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PHYS747: Introduction to Helioseismology

Time: 1:00 pm - 2:20 pm, Monday, Tuesday 

Teaching mode: hybrid 

Place: GITC, room 1402

Instructor: Alexander Kosovichev 

e-mail: alexander.g.kosovichev@njit.edu 

Office:  Tiernan Hall 482

Office hours: by appointment

Course materials: Canvas

URL: http://sun.stanford.edu/~sasha/PHYS747

NJIT Webex: https://njit.webex.com/join/sasha

Grades: homework (20%), class participation (20%) quizzes (20%), 

final presentation/project (40%)

Textbooks

1. M, Stix, The Sun: an Introduction. Second Edition, 
Springer, 2004.

2. C. Aerts, J. Christensen-Dalsgaard, D. W. Kurt, 
Asteroseismology, Springer, 2010

Additional sources:
1. A.G. Kosovichev, Advances in Global and Local 

Helioseismology: An Introductory Review, Lecture 
Notes in Physics, Volume 832, 2011

2. Extraterrestrial Seismology, V. Tong, R. Garcia 
(eds), Cambridge Univ. Press, 2015
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Lecture Plan
1. Sept . 7. Lecture 1. Brief history of helioseismology.

2. Sept. 8. Lecture 2.  Observations and basic properties of solar 
oscillations.  

3. Sept. 13. Lecture 3. Oscillation power spectrum.  Excitation by 
turbulent convection. Line asymmetry and pseudo-modes.

4. Sept. 14. Lecture 4. Magnetic effects:  sunspot oscillations and 
acoustic halos. 

5. Sept. 20. Lecture 5. Helioseismic response to solar flares:  sunquakes. 

6. Sept. 21. Lecture 6. Global helioseismology. Basic equations. I

7. Sept. 27. Lecture 7.  Global helioseismology. Basic equations. II

8. Sept. 28. Lecture 8.  JWKB solution; Dispersion relations for p- and g-
modes.

9. Oct. 4. Lecture 9.  Frequencies of p- and g-modes. I.  High-degree p-
modes

10.Oct. 5. Lecture 10.  Frequencies of p- and g-modes. II.  Low-degree p-
modes

11.Oct. 11. Lecture 11. Gravity modes. 

12.Oct. 12. Lecture 12. Surface gravity waves (f-mode).The seismic 
radius.

1. Oct. 18. Lecture 13. Asymptotic ray-path approximation. 

2. Oct. 19. Lecture 14. Mode-ray duality 

3. Oct. 25. Lecture 15. Duvall’s law.  Time-distance relation

4. Oct. 26. Lecture 16. Asymptotic sound-speed inversion.

5. Nov. 1. Lecture 17. General helioseismic inverse problem. Variational 
principle; Perturbation theory; Kernel transformations 

6. Nov. 2.  Lecture 18.  Solution of inverse problem. Optimally localized 
averages method. 

7. Nov. 8. Lecture 19. Inversion results for solar structure

8. Nov. 9. Lecture 20. Inversions for solar rotation. Regularized least-
squares method.  

9. Nov. 15. Lecture 21. Local-area helioseismology. Basic principles. 
Ring-diagram analysis. Time-distance helioseismology; Acoustic 
holography and imaging.

10.Nov. 16. Lecture 22. Solar tomography. Time-distance diagram. Wave 
travel times. Deep- and surface-focus measurement schemes.

11.Nov. 22. Lecture 23. Inversion results  of solar acoustic  tomography. 
Diagnostics of supergranulation. Structure and dynamics of sunspots. 

12.Nov.23. Lecture 24. Large-scale and meridional flows. Solar dynamo.

13.Nov. 29-30. Work on student's projects.

14.Dec. 6-7. Presentation of student's projects.
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Presentations: Jupyter notebooks, 
https://jupyter.org/

• Requirements: 
– Present observational facts

– Explain the basic physical processes

– Briefly review the current state of research

– Present project methodology, Python code and results 

– Answer questions

• For each topic I will provide references and initial 
material.

Topics

1. Doppler-shift modeling and analysis
2. Oscillations power maps – acoustic halo
3. Power spectrum of global oscillations
4. Propagation diagram for solar and stellar models
5. Ray-path theory
6. Line asymmetry modeling
7. Acoustic travel times
8. Time-distance helioseismology
9. Analysis of sunquakes
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Brief history of 
helioseismology

1/21/2022 8

“At first sight it would seem that the deep 

interior of the sun and stars is less 

accessible to scientific investigation than 

any other region of the universe. Our 

telescopes may probe farther and farther

into the depths of space; but how can we 

ever obtain certain knowledge of that which 

is hidden behind substantial barriers?  

What appliance can pierce through the 

outer layers of a star and test the 

conditions within? ”

Sir Arthur Stanley Eddington, The Internal Constitution of 
the Stars, 1926, page 1, line 1.
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Discovery of solar oscillations
• 1962: R.Leighton, R.Noyers and G.Simon 

discovered 5-min oscillations

Spectroheliograph
• The spectroheliograph is a solar 

spectrograph with an exit slit in 
the spectral plane. 

• The solar image is moved across 
the entrance slit, and 
simultaneously the photographic 
plate is moved along behind the 
exit slit.

• A quarter-wave plate is used as a 
line shifter, so that two images in 
red and blue wings were recorder 
simultaneously.

• The two spectroheliograms which 
are simultaneously obtained in 
the two wings of the spectral line 
are subsequently subtracted
photographically.
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Discovery of 5-min oscillations

• The result is a “Doppler plate”; its intensity variation 
has its origin in the local Doppler shift of the line 
used. 

• Two such Doppler plates, obtained by scanning the 
Sun first in one and immediately afterwards in the 
opposite direction, are then again subtracted from 
each other. 

• Since each scan takes a few minutes, the resulting 
“Doppler difference” has a variable time delay Δt
between the two constituent Doppler plates: Δt is 
smallest at the edge where the scanning direction 
was reversed and increases linearly from there. 

• A periodic velocity field on the Sun manifests itself as 
a periodically changing intensity contrast.

Measurement procedure
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Discovery of solar oscillations
• 1962: R.Leighton, R.Noyers and G.Simon

discovered 5-min oscillations

First explanation
• Atmospheric oscillations excited by 

granular impacts (acting like pistons).
Characteristic frequency of the 
atmospheric oscillations:
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Where c is the sound speed, H is the 
pressure scale height

Oscillation 
period

c=10 km/s=106 cm/s, g=2.74x104 cm/s2, =5/3:      P=275 sec
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Discovery of a modal structure
• In 1969 Frazier developed 

computer analysis of Doppler 
images and calculated first k-
omega diagram, where k (or 
kh) is the horizontal 
wavenumber; =2/k is the 
horizontal wavelength.

• It showed two oscillating 
modes.

• This contradicts to the 
interpretation that the 
oscillations are atmospheric.

• He suggested that the 
oscillations are excited below 
the surface. 

1/21/2022 16

• 1970: Roger Ulrich developed a theory of 
subsurface oscillations and predicted the ridge 
(modal) structure of 5-min oscillations

Resonant solar modes: n=1,2,3,4 
– number of the nodal point along 
the radius.



9

Detection of the ridge structure
• For the solar oscillations the important 

fact is that the power is not evenly 
distributed in the kh-ω plane, but instead 
follows certain ridges. 

• Each of these ridges corresponds to a 
fixed number of wave nodes in the radial 
direction. 

• The ridges theoretically predicted by 
Ulrich (1970) were first observed by 
Deubner (1975) with the Domeless

• Coude Telescope at Capri. 

• Figure 5.4 shows an example, where up 
to 15 ridges can be identified in the 
velocity power spectrum.

Search for global modes: 
160-min oscillations

• In 1976, Severny, Kotov and Tsap observed the Doppler-shift difference between the 
central part of the solar disk and the whole disk and detected global-Sun variations with 
period of 160.01 min. The result was confirmed by 3 other groups. However, no 
explanation was found. The period was very close to 1/9 of day.

• This led to suggestions to perform helioseismology observations from space. 
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Measurements of Line Shift. 
Doppler Compensator. 

The Doppler compensator is a 
glass plate which is inclined to 
balance signals in the line wings 
recorded by two photomultipliers. 
It is used in magnetographs. The 
angle   is proportional to the line 
shift D v c    . From this we 

can determine the line-of-sight 
velocity v . 

Resonance-Scattering Spectrometer. 

This is a very accurate method developed for observing global oscillations
of the Sun in sodium line. The vapor cell with external magnetic field
provides signals of the light scattered in two wings, which are measured by
a photomultiplier. The difference of these signals is proportional to the
Doppler shift.  



11

Resonance-scattering spectrometer- GOLF 
instrument on SOHO (Global Oscillations at Low Frequencies) 

5000 G magnetic field

Discovery of global 5-min 
oscillations

In 1979 using a new method of 
resonant spectroscopy 
Claverie et al observed the 
Doppler shift of the Sun as a 
star, and discovered the 
discrete modal structure of the 
5-min oscillations.  

Large frequency 
separation

The peaks of the global solar 
oscillation are equidistant in 
the power spectrum.  

It was theoretically predicted 
by Vandakurov (1968)
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For l n , 1 0r  , and we get:  
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Low-degree p-modes

Maximum amplitude 
is around 3,300 Hz, 
or 3.3 mHz. The 
corresponding 
oscillation period is 
300 seconds or 5 
minutes.  

Problem of identification of normal modes 
(1979-1983)

For determining the internal structure of the Sun it 
is important to identify the observed oscillations 
as the normal modes with 3 “quantum” numbers: 
angular degree, l, angular order, m, and radial 
order, n. 

n=?

n=0

n=1

n=2

n=3
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The radial order identifications 
of low-degree modes

• In 1983, using observations 
made at the South Pole Duvall 
and Harvey were able to link 
the high- and low-degree 
modes, and identified the 
radial orders in the global 
oscillation spectrum.

• It turned out that the observed 
oscillation frequencies closely 
correspond to the mode 
frequencies of the standard 
solar model that predicted high 
neutrino flux.

• Therefore, helioseismology 
showed that the solution of the 
solar neutrino problem is within 
the particle physics.

n=0
1
2
3

1/21/2022 26

• NASA Solar Physics Exploration Seminar 
(April 10, 1991). 
– Speaker: Douglas Gough
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1/21/2022 27http://sohowww.nascom.nasa.gov/

Solar and Heliospheric Observatory (SOHO) makes
continuous
observations
of the Sun since 1996.

Michelson Doppler Imager 
(MDI)

MDI provided Doppler images every minute with resolution 256x256 
pixels uninterruptedly, and with resolution 1024x1024 pixels for 2 
month a year. 
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The Michelson Doppler 
Imager (MDI) on SOHO and 
Helioseismic and Magnetic 
Imager (HMI) on SDO are 
examples of the Fourier 
Transform Spectrometer. 
MDI measures ( )I   at 5 
positions across the line (Ni I 
6768A) , and HMI measures 
at 6 positions for Fe I 
(6173A).  
The advantage of these type 
of measurements is that there 
is no need for a narrow 
entrance slit of the 
spectrometer.  
 

MDI principle

Solar oscillation movie from MDI
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MDI discoveries 
http://soi.stanford.edu

• Differential rotation: near-
surface shear layer, 
tachocline, torsional 
oscillations

• Subsurface 
supergranulation and large-
scale flows (“Solar 
Subsurface Weather”)

• Structures and flows 
beneath active regions. 

• Sunquakes
• Changes of the meridional 

circulation with solar cycle
• Far-side imaging

Time-distance 
helioseismology

• A remarkable discovery was 
made by Tom Duvall in 1993 that the 
travel times of the solar waves can be 
measured by using a cross-covariance 
function of the stochastic wave field:

Time               Distance Oscillation signal (Doppler velocity, intensity
etc) at two points on the Sun’s surface

Integration time

0

( , ) ( , ) ( , )
T

f t r f t r dt      
or C(¿; ¢ )
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Global helioseismology estimates 
frequencies of normal modes
from oscillation power spectra

Time-distance helioseismology
measures travel time  delays and wave
phase shifts from cross-covariance:

0

( , ) ( , ) ( , )
T

f t r f t r dt      

1/21/2022 34

Time-distance helioseismology

Measures travel times of acoustic or 
surface gravity waves propagating  
between different surface points 
through the interior. The travel 
times depend on conditions, flow 
velocity and sound speed along 
the ray path:

 
2

n Uk c
ds ds

c c


 


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 
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Subsurface image of a sunspot
• An image of the sound speed below a sunspot 

derived from dopplergrams observed with the 
Michelson Doppler Imager onboard the Solar and 
Heliospheric Observatory spacecraft using the 
technique of time-distance helioseismology. 

• Three planes are shown, on top the intensity at 
the surface which shows the sunspot with the dark 
central umbra surrounded by the somewhat 
brighter, filamentary penumbra. 

• The second plane is a vertical cut from the surface 
to a depth of 24000 km showing areas of faster 
sound speed as reddish colors and slower sound 
speed as bluish colors. 

• The sound speed is affected both by the 
temperature of the gas and the magnetic field, 
which we know to be strong in the sunspot at the 
surface. The normal increase of sound speed with 
depth in the sun has been subtracted so that we 
are only looking at deviations from the average. 

• The third plane (bottom) is a horizontal cut at a 
depth of 22000 km showing the horizontal 
variation of sound speed over a region of 
150000x150000 km.

Solar Dynamics Observatory 
(launched on February 11, 2010)

Helioseismic and Magnetic Imager (HMI) provides uninterrupted 4096x4096-
pixel Doppler images every 45 sec.

The MDI observation program was terminated on 12 April 2011 
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Six tuning positions of the HMI 
instrument on Solar Dynamics 
Observatory (SDO) are shown 
here with respect to the Fe I 
6173A solar line at disk center 
and at rest.

During observations the line 
profile is shifted due to the 
surface motions and spacecraft 
orbital velocity (Doppler effect), 
and also the line split in 
magnetic field (Zeeman effect). 
These line changes are used to 
measure the Doppler velocity 
and magnetic field strength. 

HMI principle

Solar Dynamics Observatory
Geostationary orbit for uninterrupted 
observations of the Sun.

Helioseismic and Magnetic Imager (HMI) 
- Full-disk Dopplergrams and magnetograms
Atmospheric Imaging Assembly (AIA) 
– Full-disk images of the chromosphere and corona
Extreme Ultraviolet Variability Experiment (EVE) 
– EUV solar irradiance

http://hmi.stanford.edu/
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Ground-based helioseismology
networks: GONG since 1995

GONG

GONG

GONG

GONG

GONG GONG

BiSON

BiSON BiSON

BiSON

BiSON

MWO

CRAO

https://gong.nso.edu/

1/21/2022 40

Ground-based helioseismology
networks: GONG since 1995
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Asteroseismology

Bedding & 
Kjeldsen 
(2003)

Asteroseismology missions

Asteroseismology observations and space missions 16 

  or Launch (in cm) (in deg × deg)  

PRISMA 
STARS

Phase A 
Phase A

40 
80 

1.5 × 1.5 <8 
<8 

5

Project Status D  FOV  mV  Number Noise 
of stars (in ppm2 µHz− 1) 

2000 
1 × 1 2500 

Eddington Phase B  120 5 × 5 <11 2000 6 
MOST 2003 15 0.4 × 0.4 <6 <6 5.7 
CoRoT  2006 25 1 × 1 <7 10 1.7 
Kepler 2009 95 10.5  × 10.5 <12 1300 17.6 

PLATO      2026 67 47 × 47 <11 85000 4.2 
TESS  2018 10 23 × 90 <12 5×10 

 

7.6 
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Stellar oscillations

Solar-type stars Red giants
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Lecture 2
Observations and basic 

properties of solar oscillations.  
Oscillation power spectrum.

(Stix, Chapter 5.1; Kosovichev, p.3-13; 
Christensen-Dalsgaard, p. 5-24)

First explanation
• Atmospheric oscillations excited by 

granular impacts (acting like pistons).
Characteristic frequency of 
the atmospheric 
oscillations:
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Where c is the sound speed, H is 
the pressure scale height
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Detection of the ridge structure
• For the solar oscillations the important 

fact is that the power is not evenly 
distributed in the kh, ω-plane, but instead 
follows certain ridges. 

• Each of these ridges corresponds to a 
fixed number of wave nodes in the radial 
direction. 

• The ridges theoretically predicted by 
Ulrich (1970) were first observed by 
Deubner (1975) with the Domeless

• Coude Telescope at Capri. 

• Figure 5.4 shows an example, where up 
to 15 ridges can be identified in the 
velocity power spectrum.

Problem of identification of 
normal modes

For determining the internal structure of the Sun it 
is important to identify the observed oscillations 
as the normal modes with 3 “quantum” numbers: 
angular degree, l, angular order, m, and radial 
order, n. 

n=?

n=0

n=1

n=2

n=3
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The radial order identifications 
of low-degree modes

• In 1983, using observations 
made at the South Pole Duvall 
and Harvey were able to link 
the high- and low-degree 
modes, and identified the 
radial orders in the global 
oscillation spectrum.

• It turned out that the observed 
oscillation frequencies closely 
correspond to the mode 
frequencies of the standard 
solar model that predicted high 
neutrino flux.

• Therefore, helioseismology 
showed that the solution of the 
solar neutrino problem is within 
the particle physics.

1/21/2022 6

Global helioseismology estimates frequencies of normal modes
from oscillation power spectra

0

( , ) ( , ) ( , )
T

f t r f t r dt      
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The nature of solar oscillations

Acoustic and surface gravity waves stochastically excited by turbulent convection
in the upper convection zone. 

1/21/2022 8

Excitation sources are stochastic: rapid 
downdrafts in dark intergranular lanes

Granule disappears

Intensity darkens
Velocity Pulse: up/down

Energy Flux: up/down
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Seismic response to solar flares –
“Sunquake”

High-energy flare particles heat the solar chromosphere generating a shock
propagating downward and hitting the surface.

1/21/2022 10

Enhanced images of the flare 
ripples on the Sun’s surface

Compare with water ripples
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Time-distance diagram of the flare seismic 
response calculated by averaging the wave 

front over 360 degrees

The propagation speed 
of the seismic wave:

V=(distance)/(time)

increases with time from 
10 km/s to 100 km/s.

Why?

1/21/2022 12

Propagation of acoustic waves on 
the Sun

The wave front on the 
surface accelerates 
because it is formed
by acoustic waves 
propagating through the 
solar interior where the
sound speed is higher.
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The basic idea of helioseismology
• To measure travel times  or resonant frequencies 

and to determine the internal properties of the Sun, such 
as the sound speed cs(r) 

Time-distance helioseismology

• Using the time-distance 
diagram one can measure 
the travel time of acoustic 
waves for various 
distances, and then infer 
the sound speed along the 
wave paths.

• Can we measure the travel 
times by using the 
stochastic wave field 
continuously generated by 
the turbulent convection? 
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Time-distance 
helioseismology

• A remarkable discovery was 
made by Tom Duvall in 1993 that the 
travel times of the solar waves can be 
measured by using a cross-covariance 
function of the stochastic wave field:

Time               Distance Oscillation signal (Doppler velocity, intensity
etc) at two points on the Sun’s surface

Integration time

0

( , ) ( , ) ( , )
T

f t r f t r dt      
or C(¿; ¢ )
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Time-distance helioseismology measures travel time  delays and 
wave phase shifts from cross-covariance:

0

( , ) ( , ) ( , )
T

f t r f t r dt      
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Time-distance helioseismology

Measures travel times of acoustic or 
surface gravity waves propagating  
between different surface points 
through the interior. The travel 
times depend on conditions, flow 
velocity and sound speed along 
the ray path:

 
2

n Uk c
ds ds

c c


 


   

 

Solar oscillations. 

• Observations. 

• Theory of p-, g-, and 
r-modes. 

• Excitation 
mechanisms.

• Oscillations of solar-
type stars. 

Oscillation power spectrum from
Solar and Heliospheric Observatory
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Normal Mode of Solar Oscillations –
displacement eigenfunction: r(r,,)=(r)*Ylm(,) 

l=20, m=16

The rotation speed of the solar surface is 2km/s.
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Dopplergram of Solar Oscillations 
 

MDI single Dopplergram minus an 
average solar velocity image 
observed over 45 minutes reveals 
the surface motions associated with 
sound waves traveling through the 
Sun’s interior. The small scale light 
and dark regions represent the up 
and down motions of the hot gas 
near the Sun’s surface. The pattern 
falls off towards the limb because 
the acoustic waves are primarily 
radial.  
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Velocity vs. time (horizontal axis) and 
position on the solar disk (vertical axis).
The distance between the curves for 
adjacent points is equal to a velocity of 
400 m/s. 

A sample of solar oscillations 
observed as a function of time 
and position on the disk

Power spectrum of solar 
oscillations

Velocity of oscillations ( )v x y t   can be represented in terms of its Fourier components:    

                       
( )( ) ( ) x yi k x k y t

x ya k k v x y t e dxdydt         

where xk  and yk  are components of the wave vector,   is the frequency.  

 

The power spectrum is:    
*( ) ,  where  is complex conjugate.x yP k k a a a     

If there is no preference in the direction of the wave propagation then P  depends on two 

variables, the horizontal wavenumber 
2 2

h x yk k k  , and frequency.  

Then, we calculate the angular average in the k-space: 
 

2

,

0

1
( , ) ( cos , sin , )

2h h hP k P k k d


    


    

This is a local power spectrum. It allows us to investigate properties of various regions  
observed on the solar disk.  
Consider example using IDL code: power_spectrum.pro. 
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3D Power Spectrum

Spherical harmonic transform

For the global oscillations we must use the spherical coordinates (r,)  
and expansion in terms of spherical surface harmonics: 

0

( , , ) ( ) ( , )
l

m
lm l

l m l

v t a t Y   


 

    

In the spherical coordinates,   :  

 ( ) ( ) ( )m i t
la l m v t Y e d d dt              

where 
| |( ) ( )m m im

l lY P e      is a spherical harmonic of the angular degree l and 

angular order m , ( )m
lP  is an associate Legendre function. 

 
Degree l  gives the total number of node circles on the sphere; order m  is the number nodal 
circles through the poles.  
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Degree  l gives the total number of node circles on the 
sphere; order m is the number nodal circles through the 
poles. 

Spherical harmonic power spectrum
 

The coefficients of the spherical harmonic expansion can be found by using  
the spherical harmonic transform:  

 ( ) ( ) ( )m i t
la l m v t Y e d d dt              

where ( )m
lY    is a spherical harmonic of the angular degree l and angular order m .  

 
The power spectrum is:  

 ( )P l m a a      

 
For a spherically symmetrical star, P  depends only on l  and  .  
In this case the power spectrum is ‘degenerate’ with respect of angular order m .  
 
Then we can define the analog of the horizontal wavenumber:   

 
( 1)

h

l l
k

R


   where R  is the solar radius.   

We will derive this in a future lecture. 
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Oscillation power spectrum

• The power spectrum represents 
the oscillation signal in terms 
of spherical harmonics of 
angular degree l (and the 
horizontal wavelength, lh
=2p/kh ), and the oscillation 
“cyclic” frequency, n=w/2p.

l is integer number
lh is measured in Mm
n is measured in mHz

 w is measured in rad/sec 
(sometimes called angular
frequency)

f-mode

p1

p2

p3

convection modes

p4

acoustic (p) modes

 Power spectrum of 
solar oscillations 
obtained from the 
MDI data. Black 
points are mode 
frequencies 
determined from the 
power spectrum. 
The lowest ridge is 
the surface gravity 
wave (f-mode). The 
upper ridges are 
acoustic (p) modes. 
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Low-Degree (Global) Modes 
When the Sun is observed as a star (integrated whole-disk Doppler-shift
measurements) the power spectrum consists only of low-degree p-modes
of 0 1 2l     and 3.  

This figure is a Fourier spectrum of the longest continuous GOLF time series 
(805 days). GOLF is an instrument on SOHO that measures the oscillations in 
the line-of-sight velocity of the solar photosphere from the whole Sun. These 
oscillations appear at precise frequencies, visible as sharp peaks in this 
spectrum, mainly around 3mHz, corresponding to periods about 5min. 

The distance between main
peaks in the power
spectrum is about 68 Hz.
The corresponding time:

61 (68 10 ) 245    min is
the travel time for acoustic
waves propagate through
the center of the Sun to the
far side and come back.  
The low-degree mode 
provide information about 
physical conditions of the 
solar core. 
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Lecture 3
Basic questions of helioseismology

Oscillation power spectrum.

(Stix, Chapter 5.1.2-5.1.4; Kosovichev, p.11-17; 
Christensen-Dalsgaard, p. 5-24)

1/21/2022 2

Basic questions of
helioseismology

1. What are the chemical composition and 
thermodynamic conditions inside the Sun?

2. How fast is the internal rotation of the Sun?
3. Is there meridional circulation inside the Sun?
4. What is the structure of solar convections?
5. What is the source of solar magnetic fields?
6. How are the magnetic active regions and 

sunspots formed?
7. What is the cause of the instability of magnetic 

fields and mass eruptions?
8. How can we predict the periods of high solar 

activity?



2

Internal structure

• Convective instability. 

• Convective energy 
transfer. 

• Non-standard solar 
models. 

• Solar neutrinos, 
neutrino transitions, 
MSW effect. 

• Variations of the sound 
speed detected by 
helioseismology 

Global Helioseismology

• Variational principle

• Perturbation theory.

• Inversions, sound 
speed and rotation 
inferences.
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Local Helioseismology

• Local-area 
helioseismology

• Ring-diagrams

• Acoustic imaging

• Time-distance 
tomography.

Subsurface structure of sunspot

Subsurface structure and 
dynamics.

• Far-side imaging.

• Meridional circulation. 

• Emerging magnetic flux. 

• Active region dynamics.

Illustration of far-side imaging of active regions
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Convection.

• Granulation, 
supergranulation, 
giant cells. 

• Near-Surface Shear 
Layer.

• Rotational and 
magnetic effects.

• Numerical 
simulations.

3D numerical simulations of solar 
granulation

Differential rotation.

.

• Oblateness, quadrupole 
moment, test of the 
general relativity.

• Models of differential 
rotation. 

• Rotation of solar-type 
stars.

Rotation rate inside the Sun
determined by helioseismology
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Dynamo theory.

• Mean-field 
electrodynamics.

• Alpha- and Omega-
effects.

• Dynamo models.

• 3D MHD 
simulations.

Animation of the solar dynamo

Zonal acceleration reveals patterns of 
dynamo waves

Measurements of the zonal 
acceleration revealed zones 
of deceleration, caused by 
internal magnetic fields (blue 
areas in the movie).

The flow deceleration 
originates at the base of the 
solar convection zone, 
200 Mm beneath the solar 
surface, at about 60 degrees 
latitude.

This is the primary seat 
of the solar dynamo. 
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Sunquakes

• Energetic particles.

• Thin- and thick-target 
models, chromospheric 
evaporation, heat 
conduction. 

• Radiative and MHD 
shocks. 

Sunquakes – helioseismic waves
excited by solar flares

Power spectrum of solar 
oscillations

Velocity of oscillations ( )v x y t   can be represented in terms of its Fourier components:    

                       
( )( ) ( ) x yi k x k y t

x ya k k v x y t e dxdydt         

where xk  and yk  are components of the wave vector,   is the frequency.  

 

The power spectrum is:    
*( ) ,  where  is complex conjugate.x yP k k a a a     

If there is no preference in the direction of the wave propagation then P  depends on two 

variables, the horizontal wavenumber 
2 2

h x yk k k  , and frequency.  

Then, we calculate the angular average in the k-space: 
 

2

,

0

1
( , ) ( cos , sin , )

2h h hP k P k k d


    


    

This is a local power spectrum. It allows us to investigate properties of various regions  
observed on the solar disk.  
Consider example using IDL codepower_spectrum.pro. 
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3D Power Spectrum

Spherical harmonics

For the global oscillations we must use the spherical coordinates (r,)  
and expansion in terms of spherical surface harmonics: 

0

( , , ) ( ) ( , )
l

m
lm l

l m l

v t a t Y   


 

     

In the spherical coordinates,   :  

 ( ) ( ) ( ) sin( )m i t
la l m v t Y e d d dt               

where 
| |( ) ( )m m im

l lY P e      is a spherical harmonic of the angular degree l and 

angular order m , ( )m
lP  is an associate Legendre function. 

 
Degree l  gives the total number of node circles on the sphere; order m  is the number nodal 
circles through the poles; m=-1,-l+1,…,l-1, l  that is (2l+1) m-values on m for given l.  
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Spherical harmonics
 

The coefficients of the spherical harmonic expansion can be found by using  
the spherical harmonic transform:  

 ( ) ( ) ( ) sin( )m i t
la l m v t Y e d d dt               

where ( )m
lY    is a spherical harmonic of the angular degree l and angular order m .  

 
The power spectrum is:  

 ( )P l m a a      

 
For a spherically symmetrical star, P  depends only on l  and  .  
In this case the power spectrum is ‘degenerate’ with respect of angular order m .  
 
Then we can define the analog of the horizontal wavenumber:   

 
( 1)

h

l l
k

R


   where R  is the solar radius.   

We will derive this in a future lecture. 

Oscillation power spectrum

• The power spectrum represents 
the oscillation signal in terms 
of spherical harmonics of 
angular degree l (and the 
horizontal wavelength, lh
=2p/kh ), and the oscillation 
“cyclic” frequency, n=w/2p.

l is integer number
lh is measured in Mm
n is measured in mHz

 w is measured in rad/sec 
(sometimes called angular
frequency)

f-mode

p1

p2

p3

convection modes

p4

acoustic (p) modes
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Examples of spherical harmonics. 

Cyclic frequency 2

   is often used as frequency variable.  

Because only a hemisphere of the Sun is observed in the power spectrum
for a given mode of target l m  beside peaks corresponding to this mode
peaks of other modes appear (so-called ‘mode leaks’). The spherical
harmonics are not orthogonal on a hemisphere.   

Mode leakage matrix
For the global oscillations we must use the spherical coordinates (r,)  
and expansion in terms of spherical surface harmonics: 

0

( , , ) ( ) ( , )
l

m
l m l

l m l

v t a t Y   



  

   

     

The coefficients can found by applying spherical harmonic transform:  

 ( ) ( ) ( )sin ,m
lm la t v t Y d d      



     

where the integral is calculated over the whole sphere. In this case because the spherical
functions are orthogonal the integral will give the exact coefficients, because  

                                         ( , ) ( )sinm m
l l ll mmY Y d d        
  



   

However, the oscillations are observed only in one hemisphere the orthogonally is not 
satisfied, and the spherical harmonic transform gives a combination of the a-coefficients: 

                                            
0

( ) ( ),
l

m m
lm l l l m

l m l

a t S a t



  

   

    

where   ( , ) ( )sinm m m m
l l l l

hemisphere

S Y Y d d       
    is the “mode leakage matrix”

The mode leakage complicates the analysis of the observed spectra.  
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 Power spectrum of 
solar oscillations 
obtained from the 
MDI data. Black 
points are mode 
frequencies 
determined from the 
power spectrum. 
The lowest ridge is 
the surface gravity 
wave (f-mode). The 
upper ridges are 
acoustic (p) modes. 

Low-Degree (Global) Modes 
When the Sun is observed as a star (integrated whole-disk Doppler-shift
measurements) the power spectrum consists only of low-degree p-modes
of 0 1 2l     and 3.  

This figure is a Fourier spectrum of the longest continuous GOLF time series 
(805 days). GOLF is an instrument on SOHO that measures the oscillations in 
the line-of-sight velocity of the solar photosphere from the whole Sun. These 
oscillations appear at precise frequencies, visible as sharp peaks in this 
spectrum, mainly around 3mHz, corresponding to periods about 5min. 

The distance between main
peaks in the power
spectrum is about 68 Hz.
The corresponding time:

61 (68 10 ) 245    min is
the travel time for acoustic
waves propagate through
the center of the Sun to the
far side and come back.  
The low-degree mode 
provide information about 
physical conditions of the 
solar core. 
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Asteroseismology

Bedding & 
Kjeldsen 
(2003)

Excitation of Solar 
Oscillations 

 
Solar oscillations are
randomly excited by
turbulent convection. The
random excitation
function appears as
multiplicative noise in the
power spectra. This
represents the most
serious problem for
measuring mode
frequencies. This figure
shows examples of good
and poor fits of an
oscillation model to the
power spectra.   

Power spectra of A) 50 32 12l m n       and B) 
50 0 16l m n     . 
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Elements of signal processing

( ) ( )

1
( ) ( )

2

i t

i t

x x t e d t

x t x e d







 


 

















 tite

f
ti 


 sincos

2





Forward and inverse Fourier transform

1 /

; / 2

; 0 ,1, 2 , . . . 1 ; 1 /

/ ; ; 0 ,1, 2 , . . . 1

s

s N y q u is t s

j

k k

f t

f T N f f

t j t j N f T

f k T f T k k N

 

 

     

   

Sample rate, fs:

Duration T, number of samples N, Nyquist frequency:

Time index j: Frequency resolution:

Frequency index k:

G. Mendel, LIGO-G1200759

Discrete Fourier Transform (DFT)

1 1
2 / 2 /

0 0

1
        

N N
ijk N ijk N

k j j k
j k

x x e x x e
N

 
 



 

   

The DFT is of order N2 operations. 
The Fast Fourier Transform (FFT) is a fast way of doing the DFT, of order Nlog2N.

*

*

;

; ;

: [0, ] [0, / 2]

k k

s k mN k N k k

Nyquist

f f x x

f f mf x x x x

Useful Band f k N



 

  

   

 

 

   

DFT Aliasing

Power outside this band is aliased into this band. Thus need to filter data before 
digitizing, or when changing fs, to prevent aliasing of unwanted power into this band.
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Parseval’s Theorem

1 1 1 12 2 *

0 0 0 0

1 1
       

N N N N

j k j j k k
j k j k

x x x y x y
N N

   

   

      

Correlation Theorem

1
*

' '
0

         
N

j j j j k k k
j

c x y c x y





    

Convolution Theorem
1

' '
0

         
N

j j j j k k k
j

C x y C x y





    

One-sided Power Spectral Density (PSD) 
Estimation

2 2 222 2 2k k k

k
S

x t x t x
P

T N Nf

 
  

  

The absolute square of a Fourier Transform gives what we 
call “power”.  A one-sided PSD is defined for positive 
frequencies (the factor of 2 counts the power from negative 
frequencies). The angle brackets, < >, indicate “average 
value”. Without the angle brackets, the above is called a 
periodogram.  Thus, the PSD estimate is found by averaging 
periodograms.  The other factors normalize the PSD so that 
the area under the PDS curves gives the RMS2 of the time 
domain data.
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Power Spectral Density of Gaussian White Noise
12 2 2

0

1 1 22 2 2

0 0

1
0;

1

N

j j j
j

N N

k k j
k j

n n n
N

n n n N
N









 

 

  

  



  

2 2
2 2 2

2

2 2/2 /2
2 2

0 0

2 2 2
2

2 1 2

2

k

k
s

N N

k
k k s

n t N t
P t

T T f

N
P f Area RMS

f T N

 

  
 

 
    

      



For Gaussian white noise, the square root of the area 
under the PSD gives the RMS of time domain data.

Amplitude and Phase of a spectral line
0 0

0

2 2

0cos(2 )
2

;       
2

j jift i ift i

j j

i
k

e e
x A ft A

AN
fT k x e

   



 
  

  

  If the product of f and T is an integer k, we call 
say this frequency is “bin centered”.

For a sinusoidal signal with a “bin 
centered” frequency, all the power lies in 
one bin.

For a signal with a non- bin-
centered frequency, power leaks out 
into the neighboring bins.
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PSD Statistics












 dedrdrdr

drredrrdrdredrdr

rdrddxdyxyyxr

dxdyeedxdyyx

yxyxifyxn

iyxn

rr

yx

2/2

2/2/

122

2/2/

22222

2

1
)(;

2

1
;

)(;
2

1
),(

);/(tan;

2

1

2

1
),(

1;0;~

~

22

22





















Rayleigh Distribution:

Chi-squared for 2 degrees of freedom:

Gaussian noise with 2 degrees of freedom:

Histograms of Real and Imaginary Parts of DFT

Rayleigh Distribution
Histogram DFT Power – a chi-squared 
distribution for 2 degrees of freedom.
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Excitation of Solar 
Oscillations 

 
Solar oscillations are
randomly excited by
turbulent convection. The
random excitation
function appears as
multiplicative noise in the
power spectra. This
represents the most
serious problem for
measuring mode
frequencies. This figure
shows examples of good
and poor fits of an
oscillation model to the
power spectra.   

Power spectra of A) 50 32 12l m n       and B) 
50 0 16l m n     . 

Modeling the oscillation power spectrum
Consider a harmonic oscillator with damping driven by a random forcing

function:   
2

2
02

= ( )
d x dx

x f f
dt dt

    

Solution:    ( ) = ( ) ( )x t h t f t t dt



    

where  ( )h t   is the impulsive response function for  ( ) = ( )f t t .   
Using the convolution theorem, the Fourier transform   

of the solution:  ( ) =x hf   
We find Fourier transform of the response function 

2 2
0 = 1h i h h           2 2

0

1
=h

i   
   

   

2
2 2 2 2 2
0

1
| | =

( )
h

    
  

If       
2

2 2 2
0 0

1 1
| |

(2 ) ( ) ( / 2)
h

   


 


 

Lorentzian line profile:   
2

0

( ) =

1
/ 2

A
 



  

  
 
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Sample spectrum and true spectrum

We compute the power spectrum of a finite realization of  ( )x t   of 

length  T   ‐ a sample spectrum  ( )T
xC  .   

At  frequencies  separated  by  1/ T ,  the  values  of  ( )T
xC    are 

independent  and  distributed  as  chi‐squared  with  two  degrees  of
freedom.   

We can define the spectrum of  ( )x t   as:   

  ( ) = [ ( )]lim
T

x x
T

t E C 


  

where  E   is  the  expectation  operator,  an  average  over  many
independent realizations.   
For a white noise, this is just a constant. As for the white noise, the
ratio  (at a given  frequency) of  the sample spectrum divided by  the
true  spectrum  is  distributed  as  chi‐squared  with  two  degrees  of
freedom.  

Maximum likelihood
 
The  probability  density  of  the  sample  spectrum  iC   at  a  given 

frequency  i  is:  

 
1

( ) = exp( / )i i i
i

p C C 
  

The maximum  likelihood  technique  is  used  to  estimate  the model
parameters  of  a  spectral  line.  It  consists  of maximizing  the  joint
probability function:  

  = ( ) = exp [(ln / )]i i i i
i

P p C C     

where  iC  is the sample spectrum,  

 
2

0

=

1
/ 2

i

i

A
r

 


 
  

  
 

 

is  the  Lorentzian  profile plus  background noise.  This  equivalent  to
minimizing  

  0[ , , , ] = [(ln / )]i i i
i

M A r C       



18

Example: analysis of global-Sun 
oscillations from GOLF 

• GOLF (Global Oscillations at Low Frequencies) 
observes the Sun-as-a-star from SOHO 
spacecraft.

• Calculate the power spectrum using the GOLF 
data from April 11, 1996 to 2018 
(22 years with 95% duty cycle).

• The data are available in the class webpage: 
http://sun.stanford.edu/~sasha/PHYS747

Resonance-Scattering Spectrometer. 

This is a very accurate method developed for observing global oscillations
of the Sun in sodium line. The vapor cell with external magnetic field
provides signals of the light scattered in two wings, which are measured by
a photomultiplier. The difference of these signals is proportional to the
Doppler shift.  
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Resonance-scattering spectrometer- GOLF 
instrument on SOHO (Global Oscillations at Low Frequencies) 

5000 G magnetic field
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Rotational frequency splitting 
 

The modes with 0m   represent azimuthally propagating waves. The
modes with 0m   propagate in the direction of solar rotation and, thus,
have higher frequencies in the inertial frame than the modes 0m   which
propagate in opposite direction. As a result the modes with fixed n  and l
are split in frequency: 0nlm nlm nl     . Thus, the internal rotation is

inferred from splitting of normal mode frequencies with respect to the
azimuthal order, m  .  

