52)2 [r—é} ]cos(w0 (r—AD. 17)
u v

The limits (—o0,0) pose no particular problem since the amplitude function G* is
essentially zero for very large and very small frequencies.

Finally, then, the cross correlation can be expressed as

oo’ AT A
z//(r,A)ocZexp — {ri;} cos(w{ri;D (18)

The cross correlation function at any particular distance is thus described by two
characteristic times; the group time, defined as 7, = A/u, and the phase time, defined as

7, =A/v. Furthermore, the cross correlation will have two peaks; one near +7,, and the
other near —7,. These two peaks correspond to the two directions of propagation.

Two representations of the covariance
function

,,
w(r,A)= Z \/7 exp| — ( 5 . 0) cos(w,,7)cos(LA).
-in terms of the normal mode frequencies. (Once you know changes in mode

frequencies you can find the corresponding changes in the cross-covariance
function and travel times.)

- 4 u v

- in terms of the phase and group velocities or travel times.

The key difference between “global” helioseismology and time-distance
helioseismology is the mode coupling in the cross-covariance function.

Thus, we can apply time-distance helioseismology to the non-axisymmetrical Sun.

12



time, min

Time-distance measurements

Travel times are determined from
the cross-covariance function:

W(T,A)ZJT.f(t,I”)f*(Z‘+T,I”+A)dt

Observational Time—Distance Diagram

1.oL I |
50 200

time, min

s s w0 150 Cross-covariance function for a particular distance (30

distance, deg degrees in this case) represents a series of wave packets.

Simple interpretation of time-distance

measurements
* The cross-covariance function collects
Observational Tire_Distance Diagrem coherent signals for solar waves excited
at a given point and traveling to another
point

* The cross-covariance signal corresponds
to a strong point source (similar to the
flare signal) — Claerbout’s conjecture

* The cross-covariance signal corresponds
to a wave packet of waves in a finite
. frequency range. The solar oscillations
Diréct waves =%z Second-bounce Nave periods around 5 min. Thus, we see
or : waves the 5-min periodicity in the wave packet.

* The cross-covariance function can be
05 used for measuring group and phase
travel times.

time, min

nce fun

We measure the group and
phase travel times from these
ol P diagrams.
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Book: Passive Imaging With Ambient Noise
J. Garnier, G. Papanicolaou, 2016

Correlation-based imaging with an array of passive sensors(triangles).
Data acquisition, in which the reflector to be imaged (diamond) is located
at Zr, and is illuminated by noise source (circles).

Time-distance diagnostics

Fermat’s PrincipleA powerful property of ray

l paths is that they obey Fermat’s Principle, which
i states that the travel time along the ray is stationary

with respect to small changes in the path. This

implies that if a small perturbation is made to the
background state, the ray path is unchanged.

I

The perturbation to the travel time can then be
expressed as

T—T,= 1 okds.
@ YTo
Here Ok is the perturbation to the wavevector due
to inhomogeneities in the background state, and
Fermat’s principle allows us to make the integral

along the unperturbed ray path I .

14



Travel time of acoustic waves

In the solar convection zone, the Brunt-Viisdld frequency N is small
compared to the acoustic cutoff frequency and the typical frequencies of solar
oscillations. Neglecting this frequency, the dispersion relation can be written as

k? =Ciz[a)2—wg]—k;,

I(1+1)

5 -
r

K=

If we allow small perturbations (relative to the background state) in @, ¢, and
¢, then the integrand in Fermat’s equation can be written to first order as

Sk ds { (&jk (5%)( o} Jw}
ol B Bl i el | e el il 202
1) c)o o, \co |k

where I have neglected terms which are second-order in d¢/c and |u | /c.

Effect of velocity field

One possible perturbation to the spherically symmetric background state is a
velocity field. If the flow field is described by u then the observed frequency
will be Doppler shifted by the advection of the oscillations,

Sw =—kn-u,

so that the Fermat’s equation becomes

A 2
R {"'(fn){ﬁ)k*[%j[ f’czjﬂ}ds,
Tl ¢ cJo (o, \co )k

where 1 is a unit vector tangent to the ray path. Here I have defined the
quantity 7" as the perturbed travel time in one direction along the ray path
(unit vector +1i) and 7~ as the perturbed travel time in the opposite
(reciprocal) direction (unit vector —n).

15



Separation of the velocity field signal
from the other perturbations

To separate the effects of the velocity field from the other perturbations, we thus
define

u-n
2

0Ty =7 —7 =-2 ds

Iy C

+ _ 2
5Tmean = (T—m = 2'0 _J‘ (ﬁjﬁ_i_ 5a)c ?CZ 2 dS.
2 Wi\c)o (o, \co |k

This equation thus provides the link between the measured travel time differences
and the flow field along the ray path. This simple equation is in the heart of the
time-distance helioseismology.