( ) ( )i t m m im i t
l lm le Y a P e         



/ 2     is cyclic frequency, measured in Hz
- The oscillation period is (in sec, min, etc).

- displacement of the solar surface in solar modes

 is the angular frequency, measured in rad/s

Examples of spherical harmonics. 

Cyclic frequency 2

   is often used as frequency variable.  

Because only a hemisphere of the Sun is observed in the power spectrum
for a given mode of target l m  beside peaks corresponding to this mode
peaks of other modes appear (so-called ‘mode leaks’). The spherical
harmonics are not orthogonal on a hemisphere.   
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Illustration of the frequency 
shift due to the solar rotation 

Typical power spectra of solar 
oscillation data from the MDI 
instrument on SOHO. Each 
horizontal curve shows three 
lines of the power spectrum for 
different azimuthal order m  
with radial order 15n   and 
angular degree 19 20l   , and 21 
(from left to right). The slope of
the modal lines is due to the 
rotational frequency shift: 
prograde modes with positive 
m  have higher frequencies than 
retrograde modes with negative 
m . 

Line Asymmetry and Pseudo-
modes

        

1

2

3

4

lo
g(

P V
)

a)

Velocity and intensity spectra from SOHO/MDI

1 2 3 4 5 6 7 8
ν, mHz

0.5

1.0

1.5

2.0

2.5

3.0

lo
g(

P I
)

b)

Velocity power spectrum

Intensity power spectrum

pseudo-modes

line asymmetry

reverse line asymmetry
non-adiabatic modes

adiabatic modes

Power spectra of l = 200 modes 
obtained from SOHO/MDI
observations of 
a Doppler velocity, 
b continuum intensity.

Acoustic waves with frequencies 
below the cut-off frequency are 
completely reflected by the surface 
layers because of the steep density 
gradient. These waves are
trapped in the interior, and their 
frequencies are determined by the 
resonant conditions, which depend 
on the solar structure. But the waves 
with frequencies above the
cut-off frequency escape into the 
solar atmosphere. 

Above this frequency the power
spectrum peaks correspond to so-
called “pseudo-modes”
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Line Asymmetry and Pseudo-
modes
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Velocity power spectrum
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non-adiabatic modes

adiabatic modes

Power spectra of l = 200 modes 
obtained from SOHO/MDI
observations of 
a Doppler velocity, 
b continuum intensity.

The line asymmetry is apparent, 
particularly, at low frequencies. In 
the velocity spectrum, there is more 
power in the low-frequency wings 
than in the high-frequency wings
of the spectral lines. In the intensity 
spectrum, the distribution of power 
is reversed.

The asymmetry is the strongest for 
the f-mode and low-frequency p-
mode peaks. At higher frequencies 
the peaks become more 
symmetrical, and extend well above 
the acoustic cut-off frequency: 
c ∼5–5.5 mHz.
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Lecture 4

Excitation of solar oscillations.
Line asymmetry and pseudo-modes.

(Stix, Chapters 5.1 and 5.4; Kosovichev, p.13-17)

Projects

• Power spectrum: Ivan Oparin

• Global modes from GOLF: Sheldon Fereira

• Oscillation model, line asymmetry: Bryce Cannon

• Power maps, acoustic halo: Bhairavi Apte

• Time-distance helioseismology: Sadaf Iqbal Ansari

• Observational sensitivity of solar/stellar oscillations. Leakage 
matrix: 

• Ray paths, travel times:

• Propagation diagram for solar and stellar models:

• Analysis of sunquakes:



2

Solar oscillations are stochastically 
excited by turbulent convection

Power spectrum of solar oscillations

Velocity of oscillations ( )v x y t   can be represented in terms of its Fourier components:    

                       
( )( ) ( ) x yi k x k y t

x ya k k v x y t e dxdydt         

where xk  and yk  are components of the wave vector,   is the frequency.  

 

The power spectrum is:    
*( ) ,  where  is complex conjugate.x yP k k a a a     

If there is no preference in the direction of the wave propagation then P  depends on two 

variables, the horizontal wavenumber 
2 2

h x yk k k  , and frequency.  

Then, we calculate the angular average in the k-space: 
 

2

,

0

1
( , ) ( cos , sin , )

2h h hP k P k k d


    


    

This is a local power spectrum. It allows us to investigate properties of various regions  
observed on the solar disk.  
Consider example using IDL codepower_spectrum.pro. 
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3D Power Spectrum

Spherical harmonics

For the global oscillations we must use the spherical coordinates (r,)  
and expansion in terms of spherical surface harmonics: 

0

( , , ) ( ) ( , )
l

m
lm l

l m l

v t a t Y   


 

     

In the spherical coordinates,   :  

 ( ) ( ) ( ) sin( )m i t
la l m v t Y e d d dt               

where 
| |( ) ( )m m im

l lY P e      is a spherical harmonic of the angular degree l and 

angular order m , ( )m
lP  is an associate Legendre function. 

 
Degree l  gives the total number of node circles on the sphere; order m  is the number nodal 
circles through the poles; m=-1,-l+1,…,l-1, l  that is (2l+1) m-values on m for given l.  
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Spherical harmonics
 

The coefficients of the spherical harmonic expansion can be found by using  
the spherical harmonic transform:  

 ( ) ( ) ( ) sin( )m i t
la l m v t Y e d d dt               

where ( )m
lY    is a spherical harmonic of the angular degree l and angular order m .  

 
The power spectrum is:  

 ( )P l m a a      

 
For a spherically symmetrical star, P  depends only on l  and  .  
In this case the power spectrum is ‘degenerate’ with respect of angular order m .  
 
Then we can define the analog of the horizontal wavenumber:   

 
( 1)

h

l l
k

R


   where R  is the solar radius.   

We will derive this in a future lecture. 

Oscillation power spectrum

• The power spectrum represents 
the oscillation signal in terms 
of spherical harmonics of 
angular degree l (and the 
horizontal wavelength, lh
=2p/kh ), and the oscillation 
“cyclic” frequency, n=w/2p.

l is integer number
lh is measured in Mm
n is measured in mHz

 w is measured in rad/sec 
(sometimes called angular
frequency)

f-mode

p1

p2

p3

convection modes

p4

acoustic (p) modes
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Rotational frequency splitting 
 

The modes with 0m   represent azimuthally propagating waves. The
modes with 0m   propagate in the direction of solar rotation and, thus,
have higher frequencies in the inertial frame than the modes 0m   which
propagate in opposite direction. As a result the modes with fixed n  and l
are split in frequency: 0nlm nlm nl     . Thus, the internal rotation is

inferred from splitting of normal mode frequencies with respect to the
azimuthal order, m  .  

( ) ( )i t m m im i t
l lm le Y a P e         



/ 2     is cyclic frequency, measured in Hz
- The oscillation period is (in sec, min, etc).

- displacement of the solar surface in solar modes

 is the angular frequency, measured in rad/s

Illustration of the frequency 
shift due to the solar rotation 

Typical power spectra of solar 
oscillation data from the MDI 
instrument on SOHO. Each 
horizontal curve shows three 
lines of the power spectrum for 
different azimuthal order m  
with radial order 15n   and 
angular degree 19 20l   , and 21 
(from left to right). The slope of
the modal lines is due to the 
rotational frequency shift: 
prograde modes with positive 
m  have higher frequencies than 
retrograde modes with negative 
m . 
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Line Asymmetry and Pseudo-modes
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Power spectra of l = 200 modes 
obtained from SOHO/MDI
observations of 
a Doppler velocity, 
b continuum intensity.

Acoustic waves with frequencies 
below the cut-off frequency are 
completely reflected by the surface 
layers because of the steep density 
gradient. These waves are
trapped in the interior, and their 
frequencies are determined by the 
resonant conditions, which depend 
on the solar structure. But the waves 
with frequencies above the
cut-off frequency escape into the 
solar atmosphere. 

Above this frequency the power
spectrum peaks correspond to so-
called “pseudo-modes”

Line Asymmetry and Pseudo-modes
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Power spectra of l = 200 modes 
obtained from SOHO/MDI
observations of 
a Doppler velocity, 
b continuum intensity.

The line asymmetry is apparent, 
particularly, at low frequencies. In 
the velocity spectrum, there is more 
power in the low-frequency wings 
than in the high-frequency wings
of the spectral lines. In the intensity 
spectrum, the distribution of power 
is reversed.

The asymmetry is the strongest for 
the f-mode and low-frequency p-
mode peaks. At higher frequencies 
the peaks become more 
symmetrical, and extend well above 
the acoustic cut-off frequency: 
c ∼5 mHz.

f-mode
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Physical interpretation

• Hydrodynamic equations

• Waves in the solar atmosphere: interpretation of 
acoustic cut-off frequency

• Excitation of solar oscillations: interpretation of 
modes, pseudo-modes and line asymmetry

Hydrodynamic Equations 
Basic assumptions:  

1. linearity: 1sv c 


  

2. adiabaticity: 0dS dt    
3. spherical symmetry of the background  
4. magnetic forces and Reynolds stresses are negligible  

The basic equations are conservations of mass, momentum, energy and 
Newton’s gravity law.  
1. Conservation of mass (continuity equation):  
The rate of mass change in a fluid element of volume V  is equal to the mass 
flux through the surface of this element (of area A ):  

              ( )
V A V

dV vda v dV
t

  
     

   
  

 

Then,  

                ( ) 0v
t

 
   




 

or  

                   0
d

v
dt

    


 

V
A

v

divergence
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2. Momentum equation (conservation of momentum of a fluid

element):                  
dv

P g
dt

    
 

 

where P  is pressure, g


 is the gravity acceleration. 
 

Also,    ( ) . This is the 'material' derivative.
dv v

v v
dt t


  


   
 

 
 
3. Adiabaticity equation (conservation of energy) for a fluid
element:  

                    0
d P

dt 
 

  
 

         or         2dP d
c

dt dt


   

where 2c P    is the adiabatic sound speed. Finally, 

2( ) ( ) .
P

v P c v
t t

          
 

 

. .   for  componentx x x
x y z x

v v v
e g v v v v

x y z

  
 

  

Waves in the solar atmosphere: 
initial state

photosphere

x

g=2.74x104 cm/s2

T=6000 K

Initial (hydrostatic) state:  

 0
0P

g
x


 

   

Equation of state defines pressure in terms of 
temperature, density and molecular weight:    

,
R T

P



  

where   is the molecular weight. 

For non-ionized hydrogen gas 1  , for fully 

ionized hydrogen gas 0.5  . Because of 

ionization the number of particles increases by 2 
(ions+electrons). R is the gas constant. 

Then, 
 

0 ( ) (0)
x

HP x P e


  where 
RT

H
g

  is the 

pressure scale height. 



9

Waves in the solar atmosphere: 
initial equations

photosphere

x

g=2.74x104 cm/s2

T=6000 K

Continuity (mass conservation) equation: 

 0.
v

t x

  
 

    

Momentum equation: 

 .
dv P

g
dt x

 
  

   

Velocity v  can be expressed in terms of displacement 

  of fluid elements:    
d

v
dt


   

Adiabaticity equation:  

2 0,
P P

v c v
t x t x

             
 

where 
2c

P


  in the squared adiabatic sound speed. 

Waves in the solar atmosphere: 
linearized equations for small perturbations

photosphere

x

g=2.74x104 cm/s2

T=6000 K

Consider small perturbations: 

 

0 1 0 1

0 1 0 1

,    ,

0,   ,    

P P P

v v v v v
t

  


   


   


  

Continuity (mass conservation) equation: 

 
0 11 0.
v

t x

 
 

    

Momentum equation: 

 
1 1

0 1.
v P

g
t x

  
  

    

Adiabaticity equation:  

20 01 1
1 1 0.

PP
v c v

t x t x

           
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Waves in the solar atmosphere: 
dispersion relation

photosphere

x

g=2.74x104 cm/s2

T=6000 K

Eliminating 1 1 1, ,P v  we find that displacement   satisfies 

the second-order PDE: 

   

2 2
2

2 2
,c g

t x x

    
 

  
  

using the substitution  exp( )u x   we eliminate the first-

order term: 

   

2 2
2 2

2 2
,c

u u
c u

t x
 

 
 

  

where 
2c

g

c

    is the acoustic cut-off frequency.  

For the dispersion relation we seek the solution in terms of 

Fourier harmonics: exp( ) :u i t ikx     

 
2 2 2 2

cu c k u u       

 
2 2 2 2

cc k     

The frequencies of plane-parallel acoustic waves traveling in 
the atmosphere are higher than the acoustic cut-off frequency. 

Waves in the solar atmosphere: 
calculation of the acoustic cut-off frequency

photosphere

x

g=2.74x104 cm/s2

T=6000 K

 
2c

g

c

    is the acoustic cut-off frequency.  

We assume that the Sun’s material is ideal gas with 

5 / 3   and molecular weight .  

The solar composition by mass is: 73% of H, 25% 
of He, and 2% of heavy elements (C, O, Fe, Ni,…): 
X=0.73, Y=0.25, Z=0.02. 

When temperature is high (in the solar interior or 
corona) the gas is fully ionized, and: 

  3 1
4 2

1
0.6

2X Y Z
  

   

For non-ionized (or weakly ionized) gas (in the 
photosphere and chromosphere): 

1 1
4 16

1
1.25

X Y Z
  

   
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                  Equation of state for solar composition 
The pressure in the solar interior can be described by the ideal gas law:
P nkT   

where k  is the Boltzman constant and n  is the particle density.  

                               H He Z en n n n n      

where Zn  is the particle density of atom heavier than helium.  

The particle density can be expressed in terms of fractional mass
abundances of hydrogen, X , helium, Y , and heavier elements, Z , such 
as  
                           1X Y Z     

Then,                
4H He Z

X Y Z
n n n

M M AM

  
      

where M  is the proton mass, A  is a mean mass of the heavy elements
(typically, 16A  ).  

For fully ionized plasma (in the deep interior of the Sun or the corona): 

                                 
1

2
2e H He Zn n n An    

Then 

1 3 1 2
2 3 (1 ) 2

2 4H He Z

A
n n n A n X Y Z

M A

          
 

 

or     
3 1

2
4 2

n X Y Z
M

      
 

 

Finally,   
3 1

2
4 2

k R T
P nkT T X Y Z

m




       
 

 

where   is the mean molecular weight: 
3 1
4 2

1

2X Y Z
  

 
 

For pure hydrogen plasma, X=1, Y=Z=0: =0.5.  
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For weakly ionized plasma (in the photosphere and chromosphere):  

                                 0en   

Then
1 1

4H He Zn n n n X Y Z
M A

        
 

 

or     
1 1

4 16
n X Y Z

M

      
 

 

Finally,   
1 1

4 16

k R T
P nkT T X Y Z

m




       
 

 

where   is the mean molecular weight:  

                                            
1 1
4 16

1

X Y Z
  

 
 

 

Waves in the solar atmosphere: 
calculation of the acoustic cut-off frequency

photosphere

x

g=2.74x104 cm/s2

T=6000 K

 
2c

g

c

    is the acoustic cut-off frequency.  

In the photosphere: 5 / 3,   =1.25    

5

,     ,     

8.1 10  cm/s 8 km/s.

P R T
c P

RT
c

 
 




 

   
 

3/ 2 4.5 10 4.5 mHz
4c c

g
Hz

c

  


    

  

The corresponding period 1/c = 3.6 min. 
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Waves in the solar atmosphere: 
measurements of the acoustic cut-off frequency

photosphere

x

g=2.74x104 cm/s2

T=6000 K

 Fig.   5.3.  Phase  difference,
Δφ,  of oscillations measured
in two lines originating deep
(Fe I,  λ   =    593.0 nm)   and
high (Na I, λ =  589.6 nm) in
the  solar  atmosphere,  as  a
function of frequency.  After
Staiger (1987)

c

Excitation of solar oscillations

• The primary source is turbulent convection. The basic 
idea is that parcels of gas moving back and forth 
during their convective motion provide perturbations 
that lead to acoustic waves. However, the precise 
mechanism is still not known. Numerical simulations 
provide interesting examples.

• Formally we may describe such an oscillator by an 
equation of type of the atmospheric wave equation 
except that the right-hand side is not zero, but a given 
(stochastic) function of frequency, the forcing 
function.
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1/21/2022 27

Excitation sources are stochastic: rapid 
downdrafts in dark intergranular lanes

Granule disappears

Intensity darkens
Velocity Pulse: up/down

Energy Flux: up/down

Excitation of solar oscillations
• Kumar and Lu (1991) proposed a simple model where the forcing is 

concentrated to a single surface, at r = r
s
. Although the excitation is not 

stochastic in this model, the model illustrates some principle aspects of the 
solar oscillations.  

• Consider the wave equation with a forcing function: 

 
2 2

2 2
2 2

( , )cc u f x t
t x

u u  
  

 
 

 and seek a solution in the form of Fourier harmonics:  

( , ) ( , ) i tu x t u x e dt      

Then, for ( , )u x   we obtain:   
2

2 2 2
2

( , )cu c u f x
dx

d u       
 

or     
2 22

2 2 2

1
( , )c u f x

dx c c

d u   
   

 

We consider a solution for a localized source function in the form of a delta-
function: ( )sr r   at all frequencies.  
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Simple analytical model of solar oscillations: 
excitation by a localized source located beneath 

the surface 

• “Potential well model”

c

rars

Interior Atmosphere

wave propagation
exponential decay


Excitation
force

Solar radius

2 22

2 2
( )cd u

u f r
dr c

 
 

( ) ( )Sf r r r 

Calculate 
the Green’s
function.

Simple analytical model of solar oscillations
• “Potential well model”

c

rars

Interior Atmosphere Excitation
force

Solar radius

u1 u2 u3

 

 

Consider general solutions in 3 regions: 
0<r<rs, rs<r<a, and r>a, and match the 
solutions and their first derivatives at r=rs 
and r=a, e.g.  

1 2| |
s sr ru u   

Because of the -function the first derivate 
du/dr is discontinuous at r=rs. Indeed, 
integrating the equation over a small 
region around rs we find: 

   

 

2 22

2 2
( )c

s

d u
u r r

dr c

  
  

2 22

2 2
( )

s s s

s s s

r r r
c

sr r r

d u
dr udr r r dr

du c

  
  

  


    

  

     

For 0   we obtain: 
1 2 1| |

s sr r

du du

dr dr
   
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Simple analytical model of solar oscillations
• “Potential well model”

c

rars

Interior Atmosphere Excitation
force

u1 u2 u3

 

 

   

 

2 22

2 2
( )c

s

d u
u r r

dr c

  
  

0

Simple analytical model of solar oscillations
• “Potential well model”

c

rars

Interior Atmosphere Excitation
force

u1 u2 u3

 

 

   

 

2 22

2 2
( )c

s

d u
u r r

dr c

  
  

0
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Simple analytical model of solar oscillations
• “Potential well model”

c

rars

Interior Atmosphere Excitation
force

u1 u2 u3

 

 

   

 

2 22

2 2
( )c

s

d u
u r r

dr c

  
  

0

Asymmetrical line profile   
(Nigam & Kosovichev, 1998):   

2 2

2

(1 )
=

1

Bx B
A r

x

 
 

  

where  0= 2( ) /x    ,   
= / 2     is the cyclic frequency,   

B   is the parameter of asymmetry   

Power spectrum for the model

c

Pseudo-modes

Line asymmetry

Pseudo-modes are 
caused by the 
interference of waves 
coming directly from the 
source and after the 
reflection in the interior.
This is so-called “source 
resonance”.

rars

observing
height



18

Reversal of the line asymmetry is 
caused by correlated noise 

c

Pseudo-modes

Line asymmetry

The correlated noise is added to 
oscillation signal and uncorrelated 
noise is added to the oscillation 
power, so that the observed power 
spectrum has two types of noise:

2( ) | ( ) ( ) | ( )obs corr uncorrP u N N     

Correlated noise means that in the 
observed oscillation signal in additions 
to wave signal there is a component that 
comes directly from the source. When 
the solar oscillations are observed in 
intensity the correlated noise may be 
caused by changes  of brightness of 
granules during the wave excitation 
events.

Measurement of the acoustic cut-off 
frequency

• The acoustic cut-off frequency can be determined 
from a sharp decrease of the mode peaks in the power 
spectra (marking a transition from modes to pseudo-
modes).

• From a change in the peak separation. Example, 
measurements from stellar oscillation spectra 
(Jimenez et al, 2015).
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Measurement of the acoustic cut-off 
frequency (Jimenez et al. 2015)

Fig. 1. Top panel: smoothed averaged power 
spectral density of four-day subseries of KIC 
11244118. The red line is the severe 
smoothing used to normalize the spectrum.

Oscillation power spectrum

f-mode

p1

p2

p3

p4

acoustic modes

c

acoustic pseudo-modes

The ridges of the k-omega 
diagram are extended above the 
acoustic cut-off frequency 
because of the pseudo-modes 
caused by interference of waves 
excited by sources located just 
beneath the solar surface.
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Homework and quiz

• Download problem set #1 from: 
http://sun.stanford.edu/~sasha/PHYS747/Homework

• Due date: Oct.4

• Quiz #1: Monday, Sept.20
– Topics: properties of solar oscillations (period, amplitude, 

ridge structure); observations of solar oscillations (Nyquist
frequency); excitation mechanisms; acoustic cut-off 
frequency.



Lecture 5

Oscillation power maps.
Magnetic field effects.

Numerical simulations of solar 
oscillations.



Projects
• Power spectrum: Ivan Oparin

• Global modes from GOLF: Sheldon Fereira

• Oscillation model, line asymmetry: Bryce Cannon

• Power maps, acoustic halo: Bhairavi Apte

• Time-distance helioseismology: 

• Ray paths, travel times: Sadaf Iqbal Ansari

• Propagation diagram for solar and stellar models: Ying Wang

• Analysis of sunquakes: Youra Shin

• Asteroseismic analysis: John Stefan

• Observational sensitivity of solar/stellar oscillations. Leakage 
matrix: 

• Asymptotic sound-speed inversion:



Recap of L1-4



Solar oscillations are stochastically 
excited by turbulent convection

Characteristic oscillation period: 5 min, amplitude ~300 m/s



Power spectrum of solar 
oscillations

Velocity of oscillations ( )v x y t   can be represented in terms of its Fourier components:    

                       
( )( ) ( ) x yi k x k y t

x ya k k v x y t e dxdydt         

where xk  and yk  are components of the wave vector,   is the frequency.  

 

The power spectrum is:    
*( ) ,  where  is complex conjugate.x yP k k a a a     

If there is no preference in the direction of the wave propagation then P  depends on two 

variables, the horizontal wavenumber 
2 2

h x yk k k  , and frequency.  

Then, we calculate the angular average in the k-space: 
 

2

,

0

1
( , ) ( cos , sin , )

2h h hP k P k k d


    


    

This is a local power spectrum. It allows us to investigate properties of various regions  
observed on the solar disk.  
Consider example using IDL codepower_spectrum.pro. 



3D Power Spectrum



Spherical harmonics

For the global oscillations we must use the spherical coordinates (r,)  
and expansion in terms of spherical surface harmonics: 

0

( , , ) ( ) ( , )
l

m
lm l

l m l

v t a t Y   


 

    

In the spherical coordinates,   :  

 ( ) ( ) ( ) sin( )m i t
la l m v t Y e d d dt               

where 
| |( ) ( )m m im

l lY P e      is a spherical harmonic of the angular degree l and 

angular order m , ( )m
lP  is an associate Legendre function. 

 
Degree l  gives the total number of node circles on the sphere; order m  is the number nodal 
circles through the poles; m=-1,-l+1,…,l-1, l  that is (2l+1) m-values on m for given l.  
 
 



Spherical harmonics
 

The coefficients of the spherical harmonic expansion can be found by using  
the spherical harmonic transform:  

 ( ) ( ) ( ) sin( )m i t
la l m v t Y e d d dt               

where ( )m
lY    is a spherical harmonic of the angular degree l and angular order m .  

 
The power spectrum is:  

 ( )P l m a a      

 
For a spherically symmetrical star, P  depends only on l  and  .  
In this case the power spectrum is ‘degenerate’ with respect of angular order m .  
 
Then we can define the analog of the horizontal wavenumber:   

 
( 1)

h

l l
k

R


   where R  is the solar radius.   

We will derive this in a future lecture. 



Oscillation power spectrum

• The power spectrum represents 
the oscillation signal in terms 
of spherical harmonics of 
angular degree l (and the 
horizontal wavelength, lh
=2p/kh ), and the oscillation 
“cyclic” frequency, n=w/2p.

l is integer number
lh is measured in Mm
n is measured in mHz

 w is measured in rad/sec 
(sometimes called angular
frequency)

f-mode

p1

p2

p3

convection modes

p4

acoustic (p) modes
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The basic idea of helioseismology
• To measure travel times  or resonant frequencies 

and to determine the internal properties of the Sun, such 
as the sound speed cs(r) 
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Normal Mode of Solar Oscillations –
displacement eigenfunction: r(r,,)=(r)*Ylm(,) 

l=20, m=16



Low-Degree (Global) Modes 
When the Sun is observed as a star (integrated whole-disk Doppler-shift
measurements) the power spectrum consists only of low-degree p-modes
of 0 1 2l     and 3.  

This figure is a Fourier spectrum of the longest continuous GOLF time series 
(805 days). GOLF is an instrument on SOHO that measures the oscillations in 
the line-of-sight velocity of the solar photosphere from the whole Sun. These 
oscillations appear at precise frequencies, visible as sharp peaks in this 
spectrum, mainly around 3mHz, corresponding to periods about 5min. 

The distance between main
peaks in the power
spectrum is about 68 Hz.
The corresponding time:

61 (68 10 ) 245    min is
the travel time for acoustic
waves propagate through
the center of the Sun to the
far side and come back.  
The low-degree mode 
provide information about 
physical conditions of the 
solar core. 



Excitation of Solar 
Oscillations 

 
Solar oscillations are
randomly excited by
turbulent convection. The
random excitation
function appears as
multiplicative noise in the
power spectra. This
represents the most
serious problem for
measuring mode
frequencies. This figure
shows examples of good
and poor fits of an
oscillation model to the
power spectra.   

Power spectra of A) 50 32 12l m n       and B) 
50 0 16l m n     . 



Elements of signal processing

( ) ( )

1
( ) ( )

2
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Forward and inverse Fourier transform
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Sample rate, fs:

Duration T, number of samples N, Nyquist frequency:

Time index j: Frequency resolution:

Frequency index k:

G. Mendel, LIGO-G1200759



Line Asymmetry and Pseudo-
modes

        

1

2
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a)

Velocity and intensity spectra from SOHO/MDI
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ν, mHz
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lo
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b)

Velocity power spectrum

Intensity power spectrum

pseudo-modes

line asymmetry

reverse line asymmetry
non-adiabatic modes

adiabatic modes

Power spectra of l = 200 modes 
obtained from SOHO/MDI
observations of 
a Doppler velocity, 
b continuum intensity.

Acoustic waves with frequencies 
below the cut-off frequency are 
completely reflected by the surface 
layers because of the steep density 
gradient. These waves are
trapped in the interior, and their 
frequencies are determined by the 
resonant conditions, which depend 
on the solar structure. But the waves 
with frequencies above the
cut-off frequency escape into the 
solar atmosphere. 

Above this frequency the power
spectrum peaks correspond to so-
called “pseudo-modes”



Waves in the solar atmosphere: 
dispersion relation

photosphere

x

g=2.74x104 cm/s2

T=6000 K

Eliminating 1 1 1, ,P v  we find that displacement   satisfies 

the second-order PDE: 

   
2 2

2
2 2

,c g
t x x

    
 

  
  

using the substitution  exp( )u x   we eliminate the 

first-order term: 

   
2 2

2 2
2 2

,c

u u
c u

t x
 

 
 

  

where 
2c

g

c

    is the acoustic cut-off frequency.  

For the dispersion relation we seek the solution in terms 
of Fourier harmonics: exp( ) :u i t ikx     

 2 2 2 2
cu c k u u       

 2 2 2 2
cc k     

The frequencies of plane-parallel acoustic waves traveling 
in the atmosphere are higher than the acoustic cut-off 
frequency.  



Waves in the solar atmosphere: 
calculation of the acoustic cut-off frequency

photosphere

x

g=2.74x104 cm/s2

T=6000 K

 
2c

g

c

    is the acoustic cut-off frequency.  

In the photosphere: 5 / 3,   =1.25    

5

,     ,     

8.1 10  cm/s 8 km/s.

P R T
c P

RT
c

 
 




 

   

  

3/ 2 4.5 10 4.5 mHz.
4c c

g
Hz

c

  


       

The corresponding period 1/c = 3.6 min. 



Simple analytical model of solar oscillations
• “Potential well model”

c

rars

Interior Atmosphere Excitation
force

u1 u2 u3

 

 

   

 

2 22

2 2
( )c

s

d u
u r r

dr c

  
  

0

Asymmetrical line profile   
(Nigam & Kosovichev, 1998):   

2 2

2

(1 )
=

1

Bx B
A r

x

 
 

  

where  0= 2( ) /x    ,   
= / 2     is the cyclic frequency,   

B   is the parameter of asymmetry   



Power spectrum for the model

c

Pseudo-modes

Line asymmetry

Pseudo-modes are caused by the 
interference of waves coming 
directly from the source and after 
the reflection in the interior.

This is so-called “source resonance”.

rars

observing
height

Structural resonance



Reversal of the line asymmetry is 
caused by correlated noise 

c

Pseudo-modes

Line asymmetry

The correlated noise is added to 
oscillation signal and uncorrelated 
noise is added to the oscillation 
power, so that the observed power 
spectrum has two types of noise:

2( ) | ( ) ( ) | ( )obs corr uncorrP u N N     

Correlated noise means that in the 
observed oscillation signal in 
additions to wave signal there is a 
component that comes directly from 
the source. When the solar 
oscillations are observed in intensity 
the correlated noise may be caused 
by changes  of brightness of 
granules during the wave excitation 
events.

http://sun.stanford.edu/~sasha/PHYS747/Projects/Simple_oscillation_model



Oscillation power maps.
Effects of magnetic field.



Oscillation power maps
Magnetic field effects are displayed in the oscillation power 
maps. These are calculated by performing Fourier transform for 
each pixel, and averaging in different frequency intervals. 

 
0

( , , ) ( , , )
T

i ta x y v x y t e dt     

 
*( , , )P x y a a    

 
http://sun.stanford.edu/~sasha/PHYS747/Projects/Power_Maps/



Oscillation power maps for HMI 
data of 09/06/16

http://sun.stanford.edu/~sasha/PHYS747/Projects/Power_Maps/

2-4 mHz 6-8 mHz



Using power maps to detect 
emerging active regions

Power suppression in the oscillation power maps appears 
prior  emergence of active regions on the solar surface.
Example: AR 10488: in the frequency range 3-4 mHz the power in 
the AR area was reduced 200 min prior the AR appearance ; outside 
the AR area the signal remained constant.

Hartlep, T.  et al. 2011 Solar Physics, Volume 268, Issue 2, pp.321-327



Magnetic field effects are revealed 
in oscillation power maps



Numerical simulations of solar 
convection and oscillations.



3D radiative MHD simulations
• The mathematical model is based on first-

physics principles

• It takes into account all essential physical 
processes:
– Conservation laws

– Maxwell equations

– Radiative energy transport

– Real-gas equation of state

• Models sub-grid scale turbulent dissipation



Numerical Model: Basic equations


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mass density, 
ui, the Favre-averaged velocity

The equations we solved are the grid-cell 
average conservation of mass:



“SolarBox” code: Basic characteristics of the code

 3D rectangular geometry

 Fully conservative compressible

 Fully coupled radiation solver:

 LTE using 4 opacity-distribution-function bins

 Ray-tracing transport by Feautrier method

 14 ray (2 vertical, 4 horizontal, 8 slanted) angular quadrature

 Non-ideal (tabular) EOS

 4th order Padé spatial derivatives

 4th order Runge-Kutta in time

 LES-Eddy Simulation options (turbulence models):

- Compressible Smagorinsky model

- Compressible Dynamics Smagorinsky model (Germano et a., 
1991; Moin et al, 1991)

- MHD  subgrid models (Balarac et al., 2010)

 MPI parallelization (plane and pencil versions)



Strategy of simulations

“quiet Sun”

uniform vertical weak
(0‐1200 G) magnetic field

0.3 Mm

5.5Mm

6.4Mm

6.4Mm

Resolution: 
1. 1283 (502 x 43 km)
2. 2563 (252 x 21.7 km)
3. 5123 (12.52 x 11 km)



Magnetic field effects are explained by 
changes in the excitation and interaction of 

acoustic waves with magnetic field

The appearance of acoustic halo can be explained by changes in the 
dynamics of granulations. In magnetic field granules becomes smaller 
and faster and therefore excite high-frequency waves (Jacoutot et al, 
2008)



Magnetic field effects are explained by changes in the 
excitation (granulation properties) and interaction of 

acoustic waves with magnetic field



Magnetic field effects are explained by 
changes in the excitation and interaction of 

acoustic waves with magnetic field

Numerical simulations show that the power 
reduction in sunspots can be explained by 
suppression of acoustic sources.



noMHD, 6.42x5.5Mm box, 5122x503, 12.5km 

Temperature Density

“Quiet Sun” simulations   



Simulations of solar convection –Stokes I 4505.5A
(Kitiashvili et al, 2011)



Simulations of solar convection –Stokes I 4505.5A:
the line blue wing (Kitiashvili et al, 2011)

View at 60 degrees from the disk center reveals oscillations flowing 
on top of the  granulation 



Observations of solar convection from Hinode 
spacecraft in the photosphere (left – blue 

continuum) and chromosphere (right – CaII H line)



Observations of the individual acoustic events using 
oscillation power maps

The average excess power (v2)
in the neighborhood of more than 2000 

seismic events (Goode et al, 1998)

Goode et al., 1992

Intensity continuum of the averaged acoustic 
power. Blue, green and red colors correspond 

to 12, 20 and 32% of the maximum power 
(Bello González et al., 2010).



(Bonet et. al, 2008)

The vortex flows are created at the downdrafts where the plasma returns to the solar 
interior after cooling down. It was detected because some magnetic bright points 
follow logarithmic spiral in their way to be engulfed by a downdraft.
The G-band often shows bright points swirling around intergranular points where 
several dark lanes converge. These motions are reminiscent of the bathtub vortex 
flows predicted by numerical simulations of convection, and which are driven by the 
granulation downdrafts.

Observations of the vortical structures
in photosphere (molecular G-band)



Vortex tubes in the solar convection



Vortex tubes dynamics:
images of vertical vorticity, curl(V)



Excitation of individual acoustic waves 

Density Vertical velocity



Excitation of individual acoustic waves when two
vortex tubes with opposite vorticity collide and partially 

annihilate.



Excitation of individual acoustic waves due the vortex 
annihilation



Examples of waves propagation

Time-distance diagrams of the normalized density fluctuations show 
inclined ridges, corresponding to acoustic waves. The slope of the ridges 
corresponds to a mean speed of 7 – 14 km/s.



Process of annihilation of vortex 
tubes 

Subsurface interaction of the vortices shown in at different stages: initial 
structure of the vortices, closing-up stage, and after partial annihilation. Solid 
and dashed isolines show the magnitude of the positive and negative vertical 
vorticity (s-1).



Wave propagation in subsurface layers



Numerical simulation reveal the subsurface 
structure of the oscillation modes

Resonant frequencies

Nodal lines of the 
oscillation modes



QUIZ #1 - Canvas
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Lecture 6

Sunquakes

Propagation of acoustic waves excited 
by impulsive localized source

The ray paths are perpendicular to 
the wave fronts.

The wave front on the surface 
accelerates because it is formed
by acoustic waves propagating

through the solar interior where the
sound speed is higher.
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Seismic response to solar flares 
(sunquakes)

High-energy flare particles heat the solar chromosphere generating a shock
propagating downward and hitting the surface.

Time-distance diagram of the flare seismic 
response calculated by averaging the wave front 

over 360 degrees

The propagation speed 
of the seismic wave:

V=(distance)/(time)

increases with time from 
10 km/s to 100 km/s 
because the sound 
speed increases with 
depth.
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Example of sunquake
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Standard model of solar flares 
(Sturrock, Shibata et)

Flare ribbons expand
because the magnetic 
reconnection regions
moves up

Flare ribbons

Magnetic reconnection

Sunquake of January 15, 2005, X1.2 flare
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Hard X-ray source

Soft X-ray source

January 15, 2005, X1.2 flare:
Magnetogram, soft and hard X-ray images

Location of the
initial impulse
of the sunquake

Hard X-ray source
Velocity source
(shock)

0:41 UT

January 15, 2005, X1.2 flare:
Dopplergram and hard X-ray image
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Two shocks 
generated by
two beams of
high-energy 
electrons

January 15, 2005, X1.2 flare: Doppler and 
hard X-ray sources

Sequence of flare events 
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• The sunquake waves are anisotropic and 
propagate mostly in the direction of the 
expanding flare ribbons because they are 
excited of moving  sources associated with 
series of pressure or momentum impulses 
caused by energetic particles.

Anisotropy of sunquake waves

X17 flare October 28, 2003
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X17 flare October 28, 2003

Model of sunquakes with moving 
source: wave interference effect
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Great sunquakes of solar cycle 23

• July 23, 2002, X5.6
• October 28, 2003, X17 – three events
• October 29, 2003, X10
• July 16, 2004, X3.6
• January 15, 2005, X1.2 – last sunquake of 

Cycle 23

• No sunquake of comparable magnitude was 
observed between 1996 and 2002.

Sunspot counts and X-flares during the 
last three solar cycles. 

Graphic courtesy David Hathaway, NASA/NSSTC.
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Primary questions
1. How frequent are sunquakes? What types of flares produce 

sunquakes?

2. Can the hydrodynamic flare models explain sunquakes?

3. What kind of flare perturbations can cause sunquakes?

19

References
Sharykin, I. N. & Kosovichev, A. G. (2020), 'Sunquakes of Solar Cycle 24', Astrophys.J. 895(1), 76.

Stefan, J. T. & Kosovichev, A. G. (2020), 'Estimation of Key Sunquake Parameters through Hydrodynamic 
Modeling and Cross-correlation Analysis', Astrophys.J. 895(1), 65.

Sadykov, V. M.; Kosovichev, A. G.; Kitiashvili, I. N. & Kerr, G. S. (2020), 'Response of SDO/HMI Observables 
to Heating of the Solar Atmosphere by Precipitating High-energy Electrons', Astrophys.J. 893(1), 24.

1. Statistical analysis of sunquakes of Solar 
Cycle 24

20

• 94 flares among 507 flares of the X-
ray class greater than M1.0 were 
seismically active.

• There are many solar flares of 
moderate class with strong 
sunquakes, while in some powerful X-
class flares, helioseismic waves were 
not observed or were weak.

• During Solar Cycle 24, there were 
several active regions characterized 
by the most efficient generation of 
sunquakes.

Catalog of Sunquakes of Solar Cycle 24
is obtained from analysis of HMI Dopplergrams of all
flares of the X-ray class greater than M1.0
The catalog is available at http://sun.njit.edu
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Sunquakes of Solar Cycle 24

Sunquakes are associated with strong photospheric perturbations 
observed by HMI in Doppler velocity and magnetic field data

22

One of the powerful sunquake of Cycle 24 was observed during X1.8 flare on 23 October 
2012

Time-distance diagram



12

Most powerful sunquake of Cycle 24 was 
observed during X9.3 flare on 6 September 2017

Sunquake energy correlates with impulsiveness of 
the energy release

24

• The sunquake total energy correlates 
with the maximum value of the soft X-
ray time derivative better than with the 
X-ray class (contrary to what one could 
expect from the "big-flare syndrome" 
idea). The impulsiveness of the energy 
release plays an important role.

• The flares producing sunquakes are 
more impulsive (shorter flare times and 
higher heating rate) compared to the 
flares without sunquakes. 

• The most evident difference between 
distributions of the seismic and 
nonseismic flares appears in terms of 
the maximum values of the flare-energy 
release rate.
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2. Can hydrodynamic (RADYN) flare models explain 
the photospheric perturbations and sunquakes?

25

• SDO/HMI camera obtains filtergrams
in six wavelength positions across Fe
6173Å line in two polarizations
(LCP&RCP) during approximately 45 s

• The flare hydrodynamic model
(RADYN) models are used to
synthesize Fe 6173Å line Stokes
components using the radiative transfer
RH1.5 code, and apply HMI LOS
pipeline algorithm to model
observables (line depth and continuum,
Doppler shift, magnetic field) Illustration of the synthesized Fe 6173Å line profiles and 

corresponding synthesized HMI measurements for 0 s 
and 10 s snapshots of the RADYN model 

val3c_d4_1.0e12_t20s_20keV augmented with 100 G 
backgraund magnetic field

The photospheric perturbations in the RADYN models are 
too weak to explain the variations observed by HMI

26

The 1D radiative 
hydrodynamic flare models 
augmented with the uniform 
vertical magnetic field setup 
do not explain the strong 
magnetic field transients, 
sharp changes of the LOS 
velocities, and continuum 
enhancements observed 
during solar flares by the 
HMI instrument. 

Simulated SDO/HMI observables for RADYN model: F=1012 erg/cm2/s,
Ecutoff=25 keV, t=20s, delta=3. for the vertical uniform 100 G and 1000 G.
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3. What kind of flare perturbations can cause sunquakes?

27

• We developed 3D models of 
the helioseismic and 
atmospheric response to 
localized  impulsive 
perturbations in the solar 
atmosphere. 

• We explored two possible 
excitation mechanisms of 
sunquakes in the context of 
the electron beam 
hypothesis: an instantaneous 
transfer of momentum and a 
gradual applied force due to 
flare eruption. 

• We modeled the sunquake 
excitation and compare with 
observed sunquake events 
using a cross-correlation 
analysis. 

Best fit model parameters show that both the force maximum and the momentum impact are 
within 2 min of the observed photospheric perturbations. The sunquake sources are located in 

the low photosphere, but the uncertainty in the source location is rather large.

28

    Momentum Case   

Flare      T shift   (s)      Height (km)    Amp. (g cm s 1 )    Energy (ergs)   

X1.8    ‐45      ‐104      3.31 23e       1.39 30e    
X9.3    +112.5      ‐33      1.54 23e       3.74 29e    

X3.3    +67.5      +386      2.83 22e       6.57 28e    
X1.0    +78.75      ‐86      9.48 23e       1.21 31e    
M1.1    +135      ‐203      7.34 23e       5.19 30e    

 

 Force Case  

Flare    T shift  (s)    Height (km)    Amp. (dyn cm 3 )    Energy (ergs)  

X1.8   ‐157.5    ‐203    1.01 1e     5.58 28e   
X9.3   ‐33.75    ‐203    2.29 1e     1.27 29e   
X3.3   +157.5    +255    1.30 2e     1.32 28e   

X1.0   ‐157.5    +155    5.34 2e     4.73 28e   
M1.1   ‐78.5    ‐203    2.59 1e     1.44 29e   

 
Positive Tshift means a delay of the maximum forcing in the model relative to 
the initial photospheric perturbation, observed by HMI. 

John Stefan, Estimation of Key Sunquake Parameters through 
Hydrodynamic Modeling and Cross-correlation Analysis,
2020, ApJ, 895,65
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Lecture 7

Solar Oscillation Theory

(Stix, Chapter 5.1.2-5.1.4; Kosovichev, p.11-17; 
Christensen-Dalsgaard, p. 5-24)

Projects
• Power spectrum: Ivan Oparin

• Global modes from GOLF: Sheldon Fereira

• Oscillation model, line asymmetry: Bryce Cannon

• Power maps, acoustic halo: Bhairavi Apte

• Ray paths, travel times: Sadaf Iqbal Ansari

• Propagation diagram for solar and stellar models: Ying Wang

• Analysis of sunquakes: Youra Shin

• Asteroseismic analysis: John Stefan

• Asymptotic sound-speed inversion: Yunpeng Gao

• October 11: Tutorial on Python and Jupyter notebook in class 
– Dr. Andrey Stejko
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Solar oscillation theory
1. Oscillations are small-amplitude perturbations to the Sun’s hydrodynamic 

structure 

2. The oscillations are described by the 3D linearized hydrodynamics equations
and mathematically represent an eigenvalue problem for a system of linear 
PDEs in the spherical coordinates.

3. The eigenvalues correspond to resonant oscillations frequencies and the 
eigenfunctions describe the structure of the resonant modes (standing waves). 

4. The background model (the distribution of density, pressure, temperature with 
the radius) is obtained from the stellar evolution theory applied to the Sun.

5. We assume that the structure of the Sun is spherically symmetrical. This will 
allow us to apply a method of separation of variables, and separate the angular 
and radial components of the eigenfunctions.

6. We find that the angular component is described by the spherical harmonics.

7. The radial structure of the eigenfunctions is described by a system of ODEs. 

8. Thus, the oscillation theory is reduced to solving an eigenvalue problem for a 
system of ODEs. This is similar to finding the energy spectrum in quantum 
mechanics.

9. We perform quantitative and qualitative analysis of the oscillation equations 
and, similarly to quantum mechanics, we apply the asymptotic JWKB theory 
to obtain analytical eigenvalues.  

Equations of Stellar Structure 
1. Hydrostatic Equations 

Basic assumptions:  
1. hydrostatic equilibrium: gravity force = pressure

gradient;  
2. thermal balance: energy generation rate = luminosity.  

Consider a thin spherical shell of radius r , thickness dr , mass 
dm , and density  . The mass equation is:  

                                               24dm r dr  

or                                    24
dm

r
dr

    

             The balance between the pressure and gravity forces is: 

                                             
2

2
2 2

4
4

Gmdm r dr
r dP Gm

r r

       

or                                  
2

dP Gm

dr r


    

r , 

r
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Energy transfer and balance equations
  
The total energy flux, 24L r F , integrated over a sphere of radius r :  

316

3

acT dT
L

dr




    

L

L+dL


24dL r dr 

If  is the energy release per unit mass then
the energy flux change in a shell dr is:

24
dL

r
dr

 

This is the equation for conservation
of energy (energy balance).

24
dm

r
dr

   (1) 

2

dP Gm

dr r


   (2) 

24
dL

r
dr

   (3) 

2 316

dT
L F

dr r acT




     (4) 

T
P





  (5) 

3 1
4 2

1

2X Y Z
 

 
 (6) 

2 4
0 X T    (7) 

3 5
0( 1)X Z T       (8) 

These equations describe the
structure of stellar radiative
zones. In the convection zone
Eq.(4) is replaced by an
equation of convective energy
transport, e.g. mixing length
theory.  

A numerical code for solving 
these equations is available in 
the book: C.J. Hansen, S.D. 
Kawaler, Stellar Interiors. 
Physical Principles, Structure 
and Evolution, Springer, 
1995.   

Equations of the stellar structure

Kramer’s opacity law
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Abundances of the elements in the pp-chain are determined from the balance
equation, e.g. for hydrogen abundance, 1X X :  

 2 2 2
11 33 3 34 3 4( 3 2 )

dX
X X X X

dt
          

where 3X  is the abundance (mass fraction) of 3 He, 4X Y  is the 4 He abundance

Estimates from the balance 
equations 

Balancing the main terms in the
nuclear reaction equations we
obtain relations among various
elements.  
ppI:         

2 2 4 2 2 16
1 3X T X T    

                                                 
6

3 1X X T   

Standard solar model
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Standard solar model

1 log log

log log

d P d
A

d r d r




  

2 1 log log

log log

g d P d g
N A

r d r d r r




 
   

  Brunt–Väisälä frequency
or buoyancy frequency

log( / )VS c P 

Entropy density
of ideal gas

Basic Equations 
Basic assumptions:  

1. linearity: 1sv c 


  

2. adiabaticity: 0dS dt    
3. spherical symmetry of the background  
4. magnetic forces and Reynolds stresses are negligible  

The basic equations are conservations of mass, momentum, energy and
Newton’s gravity law.  
1. Conservation of mass (continuity equation):  
The rate of mass change in a fluid element of volume V  is equal to the mass
flux through the surface of this element (of area A ):  

              ( )
V A V

dV vda v dV
t

  
     

   
  

 

Then,  

                ( ) 0v
t

 
   




 

or  

                   0
d

v
dt

    


 

V
A

v

divergence

where ( )   is the 'material' derivative
d

v
dt t

  
  



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2. Momentum equation (conservation of momentum of a fluid

element):                  
dv

P g
dt

    
 

 

where P  is pressure, g


 is the gravity acceleration, which can be
expressed in terms of gravitational potential  :   g  


 

Also,    ( ) . This is the 'material' derivative.
dv v

v v
dt t


  


   
 

 
 
3. Adiabaticity equation (conservation of energy) for a fluid
element:  

                    0
d P

dt 
 

  
 

         or         2dP d
c

dt dt


   

where 2c P    is the adiabatic sound speed.  

4. Poisson equation:      2 4 G      

. .   for  componentx x x
x y z x

v v v
e g v v v v

x y z

  
 

  

Plan to solve the solar oscillation 
equations

1. Linearize - consider small-amplitude oscillations.
2. Neglect the perturbations of the gravitational potential (Cowling 

approximation).
3. Write the linearized equations in the spherical coordinates: r, 
4. Consider harmonic (periodic) oscillations
5. Separate the radial and angular coordinates.
6. Show that the angular dependence can be represented by spherical 

harmonics.
7. Derive equations for the radial dependence, representing the 

eigenvalue problem for the normal modes 
8. Solve the eigenvalue problem in the asymptotic (short wave-

length) JWKB approximation.
9. Investigate properties of p- and g-modes
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1. Linearization  
Consider small perturbations of a stationary spherically symmetrical star in
the hydrostatic equilibrium:  
 0 0 00 ( ) ( )v r P P r        

If ( )t


 is a vector of displacement of a fluid element then velocity of this
element:  

 
d

v
dt t

 
  



 


 

Perturbations of scalar variables P   are two types: Eulerian, at a fixed 
position r


:  

 0( ) ( ) ( )r t r r t      
 

 

and Lagrangian perturbation in moving elements:  

 0( ) ( ) ( )r r r t       
 

 

 
The Eulerian and Lagrangian perturbations are related to each other:  

 0 0
0( ) ( )r r

d d
e

dr dr

                  
  

 

where re
  is a radial unit vector. In our case, the density gradient is radial. 

Then, the linearized equations are:  
 

              0( ) 0      


      the continuity (mass conservation) equation 

 

              
2

0 0 02 rP g e
t

          





 the momentum equation 

 

                 20 0
0 ( )r r

dP d
P c

dr dr

         the adibaticity (energy) equation, or   

                        2
0 for the Largangian perturbations of pressure and density .P c    

 
                     2 4 G       the equation for the gravitational potential  

 
2. Cowling approximation:  0    
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3. Consider the linearized equations in the spherical coordinates

r    :         r rr r he e e e            
      

where 
h e e     
    is the horizontal component of displacement. 

2
2

1 1 1
div ( ) (sin )

sin sinrr
r r r r





   

   
 

     
  


 

 

  2
2

1 1
( )r h h
r

r r r
 


   




 

 
4. Consider periodic perturbations with frequency  :  
 

where  is the cyclic frequency (measured in Hz), 

                       and  is the angular frequency (measure in rad/s)

( ) ( )

/ 2 ,   

.

m m
l l

im i ti te Y CP e  





   
  

  




 

Then, in the Cowling approximation, we get (leaving out subscript 0 for
unperturbed variables):  

                          2
2

1
( ) 0r h h
r

r r r

  
    



    the continuity equation 

                         2
r

P
g

r
  

     


       the radial component of the momentum equation 

                         2 1
hh
P

r
      


        the horizontal component of the momentum equation

                           
2

2

1
r

N
P

c g

        the adiabatic equation 

where  2 1 1dP d
N g

P dr dr


 

 
  

 
 is the Brunt-Vaisala frequency. 

Boundary conditions:  
( 0) 0r r      - displacement at the Sun’s center is zero, 

                                       (or a regularity condition for 1l  ).  
( ) 0P r R      - Lagrangian pressure perturbation at the solar surface is zero.   

                              (this is equivalent to absence of external forces).  
Also, we assume that the solution is regular at the poles 0   .  
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5. Consider the separation of radial and angular variables in the form:  
 ( ) ( ) ( )r r f             

 ( ) ( ) ( )P r P r f           

 ( ) ( ) ( )r rr r f            

 ( ) ( ) ( )h hh
r r f          


 

Then, the continuity equation is:  

 2 2
2

1
( ) ( ) 0r h hr f f

r r r

             
 

The variables are separated if  
                                                            2

h f f    

where   is a constant.  
This equation has non-zero solutions regular at the poles, 0    only when  
                                                           ( 1)l l      
where l  is an integer.  
 
6. The non-zero solution of equation 2 ( 1) 0h f l l f     represents the

spherical harmonics:  
 ( ) ( ) ( )m m im

l lf Y CP e           

where ( )m
lP   is the Legendre function.  

After the separation of variables the continuity equation for the
radial dependence ( )r  is  

                       2
2

1 ( 1)
0r h

l l
r

r r r
   

 
 

     


 

 
0( ) 0      


Compare with the original equation:

 2
2

1
( ) 0r h h
r

r r r

  
    



and with this equation in the spherical coordinates:

Transform this equation in terms of 2 variables:        and         
- radial displacement and Eulerian pressure perturbation.

r P 

7. Derive equations for the radial dependence, 
representing the eigenvalue problem for the normal 
modes 
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The horizontal component of displacement h  can be determined from the horizontal

component of the momentum equation:  

         2 1
( ) ( )h r P r

r
          or       

2

1
h P

r


 
   

Substituting this into the continuity equation 2
2

1 ( 1)
0r h

l l
r

r r r
   

 
 

     


 

we obtain:  
2 2

2 2 2

2
0r

h r r

d d P N L
P

dr dr r c g r

     
 


        

where we define 2 ( 1)L l l   (note the similarity to quantum mechanics). 
Using the hydrostatic equation for the background (unperturbed) state

 
dP

g
dr

    

finally get:  
2 2

2 2 2 2

2
1 0r

r r

d g L c P

dr r c r c

  
 

 
      

 
 

or                   
2

2 2 2

2
1 0r l

r r

d g S P

dr r c c

  
 

 
      

 
  

where   
2 2

2
2l

L c
S

r
  is the Lamb frequency, L2=l(l+1), c2(r)=P/ is the squared 

sound speed, g(r)=Gm(r)/r2 is the gravity acceleration at radius r. 

Similarly, the momentum equation is:  

                                    
2 2

2
( ) 0,r

dP g
P N

dr c
 


     

where N2 is the Brunt-Vaisala frequency. 

The bottom boundary condition (r=0): 0r    (or a regularity condition).  

The top boundary condition (r=R):  0r

dP
P P

dr
      

or using the hydrostatic equation:  0rP g     
 
From the horizontal component of the momentum equation:  
 2

hP r      

Then from the upper boundary condition:  
2

h

r

g

r


 

   

that is the ratio of the horizontal and radial components of displacement is inverse
proportional to squared frequency. However, this relation does not hold in
observations, presumably, because of the external force caused by the solar
atmosphere.  
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7. The derived equations with the boundary conditions 
constitute an eigenvalue problem for solar oscillation modes 

 2

2 2 2

2
1 0r l

r r

d g S P

dr r c c

  
 

 
      

 

 2 2
2

( ) 0r

dP g
P N

dr c
 


    

The bottom boundary condition (r=0): 0.r  .  

The  top boundary condition (r=R):  0r

dP
P P

dr
     

Properties of oscillations
depend on the signs of 
these coefficients in 
brackets.

2 2
2

2l

L c
S

r
 is the Lamb frequency. 

2 1 1dP d
N g

P dr dr


 

 
  

 

is Brunt–Väisälä frequency. 

Reduction to a 2-nd order equation – qualitative 
analysis of solar oscillation modes

The  reduction  can  be  done  via  a  transformation  of  variables  to  eliminate  the  first
derivatives. However,  this  is  cumbersome  (see  lectures  of Douglas Gough,  “Linear  Adiabatic
Stellar Pulsations” Ch.5) 

It  is most convenient to express the second‐order equation  in terms of the Lagrangian
pressure perturbation,  P . 

By  a  transformation  of  variables:  1/2=P   ,  the  oscillation  equations  for     and
P   can be reduced to: 

 
2

2
2

= 0
d

K
dr


   

 
2 2 2 2

2
2 2 2

= 1c L N
K

c r

 


 
  

 
 

where  c   is the sound speed,  2 = ( 1)L l l   
2

2
2

= 1 2
4c

c dH

H dr
   

 
  is the acoustic cut‐off frequency, 

1
log

=
d

H
dr

 

  is the density scale height, 

2 1 log log
=

d P d
N g

dr dr



 

 
 

  is square of the Brunt‐Väisälä buoyancy frequency.   
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Propagation of :high-frequency 
oscillations: acoustic waves 

2 2 2 2
2

2 2 2
   = 1c L N

K
c r

 


 
  

   

Consider high-frequency oscillations: 2 2N  .  
The acoustic cut-off frequency is significant only near the surface (like in
the potential well model). In the interior, c  .  
Therefore, the propagation condition for high-frequecy oscillation (acoustic
waves) is:  

 
2 2

2
2 2

> 0
L

K
c r


   

At the reflection point 2 = 0K .  
From this equation, we can find the wave propagation depth for oscillation
of frequency   and angular degree l  (called the radius of the inner
turning point tr ):  

 
( )

= t

t

Lc r

r
  

Propagation of low frequency 
waves: internal gravity waves 

                    

2
2

2
= 0

d
K

dr


   

 

 
2 2 2 2

2
2 2 2

= 1c L N
K

c r

 


 
  

 
 

For the low-frequency oscillations: 2 2N  .  
Consider the wave propagation condition: 2 > 0K .  
The parameters, 2 ( )c r , 2 ( )c r , and 2 ( )N r  are calculated from  
a theoretical (standard) solar model. 
therefore, the propagation condition is:  

 
2 2

2
2 2

1 > 0  
L N

K N
r




 
     

 
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Propagation diagram: c

http://sun.stanford.edu/~sasha/PHYS747/Projects/Propagation_Diagram/

http://sun.stanford.edu/~sasha/PHYS747/Projects/Propagation_Diagram/

Propagation diagram: c Sl



14

http://sun.stanford.edu/~sasha/PHYS747/Projects/Propagation_Diagram/

Propagation diagram: c Sl,N2

http://sun.stanford.edu/~sasha/PHYS747/Projects/Propagation_Diagram/

Propagation diagram: c Sl,N2
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http://sun.stanford.edu/~sasha/PHYS747/Projects/Propagation_Diagram/

Propagation diagram: c Sl,N2

Propagation diagram

Low angular degree modes (low-l modes) may be mixed modes, which behave 
like acoustic modes in the envelope and like gravity modes in the deep interior.
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Buoyancy (Brunt-Vaisala) frequency N , and Lamb frequency lS  for 1 5 20l     
and 100 vs. fractional radius r R  for a standard solar model. The horizontal 
lines indicate the trapping regions for a g mode with frequency 100  Hz, 
and for a p mode of degree 20l   and 2000  Hz. 

Propagation diagram of solar oscillations

2 2
2

2l

L c
S

r


the Lamb 
frequency. 

2 1 1dP d
N g

P dr dr


 
 

  
 

Brunt–Väisälä
frequency

l=1

p-modes

g-modes

Theoretical l-diagram is obtained by solving 
the eigenvalue problem numerically 
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Spatial structure of p- and g-modes

1r

P-mode ray paths
Inner turning point

2 2 2
2

2 2
c l

r

S
k

c c

 
 

• The waves propagate where 
kr

2>0.  
• The waves are evanescent 

where kr
2<0

• The wave turning points are 
located where kr

2=0.
• Because 
has a sharp peak near the surface 
the upper turning point (r2) is 
where
The lower turning point (r1) is 
where  

/ 2c c H 

c 

( / )l hS L r c k c   
r where the horizontal phase speed                    is equal to the sound speed.  / hk c 
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John’s sunquake movie illustrate the wave behavior at 
the inner turning points: 

wave fronts are perpendicular to the ray paths

g-mode ray paths

g-modes propagate only in the radiative zone which 
is convectively stable 2 0N 

Inner turning point

outer turning point
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Lecture 8

Solar oscillation theory
JWKB (Jeffreys-Wentzel–Kramers–Brillouin) 

Solution

(Stix, Chapter 5.2; Kosovichev, p.29-34; 
Christensen-Dalsgaard, Chapters 5.2, 7)

Plan to solve the solar oscillation 
equations

1. Linearize - consider small-amplitude oscillations.
2. Neglect the perturbations of the gravitational potential (Cowling 

approximation).
3. Write the linearized equations in the spherical coordinates: r, 
4. Consider harmonic (periodic) oscillations
5. Separate the radial and angular coordinates.
6. Show that the angular dependence can be represented by spherical 

harmonics.
7. Derive equations for the radial dependence, representing the 

eigenvalue problem for the normal modes 
8. Solve the eigenvalue problem in the asymptotic (short wave-

length) JWKB approximation.
9. Investigate properties of p- and g-modes
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7. The derived equations with the boundary conditions 
constitute an eigenvalue problem for solar oscillation modes 

2

2 2 2

2
1 0lr

r r

Sd g P

dr r c c

  
 

 
      

 

 2 2
2

( ) 0r

dP g
P N

dr c
 


    

The lower boundary condition: 0r   (or a regularity condition).

The upper boundary condition:  0r

dP
P P

dr
      

Properties of oscillations
depend on the signs of 
these coefficients in 
brackets.

2 2
2

2l

L c
S

r
 is the Lamb frequency. 

2 1 1dP d
N g

P dr dr


 

 
  

 

is the Brunt-Vaisala frequency. 

Reduction to a 2-nd order equation – qualitative 
analysis of solar oscillation modes

The  reduction  can  be  done  via  a  transformation  of  variables  to  eliminate  the  first
derivatives. However,  this  is  cumbersome  (see  lectures  of Douglas Gough,  “Linear  Adiabatic
Stellar Pulsations” Ch.5) 

It  is most convenient to express the second‐order equation  in terms of the Lagrangian
pressure perturbation,  P . 

By  a  transformation  of  variables:  1/2=P   ,  the  oscillation  equations  for     and
P   can be reduced to: 

 
2

2
2

= 0
d

K
dr


   

 
2 2 2 2

2
2 2 2

= 1c L N
K

c r

 


 
  

 
 

where  c   is the sound speed,  2 = ( 1)L l l   
2

2
2

= 1 2
4c

c dH

H dr
   

 
  is the acoustic cut‐off frequency, 

1
log

=
d

H
dr

 

  is the density scale height, 

2 1 log log
=

d P d
N g

dr dr



 

 
 

  is square of the Brunt‐Väisälä buoyancy frequency.   



3

Propagation of acoustic waves:
high-frequency oscillations 

The acoustic cut-off frequency is significant only near the surface (like in
the potential well model). In the interior, c  .  
 
Therefore, the propagation condition for acoustic waves is:  

 
2 2

2
2 2

> 0
L

K
c r


   

 
At the reflection point 2 = 0K .  
From this equation, we can find the wave propagation depth for oscillation
of frequency   and angular degree l  (called the radius of the inner 
turning point tr ):  

 
( )

= t

t

Lc r

r
  

Propagation of internal gravity 
waves – low frequency waves

                    

2
2

2
= 0

d
K

dr


   

 

 
2 2 2 2

2
2 2 2

= 1c L N
K

c r

 


 
  

 
 

Consider the wave propagation condition: 2 > 0K .  
The parameters, 2 ( )c r , 2 ( )c r , and 2 ( )N r  are calculated from  
a theoretical (standard) solar model. 
For the low-frequency oscillations: 2 2N  ,  
therefore, the propagation condition is:  

 
2 2

2
2 2

1 > 0  
L N

K N
r




 
     

 
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Buoyancy (Brunt-Vaisala) frequency N , and Lamb frequency lS  for 1 5 20l     
and 100 vs. fractional radius r R  for a standard solar model. The horizontal 
lines indicate the trapping regions for a g mode with frequency 100  Hz, 
and for a p mode of degree 20l   and 2000  Hz. 

Propagation diagram of solar oscillations

2 2
2

2l

L c
S

r


the Lamb 
frequency. 

2 1 1dP d
N g

P dr dr


 
 

  
 

the Brunt-Vaisala
frequency. 

l=1

p-modes

g-modes

Mixed 
modes

Propagation diagram

http://sun.stanford.edu/~sasha/PHYS747/Propagation_Diagram/
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Asymptotic Theory.
JWKB (Jeffreys-Wentzel–Kramers–

Brillouin) Solution

General idea of the JWKB approximation 
 
Consider a second‐order oscillation equation in a uniform medium   

without gravity:  c=const,  = 0c ,  = 0N .   

         
2

2
2

= 0
d

K
dr


  ,    where 

2
2

2
=K

c


 

For a one‐dimensional potential well of the length  R   with infinite walls,   
the boundary conditions are:  = 0   at  = 0r   and  =r R .   
We seeks the solution in the form:   

  ( ) = ikrr Ae  
Then, the solution satisfying the boundary conditions is:   

  ( ) = sin( )r A kr  
where  =kR n ,  n   is an integer number.   
 
Thus, we obtain the oscillation spectrum (eigenvalues):   

  = / .n nc R   

 



6

Then, we consider the wave equation with the coefficients varying with  r :   

                               
2

2
2

( ) = 0
d

K r
dr


   

 

                           
2 2 2 2

2
2 2 2

( ) = 1 .c L N
K r

c r

 


 
  

 
 

If  ( )K r   is a slowly varying function of  r   we can seek the solution in the form:   

  ( )( ) = iu rr Ae  
where  ( )u r   is a slowly varying function.We find  ( )u r   by substituting this form   

in the wave equation:   

                                    ( )= iu rd du
i Ae

dr dr


 

 

 
22 2

( ) ( )
2 2

= iu r iu rd d u du
i Ae Ae

dr dr dr

    
 

 

 

Because  ( )u r   is a slowly varying function, in the first approximation we neglect   

the first term in this expression. Substituting in the wave equation, we obtain:   

                 
2

( ) 2 ( )( ) = 0iu r iu rdu
Ae K r Ae

dr
   
 

 

 

       

2
2=

du
K

dr
 
 
 

     →       =
du

K
dr

   →    ( ) =u r kdr            

                ( ) =
i kdr

r Ae


   
The eigenvalues are determined by matching the boundary conditions:   

 
c

= ( )
avity

kdr n   

where     is a phase shift due to imperfectly reflecting boundary conditions.   

The JWKB approximation is valid if 
1

1
dK

K dr
 .   

It can be improved considering  A   as a function of  r .   
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JWKB solution 

              1/2( ) =
i k drr

r r A e 


     

where 
2 2 2 2

2
2 2 2

( ) = 1c L N
k r

c r

 


 
  

 
 

 
 

 
The wave propagation region is determined from  ( ) > 0k r .   

The resonant condition is:   

                   
2

1

= ( )
r

rr
k dr n   

 

           
2 2 2 2

2

2 2 2
1

1 = ( )
r

c

r

L N
dr n

c r

   


 
   

 
  

8. JWKB (Jeffreys-Wentzel–Kramers–Brillouin) Solution 
(short-wavelength asymptotic approximation – 

similar to quantum mechanics) 
 

We assume that only density ( )r  varies significantly among the solar properties in
the oscillation equations, and seek for an oscillatory solution in the JWKB form:  

                                  
1 2 ri k dr

r A e       

                                     
1 2 ri k dr

P B e      

where the radial wavenumber rk  is a slowly varying function of r .  

Then,    
1/2 1

2
ri k drr

r

d
A ik e

dr H

       
   

                                              
1/2 1

2
ri k dr

r

dP
B ik e

dr H


      
   

where  

1
logd

H
dr

 
   
 

 is the density scale height.  
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From the oscillation equations we get a linear system:  

 
2

2 2 2

1 1
1 0

2
l

r

Sg
ik A A B

H c c 
         

   
 

 2 2
2

1
( ) 0

2r

g
ik B B N A

H c
       

 
 

The determinant of this system is equal zero when  

 

2 2 2
2 2 2

2 2 2
c l

r

S
k N

c c

  


 
 
 


    

where               
2c

c

H
       is the acoustic cut-off frequency  

We use the relation: 2 2 21 1dP d
N g g H g c

P dr dr


 

 
      

 
.  

 
The solar waves propagate in the regions where 2 0rk  .  

If 2 0rk   , the waves exponentially decay (‘evanescent’).  

Properties of Solar Oscillation Modes 

Equation                      
2 2 2

2 2 2
2 2 2

c l
r

S
k N

c c

  


 
 
 


    

 represents  a dispersion relation of solar waves.  
It relates frequency   with radial wavenumber rk  and angular order l .  

Consider two simple cases:        
1: the high-frequency case. If 2 2N  then 

                                           

2 2 2
2

2 2
c l

r

S
k

c c

 
   

      or                      2 2 2 2 2 2
c r hk c k c      

where 
( 1)

h l

l lL
k S c

r r


    is the horizontal wave number.  

Then, 2 2 2
r hk k k   is the squared total wavenumber.  

Finally, 
2 2 2 2 ,  where  is the acoustic cut-off frequency.

2c c

c
k c

H
      

This is the dispersion relation for acoustic (p) modes; c is the acoustic cutoff
frequency. Physically, the waves with frequencies below the acoustic cutoff
frequency cannot propagate. Their wavelength becomes shorter than the density
scale height. For the Sun / 2 5 .c c mHz     (c~10 km/s, H~150km). 
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2: consider the low-frequency case when        2 2
lS   

        then 
2

2 2 2
2 2

( )l
r

S
k N

c



          (remember /l hS ck cL r  ) 

Then,           
2 2

2 2 2
2

coshk N
N

k
      where 2 2 2

r hk k k    

where   is the angle between wavevector k  and the horizontal 
direction.  
This is a dispersion relation for internal gravity (g). modes. 
They propagate mostly horizontally.  

2 2 2
2 2 2

2 2 2
c l

r

S
k N

c c

  


 
 
 


  

The frequencies of normal modes are determined for the Borh quantization

rule (resonant condition):      
2

1

( )
r

rr
k dr n     

where 1r  and 2r  are the radii of the turning points where rk =0, n  is a radial order 

-integer number, and   is a phase shift which depends on properties of the
reflecting boundaries.   2 2 2

2 2 2
2 2 2

c l
r

S
k N

c c

  


 
 
 


  

2 2
2

2l

L c
S

r


 

2c

c

H
 

 1
logd

H
dr

 
   
 

 2 2 2N g H g c   

 2 ( 1)L l l 

Normal modes of solar oscillations

is the acoustic cut-off 
frequency; it has very 
sharp increase  at r/R=1

c(r) is the sound speed
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1r

P-mode ray paths
Inner turning point

2 2 2
2

2 2
c l

r

S
k

c c

 
 

• The waves propagate where 
kr

2>0.  
• The waves are evanescent 

where kr
2<0

• The wave turning points are 
located where kr

2=0.
• Because 
has a sharp peak near the surface 
the upper turning point (r2) is 
where
The lower turning point (r1) is 
where  

/ 2c c H 

c 

( / )l hS L r c k c   
r where the horizontal phase speed                    is equal to the sound speed.  / hk c 

g-mode ray paths

g-modes propagate only in the radiative zone which 
is convectively stable 2 0N 
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Estimate frequencies of normal modes for these 2 cases.  

1. p-modes:  
propagating region: 2 0rk    

turning points 2 0rk  :  
2 2

2 2
2c

L c

r
     

For the lower turning point in the interior: c  .  

Then, 
Lc
r

  , or  
1

1

( )c r

r L


     is the equation for the lower turning point.

The upper turning point: 2( )c r  . Since ( )c r  is a steep function of r

near the surface,  2r R   

Then, the resonant condition for p-modes is:    
2 2

2 2
( )

1

L
dr n

c r

R

r
      

Abel integral equation.

Calculation of normal mode frequencies in 
the JWKB Approximation

For l n , 1 0r  , and we obtain:  

0

( 2 )
R

n L
dr
c

    
 


  

That is the spectrum of low-degree p-modes is approximately equidistant with

frequency spacing:  
1

0
4

R dr

c



    
   

Frequencies of low-degree p-modes

Maximum amplitude 
is around 3,300 Hz, 
or 3.3 mHz. The 
corresponding 
oscillation period is 
300 seconds or 5 
minutes.  
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  Frequencies of the internal gravity modes (g-modes):  
 

The turning points are determined from equation:
 ( )N r    
In the propagation region, 0rk  , far from the turning

points ( N  ):  

                                      r

LN
k

r
   

Then, from the resonant condition:   

      
2

1

( )
r

r

L dr
N n

r
 


    

we find:  

2

1

( )

r

r

drL N
r

n


 
 




 

Spectrum of the normal 
oscillation modes of the Sun 
calculated by solving the 
oscillation equations 
numerically for a standard 
solar model.  
 
Note the ‘avoided crossing 
effect’ for f and g-modes. 

Wavelength in Mm
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Surface gravity mode (f-mode) 
These wave propagate at the surface boundary where Lagrangian pressure perturbation

~ 0P .  
Consider the oscillation equations in terms of P  by making use of the relation between
Eulerian and Lagrangian variables:  rP P g      
 

 
2 2 2

2 2 2 2 2
1 0r

r

d L g L c P

dr r r c

 
  

 
     

 
 

 

 
2

2 2
0r

d P L g g f
P

dr r r

  


     

where           
2 2

2

r L g
f

g r




    

These equations have a peculiar solution:  0 0P f      

For this solution:          
2

h

Lg
k g

R
    

-dispersion relation for f-mode.  

The eigenfunction equation:       0r
r

d L

dr r

    

has a solution     ( )
r

k r Rhe   exponentially decaying with depth.  

Theoretical l-diagram: numerical 
solution of the oscillation equations

Avoided crossing effect for mixed modes
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Lecture 9
Properties of acoustic waves 

and p- modes; low degree modes
(Stix, Chapter 5.2; Kosovichev, p.29-34; 
Christensen-Dalsgaard, Chapters 5.2, 7)

Plan to solve the solar oscillation 
equations

1. Linearize - consider small-amplitude oscillations.
2. Neglect the perturbations of the gravitational potential (Cowling 

approximation).
3. Write the linearized equations in the spherical coordinates: r, 
4. Consider harmonic (periodic) oscillations
5. Separate the radial and angular coordinates.
6. Show that the angular dependence can be represented by spherical 

harmonics.
7. Derive equations for the radial dependence, representing the 

eigenvalue problem for the normal modes 
8. Solve the eigenvalue problem in the asymptotic (short wave-

length) JWKB approximation.
9. Investigate properties of p-modes 
10. Properties of g-modes
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Overview of the Asymptotic Theory.
JWKB (Jeffreys-Wentzel–Kramers–

Brillouin) Solution

General idea of the JWKB approximation 
 
Consider a second‐order oscillation equation in a uniform medium   

without gravity:  c=const,  = 0c ,  = 0N .   

         
2

2
2

= 0
d

K
dr


  ,    where 

2
2

2
=K

c


 

For a one‐dimensional potential well of the length  R   with infinite walls,   
the boundary conditions are:  = 0   at  = 0r   and  =r R .   
We seeks the solution in the form:   

  ( ) = ikrr Ae  
Then, the solution satisfying the boundary conditions is:   

  ( ) = sin( )r A kr  
where  =kR n ,  n   is an integer number.   
Thus, we obtain the oscillation spectrum (eigenvalues):   

  = / .n nc R   
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Then, we consider the wave equation with the coefficients varying with  r :   

                               
2

2
2

( ) = 0
d

K r
dr


   

 

                           
2 2 2 2

2
2 2 2

( ) = 1 .c L N
K r

c r

 


 
  

 
 

If  ( )K r   is a slowly varying function of  r   we can seek the solution in the form:   

  ( )( ) = iu rr Ae  
where  ( )u r   is a slowly varying function.We find  ( )u r   by substituting this form   

in the wave equation:   

                                    ( )= iu rd du
i Ae

dr dr


 

 

 
22 2

( ) ( )
2 2

= iu r iu rd d u du
i Ae Ae

dr dr dr

    
 

 

 

Because  ( )u r   is a slowly varying function, in the first approximation we neglect   

the first term in this expression. Substituting in the wave equation, we obtain:   

                 
2

( ) 2 ( )( ) = 0iu r iu rdu
Ae K r Ae

dr
   
 

 

 

       

2
2=

du
K

dr
 
 
 

     →       =
du

K
dr

   →    ( ) =u r kdr            

                ( ) =
i kdr

r Ae


   
The eigenvalues are determined by matching the boundary conditions:   

 
c

= ( )
avity

kdr n   

where     is a phase shift due to imperfectly reflecting boundary conditions.   

The JWKB approximation is valid if 
1

1
dK

K dr
 .   

It can be improved considering  A   as a function of  r .   
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JWKB solution 

              1/2( ) =
i k drr

r r A e 


     

where 
2 2 2 2

2
2 2 2

( ) = 1c L N
k r

c r

 


 
  

 
 

 
 

 
The wave propagation region is determined from  ( ) > 0k r .   

The resonant condition is:   

                   
2

1

= ( )
r

rr
k dr n   

 

           
2 2 2 2

2

2 2 2
1

1 = ( )
r

c

r

L N
dr n

c r

   


 
   

 
  

The frequencies of normal modes are determined for the Borh quantization rule

(resonant condition):      
2

1

( )
r

rr
k dr n     

where 1r  and 2r  are the radii of the turning points where rk =0, n  is a radial order

-integer number, and   is a phase shift which depends on properties of the
reflecting boundaries.   2 2 2

2 2 2
2 2 2

c l
r

S
k N

c c

  


 
 
 


  

2 2
2

2l

L c
S

r


 

2c

c

H
 

1
logd

H
dr

 
    
 

 2 2 2N g H g c   

 2 ( 1)L l l 

Normal modes of solar oscillations

- the acoustic cut-off 
frequency; it has very 
sharp increase  at r/R=1

- the squared sound speed

- the density 
scale height 

- the Lamb frequency

- the Brunt-Vaisala frequency after substituting H and 

the hydrostatic equation /dP dr g 

2 /c P 
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Buoyancy (Brunt-Vaisala) frequency N , and Lamb frequency lS  for 1 5 20l     
and 100 vs. fractional radius r R  for a standard solar model. The horizontal 
lines indicate the trapping regions for a g mode with frequency 100  Hz, 
and for a p mode of degree 20l   and 2000  Hz. 

Propagation diagram of solar oscillations

2 2
2

2l

L c
S

r


the Lamb 
frequency. 

2 1 1dP d
N g

P dr dr


 
 

  
 

the Brunt-Vaisala
frequency. 

l=1

p-modes

g-modes

Mixed 
modes

Spatial structure of p- and g-modes is obtained 
by multiplying the radial eigenfunctions by the 

corresponding spherical harmonics
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Properties of Solar Oscillation Modes 

Equation                      
2 2 2

2 2 2
2 2 2

c l
r

S
k N

c c

  


 
 
 


    

 represents  a dispersion relation of solar waves.  
It relates frequency   with radial wavenumber rk  and angular order l .  

Consider two cases:        
1: the high-frequency case.       