For simplicity, we will neglect variations of 60,
This is not valid in sunspot regions.

Time-distance inferences of the sound
speed and flow velocity

Measures travel times of acoustic or surface gravity waves propagating
between different surface points through the interior. The travel times
depend on conditions, flow velocity and sound speed along the ray path:

0T = J-iicd I—d(n U) s

The sound speed and flow velocity signals are separated by measuring
the travel times for waves propagating in the opposite directions along

the same ray paths and calculating the mean travel times and the differences:

TN A g jﬁﬁd
r
/©\ Oy =T, = —des
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Vector VelTocitX measurement scheme

NS
T gifr
N
EW
T i
E
S
01
T gifr

is a travel time difference
averaged over the
full annulus.

ypicalty, we measure times for acoustic waves to travel
between points on the solar surface and surrounding
quadrants symmetrical relative to the North, South, East
and West directions. In each quadrant, the travel times are
averaged over narrow ranges of travel distance A.

Then, the times for northward-directed waves are
subtracted from the times for south-directed waves to yield

he time, 7>, which predominantly measures north-south

motions. Similarly, the time differences, z,y , between

westward- and eastward directed waves yields a measure
of east-ward motion. The time, 7} , between outward- and
inward-directed waves, averaged over the full annuli, is
mainly sensitive to vertical motion and the horizontal
divergence.

This provides a qualitative picture of the motions, and is
useful for a preliminary analysis. However, in numerical
inversions, all three components of the flow velocity are
properly taken into account. The averaging procedure is
essential for reducing noise in the data.

Tomographic Inversion

We assume that the convective structures and flows do not change during the observations and repre-
sent them by a discrete model. In the model, the 3D region of wave propagation is divided into rectan-
gular blocks. The perturbations of the sound speed and the three of the flow velocity are approximated
by linear functions of coordinates within each block, e.g.

Se(x,y, 2) = zc’_jk[l_x\x_x,-l J[l_ -y }[1_ |z -z J

i1~ X yj+1_yj Zk+1 " %k

According to the averaging procedure of the cross-covariance function, the travel time measured at a
point on the surface is the result of the cumulative effects of the perturbations in each of the tra-
versed rays of the 3D ray systems (see Figure below). Therefore, we average the equations for 871
over the ray systems corresponding to the different radial distance intervals of the data, using approx-
imately the same number of ray paths as in the observational procedure. As a result, we obtain two
systems of linear equations that relate the data to the sound speed variation and to the flow velocity,

e.g. for the sound speed

- ik
51, > 4% Bey
ij

where matrix 4 maps the structure properties into the observed travel time variations, Aand
define the location of the central point of a ray system on the surface, and v labels surrounding

annuli. The equation is solved by a regularized least-squares technique.

Surface travel times gt Subsurfag‘c
vV measured at location AMW Stcrrtzflbdgﬁﬂ
TS @ (w,A) for(distance v i j&k) p
k

A
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Deep- and surface-focusing observing schemes

Surface focusing

o = -
5E E
5E E

-40 -20 0 20 40
a) radial distance, Mm

Deep focusing

M T
sE

-40 -20 20 40

depth, z Mm
o
5

depth, z. Mm
\ =
S

0
b) radial distance, Mm

Ray approximation

Originally, time-distance
helioseismology was intuitively
derived from the picture of
acoustic ray paths.

In fact, the acoustic waves
observed on the Sun can be
considered high-frequency
acoustic waves. In most of the
region in which these waves are
confined, their wavelengths are
short compared to the local
temperature and density scale
heights. In this wavelength regime,
the wave propagation can be
approximated with ray theory.
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Sensitivity kernels for travel-time measurements in the

Born approx1mat10n
Properties of the solar interior are related B )
to the measured travel times through Banana-doughnut kernel
sensitivity kernels (e.g. for sound speed):

¥, Mm

ST(A) = j K, (7, A)

where 1ntegrat10n is over the whole
volume of the Sun.

These kernel are calculated in the Born
approximation as in terms as a
combination of normal mode
eigenfunctions.

y, Mm

The sound-speed variations, flow velocity
and other solar properties are determined
from this equation by inversion.

Examples of travel-time sensitivity kernels for the first
and second bounces calculated in the Born
approximation. The black curves show the
corresponding ray paths.