If 2 2N  then                   
2 2 2

2
2 2

c l
r

S
k

c c

 
   

      or                      2 2 2 2 2 2
c r hk c k c      

where 
( 1)

h l

l lL
k S c

r r


    is the horizontal wave number.  

Then, 2 2 2
r hk k k   is the squared total wavenumber.  

Finally, 
2 2 2 2 ,  where  is the acoustic cut-off frequency.

2c c

c
k c

H
      

This is the dispersion relation for acoustic (p) modes; c is the acoustic cutoff 
frequency. Physically, the waves with frequencies below the acoustic cutoff
frequency cannot propagate. Their wavelength becomes shorter than the density
scale height. For the Sun / 2 5 .c c mHz     (c~10 km/s, H~150km). 

2: consider the low-frequency case when        2 2
lS   

        then 
2

2 2 2
2 2

( )l
r

S
k N

c



          (remember /l hS ck cL r  ) 

Then,           
2 2

2 2 2
2

coshk N
N

k
      where 2 2 2

r hk k k    

where   is the angle between wavevector k  and the horizontal 
direction.  
This is a dispersion relation for internal gravity (g). modes. 
They propagate mostly horizontally.  

2 2 2
2 2 2

2 2 2
c l

r

S
k N

c c

  


 
 
 


  
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Estimate frequencies of normal modes for these 2 cases.  

1. p-modes:  
propagating region: 2 0rk    

turning points 2 0rk  :  
2 2

2 2
2c

L c

r
     

For the lower turning point in the interior: c  .  

Then, 
Lc
r

  , or  
1

1

( )c r

r L


     is the equation for the lower turning point.

The upper turning point: 2( )c r  . Since ( )c r  is a steep function of r

near the surface,  2r R   

Then, the resonant condition for p-modes is:    
2 2

2 2
( )

1

L
dr n

c r

R

r
      

Abel integral equation.

Calculation of normal mode frequencies

Waves in the solar atmosphere: 
initial state

photosphere

x

g=2.74x104 cm/s2

T=6000 K

Initial (hydrostatic) state:  

 0
0P

g
x


 

   

Equation of state defines pressure in terms of 
temperature, density and molecular weight:    

,
R T

P



  

where   is the molecular weight. 

For non-ionized hydrogen gas 1  , for fully 

ionized hydrogen gas 0.5  . Because of 

ionization the number of particles increases by 2 
(ions+electrons). R is the gas constant. 

Then, 
 

0 ( ) (0)
x

HP x P e


  where 
RT

H
g

  is the 

pressure scale height. 



8

Waves in the solar atmosphere: 
initial equations

photosphere

x

g=2.74x104 cm/s2

T=6000 K

Continuity (mass conservation) equation: 

 0.
v

t x

  
 

    

Momentum equation: 

 .
dv P

g
dt x

 
  

   

Velocity v  can be expressed in terms of displacement 

  of fluid elements:    
d

v
dt


   

Adiabaticity equation:  

2 0,
P P

v c v
t x t x

             
 

where 
2c

P


  in the squared adiabatic sound speed. 

Waves in the solar atmosphere: 
linearized equations for small perturbations

photosphere

x

g=2.74x104 cm/s2

T=6000 K

Consider small perturbations: 

 

0 1 0 1

0 1 0 1

,    ,

0,   ,    

P P P

v v v v v
t

  


   


   


  

Continuity (mass conservation) equation: 

 
0 11 0.
v

t x

 
 

    

Momentum equation: 

 
1 1

0 1.
v P

g
t x

  
  

    

Adiabaticity equation:  

20 01 1
1 1 0.

PP
v c v

t x t x

           
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Acoustic waves in the solar atmosphere 
  The linearized system of 1D hydrodynamic equations describing vertical propagation of

acoustic waves in a stationary isothermal atmosphere can be reduced to a single PDE in terms

of the vertical displacement     of a mass element. The velocity of the element is  1 =
d

v
dt


. The 

linearized equations of the conservation of mass, momentum and entropy are:   

  1 1
0 = 0

v

t x

  


 
 

 

  1 1
0 1=

v P
g

t x
  

 
 

 

 

  21 0 1 0
1 1 = 0.

P P
v c v

t x t x

            
 

where  0 ( )x   and  0 ( )P x   are  the  equilibrium  distributions  of  the  density  and  pressure,

defined  by  the  hydrostatic  equation:  0
0=

P
g

x





,  where  g   is  the  gravity  acceleration; 

2
0 0= /c P    is  the sound speed which  is constant because the atmosphere  is  isothermal,  

is the adiabatic exponent. From these two equations, we obtain:   

  0 0
02 2

= =
P g

x c x c

    


 
 

 

Substituting 1 =
d

v
dt

  and the hydrostatic equations in the linearized

equations, we obtain:  

 1 0 = 0
x

  



 

 

 
2

1
0 12

=
P

g
t x

 
 

 
 

 
 2

1 1 0=P c g    

Substituting 1  and 1P  in the second equation, we obtain:  

 
2 2

2
2 2

= c g
t x x

    


  
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Waves in the solar atmosphere: 
dispersion relation

photosphere

x

g=2.74x104 cm/s2

T=6000 K

Eliminating 1 1 1, ,P v  we find that displacement   satisfies 

the second-order PDE: 

   

2 2
2

2 2
,c g

t x x

    
 

  
  

using the substitution  exp( )u x   we eliminate the first-

order term: 

   

2 2
2 2

2 2
,c

u u
c u

t x
 

 
 

  

where 
2c

g

c

    is the acoustic cut-off frequency.  

For the dispersion relation we seek the solution in terms of 

Fourier harmonics: exp( ) :u i t ikx     

 
2 2 2 2

cu c k u u       

 
2 2 2 2

cc k     

The frequencies of plane-parallel acoustic waves traveling in 
the atmosphere are higher than the acoustic cut-off frequency. 

Problem 1.5. (extra credit). Consider acoustic waves in the solar atmosphere
excited by an impulsive force:   

    • show that the solution of Eq.1 for acoustic wave excited by an impulsive
delta-function force described by the initial conditions:  

 =0 =0| = 0, | = ( ),t t x
t

 


 

is written in terms of the Bessel function, 0J :  

 2
2

02 2

0,   if < /

( , ) = 1
exp ,  if /

2 2 2

t x c

x t gx g x
J t t x c

c c c

  




            

 

 
    • plot ( )t  for several values of x , and ( )x  for several t  for 

parameters corresponding to the solar atmosphere, and explain the solutions from the
physics point of view1.  

    • show that the frequency of oscillations behind the wave front approaches
the acoustic cut-off frequency.  

                                           
1 Hint. For explanation calculate the phase and group velocities using the dispersion relation (Eq.2). 
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Propagation of acoustic wave in the atmosphere

Time-distance diagram of atmospheric waves

c=8 km/s
g=2.74x104 cm/s2

=5/3
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Physical interpretation of acoustic cut-off frequency 
 The acoustic waves propagate only when their frequency is higher than the

acoustic cut-off frequency:  

 =
2c

c

H
  

where H  is the density scale height:  

 
1

log
=

d
H

dr

 
  
 

 

Consider a high-frequency acoustic wave with frequency   and wavenumber k . 
In this case, from the wave dispersion relation we have:  

 =k
c


 

The corresponding wavelength is:  

 
2

= c



 

When > c  :  

 
2

< = = 4c
c

c
H

  


 

This means that the acoustic waves propagate if their wavelength is substantially
shorter than the density scale height. For the waves with shorter wavelength, the
background density and pressure substantially decrease on the scale of a
wavelength, so that the wave compression becomes insufficient for building the
pressure restoring force and maintaining the wave propagation.  

Phase and group velocities 
 Consider the acoustic wave dispersion relation:  

 2 2 2 2= c k c    

The phase velocity:  

 
2 2 2

= = c
ph

k c
v

k k

 
 

Substituting 
2 2

= ck
c

 
 we obtain:  

 
2 2

=ph

c

c
v


 

 

We find that if c   then =phv c , and if c   then phv  . 

The wave group velocity:  

 
2 2

2
2

= = = =gr
ph

k k c
v c

k k v

 
 

 
 

 

 

 
2 2

= c
grv c

 



 

We find that if c   then =grv c , if c   then 0grv  .  
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Interpretation of the lower turning point of acoustic waves in 
the Sun 

 The dispersion relation for acoustic (p) modes is:  

 
2 2 2

2
2 2

= c l
r

S
k

c c

 
  

where =l

Lc
S

r
, 2 = ( 1)L l l  .  

 2 2 2 2 2= c r lk c S     

In terms of the horizontal wavenumber:  

 
( 1)

= = =l
h

l lS L
k

c r r


 

the dispersion relation:  

 2 2 2 2 2 2 2 2 2= =c r h ck c k c k c      

where 2 2 2= r hk k k  is the total wavenumber. 
At the lower turning point of acoustic modes c  , and the dispersion 

relation is: 2 2 2 2
r lk c S   . The wave propagates where > 0rk , and the lower turning 

point is where = 0rk , that is = lS . The horizontal component of the phase velocity 
at this point:  

 = = = ( )h l
ph

h h

S
v c r

k k


 

At the lower turning point, the horizontal phase speed is equal to the local sound
speed. 

For l n , 1 0r  , and we get:  

0

( 2 )
R

n L
dr
c

    
 


  

That is the spectrum of low-degree p-modes is approximately equidistant with

frequency spacing: 
1

0
4

R dr

c



    
   

Low-degree p-modes (l=0,1,2, and 3)

Large frequency separation: =68 Hz

Solar -modes from 1979 days of the GOLF 
experiment, B. Gelly - M. Lazrek- G. Grec -
A. Ayad - F. X. Schmider- C. Renaud - D. 
Salabert - E. Fossat, A&A 394, 285-297 
(2002) 

1, 2

2
0

(4 6)
2

nl nl n l

R

nl

nl

dc dr
l

dr r

  

 

   


   



31(2 2 ) (2 )2 2nl n l n l           

Small frequency separation : 
=9Hz
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Low-degree p-modes 
 Consider acoustic modes (p-modes) of low angular degree

= 0,1,2,  and 3. These oscillations modes are observed in oscillations of
the Sun as a star, and often called global oscillation modes. 

We start from the JWKB equation for the p-mode frequencies.  

 
1

= ( )
R

rr
k dr n   

where 1r  is the radius of the lower turning point of the oscillation modes,
which is determined from the equation: = 0rk , or  

 
2 2

2 2
1 1

=
( )

L

c r r


 

. For the low-degree modes, the turning point is located close to the solar
center, so that 1 / 1r R . Assuming that the sound speed is constant near
the center of the Sun: 1 0( )c r c , where 0c  is the sound speed at the solar

center. Therefore, 0
1

Lc
r


 .  

 In this case, we can calculate the p-mode frequencies by transforming  
the JWKB integral  

 
2 2 2

2
12 2 2

1 1

= 1 =
R R

hr r

L c dr
k dr I

c r c

  


    

in the following way:  

 

2 2

1 2 2
1 1 1

2 2
1

2 20 0 1

= 1 =

  1 1

R R R

r r r

R r R

r

dr dr L c dr
I

c c r c

dr dr L c dr

c c r c





  

 
     

  

  

  
 

We estimate the second integral as:  

 1 1

0
0

r rdr L

c c 
   
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The integrand of the third integral is substantially different from zero  
only in the vicinity of the turning point, where we assume 0( )c r c .  
Substituting r  with 1= /x r r  and 1/ =Lc r , we obtain:  

 
22 2

1
2 2 2

1 1 0

1 1 1 1
R R

r r

rL c dr dr

r c r c

  
       

     
   

 

 1 1
21

0

1 1
1 1 = ( 2) = 1

2 2

r r L
dx

c x c




           
  

  

where, in the upper limit, we replaced 1/R r  with infinity.  
Thus,  

 1 0 0
1 =

2 2

R Rdr L L dr L
I

c c

 
  

      
    

Then, from the equation for p-mode frequencies,  
 1 = ( )I n    

we find:  

 
0 2

R dr L
n

c
      

   

Approximating  

 
( 1) 1/ 2

=
2 2 2

l lL l 
  

the frequencies nl  of the oscillation modes of angular degree l   
and radial order n  are:  

                  

0

( / 2 1/ 4 )
.nl R

n l
dr
c

    



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The corresponding cyclic frequencies:  

 

0

/ 2 1/ 4
= = = (2 1/ 2 )

2 2

nl
nl R

n l
n l

dr

c

   


  
   


 

where  

 

0

1
= 1/ ,

4
R

T
dr

c

 


 

is equal to the inverse time for the acoustic waves travel through the center of the
Sun to the antipodal point on the far side of the Sun and come back to the front
side. 

This equation shows that in the low-degree p-mode frequencies are 
approximately equidistant, and separated by  , which is called ‘the large 
frequency separation’. For the Sun, 68 Hz   . 

It also shows that in the first order: 1, 2nl n l    . In the next order of 

approximation this frequencies are separated by:  

 1, 2 2 0
= (4 6) 9 Hz

2

R

nl nl n l
nl

dc dr
l

dr r

   
  


      

which is called ‘the small frequency separation’, which primarily depends on the
gradient of the sound speed in the central regions of the Sun. 

The large and small frequency separations are among the primary tools of
asteroseismology. 

 

Large frequency 
separation: 
=68 Hz

l=0,n=21

l=2,n=20

l=1,n=21

l=3,n=20

(2 1/ 2 2 )nl n l      

1, 2

2
0

(4 6)
2

nl nl n l

R

nl

dc dr
l

dr r

  


 

   


   



Small frequency separation: 
=9Hz
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Frequency table for l=0, 1, 2, and 3 with associated error bars. Frequencies listed in here are 
the average of determinations over 16-month data span. Above 4400 Hz, and l=0 and 2 
cannot be separated clearly.

Asteroseismology

Bedding & 
Kjeldsen 
(2003)
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Asteroseismic calibration of stellar masses 
and ages

Small frequency separations against large frequency separations with [Fe/H] 
abundance indicated by color for 52 main-sequence Kepler LEGACY stars 
overplotted on top of evolutionary models varied in mass and core hydrogen 
abundance.

(Bellinger et al 2017)
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Lecture 10
Properties of high-degree p- and f-modes

(Stix, Chapter 5.2; Kosovichev, p.29-34; 
Christensen-Dalsgaard, Chapters 5.2, 7)

1/21/2022 2

The nature of solar oscillations

Acoustic and surface gravity waves stochastically excited by turbulent convection
in the upper convection zone. 



2

Spherical harmonic transform

For the global oscillations we must use the spherical coordinates (r,)  
and expansion in terms of spherical surface harmonics: 

0

( , , ) ( ) ( , )
l

m
lm l

l m l

v t a t Y   


 

    

In the spherical coordinates,   :  

 ( ) ( ) ( )m i t
la l m v t Y e d d dt              

where 
| |( ) ( )m m im

l lY P e      is a spherical harmonic of the angular degree l and 

angular order m , ( )m
lP  is an associate Legendre function. 

 
Degree l  gives the total number of node circles on the sphere; order m  is the number nodal 
circles through the poles.  
 

Spherical harmonic power spectrum
 

The coefficients of the spherical harmonic expansion can be found by using  
the spherical harmonic transform:  

 ( ) ( ) ( )m i t
la l m v t Y e d d dt              

where ( )m
lY    is a spherical harmonic of the angular degree l and angular order m .  

 
The power spectrum is:  

 ( )P l m a a      

 
For a spherically symmetrical star, P  depends only on l  and  .  
In this case the power spectrum is ‘degenerate’ with respect of angular order m .  
 
Then we can define the analog of the horizontal wavenumber:   

 
( 1)

h

l l
k

R


   where R  is the solar radius.   
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Oscillation power spectrum

• The power spectrum represents 
the oscillation signal in terms 
of spherical harmonics of 
angular degree l (and the 
horizontal wavelength, lh
=2p/kh ), and the oscillation 
“cyclic” frequency, n=w/2p.

l is integer number
lh is measured in Mm
n is measured in mHz

 w is measured in rad/sec 
(sometimes called angular
frequency)

f-mode

p1

p2

p3

convection modes

p4

acoustic (p) modes

For l n , 1 0r  , and we get:  

0

( 2 )
R

n L
dr
c

    
 


  

That is the spectrum of low-degree p-modes is approximately equidistant with

frequency spacing: 
1

0
4

R dr

c



    
   

Low-degree p-modes (l=0,1,2, and 3)

Large frequency separation: =68 Hz

Solar -modes from 1979 days of the GOLF 
experiment, B. Gelly - M. Lazrek- G. Grec -
A. Ayad - F. X. Schmider- C. Renaud - D. 
Salabert - E. Fossat, A&A 394, 285-297 
(2002) 

1, 2

2
0

(4 6)
2

nl nl n l

R

nl

nl

dc dr
l

dr r

  

 

   


   



31(2 2 ) (2 )2 2nl n l n l           

Small frequency separation : 
=9Hz
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Large frequency 
separation: 
=68 Hz

l=0,n=21

l=2,n=20

l=1,n=21

l=3,n=20

(2 1/ 2 2 )nl n l      

1, 2

2
0

(4 6)
2

nl nl n l

R

nl

nl

dc dr
l

dr r

  

 

   


   



Small frequency separation: 
=9Hz

Theoretical l-diagram: numerical 
solution of the oscillation equations

f-mode

p1

p2

p3

convection modes

p4

acoustic (p) modes

observations
theory 

ob
se

rv
ed

 r
an

ge
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The frequencies of normal modes are determined for the Borh

quantization rule (resonant condition):      
2

1

( )
r

rr
k dr n     

where 1r  and 2r  are the radii of the turning points where rk =0, n  is a
radial order -integer number, and   is a phase shift which depends on
properties of the reflecting boundaries.   2 2 2

2 2 2
2 2 2

c l
r

S
k N

c c

  


 
 
 


  

2 2
2

2l

L c
S

r


 

2c

c

H
 

 1
logd

H
dr

 
   
 

2 2 21 1dP d
N g g H g c

P dr dr


 

 
      

 

 2 ( 1)L l l 

Normal modes of solar oscillations

is the acoustic cut-off 
frequency; it has very 
sharp increase  at r/R=1

c(r) is the sound speed

Properties of Solar Oscillation Modes. I 

Equation                      
2 2 2

2 2 2
2 2 2

c l
r

S
k N

c c

  


 
 
 


    

 represents  dispersion relation of solar oscillations.  
It relates frequency   with radial wavenumber rk  and angular order l .  

Consider two cases:        
1: p-modes (acoustic modes): the high-frequency case. If 2 2N  then 

                                           

2 2 2
2

2 2
c l

r

S
k

c c

 
   

      or                      2 2 2 2 2 2
c r hk c k c      

where 
( 1)

h l

l lL
k S c

r r


    is the horizontal wave number.  

Then, 2 2 2
r hk k k   is the squared total wavenumber.  

Finally, 
2 2 2 2 ,  where  is the acoustic cut-off frequency.

2c c

c
k c

H
      

This is the dispersion relation for acoustic (p) modes; c is the acoustic cutoff
frequency. Physically, the waves with frequencies below the acoustic cutoff
frequency cannot propagate. Their wavelength becomes shorter than the density
scale height. For the Sun / 2 5 .c c mHz     (c~10 km/s, H~150km). 
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Wave propagation region: 2 0rk   
Turning points are determined 
from equation 2 0rk  :  

2 2
2 2

2c

L c

r
     

For the lower turning point in the 
interior: c  .  

Then, 
Lc
r

  , or  
1

1

( )c r

r L


     

is the equation for the lower 
turning point.  

Calculation of p-mode frequencies

The upper turning point: 2( )c r  . Since ( )c r  is a steep function of r

near the surface,  2r R   

Then, the resonant condition for p-modes is:    
2 2

2 2
( )

1

L
dr n

c r

R

r
      

High-degree modes (l >>1)
The wave propagation region is a shallow 
subsurface layer. 
We consider it as a plane-parallel layer of 
depth z.

r

z

R

z R r 

The density stratification in the convection zone that occupies  
the top 30%  of the Sun’s interior is almost adiabatic:  
 ( ) = ( )P z A z   

      where A  is a constant. 

Using the equation for hydrostatic equilibrium: =
dP

g
dz

  we obtain:  

 1 =
d g

dz A
  


  

 
1/( 1)

1 ( 1) ( 1)
( ) =         ( ) =

gz gz
z z

A A


   

 


   

  
 

 

      Then, temperature 1 ( 1)
( ) = = =

G G G

P A g
T z z

R R R
   

 
 

, 

where GR  is the gas constant.  



7

The sound speed: 2 = = ( 1)GR T
c gz

 


 . 

Calculation of mode frequencies ( = )z R r :  

 
0

1

= ( )rz
k dz n    

where 
2

2 2
2

=r hk k
c


  and 

2

( 1)
h

l l
k

R


 . 

Find the depth of the lower turning point ( 2 = 0rk ):  

 
2 2

1 = .
( 1) ( 1)

R
z

gl l


  

 

Calculate the integral: 
 

 
2 2

0

2
1

( 1)
= = ( )

( 1) 2( 1) ( 1)z

l l R
dz n

gz R g l l

   
 


  

    

Then, the frequencies of high-degree modes ( 1l  ) are:  

 2 2( 1)
= ( 1)( ) = 2( 1) ( )ln h

g
l l n gk n

R

   
     

This explains the parabolic shape of the p-mode ridges in the power spectrum 
 ( l   diagram):   
                              2

nl l   or 1/2
nl l    

Power spectra of l = 200 modes obtained from SOHO/MDI
observations of a) Doppler velocity, b) continuum intensity.

        

1

2

3

4

lo
g(

P V
)

a)

Velocity and intensity spectra from SOHO/MDI

1 2 3 4 5 6 7 8
ν, mHz

0.5

1.0

1.5

2.0

2.5

3.0

lo
g(

P I
)

b)

Velocity power spectrum

Intensity power spectrum

pseudo-modes

line asymmetry

reverse line asymmetry
non-adiabatic modes

adiabatic modes

For a given value of l
the picks are almost 
equidistant, and 
separation between the 
picks increases with l.
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Surface gravity waves (f-mode) 
 
At the visible surface of the Sun (the photosphere), the density drops so fast

that the photosphere can be considered as a free surface of the Sun, without a
substantial external force. This means that the Lagrangian pressure variations on the
surface: = 0P . 

The oscillations associated with the free surface are called ‘surface gravity
waves’, and the corresponding normal oscillation modes are called f-mode (or 
‘fundamental mode’). The surface gravity waves are similar to ocean waves. The 
frequencies and the penetration depth of these waves depend on the horizontal
wavenumber. 

To describe the surface gravity waves, we consider the general oscillation
equations in the Cowling approximation:  

 
2 2

2 2 2 2

2
1 = 0r

r

d g L c P

dr r c r c

 
 

 
    

 
 

 

  2 2
2

= 0r

dP g
P N

dr c
 


    

and replace the Eilerian pressure variations P , with the Lagrangian variations, P : 

 = =r r

dP
P P P g

dr
       

Near the surface, r R , gconst.  

Substituting = rP P g    ,  

 
2 2

2 2 2 2

2
1 = 0r r

r r

d P gg L c

dr r c r c

    
 

  
    

 
 

Neglecting the sphericity term 
2

rr
  we obtain:  

 
2 2 2

2 2 2 2 2
1 = 0r

r

d L g L c P

dr r r c

 
  

 
   

 
 

Substituting P , 2 1 1
=

dP d
N g

P dr dr


 
 

 
 

 and =
dP

g
dr

 , in the second equation: 

             
 2 2

2
= 0r

dP g
P N

dr c
 


    

 we obtain: 
 

 
2

2
2 2

= 0r
r r r r r

dd P d g g dP d
g g P g g

dr dr dr c c P dr dr

           


        

After substitution of rd

dr


 from the first equation:  

 
2 2 2

2
2 2 2 2 2 2

1 = 0r r

d P L g L c P g
g g P

dr r r c c

      
  

 
     

 
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Finally, we obtain the oscillation equations in terms of P  and r :  

 
2 2 2

2 2 2
= 0r

d P L g g r L g
P

dr r r g r

   
 

 
   

 
 

 

 
2 2 2

2 2 2 2 2
1 = 0r

r

d L g L c P

dr r r c

 
  

 
   

 
 

This system has a solution: = 0P  and 0r  , at the surface =r R  if  

 
2 2

2
= 0

R L g

g R




  

Thus, we find the f-mode frequencies:  

 2 ( 1)
= = =l h

l l gLg
k g

R R



  

. This is a dispersion relation for the surface gravity waves (f-modes) traveling at 
the solar surface.  

  The f-mode eigenfunctions can be found from the equation for r  at r R
:  

 
2

2 2
= 0r

r

d L g

dr R

 


  

   or  

 2
= 0r

r

d L

dr R

   

   The solution is:  

 
( )

L
R r

R
r e

 
  

   The eigenfunctions exponentially decay with the depth. 
   The characteristic penetration depth is: /R L  (equal to  
   the horizontal wavelength). 
 
   For high values of the angular spherical harmonic degree l ,  
   the f-modes are concentrated near the surface. 
 

However, for low l  they penetrate in the deep interior  
where they interact with the internal gravity waves,  
and their properties are calculated numerically.  
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Theoretical l-diagram: numerical 
solution of the oscillation equations

Avoided crossing effect for mixed modes

Seismic radius 
 The f-mode frequencies can be expressed in terms of the solar mass and

radius:  

 2 = ( 1) =l

g Lg
l l

R R
   

where g  is the gravity acceleration on the surface of the Sun:  

 
2

=
GM

g
R

 

thus  

 2
3

=l

LGM

R
  

The value of GM  is known with very high precision from interplanetary spacecraft
orbits. The f-mode frequencies are determined from helioseismic measurements by
fitting the f-mode lines in the oscillation power spectra for various values of angular
degree l . Then, we can calculate the solar radius radius as:  

 
1/3

2
=

l

LGM
R


 
 
 

 

ot in term of the cyclic frequencies = / 2l l   : 
 

 
1/3

2 2
=

4 l

LGM
R

 
 
 
 

 

Thus, the measurements of the f-mode frequencies allow us to estimate the solar
radius, called ‘the seismic solar radius’.  
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There is no sharp solar surface. The standard measurements of the solar radius
are based on determining the locations of the inflection point in the solar brightness
profile, which depends on the radiation bandwidth and the structure of the
atmosphere. 

The seismic radius provides the radius of the sharp density decrease at the
surface. It can be directly compared with the solar models. 

It turned out that the solar radius was overestimated by about 300 km. The
deviations of the seismic radius from the model can be calculated from the
perturbation equations:  

 
2

= < >
3

l

l

R

R




  

This relation is also use to estimate the variations of the seismic radius during the
solar activity cycles. However, evolving magnetic fields also affect the f-mode and 
their effects have to be taken into account.    

Because the f-mode penetration depth depends on the mode angular degree, 
the f-mode measurements can be used for measuring the displacement of subsurface
layers of Sun. 

Measurements of the seismic radius 
relative to the standard solar model

42
4.4 10

3

R

R




 
   

This means that the seismic radius is 
approximately equal to 695.68 Mm, which is about 
0.3 Mm less than the standard radius, 695.99 Mm, 
used for calibrating the model calculation.
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Cyclic Changes of the Sun's Seismic Radius

(Kosovichev & Rozelot, 2018)

Variations of the seismic radius at different depths:
inversion of the f-mode frequencies
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Variations of the seismic radius with time and depth
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Lecture 11
Internal gravity waves and g-modes

Overview of the Asymptotic Theory.
JWKB (Jeffreys-Wentzel–Kramers–

Brillouin) Solution



2

General idea of the JWKB approximation 
 
Consider a second‐order oscillation equation in a uniform medium   

without gravity:  c=const,  = 0c ,  = 0N .   

         
2

2
2

= 0
d

K
dr


  ,    where 

2
2

2
=K

c


 

For a one‐dimensional potential well of the length  R   with infinite walls,   
the boundary conditions are:  = 0   at  = 0r   and  =r R .   
We seeks the solution in the form:   

  ( ) = ikrr Ae  
Then, the solution satisfying the boundary conditions is:   

  ( ) = sin( )r A kr  
where  =kR n ,  n   is an integer number.   
Thus, we obtain the oscillation spectrum (eigenvalues):   

  = / .n nc R   

 

Then, we consider the wave equation with the coefficients varying with  r :   

                               
2

2
2

( ) = 0
d

K r
dr


   

 

                           
2 2 2 2

2
2 2 2

( ) = 1 .c L N
K r

c r

 


 
  

 
 

If  ( )K r   is a slowly varying function of  r   we can seek the solution in the form:   

  ( )( ) = iu rr Ae  
where  ( )u r   is a slowly varying function.We find  ( )u r   by substituting this form   

in the wave equation:   

                                    ( )= iu rd du
i Ae

dr dr


 

 

 
22 2

( ) ( )
2 2

= iu r iu rd d u du
i Ae Ae

dr dr dr

    
 

 

 



3

Because  ( )u r   is a slowly varying function, in the first approximation we neglect   

the first term in this expression. Substituting in the wave equation, we obtain:   

                 
2

( ) 2 ( )( ) = 0iu r iu rdu
Ae K r Ae

dr
   
 

 

 

       

2
2=

du
K

dr
 
 
 

     →       =
du

K
dr

   →    ( ) =u r kdr            

                ( ) =
i kdr

r Ae


   
The eigenvalues are determined by matching the boundary conditions:   

 
c

= ( )
avity

kdr n   

where     is a phase shift due to imperfectly reflecting boundary conditions.   

The JWKB approximation is valid if 
1

1
dK

K dr
 .   

It can be improved considering  A   as a function of  r .   

JWKB solution 

              1/2( ) =
i k drr

r r A e 


     

where 
2 2 2 2

2
2 2 2

( ) = 1c L N
k r

c r

 


 
  

 
 

 
   

The wave propagation region is determined from  ( ) > 0k r .   

The resonant condition is:   

                   
2

1

= ( )
r

rr
k dr n   

 

           
2 2 2 2

2

2 2 2
1

1 = ( )
r

c

r

L N
dr n

c r

   


 
   

 
  
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The frequencies of normal modes are determined for the Borh

quantization rule (resonant condition):      
2

1

( )
r

rr
k dr n     

where 1r  and 2r  are the radii of the turning points where rk =0, n  is a
radial order -integer number, and   is a phase shift which depends on
properties of the reflecting boundaries.   2 2 2

2 2 2
2 2 2

c l
r

S
k N

c c

  


 
 
 


  

2 2
2

2l

L c
S

r


 

2c

c

H
 

 1
logd

H
dr

 
   
 

2 2 21 1dP d
N g g H g c

P dr dr


 

 
      

 

 2 ( 1)L l l 

Normal modes of solar oscillations

is the acoustic cut-off 
frequency; it has very 
sharp increase  at r/R=1

c(r) is the sound speed

Internal gravity waves (g-modes) 
 
The acoustic (p) waves propagate in the region

where their frequency is greater than the Lamb and
acoustic cutoff frequencies: > lS  and > c  . 

where 
( 1)

= =l

l l cLc
S

r r


.  

Consider low-frequency waves: lS .  
In this case, the second term in the dispersion equation
is dominant:  

   
2

2 2 2 2 2
2 2 2 2

( 1)
=l

r

S l l
k N N

c r
 

 


   

The propagation region region, 2 > 0rk  is where < N . 

The wave turning points, 2 = 0rk , are determined from 
the equation: 1,2( ) =N r  .  

Thus, the resonant condition is:  

   2 2 2

1

( 1)
= ( )

r

r

l l dr
N n

r
  




   

g-mode cavity
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Assuming that far from the turning points, 2N , we obtain the resonant 
mode frequencies:  

 2

1

( 1
=

( )

r

nl r

l l dr
N

n r


 

   

These resonant modes are called internal gravity modes, or g-modes. They are 
driven by the buoyancy force. The g-mode are non-radial, 1l  . 

The periods of the g-modes:  

 
2

1

2 ( )
= =

( 1)
nl r

nl
r

n
P

dr
l l N

r

  




 
 

for a given l  are equidistant in terms of the radial order, n . This property is often 
used for searching of g-modes in the noisy power spectra of solar oscillations, by
performing a Fourier transform and searching for a signal corresponding to the 
period separation, or applying a ‘comb’ filter. 

The frequency separation decreases for higher n  values as 
2

1

n
  , 

forming a dense spectrum. 
 

Theoretical l-diagram: numerical 
solution of the oscillation equations
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Theoretical l-diagram: numerical 
solution of the oscillation equations

Avoided crossing effect for the mixed modes

Periods of solar oscillations

g-mode periods:

2

1

2 ( )
nl r

r

n
P

dr
L N

r

  



 



1,n l nlP P const  
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Spatial structure of p- and g-modes is obtained 
by multiplying the radial eigenfunctions by the 

corresponding spherical harmonics

g-mode ray paths

g-modes propagate only in the radiative zone which 
is convectively stable 2 0N 
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Simple description of internal gravity waves
ρ+δρi

ρ
δr

Consider a displacement, r , of a small fluid 
element along the radius. If the density inside
the displaced element, i   is smaller the 

density of surrounding plasma,   , then 
the element will continue moving up under 
the buoyancy force. Therefore, the condition
of the convective instability is:  
                0i        

Physical conditions inside the element obey the adiabatic law because the
characteristic time for heat exchange is much longer than the dynamic time. Then,    

                                    
ad

i

d dP
r r

dr P dr

   


        
   

 

where   is the adiabatic exponent.  

The density variation in the surrounding plasma is:  
d

dr

    

Finally, the instability condition is:       
1 log log

0
log log

d P d
A

d r d r




      

Parameter A  is called the Ledoux parameter of convective stability.  
 
If A > 0 then the fluid element will move downward and start oscillating. 

Oscillations of a fluid element 
 The momentum equation of a fluid element moving under the

buoyancy force, = ( )buoyancy iF g    is:  

 
2

2
2

= ( ) = =i

d r d dP
g N r

dt dr P dr

       


 
   

 
 

where r  is displacement of a fluid element from its equilibrium state,  

2 1
=

dP d
N g

P dr dr




 
 

 
 is the Brunt-Vaisala frequency. 

The equation of motion is:      
2

2
2

= 0
d r

N r
dt

   

For 2 > 0N , the general solution is:  
 = sin( ) cos( )r A Nt B Nt   

- the fluid elements oscillate with frequency N , representing the internal 
gravity oscillations. 

If 2 < 0N , then | |N tr e  . This solution contains an exponentially
growing perturbations, representing the convective instability. 

If the fluid displacement   is not vertical, then the vertical
component of the displacement is = cos( )r   , where   is the angle 
between the displacement vector and the vertical. 

In this case, the equation of motion is:  

 
2

2 2
2

= 0cos
d

N
dt

     

and the oscillation frequency is = cosN  . 



r 

g


ρ+δρi

ρ
δr
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Propagation of internal gravity waves 
 To analyze wave properties, we calculate the phase and

group velocities from the dispersion relation:  

              
2

2 2 2
2 2

= l
r

S
k N

c



  

Substituting         
2 2

2 2 2
2

= =l h

L c
S k c

r
 

where = /hk L r  is the horizontal wavenumber defined in the
previous lecture, we obtain:  

           
2 2

2 2 2 2 2
2 2

= = .h h
r h

k k
k N N k

 
   

We find           

                         
2 2 2 2

2
2 2 2

= =h h

h r

k N k N

k k k



 

 

                = hk
N

k
   

where k  is the total wavenumber, 2 2 2= h rk k k .  



g


r
k


rk

hk

If   is the angle between the wave vector = ( , )h rk k k


 and the 
horizontal direction, then / = coshk k  , and  

 2 2 2= cosN   

If = 0 , that is = hk k , and the waves travel horizontally, 2 2= N . 
The wave phase velocity is:  

 
2

= =phv k
kk

     

or in terms of the horizontal and vertical components:  

 
2

2 2 3 3
= , = , .h h r hr

ph

k Nk Nk kk
v

k k k k

    
  

   


 

The group velocity:  

 
2 2

2 2 3 3
= = 1 , = ,h h r r h r

gr

N k N k k Nk Nk k
v

k k k k k kk

     
           

   

Note that the vertical component of the group velocity has the opposite
sign to the vertical component of the wavevector, rk .  

We find that = 0ph grv v
 

, that is gr phv v
 

. This means that the 

wave energy is transported perpendicular to the wave propagation.  



g


r
k


rk

hk
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 Calculating the amplitudes of the group and phase velocities, we find:  

       
2 2 22 2 2

2 2
2 4 2 4 4

= =h h r
gr r

k k kN N N
v k

k k k k k

 
 

 
 

 

         2
| |= = sinr

gr

Nk N
v

k k
  

Similarly,       | |= cosph

N
v

k
  

Consider propagation of a wave front from an impulsive source.  
The radius of the wave front expands with the group velocity:  

     = = sin = sin ,
2gr

N t
r v t t N

k

 


 

where = 2 / k   is the wavelength. 
 
Laboratory experiments are performed in a stratified salt solution with a constant

Brunt-Vaisala frequency N . A horizontal cylinder vertically oscillating with frequency
  generates a wave pattern with constant phases at angle 1( / )cos N  to the vertical, 
resembling the St.Andrew’s Cross pattern. 
 

Internal gravity waves experiment

http://www.phys.ocean.dal.ca/programs/doubdiff/demos/IW1-Lowfrequency.html

A tank about 30 cm deep is filled with a salt stratification of buoyancy period 2/N of about 6 seconds. A solid cylinder 
of a few cm diameter runs across the tank at mid depth, in the right of the field of view (see diagram). This cylinder is 
oscillated horizontally (to the left and right in the diagram) at frequency less than N, generating internal waves. The 
flow is visualized with a schlieren system that shows regions of positive isopycnal (constant density) slope in red, and 
negative isopycnal slope in green. Slopes close to zero show as yellow. The movie is in time lapse, so that the waves 
appear to have higher than real frequency. The movie starts from rest, and after the paddle motion begins, the wave 
field starts to fill the tank outwards from the paddle. In the movie clip, wave energy appears to travel at an angle from 
the horizontal, and the wave crests sweep at right angles to this direction.
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Lighthill, James, 1978. (Chapters 3 and 4.) Waves in fluids. Cambridge University Press.

Internal gravity waves excited by 
oscillating source

Internal gravity waves excited by impulsive 
source

A localized source of finite duration generates waves of various wavelength
and frequencies. The wave frequencies obey the dispersion relation: = cosN  , so 
that the waves with different frequencies travel in different directions. The waves
of wavelength   travel to the distance proportional to the wavelength:
( / 2 )sinN t   . The waves with frequency   traveling in direction   become 
spread out in wavelength. The waves with shorter wavelength travel slower. The
neighboring wave crests are separated by the wavelength  . Therefore, over time, 
the distance between the crests decreases. 
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Numerical model of internal gravity waves 
excited by impulsive source

http://web.khu.ac.kr/
~magara/page17/pag
e5/page5.html

Detection of g-modes on the Sun
The g-mode can be excited by the turbulent convection, like the p-modes. 
Theoretical calculations show that, the expected surface amplitude is less than 1 
mm/s. The g-mode has not been reliably detected. The upper observational limits 
are greater than 1 mm/s. The main difficulty in the g-mode detection is the high 
background convective noise.

Kumar et al, (1996)

Theoretical prediction of the mode amplitude Observational limit

(Wachter et al, 2002)
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Numerical simulations of excitation of modes by 
convection at the bottom of a stellar convection zone

The video shows volume rendering of density fluctuations in 3D simulations of the 
convection zone in a solar-type star with 1.47 solar masses. Fast  flickering in the upper 
part is caused by acoustic (p) modes. Slow variations in the lower part are caused by the 
internal gravity waves (g-modes) traveling in the radiative zone where N>0.
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Lecture 12
Asymptotic raypath approximation

(Stix, Chapter 5.2; Kosovichev, p.31-36, 41-44; 
Christensen-Dalsgaard, Chapters 5.2, 7)

Projects
• *Power spectrum: Ivan Oparin

• *Global modes from GOLF: Sheldon Fereira

• *Oscillation model, line asymmetry: Bryce Cannon

• *Power maps, acoustic halo: Bhairavi Apte

• *Propagation diagram for solar and stellar models: Ying Wang

• Ray paths, travel times: Sadaf Iqbal Ansari -today

• Asymptotic sound-speed inversion: Yunpeng Gao -tomorrow

• Analysis of sunquakes: Youra Shin

• Asteroseismic analysis: John Stefan

• November 29-30: Work on the Python and Jupyter notebooks 
in class – Dr. Andrey Stejko
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The solar oscillation theory

1. Linearize - consider small-amplitude oscillations.
2. Neglect the perturbations of the gravitational potential (Cowling 

approximation).
3. Write the linearized equations in the spherical coordinates: r, 
4. Consider harmonic (periodic) oscillations
5. Separate the radial and angular coordinates.
6. Show that the angular dependence can be represented by spherical 

harmonics.
7. Derive equations for the radial dependence, representing the 

eigenvalue problem for the normal modes 
8. Solve the eigenvalue problem in the asymptotic (short wave-

length) JWKB approximation.
9. Investigate properties of p-modes
10. Properties of g- and f-modes

Spectrum of normal modes calculated 
for a standard solar model. Note the 
‘avoided crossing effect’ for f and 
g-modes. 

Solar oscillation spectrum obtained 
from the HMI instrument on Solar 
Dynamics Observatory. 

f-mode
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Spatial structure of p- and g-modes is obtained 
by multiplying the radial eigenfunctions by the 

corresponding spherical harmonics

Wave propagation region: 2 0rk   
Turning points are determined 
from equation 2 0rk  :  

2 2
2 2

2c

L c

r
     

For the lower turning point in the 
interior: c  .  

Then, 
Lc
r

  , or  
1

1

( )c r

r L


     

is the equation for the lower 
turning point.  

Calculation of p-mode frequencies

The upper turning point: 2( )c r  . Since ( )c r  is a steep function of r

near the surface,  2r R   

Then, the resonant condition for p-modes is:    
2 2

2 2
( )

1

L
dr n

c r

R

r
      
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Properties of Solar Oscillation Modes. I 

Equation                      
2 2 2

2 2 2
2 2 2

c l
r

S
k N

c c

  


 
 
 


    

 represents  dispersion relation of solar oscillations.  
It relates frequency   with radial wavenumber rk  and angular order l .  

Consider two cases:        
1: p-modes (acoustic modes): the high-frequency case. If 2 2N  then 

                                           

2 2 2
2

2 2
c l

r

S
k

c c

 
   

      or                      2 2 2 2 2 2
c r hk c k c      

where 
( 1)

h l

l lL
k S c

r r


    is the horizontal wave number.  

Then, 2 2 2
r hk k k   is the squared total wavenumber.  

Finally, 
2 2 2 2 ,  where  is the acoustic cut-off frequency.

2c c

c
k c

H
      

This is the dispersion relation for acoustic (p) modes; c is the acoustic cutoff
frequency. Physically, the waves with frequencies below the acoustic cutoff
frequency cannot propagate. Their wavelength becomes shorter than the density
scale height. For the Sun / 2 5 .c c mHz     (c~10 km/s, H~150km). 

    Frequencies of g-modes:  
The turning points are determined from equation:
 ( )N r    
In the propagation region, 0rk  , far from the turning

points ( N  ):  

                                      r

LN
k

r
   

Then, from the resonant condition:   

      
2

1

( )
r

r

L dr
N n

r
 


    

we find:  

2

1

( )

r

r

drL N
r

n


 
 



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Surface gravity waves (f-mode) 
These wave propagate at the surface boundary where Lagrangian pressure perturbation

~ 0P .  
Consider the oscillation equations in terms of P  by making use of the relation between
Eulerian and Lagrangian variables:  rP P g      
 

 
2 2 2

2 2 2 2 2
1 0r

r

d L g L c P

dr r r c

 
  

 
     

 
 

 
2

2 2
0r

d P L g g f
P

dr r r

  


     

where           
2 2

2

r L g
f

g r




    

These equations have a peculiar solution:  0 0P f      

For this solution:          
2

h

Lg
k g

R
    

-dispersion relation for f-mode.  

The eigenfunction equation:       0r
r

d L

dr r

    

has a solution     ( )
r

k r Rhe   exponentially decaying with depth.  

 

Asymptotic raypath approximation

Ray paths for:  
a) two solar p-modes of angular degree = 2l , frequency = 1429.4  Hz (thick 

curve), and = 100l , = 3357.5  Hz (thin curve);  
 
b) g-mode of = 5l , = 192.6  Hz (the dotted curve indicates the base of the 

convection zone). The lower turning points, 1r  of the p-modes are shown by arrows. 

The upper turning points of these modes are close to the surface and not shown. For 
the g-mode, the upper turning point, 2r , is shown by arrow. The inner turning point is 

close to the center and not shown. 



6

1r

P-mode ray paths
Inner turning point

2 2 2
2

2 2
c l

r

S
k

c c

 
 

• The waves propagate where 
kr

2>0.  
• The waves are evanescent 

where kr
2<0

• The wave turning points are 
located where kr

2=0.
• Because 
has a sharp peak near the surface 
the upper turning point (r2) is 
where
The lower turning point (r1) is 
where  

/ 2c c H 

c 

( / )l hS L r c k c   
r where the horizontal phase speed                    is equal to the sound speed.  / hk c 

John’s sunquake movie illustrate the wave behavior at 
the inner turning points: 

wave fronts are perpendicular to the ray paths
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Theory of the raypath approximation
The asymptotic approximation provides an important representation of solar oscillations in

terms of the ray theory. Consider the wave path equation in the ray approximation:  

 = .
r

t k

 
 


   

 Then, the radial and angular components of this equation are:  

= ,
r

dr

dt k


         = .

h

d
r

dt k

 


 

1. Consider p-modes. 

 Using the dispersion relation for acoustic (p) modes: 
2 2 2 2= ( ),r hc k k    

 in which we neglected the c  term. (It can be neglected everywhere except near the upper
turning point, R ), we get  equation for the acoustic ray path is given by the ratio of equations:  

 = / = ,h

h r r

kd
r

dr k k k

      
      

  

 or  

 
2 2 2 2

/
= = .

/ /
h

r

kd L r
r

dr k c L r



   
For any given values of   and l , and initial coordinates, r  and  , this equation gives trajectories 
of ray paths of p-modes inside the Sun. 

Acoustic travel time
 The distance,  , between the surface points for one skip can
be calculated as the integral:  

 

2 2 2 2 2 2 2 21 1 1

/ /
= 2 = 2 2 .

/ / / /

R R R

r r r

L r c r
d dr dr

c L r L c r


 
 

 
    

  
 The corresponding travel time is calculated by integrating

equation:      = :
r

dr

dt k


       1/22 2 2

= .
1 /h

dr
dt

c k c 
 

 

 
   1/2 1/22 2 2 2 2 2 21 1 1

= 2 = .
1 / 1 /

R R R

r r r
h

dr dr
dt

c k c c L c r


 


 
    

 
 These equations give a  time-distance relation,    , for 
acoustic waves traveling between two surface points through 
the solar interior. The ray representation of the solar modes 
and the time-distance relation provided a motivation for 
developing  time-distance helioseismology 

1r


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Calculation of p-mode ray paths:
1) Isolate the singularity at r1

Use the sound-speed profile, c(r), from the standard solar model to 
calculate the integral: 

 

 2 21

2 2

1
=

1

R

r

Lc dr

r rL c
r









  

Integrand is singular (division by zero) at the lower turning point, 1=r r ,

where 
1

1

( )
= 1

Lc r

r . 

We divide the integration interval in two parts: 1) [r1,r1+x], 2) [r1+x,R],
where x is small compared to r1:  

  
1

1 1

2 2 2 2

2 2 2 2

1 1
=

1 1

r x R

r r x

Lc dr Lc dr

r r r rL c L c
r r

  
 

 





    

 
   

To calculate integral use the Taylor expansion in the vicinity of r1: 
 

 
1

1 2 2

2 2

1
=

1

r x

r

Lc dr

r rL c
r









  

The first term of the integrand: 
1

1

( )
= 1

Lc r

r . 

Expand  the denumerator: 

1

1

2
2 2

1
2 2 2

1

2 2
2 2 1 1

1
1

log
1

log log
1 1 2

log
1 2

r

r

d c x
L c

d r rL c d c x x

r d r r rx
r

r






  
                       
 

 

 

Calculation of p-mode ray paths:
2) Use Taylor expansion in the vicinity of r1
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Substitute the expansion in : 
 

 0 0
1 11

1

1 1
= 2

x xdx dx x

r rx r x
r




  

 
Define x, calculate , and evaluate integral ’ numerically. 

rR

r1

ri

x

1

1 1

2 2 2 2

2 2 2 2

1 1
=

1 1

r x R

r r x

Lc dr Lc dr

r r r rL c L c
r r

  
 

 





    

 
 

Calculation of p-mode ray paths:
3) Outside singularity use numerical integration

Ray paths of g-modes

For the g-modes, the dispersion relation is:  

 
2 2

2
2 2

= .h

r h

k N

k k


  

 Then, the corresponding ray path equation:  

 
2

2
= = 1.r

h

kd N
r

dr k




    

 
Note that the g-mode travels mostly in the 

central region.  
 
Therefore, the frequencies of g-modes are 

mostly sensitive to the central conditions (the 
energy-generating core). 
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1

( )
R

rr
k dr n  

1

1/22 2

2 2
( )

R

r

L
dr n

c r

  
 

   
 



1

1/22 2

2 2

( )R

r

r L dr n

c r

 
 

  
  

 


( )L n 
 

   
 

Duvall’s law (asymptotic p-mode relation)
Consider the p-mode dispersion 
relation:

Dividing left and right-hand sides by 
we get:

Radius r1 (or rt) of the lower 
turning point depends only on 
ratio L/. Hence, the left-hand 
side is a function of L/:  

where ( 1)L l l  1.5 

p-mode 
frequencies form 
a single curve in 
these variables.

Duvall’s law
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Determination of the sound-speed profile from Duvall’s law 
 The asymptotic relation for the p-mode frequencies in the form of the

Duvall’s law:  

 
1

2 2

2 2

( )
1 =

R

r

L c dr n

r c

 
 


  

allows us to determine the sound-speed profile inside the Sun. It was the first
determination of the Sun’s internal structure to test the stellar evolution theory. 

Substitute new variables: 
2

2
=

r
x

c
 and 

2

2
=

L
y


, and consider the right-hand side 

as a function of y :  

 ( )
1 ln = ( ),

X

y

y r n
d r F y

x c

 



   

where X  is the value of x  at the solar surface: 
2

2
=

( )

R
X

c R
. 

This equation can be rewritten as:  

 ln
= ( )

X

y

d r
x y dx F y

dx
  

The parameter y  and function ( )F y  are known from observation. Our task is to
find r  as a function of x  by solving this integral equation. Once we know ( )r x  we 
can reconstruct the sound-speed, c , as a function of radius r .  

First, we differentiate this equation with respect to y :  

 
1 1 ln

=
2

X

y

d r dF
dx

dx dyx y


  

By introducing ln
( ) =

d r
f x

dx
 and ( ) = 2

dF
y

dy
  , we write it in the form  

of the Abel integral equation:  

 
( )

= ( )
X

y

f x
dx y

x y


  

To solve this equation, we multiply both sides by 
1

y u
 and integrate  

over y  from u  to X :  

 ( ) ( )
=

X X X

u y u

f x dy y
dx dy

x y y u y u

  
 

    
    
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In the left-hand side, we change the order of integration –  
first, integrate over y  and then over x :  

=

=

( )
= ( )

X X X y x

u y u y u

f x dy dy
dx f x dx

x y y u x y y u

   
   

         
     

This transformation is easy to understand by plotting the 
integration region in the x y  diagram.  
The integration region covers the gray triangle. Before the 
transformation, the integration over x  was along  
the vertical lines, and then horizontally over y .  
After the transformation, the inner integration is along the 
horizontal lines from =y u  to =y x .  
This integral is calculated analytically:  

        =
( )( )

y

u

dy

x y y u


   

Thus,  

       
( )

( ) =
X X

y u

y
f x dx dy

y u
 

   

Substituting back ln
( ) =

d r
f x

dx
 and ( ) = 2

dF
y

dy
   we get:  

     
ln /

= 2
X X

u u

d r dF dy
dx dy

dx y u
 

   

x

yX

X

y=u

x=u

y=u y=x

 Integrating the left-hand side:  

 
/

[ln ln ( )] = 2
X

u

dF dy
R r u dy

y u
  

  

where R  is the solar radius. Replacing independent variable u  with x :  

 2 /
ln =

X

x

r dF dy
dy

R y x
 
      

The solution is often represented in terms of variables w  and a  defined in terms of 
x  and y  as: 

2
2

2
= =

L
y w


 and 

2
2

2
= =

r
x a

c
:  

 
2 2

( ) 2 /
ln =

A

a

r a dF dw
dw

R w a 
  

where = /a r c , = /w L   and = / ( )A R c R . The integral is calculated by

approximating ( )
( ) ( / ) =

n
F w F L

 



  by a smooth function of w , differentiating 

with respect to w  and calculating the integral numerically, taking into the
singularity at the lower limit. The singularity is of the type of 1/ x  and the integral 
is calculated analytically in the vicinity of the singular point . This type of integrals
are called the Abel integral equation. It gives the relationship between r  and 

= /a r c , from which ( )c r  can be calculated by interpolation.  
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Taking into account the Brunt-Vaisala frequency and the 
surface phase shift 

 
An application of short-wave asymptotic theory to the non-radial adiabatic

oscillation equation yields, in the first-order approximation, the dispersion
relation which includes the Brunt-Vaisala frequency N : 

 

 
1/2 1/22 2 2

2 2 2

( )
= 1

R

rt

n r L N dr

c r

 
  

   
    

   
  

where N  is the buoyancy frequency and tr  1s radius of the turning point of the
mode,   / = /t tr c r L  . In general, the phase shift  , which depends on the wave

reflection at the solar surface, is a function of frequency: = ( )   . 
In this case, the Duvall’s law depends not only on the parameter = /y L 

but also on the frequency,  :  

 1

( )
= ( , )

n
F y

  



 

 

For high-frequency p modes 2 2N  , and therefore, by using the Taylor
expansion, the dispersion equation can be rewritten as:  

 
1/2 1/22 2

2 2 2
2 2 2

( ) 1
=

2

R R

r rt t

n r dr r dr
y N y

c r c r

 
 

   
     

   
   

or 
2

1
( , ) = ( ) ( ) ( )f y F y y  


    where ( , ) =

n
f y




  

 
1/22

2
2

( ) =
R

rt

r dr
F y y

c r

 
 

 
  

 

 
1/22

2 2
2

1
( ) =

2

R

rt

r dr
y N y

c r

 
  

 
  

 

 ( ) =
 


 

All terms on the RHS of the equation for ( , )f y   have different functional
dependencies on y  and  , and therefore derivatives of ,F   and   can be
determined separately.  
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 By differentiating equation: 
2

1
( , ) = ( ) ( ) ( )f y F y y  


    

 

 

2

3 2

3

=
2

=
2

2
= ( )

dF f f

dy y y

d f

dy y

d f
y

d








  

 


  

 
 


  


 

The application of the natural parameters of the asymptotic theory ( / )n   and 
( / )L   simplifies the calculations of the derivatives. We obtain an improved

estimate of the derivative dF

dy
 which is needed for determining the sound-speed 

profile. 
A numerically stable method of evaluating the partial derivatives of the

function ( , )f y   is provided by least-squares fitting of a bicubic spline to the
observational data. The method employs products of B-splines to represent the 
bicubic splines. The positions of the B-spline knots are used to control the
smoothing process, which is dependent on observational errors.  

Result of the asymptotic inversion

a) Result of the asymptotic sound inversion (solid curve) for the p-mode 
frequencies. It confirmed the standard solar model (model 1) (dots). The large 
discrepancy in the central region is due inaccuracy of the data and the asymptotic 
approximation. b) The relative difference in the squared sound speed between the 
asymptotic inversions of the observed and theoretical frequencies. 
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Lecture 13
Mode-ray duality. 

3D ray paths 

(Stix, p.202-203; Chapter 5.3.2; Kosovichev, p.34-41; 
Christensen-Dalsgaard, Chapter 7.7)

HW1 presentations (Oct. 25+ quiz)
• 1.1 (a) Bryce

• 1.1 (b-d) Youra

• 1.2 (a) John

• 1.2 (b) Sadaf Iqbal

• 1.3 (a-c) Yunpeng

• 1.3 (d-f) Bhairavi

• 1.4 Ying

• 1.5 Ivan
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Asymptotic raypath approximation

Ray paths for:  
a) two solar p-modes of angular degree = 2l , frequency = 1429.4  Hz (thick 

curve), and = 100l , = 3357.5  Hz (thin curve);  
 
b) g-mode of = 5l , = 192.6  Hz (the dotted curve indicates the base of the 

convection zone). The lower turning points, 1r  of the p-modes are shown by arrows. 

The upper turning points of these modes are close to the surface and not shown. For 
the g-mode, the upper turning point, 2r , is shown by arrow. The inner turning point is 

close to the center and not shown. 

Theory of the raypath approximation
The asymptotic approximation provides an important representation of solar oscillations in

terms of the ray theory. Consider the wave path equation in the ray approximation:  

 = .
r

t k

 
 


   

 Then, the radial and angular components of this equation are:  

= ,
r

dr

dt k


         = .

h

d
r

dt k

 


 

1. Consider p-modes. 

 Using the dispersion relation for acoustic (p) modes: 
2 2 2 2= ( ),r hc k k    

 in which we neglected the c  term. (It can be neglected everywhere except near the upper
turning point, R ), we get  equation for the acoustic ray path is given by the ratio of equations:  

 = / = ,h

h r r

kd
r

dr k k k

      
      

  

 or  

 
2 2 2 2

/
= = .

/ /
h

r

kd L r
r

dr k c L r



   
For any given values of   and l , and initial coordinates, r  and  , this equation gives trajectories 
of ray paths of p-modes inside the Sun. 
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Calculation of p-mode ray paths:
1) Isolate the singularity at r1

Use the sound-speed profile, c(r), from the standard solar model to 
calculate the integral: 

 

 2 21

2 2

1
=

1

R

r

Lc dr

r rL c
r









  

Integrand is singular (division by zero) at the lower turning point, 1=r r ,

where 
1

1

( )
= 1

Lc r

r . 

We divide the integration interval in two parts: 1) [r1,r1+x], 2) [r1+x,R],
where x is small compared to r1:  

  
1

1 1

2 2 2 2

2 2 2 2

1 1
=

1 1

r x R

r r x

Lc dr Lc dr

r r r rL c L c
r r

  
 

 





    

 
   

To calculate integral use the Taylor expansion in the vicinity of r1: 
 

 
1

1 2 2

2 2

1
=

1

r x

r

Lc dr

r rL c
r









  

The first term of the integrand: 
1

1

( )
= 1

Lc r

r . 

Expand  the denumerator: 

1

1

2
2 2

1
2 2 2

1

2 2
2 2 1 1

1
1

log
1

log log
1 1 2

log
1 2

r

r

d c x
L c

d r rL c d c x x

r d r r rx
r

r






  
                       
 

 

 

Calculation of p-mode ray paths:
2) Use Taylor expansion in the vicinity of r1
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Substitute the expansion in : 
 

 0 0
1 11

1

1 1
= 2

x xdx dx x

r rx r x
r




  

 
Define x, calculate , and evaluate integral ’ numerically. 

rR

r1

ri

x

1

1 1

2 2 2 2

2 2 2 2

1 1
=

1 1

r x R

r r x

Lc dr Lc dr

r r r rL c L c
r r

  
 

 





    

 
 

Calculation of p-mode ray paths:
3) Outside singularity use numerical integration

Ray paths of g-modes

For the g-modes, the dispersion relation is:  

 
2 2

2
2 2

= .h

r h

k N

k k


  

 Then, the corresponding ray path equation:  

 
2

2
= = 1.r

h

kd N
r

dr k




    

 
Note that the g-mode travels mostly in the 

central region.  
 
Therefore, the frequencies of g-modes are 

mostly sensitive to the central conditions (the 
energy-generating core). 
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Spectrum of normal modes calculated 
for a standard solar model. Note the 
‘avoided crossing effect’ for f and 
g-modes. 

Solar oscillation spectrum obtained 
from the HMI instrument on Solar 
Dynamics Observatory. 

Spatial structure of p- and g-modes is obtained 
by multiplying the radial eigenfunctions by the 

corresponding spherical harmonics
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Compare the p-mode eigenfunction and raypaths

Compare the p-mode eigenfunction and raypaths
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Mode-ray duality 
 Oscillations of the Sun are described in terms of the ‘normal modes’ 

which represent standing resonant waves in side the Sun. The resonant cavity 
is the region where wave of specific nature propagate. The physical nature of 
oscillations and waves depends on the restoring force. We considered 
oscillations of three types: 1) acoustic waves (p-modes) are associated with 
fluctuations of gas pressure; 2) buoyancy force in the Sun’s radiative zone 
causes internal gravity waves (g-modes); 3) surface gravity waves (f-modes) 
traveling on the solar surface and driven by the surface gravity. 

The oscillation modes are described in terms of eigenfunctions of a 
system of linearized hydrodynamic equations, which can be written in an 

operator form:             2=L  
 

 

where L  is a differential operator, ( , , ) i tr e   


 describes oscillatory
displacements of fluid elements in the spherical coordinates. We showed that
this equation has non-zero solution (eigenfunctions) in the form:  

 ( , , ) =nlm r r hr e    
 

 

where n  is the radial order, l  is the angular degree, m  is the angular order,  

 ,( , , ) = ( ) ( , )m
r r nl lr r Y       

 

 ,( , , ) = = ( ) ( , )m
h h nl h lr e e r Y           
  

 

1. Linearization  
Consider small perturbations of a stationary spherically symmetrical star in
the hydrostatic equilibrium:  
 0 0 00 ( ) ( )v r P P r        

If ( )t


 is a vector of displacement of a fluid element then velocity of this
element:  

 
d

v
dt t

 
  



 


 

Perturbations of scalar variables P   are two types: Eulerian, at a fixed 
position r


:  

 0( ) ( ) ( )r t r r t      
 

 

and Lagrangian perturbation in moving elements:  

 0( ) ( ) ( )r r r t       
 

 

 
The Eulerian and Lagrangian perturbations are related to each other:  

 0 0
0( ) ( )r r

d d
e

dr dr

                  
  

 

where re
  is a radial unit vector. In our case, the density gradient is radial. 
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1. Linearization  
Consider small perturbations of a stationary spherically symmetrical star in
the hydrostatic equilibrium:  
 0 0 00 ( ) ( )v r P P r        

If ( )t


 is a vector of displacement of a fluid element then velocity of this
element:  

 
d

v
dt t

 
  



 


 

Perturbations of scalar variables P   are two types: Eulerian, at a fixed 
position r


:  

 0( ) ( ) ( )r t r r t      
 

 

and Lagrangian perturbation in moving elements:  

 0( ) ( ) ( )r r r t       
 

 

 
The Eulerian and Lagrangian perturbations are related to each other:  

 0 0
0( ) ( )r r

d d
e

dr dr

                  
  

 

where re
  is a radial unit vector. In our case, the density gradient is radial. 

Then, the linearized equations are:  
 

              0( ) 0      


      the continuity (mass conservation) equation 

 

              
2

0 0 02 rP g e
t

          





 the momentum equation 

 

                 20 0
0 ( )r r

dP d
P c

dr dr

         the adibaticity (energy) equation, or   

                        2
0 for the Largangian perturbations of pressure and density .P c    

 
                     2 4 G       the equation for the gravitational potential  

 
2. Cowling approximation:  0    
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3. Consider the linearized equations in the spherical coordinates

r    :         r rr r he e e e            
      

where 
h e e     
    is the horizontal component of displacement. 

2
2

1 1 1
div ( ) (sin )

sin sinrr
r r r r





   

   
 

     
  


 

 

  2
2

1 1
( )r h h
r

r r r
 


   




 

 
4. Consider periodic perturbations with frequency  :  
 

where  is the cyclic frequency (measured in Hz), 

                       and  is the angular frequency (measure in rad/s)

( ) ( )

/ 2 ,   

.

m m
l l

im i ti te Y CP e  





   
  

  




 

Then, in the Cowling approximation, we get (leaving out subscript 0 for
unperturbed variables):  

                          2
2

1
( ) 0r h h
r

r r r

  
    



    the continuity equation 

                         2
r

P
g

r
  

     


       the radial component of the momentum equation 

                         2 1
hh
P

r
      


        the horizontal component of the momentum equation

                           
2

2

1
r

N
P

c g

        the adiabatic equation 

where  2 1 1dP d
N g

P dr dr


 

 
  

 
 is the Brunt-Vaisala frequency. 

Boundary conditions:  
( 0) 0r r      - displacement at the Sun’s center is zero, 

                                       (or a regularity condition for 1l  ).  
( ) 0P r R      - Lagrangian pressure perturbation at the solar surface is zero.   

                              (this is equivalent to absence of external forces).  
Also, we assume that the solution is regular at the poles 0   .  
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5. Consider the separation of radial and angular variables in the form:  
 ( ) ( ) ( )r r f             

 ( ) ( ) ( )P r P r f           

 ( ) ( ) ( )r rr r f            

 ( ) ( ) ( )h hh
r r f          


 

Then, the continuity equation is:  

 2 2
2

1
( ) ( ) 0r h hr f f

r r r

             
 

The variables are separated if  
                                                            2

h f f    

where   is a constant.  
This equation has non-zero solutions regular at the poles, 0    only when  
                                                           ( 1)l l      
where l  is an integer.  
 
6. The non-zero solution of equation 2 ( 1) 0h f l l f     represents the

spherical harmonics:  
 ( ) ( ) ( )m m im

l lf Y CP e           

where ( )m
lP   is the Legendre function.  

After the separation of variables the continuity equation for the
radial dependence ( )r  is  

                       2
2

1 ( 1)
0r h

l l
r

r r r
   

 
 

     


 

 
0( ) 0      


Compare with the original equation:

 2
2

1
( ) 0r h h
r

r r r

  
    



and with this equation in the spherical coordinates:

Transform this equation in terms of 2 variables:        and         
- radial displacement and Eulerian pressure perturbation.

r P 

7. Derive equations for the radial dependence, 
representing the eigenvalue problem for the normal 
modes 
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The horizontal component of displacement h  can be determined from the horizontal

component of the momentum equation:  

         2 1
( ) ( )h r P r

r
          or       

2

1
h P

r


 
   

Substituting this into the continuity equation 2
2

1 ( 1)
0r h

l l
r

r r r
   

 
 

     


 

we obtain:  
2 2

2 2 2

2
0r

h r r

d d P N L
P

dr dr r c g r

     
 


        

where we define 2 ( 1)L l l   (note the similarity to quantum mechanics). 
Using the hydrostatic equation for the background (unperturbed) state

 
dP

g
dr

    

finally get:  
2 2

2 2 2 2

2
1 0r

r r

d g L c P

dr r c r c

  
 

 
      

 
 

or                   
2

2 2 2

2
1 0r l

r r

d g S P

dr r c c

  
 

 
      

 
  

where   
2 2

2
2l

L c
S

r
  is the Lamb frequency, L2=l(l+1), c2(r)=P/ is the squared 

sound speed, g(r)=Gm(r)/r2 is the gravity acceleration at radius r. 

Similarly, the momentum equation is:  

                                    
2 2

2
( ) 0,r

dP g
P N

dr c
 


     

where N2 is the Brunt-Vaisala frequency. 

The bottom boundary condition (r=0): 0r    (or a regularity condition).  

The top boundary condition (r=R):  0r

dP
P P

dr
      

or using the hydrostatic equation:  0rP g     
 
From the horizontal component of the momentum equation:  
 2

hP r      

Then from the upper boundary condition:  
2

h

r

g

r


 

   

that is the ratio of the horizontal and radial components of displacement is inverse
proportional to squared frequency. However, this relation does not hold in
observations, presumably, because of the external force caused by the solar
atmosphere.  
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7. The derived equations with the boundary conditions 
constitute an eigenvalue problem for solar oscillation modes 

 2

2 2 2

2
1 0r l

r r

d g S P

dr r c c

  
 

 
      

 

 2 2
2

( ) 0r

dP g
P N

dr c
 


    

The bottom boundary condition (r=0): 0.r  .  

The  top boundary condition (r=R):  0r

dP
P P

dr
     

Properties of oscillations
depend on the signs of 
these coefficients in 
brackets.

2 2
2

2l

L c
S

r
 is the Lamb frequency. 

2 1 1dP d
N g

P dr dr


 

 
  

 

is Brunt–Väisälä frequency. 

Using the JWKB (asymptotic short-wavelength approximation) theory for the radial 
eigenfunctions ( )r r  and ( )P r , we found the solution in the form:  

 ( )
i k drr

r r e  
 

where the radial wave vector, rk  is determined from the wave dispersion relation:  

 
2 2

2 2
2

= c
r hk k

c

 
  

The horizontal wave vector, hk , can be expressed in terms of the spherical harmonic

degree, l : =h

L
k

r
, 2 = ( 1)L l l  . 

The wave propagation region (the resonant cavity) is where 2 > 0rk , and the 
resonant oscillation frequencies are determined from the quantization rule:  

 2

1

= ( )
r

rr
k dr n  . 

Using the wave dispersion relation and the ray theory, we described the
propagation of wave fronts in terms of acoustic rays. The acoustic rays are calculated
from the wave group velocity. They are perpendicular to the traveling acoustic wave
fronts. The solar oscillations can be described in terms of the resonant (normal) modes,
and in terms of the acoustic rays trapped in the propagation regions inside the Sun.
These two descriptions can be considered as the mode-ray duality.  
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JWKB solution for the angular eigenfunctions 
 We have found that the angular structure of the oscillation modes is described

by the spherical harmonics, ( , )lmY   , which are solutions of:  

 2 ( 1) = 0m m
h l lY l l Y    

where 2
h  is the angular part of the Laplacian operator in the spherical coordinates. 

 
2

22

1 1
sin ( 1) = 0

sin sin

m m
ml l

l

Y Y
l l Y

    
  

      
 

The spherical harmonics are represented in terms of the associated Legendre
functions:  

 1
( , ) = (cos )

2
m m im

l lY P e   


 

Substituting this equation and defining variable = cosx   ( = sindx d  ) we get an 
equation for ( )m

lP x :  

 
2

2
2

(1 ) ( 1) = 0
1

m
ml

l

dPd m
x l l P

dx dx x

   
        

 

Substituting: 2( ) = 1 ( )m
lg x x P x , we obtain:  

 
2 2

2 2
2 2

1
(1 ) = 0

1

d g m
x L g

dx x

 
    

 

Thus, we get a second-order ‘wave-like’ equation for function ( )g x :  

 
2 2

2
2 2 2

1 1
= 0

1 1

d g m
L g

dx x x

 
    

 

Using the analogy with the wave equation, we define the longitudinal  

wave vector k  as:  
2

2 2
2 2

1 1
=

1 1

m
k L

x x
 

   
 

or substituting = cosx   for , 1l m  : 
2

2 2

2 2

1
=

sin sin

m
k L  

 
 

 
 

The solution of 
2

2
2

= 0
d g

k g
dx   is oscillatory when 2 > 0k ,  

                       that is when 
2

2
2

sin >
m

L
 , or | sin |>

m

L
 . 

            This defines the propagation region with  
             the turning points: 

               
1,2| sin |=

m

L
 ; 

1 = arcsin
m

L
  and 2 1=   . 

             For = 0m  (zonal spherical harmonics) the resonant  
             cavity is extended from the pole to pole.  
               For =m l  (sectoral harmonics), the resonant  
              cavity is near the equatorial regions. 
 

 


Latitudinal 
propagation region 
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Three types of spherical harmonics

Spherical harmonics: a) zonal, b) tesseral, c) sectoral 

Example of latitudinal 
eigenfunction

turning points
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3D propagation region

1

2

r1

1 = arcsin
m

L


1

1

( )c r

r L




 
2 1=  

3D propagation region

Propagation 
region 

1

2

r1

1 = arcsin
m

L


1

1

( )c r

r L




 
2 1=  
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3D raypaths 
 
We considered the ray paths for p- and g-mode in a two-dimensional plane 

defined by the radial and horizontal wave vectors, rk  and hk . Now, we consider 
the p-mode ray paths in the 3D Sun. The ray paths correspond to the coordinates
of the wave front defined by the wave group velocity, which can be determined
by integrating the Hamilton equation:  

 =
r

t k

 
 


  

In the spherical coordinates ( , , )r   , the horizontal wave number: 2 2 2=hk k k  , 

and the relation between   and k


 is given by the dispersion relation:  

 2 2 2 2 2 2 2 2 2= = ( )c c rc k c k k k        

In terms of the spherical harmonic angular degree l  and angular degree m : 
2

2
2

=h

L
k

r
, 

2
2 2

2

1
=

sin

m
k L

r 
 

 
 

 and =
sin

m
k

r 
.  

Thus, the time evolution of the wavefront in these coordinates is given by:  

 
2 2 2 2

2 2
= = =r

r

r c c L
k

t k c r

 
 

 
 

 
 

 

 
2 2 2 2

2 2 2
= = =

sin

c c L m
r k

t k r r


 
  

 
 

 
 

 

 
2 2

sin = = =
sin

c c m
r k

t k r


 
  

 
 

 

The   signs in the first two equation determine the direction of wave propagation
between the inner turning point and the surface, and between the hemispheres. The
wave propagation in the azimuthal ( ) direction depends on the m  sign. 
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The relationship between the angles   and   along the ray path can be 
determined analytically by solving the equation:  

 
2

2
2

1
sin = =

1sin

kd

d k L
m








 
 

 
2 2 2

2
2

cot
= = arcsin

/ 1
sin 1sin

d
C

L L m
m

 
 

 
  

 
  

 
2 2

1
12 2

1

cos
1 = 1 = = cot

sin

L m L

m L m

 


   

where we used the turning point equation: 1sin = /m L . Thus, we find:  

 
1

cot
sin( ) =

cot
C




  

This is the great circle equation (the intersection of the sphere and a plane that passes
through the center point of the sphere).  

3D propagation region

Propagation 
region 

1

2

r1

1 = arcsin
m

L


1

1

( )c r

r L




 
2 1=  

ray paths follow 
the great circle
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3D propagation region

Propagation 
region 

1

2

r1

1 = arcsin
m

L


1

1

( )c r

r L




 
2 1=  

ray paths follow 
the great circle

These equations are reduced to a system of ODE:  

 
2 2

2 2
= 1

dr L c

dt r 
   

 

 
2 2

2 2 2
= 1

sin

d c L m

dt r L


 

   

 

 
2

2 2
=

sin

d c m

dt r


 

 

For numerical integration it is convenient to introduce variables: 

=
c

a
r

, =
cL

b
r

, and =
sin

m
d

L 
:  

 2= 1
dr

b
dt

   

 

 2= 1
d

ab d
dt


   

 

 =
sin

d abd

dt




 

For the initial condition, we can choose at the surface equator: ( = 0) =r t R , 
( = 0) = / 2t  , ( = 0) = 0t . During the integration, we change the sign at the turning

points, 1r  and R , in the first equation, and at 1  and 2  in the second equation. 
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The integration results show that the ray paths gradually fill in the
3D region defined by the radial and latitudinal turning points,
corresponding the 3D structure of the mode eigenfunctions. 

 

3D ray paths of the oscillation mode: l=20, m=16, n=14

3D ray paths of the oscillation mode: l=20, m=16, n=14

Top view
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EBK quantization

• The Einstein–Brillouin–Keller method (EBK) is a 
semiclassical method (named after Albert Einstein, 
Léon Brillouin, and Joseph B. Keller) used to compute 
eigenvalues in quantum-mechanical systems. EBK 
quantization is an improvement from Bohr-Sommerfeld
quantization which did not consider the caustic phase 
jumps at classical turning points. 

• It can be applied to 3D systems, for which the number 
of the quantization rules is equal to the number of the 
space dimensions.

• (see Course materials:
Gough_Linear_Adiabatic_Stellar_Pulsations.pdf)
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Lecture 14
Differential asymptotic inversion.
Effects of solar asphericity, rotation 

and magnetic field 

(Stix, Chapter 5.3.1; Kosovichev, p.34-41, 44-48; 
Christensen-Dalsgaard, Chapters 5.5)

Spectrum of normal modes calculated 
for a standard solar model. Note the 
‘avoided crossing effect’ for f and 
g-modes. 

Solar oscillation spectrum obtained 
from the HMI instrument on Solar 
Dynamics Observatory. 
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Asymptotic raypath approximation

Ray paths for:  
a) two solar p-modes of angular degree = 2l , frequency = 1429.4  Hz (thick 

curve), and = 100l , = 3357.5  Hz (thin curve);  
 
b) g-mode of = 5l , = 192.6  Hz (the dotted curve indicates the base of the 

convection zone). The lower turning points, 1r  of the p-modes are shown by arrows. 

The upper turning points of these modes are close to the surface and not shown. For 
the g-mode, the upper turning point, 2r , is shown by arrow. The inner turning point is 

close to the center and not shown. 

1
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k dr n  
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 

  
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 


( )L n
F

 
 

   
 

Duvall’s law (asymptotic p-mode relation)
Consider the p-mode dispersion 
relation:

Dividing left and right-hand sides by 
we get:

Radius r1 (or rt) of the lower 
turning point depends only on 
ratio L/. Hence, the left-hand 
side is a function of L/:  

where ( 1)L l l  1.5 

p-mode 
frequencies form 
a single curve in 
these variables.
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1r

Acoustic travel time
 The distance,  , between the surface points for one skip can be
calculated as the integral:  

 

2 2 2 2 2 2 2 21 1 1

/ /
= 2 = 2 2 .

/ / / /

R R R

r r r

L r c r
d dr dr

c L r L c r


 
 

 
  

The corresponding travel time is calculated by integrating equation:   

= :
r

dr

dt k


       1/22 2 2

= .
1 /h

dr
dt

c k c 
 

 

   1/2 1/22 2 2 2 2 2 21 1 1

= 2 = 2 2
1 / 1 /

R R R

r r r
h

dr dr
dt

c k c c L c r


 


 
  

These equations give a  time-distance relation,    , for acoustic 
waves traveling between two surface points through the solar 
interior. The ray representation of the solar modes and the time-
distance relation provided a motivation for developing  time-distance 
helioseismology 



Differential asymptotic sound-speed inversion. 1

1 1
1/2 1/22 2 2 2

2 2 2 2
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L
dr n

c c r

    
  

       


To find corrections to the standard solar model we consider small 
perturbations to the sound speed profile and oscillation frequencies, and 
linearize the dispersion relation by using the first-order Taylor expansion:  

1

2

1/22 2 2

2 2

R

r

c
dr

c
c L

c r


   



   
   
 

 
 



T(L/) (L/)
()r1 is a function of L/.
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Differential asymptotic sound-speed inversion. 2

1
1/22 2

2 2
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L c dr

c L c
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


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( )
L

T
  
 
     

 

The p-mode travel time is calculated by using the ray-path theory.
It corresponds to the half-skip time: T=/2, and is a function of L/
Therefore, the observed frequency difference can be represented in the form:

Once the function (L/) is determined from the observed frequency difference we 
can find c/c as a function of radius by solving the integral equation. This equation 
is reduced to the Abel integral equation, and has an analytical solution.

Functions (L/w) and () are determined by fitting (T which depends on 
both L and .