Sound-speed structure beneath a sunspot (Couvidat
et al 2005)

Ray approximation (old) Born theory (new)

0

22/229
z (Mm)

-15

100 100
x (Mm) x (Mm)
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Magnetic field effects

Magnetic field in sunspots, particularly, in the sunspot umbra may
significantly affect the time-distance diagnostics for 3 main reasons:

— The standard Doppler shift measurements may not provide accurate estimate of

the actual line-of-sight velocity

— Magnetic field inhibits convection (reducing excitation) and presumably
absorbs waves causing inhomogeneous distribution of the acoustic power on
the solar surface, resulting systematic shifts in the standard travel times
(Woodard’s effect)

— Magnetic field causes changes in the dispersion properties of acoustic waves
resulting in anisotropy in the travel times

Magnetic effects are particularly strong when plasma parameter is of
the order of unity or smaller: = = 41p=-g2 .

For most sunspot models this happens above the photosphere. This regime
is poorly understood, and avoid this we mostly work with low-frequency
waves that are reflected below the photosphere.

At high frequencies, magnetic effects (“shower-glass effect”, “inclined
field effect”) become strong, particularly, in acoustic holography (Doug
Braun’s talk tomorrow). Our tests show that for time-distance
measurements these are much less significant.

20



led maps of subsurface flows
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A small sample of a synoptic map of subsurface flows
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Solar Subsurface Weather
Synoptic maps of subsurface flows (0-20 Mm)

Carrington Rotation 1923

60

Depth 2 Mm 40

20

Latitude
o

0 30 60 920 120 150 180 210 240 270 300 330 360
— 30 m/s Carrington Longitude

Carrington Rotation 1975
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Similar maps are obtained from the ring analysis (Haber et al 2002)

Large-scale flows around active regions:
(example AR9433, April 2001)

converging 40 m/s flow toward the neutral line in the upper layers
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Sunspot structure and dynamics

Parker’s model

|

FiG. 1.—A sketch of the conventional idea of the magnetic
field oonﬁgfumtlon of a sunspot. The heavy line represents the
visible surface of the Sun.

Monolithic model
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s
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—-t—.._
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Fia. 2.—A sketch of the prop ic field fi

tion, in which the field divides into 1nd|\-'|dua| flux tubes some
distance below the visible surface, The dashed arrows represent
the presumed convective downdraft which helps to hold the
separate flux tubes together in the tight cluster that constitutes
the sunspot.

Cluster Model

Helioseismology provides strong evidence for the cluster model.




Observations of emerging active region by time-distance
helioseismology
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Evolution of AR 10486-488: October 24 — November 2, 2003

24-0Oct-2003 00:00 UT
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Sound-speed map and magnetogram of AR 10486 on October 25, 2003, 4:00 UT

(depth of the lower panel: 45 Mm)
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Sound-speed map and magnetogram of AR 10486 on October 26, 2003, 12:00 UT
AR 10488 is emerging
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Emergence of AR 10488, October 26, 2003, 20:00 UT
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Emergence of AR 10488, October 27, 2003, 4:00 UT
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Growth and formation of sunspots of AR 10488, October 29, 2003, 4:00 UT
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Growth and formation of sunspots of AR 10488, October 31, 2003, 12:00 UT

12:00:00
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Cut in East-West direction through both magnetic polarities, showing a loop-like structurg
beneath AR 10488, October 30, 2003, 20:00 UT
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Detection of Emerging Active Regions
in the Deep Interior

New methodology of detection of
emerging flux

Deep-focus Time-Distance Helioseismology: solar oscillation signal is filtered to
select acoustic waves traveling to depth 40-70 Mm (right), averaged over arcs (left),
and cross-correlated for opposite arcs. Travel-time perturbations are measured by
fitting Gabor wavelet. This method has been tested with 3 different instruments
(MDI, HMI, GONG) for many quiet and emerging flux regions

— 1 Mm

/——198 Mm—-\

Emerging Flux

llonidis et al (2011) _
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Results for AR 10488
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Example: Emergence of AR 10488: Oct 24 — Nov 2, 2003

1/121/2022

latitude, deg

24-0ct-2003 00:00 UT

270 280 290 300 310
longitude, deg

61

Active region NOAA 11158, February

2011
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Example of analysis of subsurface
flows 1n flaring AR 11158
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18, 2011

February 10

Photospheric magnetic field and subsurface flows at depth 0-
1 Mm in AR 11158,
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Subsurface converging flows and X2.2

AR11158, S_DO/HMI and GOES-_15

divU (depth 0-1 Mm)
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- blue, log(X-ray flux) - red

|
0.0
|

)
W

flow divergence (depth 0-1 Mm)
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[
Converging flows / X2.2 flare
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M

14 1
date, February 2011

»Approximately one day
before the X-class flare
strong shearing flows are
developed 0-3 Mm below
the surface. This is
reflected in a sharp
increase of the flow
convergence.
»Potentially new method
of forecasting flaring and
CME activity of active
regions based on
helioseismology analysis
and MHD modeling of
subsurface flows.