Differential asymptotic sound-speed inversion. 3

1

1/22 2
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   
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 
 



Here c(r) is the sound-speed profile of the standard solar model, and (l,n) are 
the p-mode frequencies calculated for the standard solar model. This equation 
can be reduced to the standard Abel integral equation by making a substitution 
of variables. The new variables are:

2 2

2 2
where  is a measured quantity,  is unknown function  and   ,  x y

c
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L r


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 
0

3/2

( ) 1
( ) ,   where  ( ) ,   

1
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x f y dy
F x F x x

x y x

c
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c d c
y

d r

  





 
 

 



x can be considered as a continuous function according to the Duvall’s law
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Solution of the Abel integral equation

 
0

( )
( ) = ,

x f y dy
F x

x y  

 To solve for ( )f y  we multiply both sides of this equation by /dx z x
and integrate with respect to x  from 0 to z : 
  

0 0 0 0

( ) ( )
= == ( ) .

( )( )

z z x z z

y

F x dx dx f y dy dx
f y dy

z x z x x y z x x y          

                     
Here we changed the order of integration. 

Note that  = ,
( )( )

z

y

dx

z x x y


 
 

 

then  
0 0

( )
= ( ) .

z zF x dx
f y dy

z x


 
 

Differentiating with respect to z, and replacing z with y we obtain the final
solution:                      

 
0

1 ( )
( ) = .

yd F x dx
f y

dy y x   

The asymptotic inversion is performed in 3 steps:

1)

2) 

3)   

Asymptotic sound-speed inversion. 4

2

20

( ) 1
Solve ( ) ,   where  ( ) ( ) ,  

x f y dy
F x F x x x

Lx y x


   



0

1 ( )
( ) .

yd F x dx
f y

dy y x




Find   and ( ) by fitting ( )
L L

T
   

  
         

   

2
3/2

2

log
Calculate  2 ( ) 1  where ,

log

( ) is the sound speed from the standard model.

Finally, we  find the difference in the sound speed between 

the Sun and the model.

c d c c
f y y y

c d r r

c r

 
   

 
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Abel integral equation and fractional calculus
Consider the Abel integral equation in the operator form:  

 
0

1 ( )
( ) = = ( ),

x f y dy
F x A f y

x y


  

where A  is the integrating operator with the weighting function 1 / x y
. By applying operator A  to the Abel equation we obtain:  

 
0

( ) = ( ) .
z

A F x f y dy   

Hence,  

 2

0
( ) = ( ) .

z
A f y f y dy   

This means that operator 2A  is integral, and A  can be interpreted as half-
integral. 

Therefore, the solution of the Abel equation is a half-derivative:  
 1 1/2

=( ) = ( ) | .z yf y A F z D F    

Example: 1/2 1/22
=D x x


.                     Roughly, 1/2 .

c
D

c




    
 

 

 

Test of the differential inversion technique

(Christensen-Dalsgaard et al 1989)

For small deviations of the solar structure from a solar model this technique is 
substantially more accurate than the original (non-linear) asymptotic inversion.
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Illustration of asymptotic sound-speed 
inversion

Codes: 
1) Time-distance diagram for p-modes 

(travel_time.pro)
2) Frequency difference, determination of 

functions (L/) and 
(frequency_difference.pro)

Input data: 
1. SOHO/MDI frequency measurements of 

Johann Reiter
2. Standard solar model (Christensen-Dalsgaard

et al)

Observed p- and f-mode frequencies
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Difference between observed and model 
frequencies vs l/

Difference between observed and model 
frequencies vs
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Difference between observed and model 
frequencies vs l/for < 2 mHz

Difference between observed and model 
frequencies vs r1 for < 2 mHz

outliers
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Difference between observed and model 
frequencies vs r1 for < 2 mHz

bottom of the convection zone

H and He ionization zones
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Effects solar asphericity 
 
For a spherically symmetrical solar structure, when the sound speed is a

function of radius, = ( )c c r , the p-mode frequencies are determined from the Bohr
quantization rule:  

 
1

= ( )
R

rr
k dr n   

where 
2 2

2 2
=r

L
k

c r


 , and 2 = ( 1)L l l  . The RHS of this equation can be considered

as averaging of the radial wave vector, rk , within the wave propagation region,

1[ , ]r R . 
If the sound-speed variations are not spherically symmetric, e.g. due internal

flows and magnetic fields, = ( , , )c c r   , then we have to use the EBK quantization
rule, and average the wave vector over the 3D wavepath great circle:  

 
2

0 1

1
= ( )

2

R

rr
k drd n


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
    

where    is the polar angle along the great circle.  

3D propagation region

Propagation 
region 

1

2

r1

1 = arcsin
m

L


1

1

( )c r

r L




 
2 1=  

ray paths follow 
the great circle
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3D raypaths 
 
We considered the ray paths for p- and g-mode in a two-dimensional plane 

defined by the radial and horizontal wave vectors, rk  and hk . Now, we consider 
the p-mode ray paths in the 3D Sun. The ray paths correspond to the coordinates
of the wave front defined by the wave group velocity, which can be determined
by integrating the Hamilton equation:  

 =
r

t k

 
 


  

In the spherical coordinates ( , , )r   , the horizontal wave number: 2 2 2=hk k k  , 

and the relation between   and k


 is given by the dispersion relation:  

 2 2 2 2 2 2 2 2 2= = ( )c c rc k c k k k        

In terms of the spherical harmonic angular degree l  and angular degree m : 
2

2
2

=h

L
k

r
, 

2
2 2

2

1
=

sin

m
k L

r 
 

 
 

 and =
sin

m
k

r 
.  

Thus, the time evolution of the wavefront in these coordinates is given by:  

 
2 2 2 2

2 2
= = =r

r

r c c L
k

t k c r

 
 

 
 

 
 

 

 
2 2 2 2

2 2 2
= = =

sin

c c L m
r k

t k r r


 
  

 
 

 
 

 

 
2 2

sin = = =
sin

c c m
r k

t k r


 
  

 
 

 

The   signs in the first two equation determine the direction of wave propagation
between the inner turning point and the surface, and between the hemispheres. The
wave propagation in the azimuthal ( ) direction depends on the m  sign. 
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The relationship between the angles   and   along the ray path can be 
determined analytically by solving the equation:  

 
2

2
2

1
sin = =

1sin

kd

d k L
m








 
 

 
2 2 2

2
2

cot
= = arcsin

/ 1
sin 1sin

d
C

L L m
m

 
 

 
  

 
  

 
2 2

1
12 2

1

cos
1 = 1 = = cot

sin

L m L

m L m

 


   

where we used the turning point equation: 1sin = /m L . Thus, we find:  

 
1

cot
sin( ) =

cot
C




  

This is the great circle equation (the intersection of the sphere and a plane that passes
through the center point of the sphere).  

The integration results show that the ray paths gradually fill in the
3D region defined by the radial and latitudinal turning points,
corresponding the 3D structure of the mode eigenfunctions. 

 

3D ray paths of the oscillation mode: l=20, m=16, n=14
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3D ray paths of the oscillation mode: l=20, m=16, n=14

Top view

 The 3D ray tracing shows that each of the
wavepath great circles, filling in the 3D
propagation region, is inclined relative to the polar
axis by the angle, 1 . This angle represents the 
co-latitude of the angular turning point, and
depends on the mode angular degree, l , and order, 
m : 1 = arcsin( / )m L . 

Thus, the angle   can be determined as the 
distance from the angular turning point with
coordinates 1( , / 2)   and a point on the great 
circle with coordinates ( , )   in the coordinate 
system shown in the figure.  
 
This angle is determined from the spherical
triangle equation:  

1 1cos = cos cos sin sin cos( / 2 )          

1 1cos = cos cos sin sin sin( )        

Then, substituting the great circle equation:  

1

cot
sin =

cot




,   we get: 
1

cos
cos =

cos




 .  

1

1 = arcsin
m

L


 ’



If the sound-speed 
variations are not spherically
symmetric, e.g. due internal flows
and magnetic fields, = ( , , )c c r   , 
then we have to use the EBK
quantization rule, and average the
wave vector over the 3D wavepath
great circle:  

 
2

0 1

1
= ( )

2

R

rr
k drd n


  


    
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Differentiating this equation, we find d  as a function of colatitude  : 

1

sin
sin =

cos
d d

  


   .  

 
2 2 2 2 2 2

1 1 1

sin 1 sin
= = = ,

cos 1 /cos cos cos cos

d d
d d

M

    
     

  
  

 

where = cos  , and 
2

2 2 2
1 1 2

= = 1 = 1cos sin
m

M
L

   .  

Substituting in the 3D quantization equation:  
 

 
2 20 1 1

1 1
= = ( )

R M R

r rr M r

d
d k dr k dr n

M

   
  

 


     

or  

 
2 2

2 22 20 1

2
= ( )

( , )

M R
nml

r

d L
dr n

c r rM

  
 

 


   

 
In this case, the oscillation frequencies depend on all three quantum numbers:
radial order n , angular degree l , and angular degree m .  
 
Because all the ray paths sample the sound speed over the whole range of
longitude  , only the azimuthally averaged 2D sound-speed component ( , )c r   or 

( , )c r   can be determined from the oscillation frequencies. However, this is valid
only when the deviations from the sphericity are small. 

Repeating the linearization procedure for the case of small deviations ( , )c r 
from a spherically symmetrical solar model, we obtain the equation for the 2D 
differential asymptotic inversion:  

 

 
2 2 2 2 2 20 10, 0,

2 ( , ) /
=

1 /

M R
nlm

r
nl nl

c r c dr
d

T cM L c r

 
   

 

 
   

 
where 0,=nlm nlm nl     is the difference between the observed frequencies nlm  and 

model frequencies 0,nl . 

The model frequencies are calculated for a spherically symmetric solar model
and do not depend on m . The latitudinal dependence of the sound speed (solar
asphericity) lifts the frequency degeneracy with respect to m . 

This equation represents a 2D Abel integral equation, and can be solved
similarly to the 1D equation.  
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Effects of rotation 
 
Solar rotation and other plasma flows inside the Sun cause Doppler shift of

the wave frequencies. The dispersion relation for the acoustic waves becomes:  

 2 2 2 2( ) = ckv k c  


 

where k


 is the wave vector, and v
  is the plasma velocity. 

Because of the acoustic ray paths travel in the great circles, they sample the
radial and latitudinal components of velocity twice in the opposite directions. Thus,
the contribution of these components to the quantization integral is canceled in the
first approximation, and the mode frequencies depend only on the azimuthal
component, v :  

 2 2 2 2( ) = ck v k c     

where =
sin

m
k

r 
. Representing v  in terms of the angular velocity, ( , )r  :  

  = sin ( , ),v r r    

we get:  
 2 2 2 2( ) = cm k c     

 

The EBK quantization equation takes form:  

 
2 2

2 22 20 1

( )2
= ( )

M R
nlm

r

md L
dr n

c rM

  
 

 
 


   

Assuming that / 1nlmm    and that the background solar structure is spherically
symmetric, we represent nlm  in terms of the frequency deviations from the model
frequencies: 0,=nlm nlm nl    .  

 
2 2

0,

2 22 20 1

( )2
= ( )

M R nl nlm

r

md L
dr n

c rM

   
 

   
 


   

Performing the first-order Taylor expansion and subtracting the quantization rule
for the background state, we get:  

 
2

22 2 2 20 1

2 2

2
= 0

nlm

M R

r

m
d

dr
cM L

c r


   

  

    
 

   

where for simplicity we drop subscript for the model frequencies: 0,= nl  .  
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 Thus, we obtain:  

 
2 2 2 2 2 20 1

2 ( , )
=

1 /

M R

nlm r

m r drd

T c M L c r

 
  




 
   

where 
2 2 2 21

=
1 /

R

r

dr
T

c L c r 
  is the "half-skip" travel time of acoustic waves. 

 
The solar rotation causes ‘rotational frequency splitting’ proportional to the 

mode angular degree m . 
 
The physical interpretation is that the modes with positive m  travel in the 

same direction as the solar rotation and thus have higher frequencies then the modes
with negative m  traveling in the opposite direction.  

 
Recall that that the oscillation modes are represented in terms of the spherical

harmonics: ( , , , ) ( ) exp( )m
r lr t P im i t       , and thus, in the form of azimuthal

traveling waves  

Illustration of the frequency 
shift due to the solar rotation 

Typical power spectra of solar 
oscillation data from the MDI 
instrument on SOHO. Each 
horizontal curve shows three 
lines of the power spectrum for 
different azimuthal order m  
with radial order 15n   and 
angular degree 19 20l   , and 21 
(from left to right). The slope of
the modal lines is due to the 
rotational frequency shift: 
prograde modes with positive 
m  have higher frequencies than 
retrograde modes with negative 
m . 
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 By comparing the effect of the sound-speed asphericity and rotation:  
 

  
2 2 2 2 2 20 1

( , ) /2
=

1 /

M R
nlm

r

c r c drd

T c M L c r

 
   



 
   

 

 
2 2 2 2 2 20 1

2 ( , )
=

1 /

M R

nlm r

m r drd

T c M L c r

 
  




 
   

where 2 2= 1 /M m L   
We notice that the frequency splitting due to the sound-speed asphericity is an even 
function of m  and an odd function of m  due the rotation.  
 
This difference allows us to separate effects of the solar asphericity and rotation in
the observational data.  



19

The a-coefficients 
 
The observational data are often represented as an expansion in terms of the 

Legendre polynomials:  

 
=1

=
N

nl
nlm k k

k

m
L a P

L
    

 
  

For a more accurate (non-asymptotic) representation, the expansion is performed in
terms of Clebsch-Gordon coefficients, which will be considered later. 

In this representation, the ‘even’ a -coefficients represent effects of the solar
asphericity, and the ‘odd’ a -coefficients represent the internal solar rotation and its 
variations with latitude (zonal flows). In addition, the representations in the form of
the a -coefficients allows us to replace the 2D inversions of nlm  with a series of 1D 
inversions of the a -coefficients. 

Specifically, representing the sound-speed perturbation in terms of the
Legendre polynomials:  

 2 2
=1

( , ) = ( ) ( )
J

j j
j

c
r A r P

c
    

where = cos  .  

 Substituting this representation of ( , )
c

r
c

  in the equation for /nlm  , we 

obtain:  

 2 2

2 2 2 2 2 201=1

( ) ( )1 2
=

1 /

J R Mj jnlm

r
j

A r dr P
d

T L c r M

 
  

 
 
   

    

The second integral is calculated analytically:  

 2
2 22 20

( )2
= ( 1) (0) ( / )

M j j
j j

P
d P P m L

M




 



  

Thus, both the observational data and the angular integral of the sound-speed 
asphericity are represented in terms of the series of Legendre polynomial 2 ( / )jP m L . 

We obtain a series of the Abel integral equations for the radial functions of 
the asphericity, 2 ( )jA r :  

 2 2

2 2 2 21 2

( )1
= ( 1) .

(0)1 /

ln
R j jj

r
j

A r dr La

T PL c r



  

These equations establish a relationship between the even a -coefficients and the 
solar asphericity expressed in terms of the Legendre polynomials.  
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A similar type of solution can be obtained for the angular velocity ( , )r  . 
In this case, it is convenient to use the expansion in terms of associate Legendre
functions:  

 

 
1

2 !
2 1

=0

(cos )
( , ) = ( )

sin

J
j

j
j

P
r r







   

Substituting in:  

 
2 2 2 2 2 20 1

2 ( , )
=

1 /

M R

nlm r

m r drd

T c M L c r

 
  




 
   

we obtain:  

 
1

2 1 2 1

2 2 2 2 2 2 201=0

( )1 2
=

1 / 1

J R Mj j
nlm r

j

r dr P dm

T c L c r M




  
 

 
 
    

    

 

The second integral is calculated analytically:  

 
1

2 1
2 2 12 2 20

2
= (2 1) (0)

21

M j
j j

P dm L m
j P P

m LM

 
  



    
  

  

Both the observational data and the angular integral of the solar rotation are
expressed in terms of the odd Legendre polynomial of /m L . 

Thus, we obtain a series of the 1D Abel integral equations for the radial
functions of the solar rotation expansion:  

 2 1 2 1

2 21 2

2 2
0,

( ) /1
=

(2 1) (0)
1

nl
R j j

r
j

nl

r dr c a

T j PL r
r 

 





  

In the asymptotic JWKB/EBK approximation, the a -coefficients are the functions 
of the ratio /L   or the lower turning point radius, 1r . This helps to identify ‘outliers’
in the observational data.  
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Effects of magnetic field 
 In the presence of magnetic field, acoustic waves become fast-

magnetoacoustic waves with the dispersion relation:  
            2 2 2 2 2 2= sinAk c k V    

where = / 4AV B   is the Alfven speed,   is teh angle between the 

wave vector, k


 and magnetic field B


. 
Assuming AV c  and applying the same procedure as for the

sound-speed perturbations, we obtain:  

      
 2 2 2

2 2 2 2 2 20 1

/ 2 sin2
=

1 /

M R Anlm

r

V c dr
d

T cM L c r

 
   



 
   

 
2 2

2 22 21
2 2 2 2 2 2

( ) 1
= (1 ) = 1 = ( ) =sin cos

2 2 ( ) 8
AV V k B

k B k B
c c k B c k

           
 

   
 

 
 

2 2 2 2 2 2 2 2 2
2 2 2 2

1 1
= [ ( ) ( ) ( )]

8 8r r rB k k B k k B k k b b b
c k c k      

           

 B


 k


 

Substituteing the wave vector 
2

2
2

=k
c

  and its components: 

2 2
2

2 2
=r

L
k

c c


 ,    

2 2
2

2 2 2
=

sin

L m
k

c r 
 ,    

2
2

2 2
=

sin

m
k

r 
 

and using the definitions: = cos   and 
2

2
2

= 1
m

M
L

 , 

we calculate: 
 

 
2 2 2 2

2 2 2 2
2 2 2 2

= =r r r

L L c
b B k B k

c r r c

 
  

 
 

 

 
2 2 2 2 2 2 2

2 2 2
2 2 2 2 2 22

= = 1
1sin

L m L c M
b B B k

c r r r  
 

  
    

          
 

 

 
2 2 2 2 2

2 2 2 2
2 2 2 2 22

1
= 1 = 1

1sin

c m L c M
b B k B k

r r     
    

         
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 Putting it all together:  

 
22 2 2 2 2 2 2

2 2 2 2 2 2 20 1

2
= 1

8 8 1

M R
nlm r

r

BB L c L c M

T c r c r
 

      
     

         
   

 

 
2 2 2 2

2 2 2 2 2 2 2 2 2 2

1 ( / )
1

8 1 1 /

B L c M d dr c

c r M L c r

 
    

 
       

 

There is no simple separation of the radial and angular variables in terms of the
Legendre polynomial and a-coefficients.  
However, the magnetic frequency splitting can be calculated for solar-cycle dynamo 
models and compared with helioseismic observations. 

 
By the order of magnitude, the magnetic frequency splitting:  

 
2 2 2

2

1 / 4 1

8 8 2 2
nlm B B B

c P P

 
    

      

where 
2

4
=

P

B

  is the plasma parameter   - ratio of the gas pressure to the

magnetic pressure.  
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Lecture 15
Effects of solar asphericity, rotation 

and magnetic field 
The a-coefficients

(Stix, Chapter 5.3.1; Kosovichev, p.34-41, 44-48; 
Christensen-Dalsgaard, Chapters 5.5)

Spectrum of normal modes calculated 
for a standard solar model. Note the 
‘avoided crossing effect’ for f and 
g-modes. 

Solar oscillation spectrum obtained 
from the HMI instrument on Solar 
Dynamics Observatory. 
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Acoustic travel time
 The distance,  , between the surface points for one skip can be
calculated as the integral:  

 

2 2 2 2 2 2 2 21 1 1

/ /
= 2 = 2 2 .

/ / / /

R R R

r r r

L r c r
d dr dr

c L r L c r


 
 

 
  

The corresponding travel time is calculated by integrating equation:   

= :
r

dr

dt k


       1/22 2 2

= .
1 /h

dr
dt

c k c 
 

 

   1/2 1/22 2 2 2 2 2 21 1 1

= 2 = 2 2
1 / 1 /

R R R

r r r
h

dr dr
dt

c k c c L c r


 


 
  

These equations give a  time-distance relation,    , for acoustic 
waves traveling between two surface points through the solar 
interior. The ray representation of the solar modes and the time-
distance relation provided a motivation for developing  time-distance 
helioseismology 



1

( )
R

rr
k dr n  

1

1/22 2

2 2
( )

R

r

L
dr n

c r

  
 

   
 



1

1/22 2

2 2

( )R

r

r L dr n

c r

 
 

  
  

 


( )L n
F

 
 

   
 

Duvall’s law (asymptotic p-mode relation)
Consider the p-mode dispersion 
relation:

Dividing left and right-hand sides by 
we get:

Radius r1 (or rt) of the lower 
turning point depends only on 
ratio L/. Hence, the left-hand 
side is a function of L/:  

where ( 1)L l l  1.5 

p-mode 
frequencies form 
a single curve in 
these variables.
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Differential asymptotic sound-speed inversion. 1

1 1
1/2 1/22 2 2 2

2 2 2 2

.

1 1

R R

r r

dr c dr

cL c L c
c c

r r

  
 

 

  
 

   
    

   

 

1

1/22 2

2 2

( )
( ).

( )

R

r

L
dr n

c c r

    
  

       


To find corrections to the standard solar model we consider small 
perturbations to the sound speed profile and oscillation frequencies, and 
linearize the dispersion relation by using the first-order Taylor expansion:  

1

2

1/22 2 2

2 2

R

r

c
dr

c
c L

c r


   



   
   
 

 
 



T(L/) (L/)
()r1 is a function of L/.

Differential asymptotic sound-speed inversion. 2

1
1/22 2

2 2
1

R

r

L c dr

c L c
c

r





   
   

 
 



( )
L

T
  
 
     

 

The p-mode travel time is calculated by using the ray-path theory.
It corresponds to the half-skip time: T=/2, and is a function of L/
Therefore, the observed frequency difference can be represented in the form:

Once the function (L/) is determined from the observed frequency difference we 
can find c/c as a function of radius by solving the integral equation. This equation 
is reduced to the Abel integral equation, and has an analytical solution.

Functions (L/w) and () are determined by fitting (T which depends on 
both L and .
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Effects solar asphericity 
 
For a spherically symmetrical solar structure, when the sound speed is a

function of radius, = ( )c c r , the p-mode frequencies are determined from the Bohr
quantization rule:  

 
1

= ( )
R

rr
k dr n   

where 
2 2

2 2
=r

L
k

c r


 , and 2 = ( 1)L l l  . The RHS of this equation can be considered

as averaging of the radial wave vector, rk , within the wave propagation region,

1[ , ]r R . 
If the sound-speed variations are not spherically symmetric, e.g. due internal

flows and magnetic fields, = ( , , )c c r   , then we have to use the EBK quantization
rule, and average the wave vector over the 3D wavepath great circle:  

 
2

0 1

1
= ( )

2

R

rr
k drd n


  


    

where    is the polar angle along the great circle.  

3D propagation region

Propagation 
region 

1

2

r1

1 = arcsin
m

L


1

1

( )c r

r L




 
2 1=  

ray paths follow 
the great circle
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Differentiating this equation, we find d  as a function of colatitude  : 

1

sin
sin =

cos
d d

  


   .  

 
2 2 2 2 2 2

1 1 1

sin 1 sin
= = = ,

cos 1 /cos cos cos cos

d d
d d

M

    
     

  
  

 

where = cos  , and 
2

2 2 2
1 1 2

= = 1 = 1cos sin
m

M
L

   .  

Substituting in the 3D quantization equation:  
 

 
2 20 1 1

1 1
= = ( )

R M R

r rr M r

d
d k dr k dr n

M

   
  

 


     

or  

 
2 2

2 22 20 1

2
= ( )

( , )

M R
nml

r

d L
dr n

c r rM

  
 

 


   

 
In this case, the oscillation frequencies depend on all three quantum numbers:
radial order n , angular degree l , and angular degree m .  
 
Because all the ray paths sample the sound speed over the whole range of
longitude  , only the azimuthally averaged 2D sound-speed component ( , )c r   or 

( , )c r   can be determined from the oscillation frequencies. However, this is valid
only when the deviations from the sphericity are small. 

Effects of the sound-speed aspericity 
 
Repeating the linearization procedure for the case of small deviations

( , )c r   from a spherically symmetrical solar model, we obtain the equation for the
2D differential asymptotic inversion:  

 

 
 

2 2 2 2 2 20 10, 0,

,2
=

1 /

M R
nlm

r
nl nl

c
r drcd

T cM L c r

 
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


 
   

 
where 0,=nlm nlm nl     is the difference between the observed frequencies nlm

and model frequencies 0,nl . 

The model frequencies are calculated for a spherically symmetric solar 
model and do not depend on m . The latitudinal dependence of the sound speed
(solar asphericity) lifts the frequency degeneracy with respect to m . 

This equation represents a 2D Abel integral equation, and can be solved
similarly to the 1D equation.  
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Effects of rotation 
 
Solar rotation and other plasma flows inside the Sun cause Doppler shift of

the wave frequencies. The dispersion relation for the acoustic waves becomes:  

 2 2 2 2( ) = ckv k c  


 

where k


 is the wave vector, and v
  is the plasma velocity. 

Because of the acoustic ray paths travel in the great circles, they sample the
radial and latitudinal components of velocity twice in the opposite directions. Thus,
the contribution of these components to the quantization integral is canceled in the
first approximation, and the mode frequencies depend only on the azimuthal
component, v :  

 2 2 2 2( ) = ck v k c     

where =
sin

m
k

r 
. Representing v  in terms of the angular velocity, ( , )r  :  

  = sin ( , ),v r r    

we get:  
 2 2 2 2( ) = cm k c     

 

The EBK quantization equation takes form:  

 
2 2

2 22 20 1

( )2
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M R
nlm

r

md L
dr n

c rM
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 

 
 


   

Assuming that / 1nlmm    and that the background solar structure is spherically
symmetric, we represent nlm  in terms of the frequency deviations from the model
frequencies: 0,=nlm nlm nl    .  

 
2 2

0,

2 22 20 1

( )2
= ( )

M R nl nlm

r

md L
dr n

c rM

   
 

   
 


   

Performing the first-order Taylor expansion and subtracting the quantization rule
for the background state, we get:  

 
2

22 2 2 20 1

2 2

2
= 0

nlm

M R

r

m
d

dr
cM L

c r


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  

    
 

   

where for simplicity we drop subscript for the model frequencies: 0,= nl  .  
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 Thus, we obtain:  

 
2 2 2 2 2 20 1

2 ( , )
=

1 /

M R

nlm r

m r drd

T c M L c r

 
  




 
   

where 
2 2 2 21

=
1 /

R

r

dr
T

c L c r 
  is the "half-skip" travel time of acoustic waves. 

 
The solar rotation causes ‘rotational frequency splitting’ proportional to the 

mode angular degree m . 
 
The physical interpretation is that the modes with positive m  travel in the 

same direction as the solar rotation and thus have higher frequencies then the modes
with negative m  traveling in the opposite direction.  

 
Recall that that the oscillation modes are represented in terms of the spherical

harmonics: ( , , , ) ( ) exp( )m
r lr t P im i t       , and thus, in the form of azimuthal

traveling waves  

Illustration of the frequency 
shift due to the solar rotation 

Typical power spectra of solar 
oscillation data from the MDI 
instrument on SOHO. Each 
horizontal curve shows three 
lines of the power spectrum for 
different azimuthal order m  
with radial order 15n   and 
angular degree 19 20l   , and 21 
(from left to right). The slope of
the modal lines is due to the 
rotational frequency shift: 
prograde modes with positive 
m  have higher frequencies than 
retrograde modes with negative 
m . 
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 By comparing the effect of the sound-speed asphericity and rotation:  
 

  
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1 /

M R
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c r c drd

T c M L c r

 
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2 2 2 2 2 20 1

2 ( , )
=

1 /

M R

nlm r

m r drd

T c M L c r

 
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


 
   

where 2 2= 1 /M m L   
We notice that the frequency splitting due to the sound-speed asphericity is an even 
function of m  and an odd function of m  due the rotation.  
 
This difference allows us to separate effects of the solar asphericity and rotation in
the observational data.  
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The a-coefficients 
 
The observational data are often represented as an expansion in terms of the

Legendre polynomials:  

 
=1

/ 2 =
N

nl
nlm nlm k k

k

m
L a P

L
        

 
  

For a more accurate (non-asymptotic) representation, the expansion is performed in
terms of Clebsch-Gordon coefficients, which will be considered later. 

In this representation, the ‘even’ a -coefficients represent effects of the solar
asphericity, and the ‘odd’ a -coefficients represent the internal solar rotation and 
its variations with latitude (zonal flows). In addition, the representations in the
form of the a -coefficients allows us to replace the 2D inversions of nlm  with a 
series of 1D inversions of the a -coefficients. 

Specifically, representing the sound-speed perturbation in terms of the
Legendre polynomials:  

 2 2
=1

( , ) = ( ) ( )
J

j j
j

c
r A r P

c
    

where = cos  .  

 Substituting this representation of ( , )
c

r
c

  in the equation for /nlm  , we 

obtain:  

 2 2

2 2 2 2 2 201=1

( ) ( )1 2
=

1 /

J R Mj jnlm

r
j

A r dr P
d

T L c r M

 
  

 
 
   

    

The second integral is calculated analytically:  

 2
2 22 20

( )2
= ( 1) (0) ( / )

M j j
j j

P
d P P m L

M




 



  

Thus, both the observational data and the angular integral of the sound-speed 
asphericity are represented in terms of the series of Legendre polynomial

2 ( / )jP m L . 

We obtain a series of the Abel integral equations for the radial functions of 
the asphericity, 2 ( )jA r :  

 2 2

2 2 2 21 2

( )1
= ( 1) .

(0)1 /

ln
R j jj

r
j

A r dr La

T PL c r



  

These equations establish a relationship between the even a -coefficients and the 
solar asphericity expressed in terms of the Legendre polynomials.  
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A similar type of solution can be obtained for the angular velocity ( , )r  . 
In this case, it is convenient to use the expansion in terms of associate Legendre
functions:  

 

 
1

2 1
2 1

=0

(cos )
( , ) = ( )

sin

J
j

j
j

P
r r







   

Substituting in:  

 
2 2 2 2 2 20 1

2 ( , )
=

1 /

M R

nlm r

m r drd

T c M L c r

 
  




 
   

we obtain:  

 
1

2 1 2 1

2 2 2 2 2 2 201=0

( )1 2
=

1 / 1

J R Mj j
nlm r

j

r dr P dm

T c L c r M




  
 

 
 
    

    

 

The second integral is calculated analytically:  

 
1

2 1
2 2 12 2 20

= (2 1) (0)
21

M j
j j

P d L m
j P P

m LM

 
 



    
  

  

Both the observational data and the angular integral of the solar rotation are
expressed in terms of the odd Legendre polynomial of /m L . 

Thus, we obtain a series of the 1D Abel integral equations for the radial
functions of the solar rotation expansion:  

 2 1 2 1

2 21 2

2 2
0,

( ( ) / 2 ) /1
=

(2 1) (0)
1

nl
R j j

r
j

nl

r dr c a

T j PL r
c





 




  

In the asymptotic JWKB/EBK approximation, the a -coefficients are the functions 
of the ratio /L   or the lower turning point radius, 1r . This helps to identify 
‘outliers’ in the observational data. 
  

/ 2 is the rotation rate. It is measured in nHz as well as the a-coeffients. 

=1

/ 2 =
N

nl
nlm nlm k k

k

m
L a P

L
        

 
  

The minus sign was instroduces to get the a-coefficients of the same sign as the corresponding
rotation law terms. 
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Solar rotation law 
 Consider a special case of a three-term solar differential rotation law:  
 2 4/ 2 = cos cosa b c      

where a , b , and c  are measured in nHz. The corresponding representation in
terms of the associated Legendre polynomials: Consider the intergrals for the

2 1( )jA r  as averaging over the propagation regions, 1[ , ]r R .  

 1
1

2 21
1

( )1
=

1 /

R

r

A r dr
A

T cr r
          

2 21
1

1
=

1 /

R

r

dr
T

cr r
  

- a ‘half-skip’ travel time, 1 1= ( ) /nlr c r L  is the turning point radius.  
Then, we write the integral equations in terms of the averaged A  coefficients:  

1 1 0 1= / (0) =nl nlA a P a        3 3 2 3

2
= / 3 (0) =

3
nl nlA a P a        5 5 3 5

8
= / 5 (0) =

15
nl nlA a P a  

Substituting     1
1 (cos ) = sinP        1 2

3

3
(cos ) = sin (5 1)cos

2
P      

 1 4 2
5

15
(cos ) = sin (21 14 1)cos cos

8
P        

we get:          2 4
1 3 5 3 5 5/ 2 = ( ) (5 14 ) 21cos cosa a a a a a         

where I dropped the mode indexes , ,n l m .  

Effects of magnetic field 
 In the presence of magnetic field, acoustic waves become fast-

magnetoacoustic waves with the dispersion relation:  
            2 2 2 2 2 2= sinAk c k V    

where = / 4AV B   is the Alfven speed,   is the angle between the 

wave vector, k


 and magnetic field B


. 
Assuming AV c  and applying the same procedure as for the

sound-speed perturbations, we obtain:  

      
 2 2 2

2 2 2 2 2 20 1

/ 2 sin2
=

1 /

M R Anlm

r

V c dr
d

T cM L c r

 
   



 
   

 
2 2

2 22 21
2 2 2 2 2 2

( ) 1
= (1 ) = 1 = ( ) =sin cos

2 2 ( ) 8
AV V k B

k B k B
c c k B c k

           
 

   
 

 
 

2 2 2 2 2 2 2 2 2
2 2 2 2

1 1
= [ ( ) ( ) ( )]

8 8r r rB k k B k k B k k b b b
c k c k      

           

 B


 k


 
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Substituteing the wave vector 
2

2
2

=k
c

  and its components: 

2 2
2

2 2
=r

L
k

c c


 ,    

2 2
2

2 2 2
=

sin

L m
k

c r 
 ,    

2
2

2 2
=

sin

m
k

r 
 

and using the definitions: = cos   and 
2

2
2

= 1
m

M
L

 , 

we calculate: 
 

 
2 2 2 2

2 2 2 2
2 2 2 2

= =r r r

L L c
b B k B k

c r r c

 
  

 
 

 

 
2 2 2 2 2 2 2

2 2 2
2 2 2 2 2 22

= = 1
1sin

L m L c M
b B B k

c r r r  
 

  
    

          
 

 

 
2 2 2 2 2

2 2 2 2
2 2 2 2 22

1
= 1 = 1

1sin

c m L c M
b B k B k

r r     
    

         
 

 

 Putting it all together:  

 
22 2 2 2 2 2 2

2 2 2 2 2 2 20 1

2
= 1

8 8 1

M R
nlm r

r

BB L c L c M

T c r c r
 

      
     

         
   

 

 
2 2 2 2

2 2 2 2 2 2 2 2 2 2

1 ( / )
1

8 1 1 /

B L c M d dr c

c r M L c r

 
    

 
       

 

There is no simple separation of the radial and angular variables in terms of the
Legendre polynomial and a-coefficients.  
However, the magnetic frequency splitting can be calculated for solar-cycle dynamo 
models and compared with helioseismic observations. 

 
By the order of magnitude, the magnetic frequency splitting:  

 
2 2 2

2

1 / 4 1

8 8 2 2
nlm B B B

c P P

 
    

      

where 
2

4
=

P

B

  is the plasma parameter   - ratio of the gas pressure to the

magnetic pressure.  
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Observational data

Observational data
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#Id: leg.readme,v 1.2 2018/11/29 19:30:25 dsdsops Exp
#  Frequency and splitting coeffcients table for GONG 3-month data
#
#  Frequencies and splitting coefficients have been obtained by
#  fitting Legendre polynomials to the frequencies for
#  individual modes, i.e.
#
#  \nu_{n,l,m}=\nu_{n,l}+L\sum_i a_{i,n,l}P_i(m/L)
#
#  where L=\sqrt{l(l+1)} and a_{i,n,l} are the splitting coefficients
#  which are tabulated in these tables. 
#
#  The error estimates given in these tables are those estimated from
#  the errors in individual modes and do not include any other systematic  errors, that may be present.
#
#  For those (n,l) values where the number of modes is not sufficient
#  to determine all the five splitting coefficients, some of the higher
#  ones are not determined and in those cases the corresponding errors#  are set to zero.
#  Table Legendrefh.tab Thu 15:14:40 22-Jul-2021

#     n     l         nu      dnu a1        da1         a2        da2         a3        da3         a4        da4         a5        da5         a6       
da6         a7        da7         a8        da8         a9        da9
#                microHz microHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz
nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz nanoHz
13     0  1957.3079   0.0976     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     
0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     14     0  
2093.3416   0.1845     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     
0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
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Lecture 16
Stellar structure.

General helioseismic inverse 
problem. 

(Stix, Chapter 5.3.1; Kosovichev, p.34-41, 44-48; 
Christensen-Dalsgaard, Chapters 5.5)

The Main Sequence
The main sequence shows how 
masses and lifetimes vary along it.
Notice that more massive hydrogen-
fusing stars are brighter and
hotter than less massive ones, but 
have shorter lifetimes. (Stellar
masses are given in units of solar 
masses: 1 MSun = 2 * 1030 kg.)

At the upper end of the main 
sequence are the hot, luminous O 
stars, with masses as high as 150 
times that of the Sun.

On the lower end of the main 
sequence are the cool, dim M stars, 
with as little as 0.08 times the mass 
of the Sun.
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Sun’s Evolution on HR Diagram

Equations of Stellar Structure 
1. Hydrostatic Equations 

Basic assumptions:  
1. hydrostatic equilibrium: gravity force = pressure

gradient;  
2. thermal balance: energy generation rate = luminosity. 

Consider a thin spherical shell of radius r , thickness r , 
mass m , and density  . The mass conservation equation is: 

                                               24dm r dr  

or                                    24
dm

r
dr

    

The balance between the pressure and gravity forces is:  

                                             
2

2
2 2

4
4

Gmdm r dr
r dP Gm

r r

       

or                                  
2

dP Gm

dr r


    

dm

dr

dP


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Energy transfer and balance equations
  
The total energy flux, 24L r F , integrated over a sphere of radius r :  

316

3

acT dT
L

dr




    

L

L+dL


24dL r dr 

If  is the energy release per unit mass then
the energy flux change in a shell dr is:

24
dL

r
dr

 

This is the equation for conservation
of energy (energy balance).

24
dm

r
dr

   (1) 

2

dP Gm

dr r


   (2) 

24
dL

r
dr

   (3) 

2 316

dT
L F

dr r acT




     (4) 

T
P





  (5) 

3 1
4 2

1

2X Y Z
 

 
 (6) 

2 4
0 X T    (7) 

3 5
0( 1)X Z T       (8) 

These equations describe the
structure of stellar radiative
zones. In the convection zone
Eq.(4) is replaced by an
equation of convective energy
transport, e.g. mixing length
theory.  

A numerical code for solving 
these equations is available in 
the book: C.J. Hansen, S.D. 
Kawaler, Stellar Interiors. 
Physical Principles, Structure 
and Evolution, Springer, 
1995.   

Equations of the stellar structure

Kramer’s opacity law
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Simple estimates can be obtained without solving the equations for solar
structure numerically.  
Temperature inside the Sun can be roughly estimated from the equation
of hydrostatic balance and the equation of state.  
 
Using Eq.(1-2) and (4) we obtain the following relations:  

3

M

R
   

2

5

P GM

R R
  

0

T
P





  

The molecular weight for 0 7X  , 0 28Y  , and 0 02Z   is:

0 0 6    

Then, 
8 33

70
7 10

6 67 10 2 10 0 6
1 4 10 K

8 31 10 7 10

GM
T

R

      
  

    
     (9) 

Scaling Laws

24
dm

r
dr

  

2

dP Gm

dr r


   

T
P





  

 

For l n , 1 0r  , and we get:  

0

( 2 )
R

n L
dr
c

    
 


  

That is the spectrum of low-degree p-modes is approximately equidistant with

frequency spacing: 
1

0
4

R dr

c



    
   

Low-degree p-modes (l=0,1,2, and 3)

Large frequency separation: =68 Hz

Solar -modes from 1979 days of the GOLF 
experiment, B. Gelly - M. Lazrek- G. Grec -
A. Ayad - F. X. Schmider- C. Renaud - D. 
Salabert - E. Fossat, A&A 394, 285-297 
(2002) 

1, 2

2
0

(4 6)
2

nl nl n l

R

nl

nl

dc dr
l

dr r

  

 

   


   



31(2 2 ) (2 )2 2nl n l n l           

Small frequency separation : 
=9Hz
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   Using the scaling laws: 

              3

M

R
  ,             

2

5

P GM

R R
  

we obtain the scaling law for the speed of sound: 

                     
P M

c
R




   

Then, the scaling law for the oscillation frequencies is: 

                           
3

c M

R R
    

Since for the Sun the large frequency separation: =68 Hz we can estimate 
 for other stars: 

1 2 3 2

68 ( )
M R

Hz
M R

 


   
     

    

 

Asteroseismology Scaling Law

   If we measure the stellar mass and radius in the solar units:

1,  1,M R    then: 

  
1 2 3 2M R        

Spectroscopic observations provide estimates of the gravity acceleration, for 
which the scaling law is: 
 

2g g MR   

 
Therefore, from the observed   and R  we can estimate the stellar radius 
and mass: 

2
g

R
g




    




,        
2g

M R
g




 

 

Using the Scaling Law to estimate stellar 
radius and mass 
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Standard solar model

Spectrum of normal modes calculated 
for a standard solar model. Note the 
‘avoided crossing effect’ for f and 
g-modes. 

Solar oscillation spectrum obtained 
from the HMI instrument on Solar 
Dynamics Observatory. 
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Basic Equations 
Basic assumptions:  

1. linearity: 1sv c 


  

2. adiabaticity: 0dS dt    
3. spherical symmetry of the background  
4. magnetic forces and Reynolds stresses are negligible  

The basic equations are conservations of mass, momentum, energy and
Newton’s gravity law.  
1. Conservation of mass (continuity equation):  
The rate of mass change in a fluid element of volume V  is equal to the mass
flux through the surface of this element (of area A ):  

              ( )
V A V

dV vda v dV
t

  
     

   
  

 

Then,  

                ( ) 0v
t

 
   




 

or  

                   0
d

v
dt

    


 

V
A

v

divergence

where ( )   is the 'material' derivative
d

v
dt t

  
  




2. Momentum equation (conservation of momentum of a fluid

element):                  
dv

P g
dt

    
 

 

where P  is pressure, g


 is the gravity acceleration, which can be
expressed in terms of gravitational potential  :   g  


 

Also,    ( ) . This is the 'material' derivative.
dv v

v v
dt t


  


   
 

 
 
3. Adiabaticity equation (conservation of energy) for a fluid
element:  

                    0
d P

dt 
 

  
 

         or         2dP d
c

dt dt


   

where 2c P    is the adiabatic sound speed.  

4. Poisson equation:      2 4 G      

. .   for  componentx x x
x y z x

v v v
e g v v v v

x y z

  
 

  
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Then, the linearized equations are:  
 

              0( ) 0      


      the continuity (mass conservation) equation 

 

              
2

0 0 02 rP g e
t

          





 the momentum equation 

 

                 20 0
0 ( )r r

dP d
P c

dr dr

         the adibaticity (energy) equation, or   

                        2
0 for the Largangian perturbations of pressure and density .P c    

 
                     2 4 G       the equation for the gravitational potential  

 
2. Cowling approximation:  0    

5. Consider the separation of radial and angular variables in the form:  
 ( ) ( ) ( )r r f             

 ( ) ( ) ( )P r P r f           

 ( ) ( ) ( )r rr r f            

 ( ) ( ) ( )h hh
r r f          


 

Then, the continuity equation is:  

 2 2
2

1
( ) ( ) 0r h hr f f

r r r

             
 

The variables are separated if  
                                                            2

h f f    

where   is a constant.  
This equation has non-zero solutions regular at the poles, 0    only when  
                                                           ( 1)l l      
where l  is an integer.  
 
6. The non-zero solution of equation 2 ( 1) 0h f l l f     represents the

spherical harmonics:  
 ( ) ( ) ( )m m im

l lf Y CP e           

where ( )m
lP   is the Legendre function.  
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General helioseismic inverse 
problem

1) Variational principle
2) Perturbation theory
3) Kernel transformation
4) Solution of inverse problem

A. Optimally Localized Averages Method
B. Regularized Least-Squares Method

5) Inversion results for the solar structure
6) Inversions for solar rotation

Generalized Helioseismic Inverse Problem 
 

In the asymptotic (high-frequency of short wavelength) approximation the oscillation
frequencies depend only on the sound-speed profile. This dependence is expressed in terms of
the Abel integral equation that can be solved analytically.  
In the general case, the relation between the frequencies and internal properties is non-linear,
and there is no analytical solution. Generally, the frequencies determined from the oscillation
equation depend on the density, ( )r , the pressure, ( )P r , and the adiabatic exponent, ( )r .
However,   and P  are not independent, and related to each other through the hydrostatic
equation:  

 
dP

g
dr

    

where  

 2
2 0

4
rGm

g m r dr
r

        

Therefore, only two thermodynamic (hydrostatic) properties of the Sun are independent, e.g.
( )  , ( )P  , or their combinations: ( )P    , 2( )c  , 2( )c   etc.  
The general inverse problem in helioseismology is formulated in terms of small corrections to
the standard solar model because the differences between the Sun and the standard model are
typically 1%  or less. When necessary the corrections can be applied repeatedly, using an
iterative procedure.  
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Variational Principle: Rayleigh’s Quotient 
 
Consider the oscillation equations as a formal operator equation in terms of the vector

displacement, 


:    
2 ( )L   
 

 
where L  in the general case is an integro-differential operator. If we multiply this by



 and integrate over the mass of the Sun we get:  

 2

V V
dV L dV    

     
  

 

where 0  is the model density, V  is the solar volume.  

Then, the oscillation frequencies are:  

 2 V

V

L dV

dV




 






 







  

The frequencies are expressed in terms of eigenfunctions 


 and the solar properties
represented by coefficients of operator L .  
 
Sometimes, this equation is called Rayleigh’s Quotient (the original formulation: for
an oscillatory system the averaged over period kinetic energy is equal the averaged
potential energy).  

1877
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Orthogonality of the eigenfunctions 
 Consider the general oscillation equations in the operator form:  

 2 = [ ]L  
 

 

where = ( , )r h  


 is the displacement vector (which we expressed in terms of the
radial and horizontal components, r  and h ). 

Non-zero solution, 0  , exists only for a discrete number of
eigenfrequencies nl  and eigenfunctions nl


. 

It can be shown that for the ‘zero’ boundary conditions: = 0


 at = 0r  and 
= 0P  at =r R , operator L  is Hermitian, that is for two eigenfunctions 1  and 2

the integral over the stellar volume:  

 1 2 2 1=
V V

L dV L dV       
   

 

Using this property, we can show the oscillation eigenfunctions for different
oscillation modes are orthogonal:  

 * = 0nl n lV
dV   

 
 

if l l  and n n .  

  Proof 
 

Multiplying equation: 2
1 1 1= L  
 

 

by 2


, integrating the product over the stellar mass and  

using 2
2 2 2= L  
 

,  
we get:  

      2 * * * 2 *
1 2 1 2 1 1 2 2 1 2= = =

V V V V
dV L dV L dV dV                   

       
 

 
Thus,  

        2 2 *
1 2 1 2( ) = 0

V
dV     

 
 

 
If 1 2   then            *

1 2 = 0
V

dV  
 
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Variational Principle 
 
Consider small variations of the squared frequency and eigenfunction  
in the Rayleigh equations:  

 2 2 * *( ) ( ) ( ) = ( ) ( )
V V

dV L dV                    
       

 

Because L  is a linear operator: ( ) = ( ) ( )L L L      
   

.  
Keeping the first-order terms:  

 2 * 2 * * 2 *( ) =
V V V

dV dV dV                 
       

 

 

 * * *= ( )
V V V

L dV L dV L dV           
     

 

After the cancellation of the terms satisfying the oscillation equation  
and using the Hermitian property of L , we obtain:  

 2 * * 2 2 *= ( ) ( ) = 0
V V V

dV L dV L dV                     
       

 

Thus, variations of the oscillation frequencies, 2 , do not depend  
on the variations of the eigenfunctions,  , to the first order.  
 
In other words, 2  is stationary with respect to perturbations of 


.  

Variational Principle 
 
For small perturbations of the solar parameters the frequency change will depend
on these perturbations and the corresponding perturbations of the eigenfunctions,
e.g.  

2 [ ]       


 

The variational principle states that the perturbation of the eigenfunctions




 constitutes second-order corrections, that are in the first-order
approximation:  

2 [ ]       

This allows us to neglect the perturbation of the eigenfunctions in the first-order
perturbation theory.  

2




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Derivation of the variational principle for solar oscillations 
 Consider the linearized hydrodynamic equations for oscillations 

with frequency  : 
conservation of mass: = div  


 

momentum equation: 2
2

= p P
  



      


 

conservation of entropy: = divp P P     
 

  

equation for gravitational potential: 2 = 4 G     

where   and P  are unperturbed distributions of density and pressure 
inside a star. 

An integral equation for the frequency can be obtained by multiplying the
momentum equation by *= 


, eliminating perturbations of density,   and 

pressure p  and integrating over the volume.  

2
2

=
V V

dV p P dV
     

        

 
 

   
 

Transform the first integral in the RHS by integrating by parts:  

 = div = div div div
V V S V

p dV p dV p dS P P dV                  
      

 

Here we assume that the pressure perturbation on the stellar surface, = 0p . 
Eliminating   in the second integral, we write:  

 
2

1
( ) = ( )( ) div ( )

V V
P dV P dV P dV

      
 


       
   

 

Integrating by parts the third term and using the solution for the Poisson

equations: ( ) div
( ) = =

| | | |V V

r
r G dV G dV

r r r r

 
 

 
   

   


     we obtain:  

 = div
V V S

dV dS          
  

 

We assume that the density on the stellar surface is zero, so that the surface
integral is zero.  
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Getting all terms together: 2 ( , )
=

( , )

W

I

 
 

 
  , where: ( , ) =

V
I dV   
   ,  

 1
( , ) = div div div div ( )( )

V
W P P P P dV           


 

        
 


        

 

 div[ ]div [ ]

| |
G dVdV

r r

 



 
   

Substituting *= 


, we get:  

2 1 ( div ( )
= [ (div ) 2( )div ( )( )]

| |V V V

div
W P P P dV G dVdV

r r

       
 


     

  
     
   

is a quantity proportional to the potential energy of the mode averaged over the
period of the oscillation.  

 2= | |
V

I dV 


 

is the mode inertia, 2I  is the averaged over the period kinetic energy. 
 

Perturbation theory 
 Perturbations of the solar structure properties,   and   can be 

considered as a perturbation of the operator, L : 0 1=L L L  
  

, where 0L  describes 

oscillations of a solar model: 2
0 0 0 0= L  
 

, and 0  and 0


 are unperturbed 
eigenfrequency and eigenfunction. 

The corresponding frequency perturbation can be determined from the 
Rayleigh’s quotient, in which we neglect the perturbation of the eigenfunction:  

 
*

0 0 1 02
0 *

0

( )
( ) = V

V

L L dV

dV

   
 

 


 



  

   

 

 
*

1 0

0 *
0

( )
2 = V

V

L dV

dV

  
 

 



 

   

 

 *
12

0 0

1
=

2 V
L dV

I

  
  

 
 

where *
0 0=

V
I dV  

 
 is called the ‘mode inertia’ or ‘mode mass’. 

The quantity 2
0=E I  is the oscillation mode energy.  
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Calculation of the mode inertia 
 We express the mode inertia in terms of the radial and horizontal

components of the displacement: = ( ) ( , ), ( ) ( , )m m
r l h h lr Y r Y        


 

In the spherical coordinates: = sindV d d   .  

 *= = r hV
I dV I I  

 
 

 

 * * 2 2 2

0
= ( sin ) = | |

Rm m
r r r l l rV

I Y Y d d r dr r dr         

where we used the normalization condition for the spherical harmonics:
2 *

0 0
sin = 1m m

l lY Y d d
 

    . 

Similarly,  

 * * 2 2 2

0
= ( ) ( )sin = ( 1) | ( ) |

Rm m
h h h h l h l hV

I Y Y d d r dr l l r r dr          
 

 

where to calculate the angular integrals we used the integration by parts and the
equation for spherical harmonics: 2 = ( 1)m m

l lY l l Y  . 

Finally, 2 2 2

0
= ( 1)

R

r hI l l r dr      . 

 

Perturbation theory
We consider a small perturbation of the operator L  caused by variations of the

solar structure properties:  

 0 1( ) = ( ) ( ).L L L  
  

 

Then, the corresponding frequency perturbations are determined from the following
equation:  

  
*

0 12

0 *

( )
= ,V

V

L L dV

dV

   
 

 

 







  

   

or  

 *
1

0

1
= ,

2 V
L dV

I

  
 


 

  

 where  

 *=
V

I dV 
 

  

 is so-called  mode inertia or  mode mass.  
 

The  mode energy is 2 2
0=E I a , where a  is the amplitude of the surface

displacement. The mode eigenfunctions are usually normalized such that ( ) = 1r R . 
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For a normal mode, i , the variational principle gives an integral relation 
for the eigenfrequency, i :  

                                      2
i i iW I      

 where  

             

2 1

1

[ (div ) 2( )div ( )( )]

                                  div[ ]div[ ]

i i i i i iV

i i i iV V

W p p p dV

G dVdVr r

      

  





      

    


 

    

    

 is a quantity proportional to the potential energy of the mode averaged 
over the period of the oscillation, and  

 
2

i iV
I dV 


 

Rayleigh’s Quotient for normal 
modes

 

Sensitivity kernels 
 
Using explicit formulations for operator 1L  the variational principle can be 

reduced to a system of integral equations for a chosen pair of independent
variables, e.g. for ( )    
 

 

( )
( ) ( )

( ) 0 0

n l R Rn l n l
n l

K dr K dr   
  
  


 
       

 
where ( ) ( )n lK r 


  and ( ) ( )n lK r 


  are sensitivity (or ‘seismic’) kernels. These are 

calculated using the initial solar model parameters, 0 , 0P ,  , and the 

oscillation eigenfunctions for these model, 


.  
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 2 2 2
2

( )

1 1

( 1) 2 4
( ) 2 ( 1)

             4

i i i i i ii

i
i ii i i i

l l G F gg
r

K r l lE C g G S S
r

 
     



 

  
      
 
  

      

      
 

   
 

 where   is the vertical displacement, and is the horizontal displacement. 

                2 2 2 2

0
( 1)

R

i i i iE l l r dr    
  

    

 is proportional to the energy of mode i ;  

                          
1

2 ( 1)i i iF l l
r

  
     ;        2

1 2 0

1 r

i iC K drr
r

     

                        1 1

R

i ir
S C dr    ; 2

R

i i ir
S Fdr      

  

                       

2
2

2
( )

(div )

( )

i
i i i

i i
i

d
K F

dr

r
K r pK

E
 






 
 
 
 
 



  





 

Explicit form of sensitivity kernels in terms of 
oscillation eigenfunctions for mode i=(n,l)

Examples of the sensitivity kernels
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Equation for the sensitivity kernels

If we define:  

                              1z
 
 

 
  
 


  

  

                            (1) ( ) ( )
i i iK KK

     
 
 

 


  

 then the perturbation equation can be written in the form:  

                                     
2

(1)
12

i
i

i

zK



  
 

  

 where 
0

R
u v uv dr   .  

 

 

Kernel Transformations. 1 
 

The sensitivity for various pairs of solar parameters can be obtained by using the
relations among these parameters, which follows from the equations of solar
structure (‘stellar evolution theory’).  
 
A general procedure for calculating the sensitivity kernels can be illustrated in

an operator form. Consider two pairs of solar variables, X


 and Y


, e.g.  

 
u Y

X X
u Y

   
 

             

 
 

where u P   , Y  is the helium abundance.  
 
The linearized structure equations (the hydrostatic equilibrium equation and the
equation of state) that relate these variables can be written symbolically:  

 AX Y 
 

 



19

Kernel Transformations. 2 
 
Let XK


 and YK


 be the sensitivity kernels for X  and Y , then the frequency

perturbation is:  

0

R

X XK Xdr K X



    
   

 

where     denotes the inner product. Similarly,  

YK Y



  
 

 

Then from the stellar structure equation AX Y
 

:  

Y Y YK Y K AX A K X     
     

 

where A  is an adjoint operator.  

Thus:                                         Y XA K X K X    
   

 

This is valid for any X


 if           XY
A KK  


 

 
That means that the equation for the sensitivity kernels is adjoint to the stellar structure
equations.  

Examples of the sensitivity kernels
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Lecture 17
General helioseismic inverse 

problem. Perturbation theory. Kernel 
transformations 

(Stix, Chapter 5.3.1; Kosovichev, p.34-41, 44-48; 
Christensen-Dalsgaard, Chapters 5.5)

General helioseismic inverse 
problem

1) Variational principle
2) Perturbation theory
3) Kernel transformation
4) Solution of inverse problem

A. Optimally Localized Averages Method
B. Regularized Least-Squares Method

5) Inversion results for the solar structure
6) Inversions for solar rotation
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Generalized Helioseismic Inverse Problem 
 

In the asymptotic (high-frequency of short wavelength) approximation the oscillation
frequencies depend only on the sound-speed profile. This dependence is expressed in terms of
the Abel integral equation that can be solved analytically.  
In the general case, the relation between the frequencies and internal properties is non-linear, 
and there is no analytical solution. Generally, the frequencies determined from the oscillation
equation depend on the density, ( )r , the pressure, ( )P r , and the adiabatic exponent, ( )r . 
However,   and P  are not independent, and related to each other through the hydrostatic
equation:  

 
dP

g
dr

    

where  

 2
2 0

4
rGm

g m r dr
r

        

Therefore, only two thermodynamic (hydrostatic) properties of the Sun are independent, e.g.
( )  , ( )P  , or their combinations: ( )P    , 2( )c  , 2( )c   etc.  
The general inverse problem in helioseismology is formulated in terms of small corrections to
the standard solar model because the differences between the Sun and the standard model are
typically 1%  or less. When necessary, the corrections can be applied repeatedly, using an
iterative procedure.  

Variational Principle: Rayleigh’s Quotient 
 
Consider the oscillation equations as a formal operator equation in terms of the vector

displacement, 


:    
2 ( )   
 
  

where   in the general case is an integro-differential operator. If we multiply this by



 and integrate over the mass of the Sun we get:  

 2

V V
dV dV    

     
  

  

where 0  is the model density, V  is the solar volume.  

Then, the oscillation frequencies are:  

 2 V

V

dV

dV




 






 










 

The frequencies are expressed in terms of eigenfunctions 


 and the solar properties 
represented by coefficients of operator  .  
 
Sometimes, this equation is called Rayleigh’s Quotient (the original formulation: for 
an oscillatory system the averaged over period kinetic energy is equal the averaged
potential energy).  
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Variational Principle 
 
For small perturbations of the solar parameters the frequency change will
depend on these perturbations and the corresponding perturbations of the
eigenfunctions, e.g.  

2 [ ]       


 

 
The variational principle states that the perturbation of the eigenfunctions




 constitutes second-order corrections, that are in the first-order 
approximation:  

2 [ ]       

 
This allows us to neglect the perturbation of the eigenfunctions in the first-order 
perturbation theory.  

Perturbation theory
We consider a small perturbation of the operator  caused by variations of the 

solar structure properties:  

 0 1( ) = ( ) ( ).  
  

    

Then, the corresponding frequency perturbations are determined from the following
equation:  

  
*

0 12

0 *

( )
= ,V

V

dV

dV

   
 

 

 







  

 
 

 

or  

 *
1

0

1
= ,

2 V
dV

I

  
 


 
   

 where  

 *=
V

I dV 
 

  

 is so-called  mode inertia or  mode mass.  
 

The  mode energy is 2 2
0=E I a , where a  is the amplitude of the surface

displacement. The mode eigenfunctions are usually normalized such that ( ) = 1r R . 
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Sensitivity kernels 
 
Using explicit formulations for operator 1  the variational principle can be 

reduced to a system of integral equations for a chosen pair of independent
variables, e.g. for ( )    
 

 

( )
( ) ( )

( ) 0 0

n l R Rn l n l
n l

K dr K dr   
  
  


 
       

 
where ( ) ( )n lK r 


  and ( ) ( )n lK r 


  are sensitivity (or ‘seismic’) kernels. These are 

calculated using the initial solar model parameters, 0 , 0P ,  , and the 

oscillation eigenfunctions for these model, 


.  

Inversions for the solar structure 
 
 
Variational principle for oscillation frequencies 
 
The motions in a star in the simplest case with no heat sources and no heat

exchange and extra forces (such as magnetic and Reynolds stress forces) are
described by the hydrodynamic equations of conservation of mass, momentum,
energy and by Poisson’s equation:  

 d ( ) = 0iv
t

 



v  

  

 = p
t

        
v

v v  

  

 = 0
S

S
t


 


v  

  
 2 = 4 .G    

 Here   , v , p ,  , T  and S  are the density, fluid velocity, pressure, gravitational
potential, temperature and specific entropy, respectively, and G  is the gravitational 
constant. These equations are complemented by the equation of state: = ( , )S S p  , 
and boundary conditions of regularity at the star center.  
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Since the amplitude of solar oscillations is small they can be described in 
terms of small perturbations to a stationary equilibrium state which in the first
approximation is a function of only radius r . The perturbation equations are  

 d ( ') = 0iv
t

 




v  

 '
= p

t
         

v

 

 ' ' = 0
S

p p
p

t t

 


               
v v  

 2 = 4 ,G     

 where the variables without subscript denote properties of the equilibrium state, and
the prime sign refers to small perturbations of the properties due to oscillations;

2( / )Sp c    is the adiabatic sound speed, which is also represented in terms of the 
adiabatic exponent, ( log / log )SP    : 2 = /c P  . This system of equations is
complemented by boundary conditions describing regularity of the solution at the
star center, = 0r , and the absence of external forces ( = 0p  )on the surface =r R .  

 The oscillatory solution of this system has time dependence exp( )i t , and 
can be expressed it terms of Fourier components of the fluid displacement,  ,  

 ' = / = ,t i v    

 where   in the oscillation frequency. 
As a result, we obtain an eigenvalue problem for a fourth-order system of 

ordinary linear differential equations. 
 
In this formulation, the eigenvalue problem is non-linear in terms of the 

squared eigenfrequency, 2 , and typically solved by iterations for a given initial
equilibrium state. 

 
The inverse problem of helioseismology is to estimate the properties of the

equilibrium state from a set of observed eigenfrequencies. The standard approach
to this problem is to find corrections to models of the equilibrium state which are
sufficiently close to the real Sun, so that a perturbation theory can be employed. 
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The oscillation equations together with the boundary conditions can also be
represented in a linear operator form:  

 2 = 0,L    

 where L  is a self-adjoint (Hermitian) integro-differential operator. Therefore, the
eigenfunctions   are orthogonal. Eigenvalues 2  are real and obey a variational
principle. 

For a normal mode, i , the variational principle gives an integral relation for
the eigenfrequency, i  (Rayleigh’s Quotient):  

 2 = / ,i i iW I  

 where  
 2 1= [ (d ) 2( )d ( )( )]i i i i i iV

W p iv p iv p dV             

 1| | d [ ]d [ ']i i i iV V
G iv iv dVdV 

     r r    

 is a quantity proportional to the potential energy of the mode averaged over the 
period of the oscillation, and  

 2=i iV
I dV   

 can be regarded as mode inertia. Physically this equation represents the balance
between the potential and kinetic energies averaged over the period of the oscillation
modes. 

 In a spherically-symmetric star, the displacement eigenfunctions, i , can be 
expressed in terms of spherical harmonics ( , )lmY   :  

 , ,( , , ) = ( ) ( , ) ( ) ( , ),i r r i lm h i lmr r Y r Y        e  

 where , ( )r i r  and , ( )h i r  represent the radial dependence of the radial and

horizontal components of the displacement vector, 1
=

sin   

 
 

 
e e  is the 

angular part of the gradient in spherical coordinates, ( , , )r   , and , ,r  e e e  are units 

vectors in the directions of , ,r   . 
Thus, the equations and the variational principle for a oscillation mode with

frequency, i , can be written in term of ,r i  and ,r i , and perturbation of the 

gravitational potential  :  

 
2

, , , 2

0

2 ( 1)
= 4

R r i r i h i
i

d l l
W p r dr

dr r r

  
 

 
   

 
  

    ,2 2
, , , ,0

4
4 4 ( 1) 2 ,

R h i
r i r i i r i i r ir g g G l l g dr

r r


      

          
 

  

  

 2 2 2
, ,0

= 4 ( 1) ,
R

i r i h iI r l l dr        

 where  

 2 2
2 2 0

4
= ; = 4 ; = ;

rGm G
g G g r dr

r r r

  
      

   

R  is radius of the Sun, and m  is the mass within a sphere of radius r .  
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 The variational principle asserts that the eigenfrequencies are stationary with
respect to variations in i , i.e., if a perturbation in an eigenfunction is ( )O  , then the 
perturbation in the corresponding eigenfrequency, i  is 2( )O  . 

Consequently, one can calculate small corrections to the frequencies due to
changes in the physical conditions inside the Sun by linearizing the Rayleigh 
Quotient in terms perturbations of the structure properties, e.g. density  , pressure 
p , and the adiabatic exponent,  , and using the unperturbed eigenfunctions.  

From the variational principle one can obtain:  

 
2

( , ) ( , )
2 0 0

= ,
R R

i
i i

i

K dr K dr     
  

   

 where ( , )
iK    defines the sensitivity of the mode frequency to perturbations of the

density,  , at constant  , and ( , )
iK    is the sensitivity (‘kernel’) function for

variations of   at constant  .  

  
2

( , ) 2 2 2
, , , ,( ) = ( 1) 2 4i i r i h i r i i r i i

i

r
K r l l g G F g

E
                  

  , 1, 1,

2 ( 1)
4h i i i i i

l l
C g G S S

r
      


 

 and   2 2 2 2
, ,0

= ( 1)
R

i i r i h iE l l r dr        is proportional to the energy of mode i ;  

 2
, , 1, 1, 1,2 0

1 1
= 2 ( 1) ; = ; = ;

r R

i r i h i i i i ir
F l l C K r dr S C dr

r r
              

 
2

, 2
,= 2 ; = (d ) ;

R r i
i r i i i i ir

d
S F dr K F iv

dr


 

    
 

     
2

( , ) ( ) = .i i
i

r
K r pK

E
     
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Examples of the sensitivity kernels for  and 

If we define vector functions:   (1) ( , ) ( , )
1 = , , = , ,i i iK K    

 
 
 
 

z K  

 then equation   
2

( , ) ( , )
2 0 0

= ,
R R

i
i i

i

K dr K dr     
  

   

 can be written in the form:      
2

(1)
12

= ,i
i

i




K z    where 
0

=
R

dr  uv u v . 

These equations provide integral constraints on unknown functions / 
and /   with kernels ( , )

iK    and ( , )
iK   . These kernels determine the sensitivity of

the oscillation frequencies to density variations at constant adiabatic exponent 
and to variations of   at constant   respectively. The similar integral equations
can be obtained for some other parameters of solar structure. These equations are
used for inferring the structure parameters from the relative differences between
the observed frequencies and frequencies of a reference solar model. For a given
reference model eigenfrequencies i  and kernels ( , )

iK    and ( , )
iK    can be 

computed numerically with standard methods.  
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Kernel transformation. Method of adjoint equations. 
The hydrostatic structure of the Sun is uniquely determined by the two ’primary’
properties: density ( )r  and the adiabatic exponent ( )r . Other, ‘secondary’ 
properties of the solar structure, such as the squared sound speed 2 = /c p  , the 
parameter of convective stability 

* 1 log log
=

log log

d p d
A

d r d r




 , temperature T  or abundances of helium, Y , and 

heavier elements, Z , can be determined from   and   using the equations of 
stellar structure. 

These equations describe the hydrostatic and thermal equilibria and the 
thermodynamic state of the solar plasma. Some of the ‘secondary’ properties (e.g.

2c  and *A ) can be determined using only the hydrostatic equations, while others
(e.g. T  and Y ) require both the hydrostatic and thermodynamic equations. 

In the helioseismic applications, it is often of interest to obtain direct
estimates of these (‘secondary’) properties from the oscillation frequencies. Such a
situation arises, for instance, when the available frequency information allows the
determination of solar properties only in some particular regions of the solar
interior. The integral equations which relates the variations of the ‘secondary’
properties to the frequency difference can be obtained by the method of adjoint
functions. 

In mathematics, an ajoint operator *  (or Hermitian conjugate operator) is
defined according to the rule: *, = ,   x y x y  .  

For matrix A: , = , TA A   x y x y  where TA is matrix transposed to A 

The idea of this method is very simple. The relation between the ‘primary’,

1z , and ‘secondary’, 2z , properties that follows from the linearized stellar structure
equations can be written in the following symbolic form:  

 1 2= ,z z  

 where   is a linear operator. If (2)K  is the integral kernel for 2z  then the relative 
frequency differences can be expressed in terms of both 1z  and 2z :  

 2 2 (1) (2)
1 2/ = = .     K z K z  

 Then, substituting 2z  from the structure equations, we obtain:  

 (1) (2) (2) * (2)
1 2 1 1= = , = , .       K z K z K z K z   

 where operator *  is adjoint to operator  . Comparing the first and last terms we
obtain the equation for the ‘secondary’ kernels, (2)K :  

 * (2) (1)= ,K K  

 which is adjoint to the structure equation.  
 
The sensitivity kernels can be interpreted as a `response’ of the oscillation 
frequencies to point perturbations. If an i-component of the structure variables

1, 0( )i r r z  then 2 2 (1) (1)
1 0/ = = ( ).i r   K z K  
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Generally, the relation between the ‘primary’ and ‘secondary’ properties of
the solar structure is obtained from the equations of hydrostatic and thermal
balance and constitutes a system of linear differential and algebraic equations:  

 2=
d

A B
dx


y

y z  

 1 2= ,C Dz y z  

 where = log( )x r  and ( )xy  is a vector-function of some properties of the stellar
structure different from 1z  and 2z  (e.g. gas pressure and fractional mass). The
equations are complemented by the boundary conditions of regularity at the stellar
center and surface. 

These equations represent an explicit form the operator equation:  
 1 2=z z  

. If the function 2z  is known then 1z  can be determined by solving these
equations. Our task is to find the explicit form of the adjoint operator *A , such as  

 * (2) (1)=K K  
where (1)K  and (2)K  satisfy the equation: (1) (2)

1 2=   K z K z   

To find a kernel function (2)K  for 2z  we introduce a new vector-function 

1 2= ( , )w ww  and calculate the inner product of w  with the first equation:  

 2=
d

A B
dx


y

y z  

  

       2= .
d

A B
dx
   

y
w w y w z  

Using integration by parts and assuming that  
 = 0 a b = 0 a =t oth r nd r Rw y  

 we find  

 2= ,Td
A B

dx
    

w
y y w w z  

 where TA  is transposition of matrix A .  
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Then, we calculate the inner product of (1)K  with the second eqution:  
 1 2= ,C Dz y z  

 and use the equation (1) (2)
1 2=     K z K z   

 (2) (1) (1)
2 2 .C D    K z K y K z  

 If w  is such that  

         (1)
2= ,C B K y w z  

then the inner product equation  

              2= ,Td
A B

dx
    

w
y y w w z  

can be written as:  

(1) ,T Td
A C

dx
     

w
y y w y K  

  

        (2) (1)
2 2 2= ,T TD B   z K z K z w  

(1)= ,T Td
A C

dx
 

w
w K

(2) (1)= .T TD BK K w

These equations are valid for arbitrary structure variables 2z  and y , if  

                      (1)= ,T Td
A C

dx
 

w
w K  

  
                       (2) (1)= .T TD BK K w  

 These two relations together with the boundary conditions for w :  
 = 0 at = 0 and =r r Rw y  

 determine kernels (2)K  for the ‘secondary’ structure variable 2z . 
 
Thus, to find the kernels (2)K  one has to solve the differential equations  
for w  with the boundary conditions, and then use of the second equation. 
 
Compare these adjoint equations with the equations for the structure 
variables: 

                 2=
d

A B
dx


y

y z  

                 1 2= ,C Dz y z  
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Examples of the kernel transformation 
 Kernels for isothermal sound speed and helium abundance. 

As an example, we derive kernels (2)K  for function 2 = ( ln , )u Y z , where 
/u p  , the ratio of the gas pressure to density, which is approximately proportional 

to the ratio of the temperature to the molecular weight, and Y  is the abundance of 
helium. These ‘secondary’ properties are related to the ‘primary’ properties,   and 
 , through the hydrostatic equations:  

 2
2

= , = 4 ,
dp Gm dm

r
dr r dr

   

 and the equation of state = ( , , )p Y   . 
The corresponding linearized equations are:  

 = ,
d p m p

V
dx p m p

   


   
     

   
 

 = , = ,
d m m u p

U
dx m m u p

     
 

        
   

 

 
,,,

ln ln ln
= ,

ln ln pp YY

p
Y

p p Y 

      
  

                
 

 where = lnx r , ln
= =

ln

d p Gm
V

d r rp


 , and 

3ln 4
= =

ln

d m r
U

d r m

 .  

Boundary conditions are the regularity conditions at = 0r , and / = 0m m  at =r R .  

 These equations can be written in the matrix form:  

              1 1 1 2 2= ,
d

A B B
dx

 
y

y z z  

  
               1 1 1 2 2= ,D C Dz y z  

 where = ( / , / )p p m m y , 1 = ( / , / )   z , 2 = ( / , )u u Y z ,  

1A , 1B , 2B , 1C , 1D  and 2D  are (2 2) -matrices:  

 1 1 2

0 0 0
= , = , = ,

0 0 0 0

V V V
A B B

U U

      
          

 

  

 1 1

, ,

1 01 0

= , = ,ln ln
1 0

ln ln
p Y Y

D C

p 

 


  
  
                  

 

  

 2

,

1 0

= .ln
0

p

D

Y 


 
       
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Since det( 1) 0D   we can reduce the equations to the standard form:  

                                2= ,
d

A B
dx


y

y z  

  
                          1 2= ,C Dz y z  

 where  
 1 1

1 1 1 1 1 1 2 2= , = ,A A B D C B B D D B    

 1 1
1 1 1 2= , = .C D C D D D   

 Thus, the kernel functions  (2) ( , ) ( , )= ,u Y Y uK KK  can be found by solving  

the corresponding equations with the matrices, A , B , C  and D :  

 (1)= ,T Td
A C

dx
 

w
w K  

  
 (2) (1)= .T TD BK K w  

  

Examples of the sensitivity kernels for u=p/ and Y
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Kernels for the parameter of convective stability. 
 

The parameter of convective stability     * 1 log log
=

log log

d p d
A

d r d r




  

 plays an important role for the internal structure of the Sun. When this parameter is
positive the solar structure is stable against convection, and when it is negative the
structure is unstable. In the bulk of the convection zone *A  is negative and close to 
zero, in the upper convection zone this parameter experiences a sharp minimum near
the surface where highly unstable convective motions (granulation) are developed. 

In this case, we add to the previous hydrostatic solar structure equations the
linearized equation for *A :  

 *= ,g

d p m
V A

dx p m

     
  

  
     

   
 

 where = /gV V  . Defining = ( / , / , / )p p m m   y , 1 = ( / , / )   z , 
*

2 = ( , / )A  z , we obtain the adjoint equations the kernel function

 * *(2) ( , ) ( , )= ,A AK K K  in the standard form with the following matrices:  

 
0 0

= 0 ,   = 0 0 ,

1g g g g

V V V

A U U B

V V V V

    
   

    
        

   
0 0 1 0 0

= ,   = .
0 0 0 0 1

C D
   
   
   

 

  

Examples of the sensitivity kernels for parameter of 
convective stability A* and 
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 Similar transformations of integral kernels can be derived for other
appropriate pairs of unknown functions of solar structure.  

 
It is important to note that the integral kernels for temperature and

element abundances in the solar radiative core, which are important in 
astrophysical applications (e.g. the solar neutrino problem), can be
determined by including the equations of thermal equilibrium in addition
to the hydrostatic equations.  

24
dm

r
dr

   (1) 

2

dP Gm

dr r


   (2) 

24
dL

r
dr

   (3) 

2 316

dT
L F

dr r acT




     (4) 

T
P





  (5) 

3 1
4 2

1

2X Y Z
 

 
 (6) 

2 4
0 X T    (7) 

3 5
0( 1)X Z T       (8) 

These equations describe the
structure of stellar radiative
zones. In the convection zone
Eq.(4) is replaced by an
equation of convective energy
transport, e.g. mixing length
theory.  

A numerical code for solving 
these equations is available in 
the book: C.J. Hansen, S.D. 
Kawaler, Stellar Interiors. 
Physical Principles, Structure 
and Evolution, Springer, 
1995.   

Equations of the stellar structure

Kramer’s opacity law
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Examples of the sensitivity kernels
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Lecture 18
Solution of the helioseismic inverse 

problem. 
Optimally localized averaging 

method. 

(Stix, Chapter 5.3.1; Kosovichev, p.34-41, 44-48; 
Christensen-Dalsgaard, Chapters 5.5)

General helioseismic inverse 
problem

1) Variational principle
2) Perturbation theory
3) Kernel transformation
4) Solution of inverse problem

A. Optimally Localized Averages Method
B. Regularized Least-Squares Method

5) Inversion results for the solar structure
6) Inversions for solar rotation
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Variational Principle: Rayleigh’s Quotient 
 
Consider the oscillation equations as a formal operator equation in terms of the vector

displacement, 


:    
2 ( )L   
 

 
where L  in the general case is an integro-differential operator. If we multiply this by



 and integrate over the mass of the Sun we get:  

 2

V V
dV L dV    

     
  

 

where 0  is the model density, V  is the solar volume.  

Then, the oscillation frequencies are:  

 2 V

V

L dV

dV




 






 







  

The frequencies are expressed in terms of eigenfunctions 


 and the solar properties
represented by coefficients of operator L .  
 
Sometimes, this equation is called Rayleigh’s Quotient (the original formulation: for
an oscillatory system the averaged over period kinetic energy is equal the averaged
potential energy).  

Variational Principle 
 
For small perturbations of the solar parameters the frequency change will
depend on these perturbations and the corresponding perturbations of the
eigenfunctions, e.g.  

2 [ ]       


 

 
The variational principle states that the perturbation of the eigenfunctions




 constitutes second-order corrections, that are in the first-order 
approximation:  

2 [ ]       

 
This allows us to neglect the perturbation of the eigenfunctions in the first-order 
perturbation theory.  
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Perturbation theory
We consider a small perturbation of the operator L  caused by variations of the

solar structure properties:  

 0 1( ) = ( ) ( ).L L L  
  

 

Then, the corresponding frequency perturbations are determined from the following
equation:  

  
*

0 12

0 *

( )
= ,V

V

L L dV

dV

   
 

 

 







  

   

or  

 *
1

0

1
= ,

2 V
L dV

I

  
 


 

  

 where  

 *=
V

I dV 
 

  

 is so-called  mode inertia or  mode mass.  
 

The  mode energy is 2 2
0=E I a , where a  is the amplitude of the surface

displacement. The mode eigenfunctions are usually normalized such that ( ) = 1r R . 

 

Sensitivity kernels 
 
Using explicit formulations for operator 1L  the variational principle can be 

reduced to a system of integral equations for a chosen pair of independent
variables, e.g. for ( )    
 

 

( )
( ) ( )

( ) 0 0

n l R Rn l n l
n l

K dr K dr   
  
  


 
       

 
where ( ) ( )n lK r 


  and ( ) ( )n lK r 


  are sensitivity (or ‘seismic’) kernels. These are 

calculated using the initial solar model parameters, 0 , 0P ,  , and the 

oscillation eigenfunctions for these model, 


.  
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Operator form of the linearized stellar 
structure equations  

 
The sensitivity for various pairs of solar parameters can be obtained by using the
relations among these parameters, which follows from the equations of solar
structure (‘stellar evolution theory’).  
 
A general procedure for calculating the sensitivity kernels can be illustrated in
an operator form. Consider two pairs of solar variables, X


 and Y


, e.g.  

 1 2

u Y
z z

u Y

   
 

          
  

 
 

where u P   , Y  is the helium abundance.  
 
The linearized structure equations (the hydrostatic equilibrium equation and the
equation of state) that relate these variables can be written symbolically:  

 1 2Az z  
 

Equation for the sensitivity kernels 
in the operator form

If we define:  

                              1z
 
 

 
  
 


  

  

                            (1) ( ) ( )
i i iK KK

     
 
 

 


  

 then the perturbation equation can be written in the form:  

                                     
2

(1)
12

i
i

i

zK



  
 

  

 where operator 
0

R
u v u v dr  
   

.  
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Kernel Transformations. Method of Adjoint 
Functions. 

The idea of this method is very simple. The relation between the ‘primary’, 1z , and 

‘secondary’, 2z , properties that follows from the linearized stellar structure equations 

can be written in the following symbolic form: 

                                                      1 2= ,Az z                    (1) 

 where A  is a linear operator. If 
(2)K  is the integral kernel for 2z  then the relative 

frequency differences can be expressed in terms of both 1z  and 2z :  

 
2 2 (1) (2)

1 2/ = = .K z K z     

 Then using the structure equation (1) and operator 
*A  adjoint to A  we obtain:  

 
(1) (2) * (2)

1 2 2 1 1= = = .K z K z K Az A K z     

 Comparing the first and last terms we obtain the equation for the ‘secondary’ kernels,
(2)K :  

 
* (2) (1)= ,A K K  

 which is adjoint to the structure equation  (1). This means that the equation for the
sensitivity kernels is adjoint to the stellar structure equations.  

Examples of the sensitivity kernels
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Inversion methods 
 
The variational principle and the method of adjoint functions allow us to

determine linear integral relations between the observed quantities, relative 
frequency differences between the Sun and a reference solar model, and the
deviations of solar properties, ( )f r  and ( )g r , (such as density, pressure, sound
speed,  , etc.)from this model. 

 

 
2

( , ) ( , )
2 0 0

= ,
R Rf g g fi

i i
i

f g
K dr K dr

f g

  


   

 These relations constitute a linear inverse problem of determining the solar 
structure. 

Mathematically, it belongs to the class of ill-posed problems because it does
not have a unique solution. Rapidly oscillating with radius functions can be added
to the solution without changing the integral values. 

This problem can be solved by regularization methods, such as the method
of optimally localized averages or the regularized least-squares method. A specific 
feature of this inverse problem is that it contains two unknown functions. 

 

Idea of Optimally Localized Averages (OLA) 
 

The idea of the OLA method is to find a linear combination of data such as the
corresponding linear combination of the sensitivity kernels for one unknown will
have an isolated peak at a given radial point, 0r , (resemble a  -function), and the

combination for the other unknown will be close to zero. Then this linear combination
provides an estimate for the first unknown at 0r .  

 

                
( )

( )
( )

n l
n l

n l
a







  ( ) ( ) ( ) ( )

0 0

R Rn l n l n l n la K dr a K dr   
 
 

   
      

 

If  the coefficients are such that   ( ) ( )
0( ) ~ ( )n l n la K r r r   

    

and                                             ( ) ( ) ( ) ~ 0n l n la K r 
 

   

then the linear combination gives an estimate of the density perturbation at 0r r : 

 
0

( )
( )

( )

n l
n l

n l

r

a







    
 

  

The coefficients, ( )n la  , are different for different target radii 0r . 
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Method of optimally localized averages 
 
From a finite number of measured frequencies with errors, the unknown

functions can be determined only with a finite spatial resolution; in other words,
only certain average values of these functions can be determined. 

The idea of the Backus-Gilbert inversion method is to determine the
optimally localized averages of the solar parameters at a target location along the
radius. 

If ( )f r  and ( )g r  are two independent properties of the solar structure,
which are related to the variations of eigenfrequencies via the integral relations:  

 
2

( , ) ( , )
2 0 0

= ,
R Rf g g fi

i i
i

f g
K dr K dr

f g

  


   

 where ( , )f g
iK  and ( , )g f

iK  are the corresponding seismic kernels, then the localized
averages of the variations of these properties at 0=r r  are estimated as linear
combinations of the frequency variations:  

 
2

( , )
0 2

=1
0

( ) ,
N

f g i
i

i ir

f
a r

f




 
 

 
  

  

 
2

( , )
0 2

=1
0

( ) ,
N

g f i
i

i ir

g
a r

g




 
 

 
  

 where ( , )
0( )f g

ia r  and ( , )
0( )g f

ia r  are the averaging coefficients. 

The localization of the averaged properties around the target positions 0=r r

can be expressed in terms of the averaging kernels: ( , )
0( , )f gA r r  and ( , )

0( , )g fA r r :  

 ( , )
00

0

= ( , )
R f g

r

f f
A r r dr

f f

  
 
 

  

 

 ( , )
00

0

= ( , )
R g f

r

g g
A r r dr

g g

  
 
 

  

The averaging kernels are represented by the corresponding linear combinations of
the sensitivity kernels:  

 ( , ) ( , ) ( , )
0 0

=1

( , ) = ( ) ( ),
N

f g f g f g
i i

i

A r r a r K r  

  

 ( , ) ( , ) ( , )
0 0

=1

( , ) = ( ) ( ).
N

g f g f g f
i i

i

A r r a r K r  
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By applying the averaging procedure to the equation:  

 
2

( , ) ( , )
2 0 0

= ,
R Rf g g fi

i i
i

f g
K dr K dr

f g

  


   

 and changing the order of summation and integration, we find that the linear
combination of the frequency perturbations depends on both structural properties, f 
and g:  

 
2

( , ) ( , ) ( , ) ( , ) ( , )
0 0 02 0 0

=1 =1 =1

( ) = ( ) ( )
N N NR Rf g f g f g f g g fi

i i i i i
i i ii

f g
a r a r K dr a r K dr

f g

  


     

 

 
2

( , ) ( , ) ( , )
0 0 02 0 0

=1

( ) = ( , ) ( , )
N R Rf g f g f gi

i
i i

f g
a r A r r dr B r r dr

f g

  


    

 

 
2

( , ) ( , )
0 02 0

=1
0

( ) = ( , )
N Rf g f gi

i
i i r

f g
a r B r r dr

f g

  


 
 

 
   

where kernel ( , ) ( , ) ( , )
0 0=1

( , ) = ( ) ( )
Nf g f g g f

i ii
B r r a r K r  defines the contribution of the

property g  in the localized average estimates of f .  

Our goal is to find such coefficients ( , )
0( )f g

ia r  that they provide localization 
of the averaging kernel ( , )

0( , )f gA r r  around 0=r r  while minimizing the kernel
( , )

0( , )f gB r r  everywhere along the radius. 
Such coefficients are obtained by making the averaging kernel close to a

delta-function by applying a ‘ -ness constraint’ for the averaging kernels for one
of the variables while minimizing the contribution of the other variable. 

Thus, for estimating /f f , the  -ness criterion for ( , )
0( , )f gA r r  is 

complemented by the minimization of the averaging function of the other variable,
/g g :  

 ( , ) ( , ) ( , )
0 0

=1

( , ) = ( ) ( ).
N

f g f g g f
i i

i

B r r a r K r  
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Formulation of the  -ness measure by Backus and Gilbert 
 

 There are different measures of  -ness of the averaging kernels. Following
the Optimally Localized Averaging (OLA) method of Backus and Gilbert (1970)
we consider the ‘spread’ of function ( )A r  around a target point 0r :  

 2 2
0 00

( , ) = 12 ( ) ( )
R

s r A r r A r dr  

The averaging are normalized, like a  -function, to unity:  

 
0

( ) = 1
R
A r dr  

The motivation is that if ( )A r  is a step-like function with a width l :  

 
1

0if | | / 2
( ) =

0 otherwise

l r r l
A r

  



 

                            

                               For this function: 
/202 2

0 0/20

( , ) = 12 ( ) =
r l

r l
s r A l r r dr l




 . 

 
Thus the ‘spread’ of this function is equal to the function width, and the center of
this function coincides with the target position 0r .  

r0-l/2 r0 r0+l/2

1/l

For any fixed A , 2 2
0 00

( , ) = 12 ( ) ( )
R

s r A r r A r dr  is a quadratic function of 0r

with a minimum at cr , which we find by differentiating 0( , )s r A  with respect to 0r

and finding the minimum:  

 20
00

0
=

( , )
= 24 ( ) ( ) = 0 |

R

r rc

ds r A
r r A r dr

dr
  

thus  

 2 2

0 0
= ( ) / ( )

R R

cr rA r dr A r dr   

is the ‘center’ of the function ( )A r . 
We define the ‘width’ of A  as the value of the spread at the center:

= ( , )cw s r A .  

 2 2

0
= 12 ( )

R

cw r r A dr  

The function spread at the target position 0r  can be calculated in terms of w  and

cr  by adding and subtracting cr  in the definition of 0( , )s r A  and opening the
rearranging the terms:  

 2 2 2 2
0 0 00 0

( , ) = 12 ( ) = ( ) =
R R

c cs r A r r A dr r r r r A dr      

 

  2 2
0 0

= 12( )
R

cw r r A dr    

Thus, the spread calculated at the target point measures both the function width
and the deviation of the center from the target.  



10

A set of such optimal coefficients ( , )f g
ia  can be determined by minimizing

the following quadratic function:  
   

    
2 2( , ) ( , )

0 0 0 00 0
( , , , ) = ( , ) ( , ) ( , )

R Rf g f gM r A J r r A r r dr B r r dr          ( , ) ( , )

,

,f g f g
ij i j

i j

E a a   

 where 2
0 0( , ) = 12( )J r r r r , ijE  is a covariance matrix of observational errors, 

and   are the regularization parameters.  
 
The first integral represents the Backus-Gilbert criterion of  -ness for ( , )

0( , )f gA r r ;
the second term minimizes the contribution of ( , )

0( , )f gB r r , thus, effectively
eliminating the second unknown function, /g g ; and the last term minimizes the
errors.  

The OLA method

The numerical procedure to compute ( , )
0( )f g

ia r  for given   and   is to 
substitute the equations for ( , )

0( , )f gA r r  and ( , )
0( , )f gB r r  and minimize M  as a 

positively defined quadratic function of ( , )f g
ia  subject to the normalization constraint

(corresponding to the  -ness of ( , )
0( , )f gA r r ):  

 ( , ) ( , ) ( , )
0 0 00 0

=1

( , ) ( ) ( , ) = 1.
NR Rf g f g f g

i
i

A r r dr a r K r r dr   

 The minimization of the constrained quadratic function by the method of Lagrange
multipliers leads to a system of linear equations:  

 ( , ) ( , )

=1, =1,

= 0, = 1f g f g
ij j i j j

j N j N

W a v v a   

where   is a Lagrange multiplier, ( , )

0
= ( )

R f g
i iv K r dr   

 ( , ) ( , )= ,f g g f
ij ij ij ijW S S E    

 

 ( , ) 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
0 0, 0 1, 2, 0

= 2 , = 12 ( ) ( )
Rf g f g f g f g g f g f g f

ij ij ij ij ij i jS r S r S S S K r K r dr    

 

 ( , ) ( , ) ( , )
, 0

= 12 ( ) ( ) ,
Rf g p f g f g

p ij i jS r K r K r dr  
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These equations can be written in the matrix form:  
                     = 0W a v  
                         = 1,v a  

where  ( , ) ( , )
1= ,...,f g f g

Na aa , 1= ( ,..., )Nv vv , and   is a Lagrange multiplier. 

 
Substituting 1= W   a v y , where 1= W y v , in the second equation, 

we obtain: 1
= 

y v
. 

 
Then, substituting the value of   in the first equation, we find the
coefficients a :  

 =
( )W

y
a

y y
 

 

Using these coefficients, we estimate the localized averages of /f f :  

 
2

( , ) ( , )
0 02 0

=1
0

= ( ) = ( , ) ,
N Rf g f gi

i
i ir

f f g
a r A r r dr

f f g

  


   
   

   
   

 where ( , )
00

= ( , )
R f gg g
B r r dr

g g

  
 
 

  is the contribution of the second, ‘eliminated’,

variable. This contribution causes errors in the estimated localized averages of the
first function, and, therefore, has to be made sufficiently small, e.g.  

 
max

g

g

 
 

 
  

where  1/2
( , ) ( , )

,
= f g f g

i j iji j
a a E  is an estimate of random errors in the inversion results.

If we assume that | / |<g g C , then we obtain the following criterion for choosing the
regularization parameter  :  

 ( , ) 1
00

( , ) .
R f gB r r dr C   
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The regularization parameter   is determined as a trade-off 
between the spatial resolution and error magnification. 
 
The resolution of inversions is characterized by the spread of the
averaging kernels  

          ( , ) ( , ) ( , )
0

,

= f g f g f g
i j ij

i j

s a a S  

 and their width  

 

2

( , ) ( , ) ( , )
1,

,( , ) ( , ) ( , )
2, ( , ) ( , ) ( , )

, 0,
,

= .

f g f g f g
i j ij

i jf g f g f g
i j ij f g f g f g

i j i j ij
i j

a a S

w a a S
a a S

 
 
 


 
 

 The central location of the averaging kernels can be estimated from 
  

 

( , ) ( , ) ( , )
0 0 1,

,
0 ( , ) ( , ) ( , )

0 0 0,
,

( ) ( )

( ) = .
( ) ( )

f g f g f g
i j ij

i j
c f g f g f g

i j ij
i j

a r a r S

r r
a r a r S




 

Regularization parameter  is chosen from the trade-off between the resolution 
and error magnification: smaller  leads to higher resolution but larger errors.

spread

er
ro

r 
m

ag
ni

fi
ca

ti
on small 

optimal 

large 

( , ) ( , )

,

f g f g
ij i j

i j

E a a

2 22 ( , ) ( , )
0 0 0 00 0

( , , , ) = ( ) ( , ) ( , )
R Rf g f gM r A r r A r r dr B r r dr             ( , ) ( , )

,

,f g f g
ij i j

i j

E a a 

error magnification

L-curve method for choosing the regularization parameter
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Nonadiabatic (surface) effects 
 
Nonadiabatic effects near the solar surface cause systematic frequency

shifts which may affect the inversion results. If the observed frequencies are  
 o , a , n ,= ,bs i d i onad i    

then the localized averages of /f f  are  

 
2
n ,( , )

2
=1o a

= ,
N

onad if g
i

i ibs d

f f
a

f f

 


   
   

   
  

 where a ,i d i  . 

Therefore, the nonadiabatic effects cause systematic errors in the
localized averages estimated by using the adiabatic variational principle. In the
Sun, most non-adiabatic effects occur near the solar surface. In this case, the
non-adiabatic frequency shift can be approximated by a smooth function of
frequency, ( )F   scaled with the factor, 0( ) / ( )Q I I  , where ( )I   is the 
mode inertia, and 0 ( )I   is the mode inertia of radial modes ( = 0l ), calculated 
at frequency  , that is:  

 
2
n ,

2
= ( ) / ( ).onad i

i i
i

F Q


 


 

  

Function ( )F   can be approximated by a polynomial function
of degree K :  

        
=0

( ) = ,
K

k
i k i

k

F c   

 then the influence of the nonadiabatic effects can be reduced by
applying 1K   additional constraints for ia :  

 
=1

( ) = 0, = 0,..., .
N

k
i i i

i

a Q k K   

The function ( )F   can be also represented in terms of
Legendre polynomials:  

          m m

m m

2
( ) = ,ax in

k k
k ax in

F c P
  
 

  
  

  

 where min  and max  are the boundaries of the observed frequency
range.  
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 These equations are considered as additional constraints in
the minimization procedure of 0( , , , )M r A   . If we represent these 

1K   constraints together with the constraint previously derived

from the kernel normalization equation (
0

= 1
R
Adr ) in the matrix 

form:               = ,Ba c  

 then the minimization procedure leads to the equation:  
 

      = 0,W Ba   

 where 1 2= ( ,..., )K    are Lagrange multipliers.  
 
Solving these equations we obtain the coefficients of the
optimally localized averages:  

    11 1= ,T TW B BW B
 a c  

 where TB  is a matrix transposed to B .  

The OLA methods at each target location r0 involves inversion of (N+1)x(N+1)
matrices, where N is the number of observed frequencies, which can be very large.
A modification of this method with a different -ness criterion leads to a less 
computationally expensive procedure, where the matrices do not depend on the
target location. In this method, we minimize the squred difference between the
averaging kernel and a target -like function, e.g. a localized Gaussian.  
 
A set of such optimal coefficients ( , )f g

ia  can be determined by minimizing the 
following quadratic function:  
   

    
2 2( , ) ( , )

0 0 0 00 0
( , , , ) = ( , ) ( , ) ( , )

R Rf g f gM r A A r r T r r dr B r r dr           ( , ) ( , )

,

,f g f g
ij i j

i j

E a a   

 where 2 2
0 0

1
( , ) exp[ ( ) / ]T r r r r   


 is the target -like function, ijE  is a covariance 

matrix of observational errors,   and   are the regularization parameters.  
 
The first integral minimizes the deviation of the averaging kernel from the target 
function; the second term minimizes the contribution of ( , )

0( , )f gB r r , thus, 
effectively eliminating the second unknown function, /g g ; and the last term 
minimizes the errors.  

The SOLA (Subtracting Optimally Localized Averages) method
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Regularized Least-Squares Techniques 
 
The Regularized Least-Squares (RLS) method is based on

minimization of the quantity  

 
2

2
( , ) ( , )

2 2 0

( )1 R f g g fi i
i i

i i i

Ff g
E K K dr

f g Q

  
 

  
      

  
   

 
2 2

1 1 2 20
,

R f g
L L dr

f g

  
    

     
     

  

 in which the unknown structure correction functions, f

f

  and g

g

 , are

both represented by piece-wise linear functions or by cubic splines, and
the coefficients in these expansions are determined together with
coefficients kc  in the presentation of the surface effects F . 

The second integral specifies smoothness constraints for the
unknown functions, in which 1L  and 2L  are linear differential operators,

e.g. 
2

1,2 2
=

d
L

d r
; i  are error estimates of the relative frequency

differences. 
 

 In this inversion method, the estimates of the structure corrections are,
once again, linear combinations of the frequency differences obtained from
observations, and corresponding averaging kernels exist too. 

 
However, unlike the OLA kernels 0( ; )A r r , the RLS averaging kernels 

may have negative sidelobes and significant peaks near the surface, thus making
interpretation of the inversion results to some extent ambiguous. 

 
If the variations of the structural properties are represented in a 

parametric form then the unknown parameters can be evaluated from the
helioseismic equations by using a least-squares technique. This approach was
applied this parametric inversion technique for determining the depth of the
convection zone and the helium abundance. 

 
Finally, ‘super-resolution’ techniques can be developed by applying, for

instance, nonlinear constraints in order to study some particular features of the
interior structure, like overshooting and other sharp variations of the interior
properties. In addition to the inversions, model calibrations are used to estimate
the parameters of the solar structure. 
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Results 
 As an example, I present the results of inversion of the recent data obtained

from the SOI-MDI instrument onboard the SOHO space observatory. The data
represent 2176 frequencies of solar oscillations of the angular degree, l , from 0 to 
250. These frequencies were obtained by fitting peaks in the oscillation power
spectra from a 360-day observing run, between May 1, 1996 and April 25, 1997. 

 
Two different methods have been used to estimate the frequencies of the

solar normal modes from the oscillation power spectra. In the first so-called 
“mean-multiplet” method, the power spectral peaks are assumed to have a
symmetric Lorentzian shape, and a maximum likelihood method is employed to
determine the parameters of Lorentzian profiles. 

 
The peaks are fit simultaneously in all of the 2 1l   individual power spectra 

for each rotationally split multiplet so that the effects of overlapping peaks can be
included in the fits. These 2 1l   frequencies are effectively averaged to yield a
single mean frequency, nl , for that multiplet. The second frequency estimation
technique employs the m -averaged power spectra rather than the 2 1l   individual 
power spectra.  

The reference solar model 
 
The reference standard solar model chosen for this inversion used the OPAL 

equation of state and opacity tables. Nuclear reaction parameters were obtained from
the work of Bahcall (1992). Helium and heavy-element gravitational settling was
included, using the Michaud and Proffitt coefficients. The present value of the ratio 
of the heavy element abundance to the hydrogen abundance on the solar surface is
0.0245, while the age of the present Sun was assumed to be 4.6 Gyr. 
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The figure shows the relative frequency difference scaled with the factor Q  , which
varies between 0.28 and 1. This difference depends mainly on frequency alone
meaning that most of the difference between the Sun and the reference solar model
is in the near-surface layers. However, there is also a significant scatter along with
the general frequency trend. This spread is due to the variations of the structure in
the deep interior, and it is the primary task of the inversion methods to uncover the
variations. 

The relative frequency difference between the Sun and the model

A sample of the optimally localized averaging kernels for the structure 
function, /u P  , the ratio of pressure, p , to density,  .  

   

Optimally localized averaging kernels
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Test inversion

The results of test inversions (points with the error bars, connected with dashed 
curves) of frequency differences between two solar models for the squared sound 
speed, 2c , the adiabatic exponent,  , the density,  , and the parameter of 
convective stability, *A . The solid curves show the actual differences between the 
two models. Random Gaussian noise was added to the frequencies of a test solar 
model. The vertical bars show the formal error estimates, the horizontal bars show 
the characteristic width of the localized averaging kernels. The central points of the 
averages are plotted at the centers of gravity of the averaging kernels.  

Inversion of the solar data

The relative differences between the Sun and the standard solar model in the 
squared sound speed, 2c , the adiabatic exponent,  , the density,  , and the 
parameter of convective stability, *A , inferred from the solar frequencies 

determined from the 360-day series of SOHO MDI data.  
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Compressible fluid flow 
in a highly stratified 
medium

3D multi‐group radiative 
energy transfer between 
the fluid elements

A real‐gas equation of 
state

Ionization and excitation 
of all abundant species

Small‐scale turbulence
Magnetic effects

Interpretation of the inversion results: 3D modeling

KIC9962653, M=1.47MSUN

Vertical slice through the computational domain shows: 
a) vertical velocity, b) density, c) temperature and d) sound speed perturbations 

from the stellar photosphere to the radiative zone.
Large-scale density fluctuations in the radiative zone are caused by internal 

gravity waves (g-modes) excited by convective overshooting.
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KIC9962653, M=1.47MSUN

For this star we model the whole 30 Mm deep outer convection zone, including the 
overshoot region. Left panels show variations of the convection structure at 
different depths of the convection zone and in the overshooting region.
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KIC9962653, M=1.47MSUN
Vertical slice through the computational domain shows: 

a) vertical velocity, b) density, c) temperature and d) sound speed perturbations 
from the stellar photosphere to the radiative zone.

Large-scale density fluctuations in the radiative zone are caused by internal 
gravity waves (g-modes) excited by convective overshooting.

1.47Msun

The deviations between the 3D simulation and 1D model of a star with mass 
M=1.47 Msun as a function of depth, z=r-R,  for:  a) the squared sound speed, 
c2/c2; b) density, /; c) the Ledoux parameter of convective stability, A*; and d) 

the adiabatic exponent, . Panels e-h) show the corresponding deviations of the 
solar properties obtained by helioseismology inversion (Kosovichev 1999, 2011) 
from the  1D standard solar model (Christensen-Dalsgaard et al. 1996). Vertical 
dotted lines show the location of the bottom boundary of the convection zone.

Kitiashvili et al., 2016
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Theoretical adiabatic exponent (Rogers F.J., & 
Iglesias C.A. 1992)

5/3

HeII ionization

H & HeI ionization

Two models of the equation of state:
1. “MHD” - Mihalas D., Däppen W., & Hummer D.G. 

(1988)                                                                    
- The chemical picture assumes a factorizable 
canonical partition function, allowing the total free 
energy to be written as the sum of the internal free 
energy, the translational free energy, and the free 
energy of the interactions between the electrons and 
nuclei; the ionization state of the plasma is found by 
minimizing the total free energy with respect to the 
occupation numbers of the different possible ionization 
levels. 

2. “OPAL” - Rogers F.J., & Iglesias C.A. (1992)                 
- The physical picture describes the plasma in terms of 
its fundamental constituents, electrons and nuclei, 
without dealing explicitly with atoms or molecules –
the latter are embodied in the many-body interactions 
included between electrons and nuclei.  
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Relativistic effect on 1  

The number density of ionization electrons, en , can be written:  

 
2

3 0
c

8

1e T

p dp
n

e 






  
  

where p  and   are the electron momentum and energy in units of mc  and 2mc

respectively, T  is the temperature in units of 2mc k ,   is the degeneracy parameter, 

and c  is the Compton wavelength h mc  of the electron. In the non-relativistic case,  

 22 p    

 
3 0
c

8 2

1e T

d
n

e 

  




  
  

In the relativistic case, the relation between energy and momentum becomes:  

 2 22 p     

and the corresponding equation for the electron density is:  

     
3 0
c

8 2 (1 4)(1 )

1e T

d
n

e 

    




 

  
 

  
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1

1

2 2

3 5

X
T

X

 
 

 
X – hydrogen abundance

(Elliott and Kosovichev, 1998)
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The relativistic corrections and the age of the Sun 
(Bonanno, Schlattl, Patterno, 2002)

Helioseismic calibration of the Sun’s age: reduction by 0.05-0.08 Gyr
in agreement with the meteoritic estimates of the solar age.

New age: 4.57 Gyr

Improvements:

•Non-LTE analysis

•3D atmosphere models

Consistent abundance determinations for a variety of 
indicators

Revision of solar surface 
abundances

Asplund et al. (2004; A&A 417, 751):Pijpers, Houdek et al.

Model S

Z = 0.015
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Lecture 19
Inversion for solar rotation.

Regularized least-squares method.

(Stix, Chapter 5.3.8; Kosovichev, p.53-57; 
Christensen-Dalsgaard, Chapter 8)

Please, upload in Canvas your HW1files and 
presentations by tomorrow

• 1.1 (a) Bryce

• 1.1 (b-d) Youra

• 1.2 (a) John

• 1.2 (b) Sadaf

• 1.3 (a-c) Yunpeng

• 1.3 (d-f) Sheldon

• 1.4 Ying

• 1.5 Ivan
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Please, upload in Canvas HW2 files by tomorrow
HW2 presentations (Monday Nov.22+ Quiz 3)

• 2.1 (a) Ying

• 2.1 (b) Sheldon

• 2.2 Sadaf

• 2.3 Bhairavi

• 2.4 Yunpeng

General helioseismic inverse 
problem

1) Variational principle
2) Perturbation theory
3) Kernel transformation
4) Solution of inverse problem

A. Optimally Localized Averages Method
B. Regularized Least-Squares Method

5) Inversion results for the solar structure
6) Inversions for solar rotation
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Solution to the Inverse Problem 

We have a system integral equations  

                             
( )

( ) ( )
( ) 0 0

n l R Rn l n l
n l

K dr K dr   
  
  


 
       

 for a set of observed mode frequencies. If the number of observed frequencies is
N  (typically 2000), then we have a problem of determining two functions from
this finite set. In general, it is impossible to determine these functions precisely.
We can always find some rapidly oscillating functions, ( )f r , that being added 
to the unknowns,    and   , do not change the values of the integrals, e.g. 

 ( )

0
( ) ( ) 0

R n lK r f r dr 

    

Such problems without an unique solution are called "ill-posed". The general 
approach is to find a smooth solution that satisfies the integral equations by 
applying some smoothness constraints to the unknown functions. This is called a
"regularization procedure".  
There are two basic methods for the helioseismic inverse problem:  

1. Optimally Localized Averages (OLA) method - (Backus-Gilbert 
method)  
2. Regularized Least-Squares (RLS) method - (Tikhonov method)  

Optimally Localized Averages Method 
The idea of the OLA method is to find a linear combination of data such as the
corresponding linear combination of the sensitivity kernels for one unknown
will have an isolated peak at a given radial point, 0r , (resemble a  -function), 

and the combination for the other unknown will be close to zero. Then this linear
combination provides an estimate for the first unknown at 0r .  

 
( )

( )
( )

n l
n l

n l
a







   

 

 ( ) ( ) ( ) ( )

0 0

R Rn l n l n l n la K dr a K dr   
 
 

   
       

 

If                             ( ) ( )
0( ) ~ ( )n l n la K r r r   

    

and  

                                                  ( ) ( ) ( ) ~ 0n l n la K r 
 

   

then  

 

0

( )
( )

( )

n l
n l

n l

r

a







    
 

  

is an estimate of the density perturbation at 0r r .  

The coefficients, ( )n la  , are different for different target radii 0r . 
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Averaging Kernels 

 
The functions,  

 ( ) ( )
0( ) ( )n l n la K r A r r 

 
     

 

 ( ) ( )
0( ) ( )n l n la K r B r r 

 
     

are called "averaging kernels".  
The coefficients, ia , are determined my minimizing a quadratic form (here, we 
use index i  instead of double index ( )n l ):  

  2

0 0 00
( ) ( ) ( )

R
M r A J r r A r r dr         

  2

00
( )

R i j
ij

i j

B r r dr E a a 


     

 

where 2
0 0( ) 12( )J r r r r   , ijE  is a covariance matrix of observational errors, 

  and   are the regularization parameters. The first integral in this equation

represents the Backus-Gilbert criterion of  -ness for 0( )A r r ; the second term

minimizes the contribution from 0( )B r r , thus, effectively eliminating the

second unknown function, (   in this case); and the last term minimizes the
errors.  

Optimally localized averaging kernels
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Inversion results for the observed solar 
frequencies

Inversions for solar rotation

• Measurements of
– Solar differential rotation 

– Tachocline

– Torsional oscillations
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Inversions for solar rotation 
 

 In the absence of rotation, the oscillation
frequencies are degenerate with respect to the
azimuthal order m . Rotation removes the degeneracy
and leads to ‘rotational frequency splitting’. 

The angular velocity of the Sun is not uniform.
It varies with the radius and latitude, ( , )r  , where 
  is colatitude. The corresponding flow velocity in
the spherical coordinates has only the azimuthal
component:  

         0 = (0,0, sin )r v  

. We substitute it in the linearized momentum
equation:  

               0 0

'
=

d
p

dt
       

v
g  

 




v0

Because of this background flow, in the LHS, we have to consider the full
material derivative:  

 0

' '
= ( ) '

d

dt t


 


v v

v v  

In terms of the displacement  :  

 0' = = ( )
d

dt t


 


v v

 
  

 

 
2

0 0 0= p
t

             
v g  

Perturbations p ,   and   can be determined in terms   from the continuity and
energy equations and the equation for gravitational potential. We define the RHS as
operator ( )L  :  

 
2

0 0 = ( )L
t

     
v    
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We seek periodic solutions i te  , and assume that the rotational velocity
causes only small corrections to 0=   . Then, to the first order:  

 2 2
0 0 0( ) ( 2 )i         v v   

Substituting  , we get:  
 2

0 0 0 0 0[ 2 2 ( )] = ( )i L        v    

We cancel the first term in the LHS and the RHS because they satisfy to the
unperturbed equation: 2

0 0 = ( )L    . 
Multiplying by complex conjugate   and integrating over the volume, we 

obtain:  

 * *
0 0 0 02 = 2 ( )

V V
dV i dV       v     

 

 
*

0 0

*
0

( )
= V

V

i dV

dV







  


v 

 
 

In this derivation, we apply the variational principle and neglect the variations
eigenfunctions caused by rotation.  

Expressing the rotational flow velocity 0vecv  in terms of the angular 
velocity = v r , where vecr  is the radius-vector:  

 0( ) =



   


v


    

Because the unperturbed eigenfunctions are expressed in terms of the spherical

harmonics: ( )m im
lY e  , = im






 . Thus,  

 
* * ( )

=
nl nl nl nlV v

nlm
nl

m dV i dV

I

 


  
      

 

where *=nl nl nlV
I dV    is the mode inertia. If = const  then the first term: 

= m   can be interpreted as a result of wave advection by flows (in analogy to
the Doppler effect). 

Indeed 0exp( )i t im     because of rotation the wave phase changes as
= t  . Thus, 0exp[ ( ) ] exp( )i m t i t       , where 0= m    . 

The second term in nlm  describe the effect of the Coriolis forcs and is
relatively small. 
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If the angular velocity depends only on the radius, r , = ( )r  , then  

 2 2 2 2

0
= ( ) ( 1) 2

R

nlm r h r h h
nl

m
r l l r dr

I
               

where ( )r r  and ( )h r  are the radial and horizontal components of the displacement.
 

 2 2 2

0
= ( 1)

R

nl r hI l l r dr       

The rotational frequency splitting can be written as  

 
0

= ( )
R nl

nlm m K r dr    

or =nlm m  , where   is a weighted average of the angular velocity, and ( )nlK r  is 
the averaging kernel. 

In the general case, = ( )r  :  

 
0 0

= ( , ) ( , )
R nl

nlm m K r r drd


       

 

Effects of rotation (asymptotic JWKB approximation, Lec.15) 
 
Solar rotation and other plasma flows inside the Sun cause Doppler shift of

the wave frequencies. The dispersion relation for the acoustic waves becomes:  

 2 2 2 2( ) = ckv k c  


 

where k


 is the wave vector, and v


 is the plasma velocity. 
Because of the acoustic ray paths travel in the great circles, they sample the

radial and latitudinal components of velocity twice in the opposite directions. Thus, 
the contribution of these components to the quantization integral is canceled in the
first approximation, and the mode frequencies depend only on the azimuthal
component, v :  

 2 2 2 2( ) = ck v k c     

where =
sin

m
k

r 
. Representing v  in terms of the angular velocity, ( , )r  :  

  = sin ( , ),v r r    

we get:  
 2 2 2 2( ) = cm k c     

 



9

The EBK quantization equation takes form:  

 
2 2

2 22 20 1

( )2
= ( )

M R
nlm

r

md L
dr n

c rM

  
 

 
 


   

Assuming that / 1nlmm    and that the background solar structure is spherically
symmetric, we represent nlm  in terms of the frequency deviations from the model
frequencies: 0,=nlm nlm nl    .  

 
2 2

0,

2 22 20 1

( )2
= ( )

M R nl nlm

r

md L
dr n

c rM

   
 

   
 


   

Performing the first-order Taylor expansion and subtracting the quantization rule
for the background state, we get:  

 
2

22 2 2 20 1

2 2

2
= 0

nlm

M R

r

m
d

dr
cM L

c r


   

  

    
 

   

where for simplicity we drop subscript for the model frequencies: 0,= nl  .  

 Thus, we obtain:  

 
2 2 2 2 2 20 1

2 ( , )
=

1 /

M R

nlm r

m r drd

T c M L c r

 
  




 
   

where 
2 2 2 21

=
1 /

R

r

dr
T

c L c r 
  is the "half-skip" travel time of acoustic waves. 

 
The solar rotation causes ‘rotational frequency splitting’ proportional to the 

mode angular degree m . 
 
The physical interpretation is that the modes with positive m  travel in the 

same direction as the solar rotation and thus have higher frequencies then the modes
with negative m  traveling in the opposite direction.  

 
Recall that that the oscillation modes are represented in terms of the spherical

harmonics: ( , , , ) ( ) exp( )m
r lr t P im i t       , and thus, in the form of azimuthal

traveling waves  
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 By comparing the effect of the sound-speed asphericity and rotation:  
 

  
2 2 2 2 2 20 1

( , ) /2
=

1 /

M R
nlm

r

c r c drd

T c M L c r

 
   



 
   

 

 
2 2 2 2 2 20 1

2 ( , )
=

1 /

M R

nlm r

m r drd

T c M L c r

 
  




 
   

where 2 2= 1 /M m L   
We notice that the frequency splitting due to the sound-speed asphericity is an even 
function of m  and an odd function of m  due the rotation.  
 
This difference allows us to separate effects of the solar asphericity and rotation in
the observational data.  

The a-coefficients 
 
The observational data are often represented as an expansion in terms of the 

Legendre polynomials:  

 
=1

=
N

nl
nlm k k

k

m
L a P

L
    

 
  

For a more accurate (non-asymptotic) representation, the expansion is performed in
terms of Clebsch-Gordon coefficients, which will be considered later. 

In this representation, the ‘even’ a -coefficients represent effects of the solar
asphericity, and the ‘odd’ a -coefficients represent the internal solar rotation and its 
variations with latitude (zonal flows). In addition, the representations in the form of
the a -coefficients allows us to replace the 2D inversions of nlm  with a series of 1D 
inversions of the a -coefficients. 

Specifically, representing the sound-speed perturbation in terms of the
Legendre polynomials:  

 2 2
=1

( , ) = ( ) ( )
J

j j
j

c
r A r P

c
    

where = cos  .  
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 Substituting this representation of ( , )
c

r
c

  in the equation for /nlm  , we 

obtain:  

 2 2

2 2 2 2 2 201=1

( ) ( )1 2
=

1 /

J R Mj jnlm

r
j

A r dr P
d

T L c r M

 
  

 
 
   

    

The second integral is calculated analytically:  

 2
2 22 20

( )2
= ( 1) (0) ( / )

M j j
j j

P
d P P m L

M




 



  

Thus, both the observational data and the angular integral of the sound-speed 
asphericity are represented in terms of the series of Legendre polynomial 2 ( / )jP m L . 

We obtain a series of the Abel integral equations for the radial functions of 
the asphericity, 2 ( )jA r :  

 2 2

2 2 2 21 2

( )1
= ( 1) .

(0)1 /

ln
R j jj

r
j

A r dr La

T PL c r



  

These equations establish a relationship between the even a -coefficients and the 
solar asphericity expressed in terms of the Legendre polynomials.  

A similar type of solution can be obtained for the angular velocity ( , )r  . 
In this case, it is convenient to use the expansion in terms of associate Legendre
functions:  

 

 
1

2 !
2 1

=0

(cos )
( , ) = ( )

sin

J
j

j
j

P
r r







   

Substituting in:  

 
2 2 2 2 2 20 1

2 ( , )
=

1 /

M R

nlm r

m r drd

T c M L c r

 
  




 
   

we obtain:  

 
1

2 1 2 1

2 2 2 2 2 2 201=0

( )1 2
=

1 / 1

J R Mj j
nlm r

j

r dr P dm

T c L c r M




  
 

 
 
    

    
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The second integral is calculated analytically:  

 
1

2 1
2 2 12 2 20

2
= (2 1) (0)

21

M j
j j

P dm L m
j P P

m LM

 
  



    
  

  

Both the observational data and the angular integral of the solar rotation are
expressed in terms of the odd Legendre polynomial of /m L . 

Thus, we obtain a series of the 1D Abel integral equations for the radial
functions of the solar rotation expansion:  

 2 1 2 1

2 21 2

2 2
0,

( ) /1
=

(2 1) (0)
1

nl
R j j

r
j

nl

r dr c a

T j PL r
r 

 





  

In the asymptotic JWKB/EBK approximation, the a -coefficients are the functions 
of the ratio /L   or the lower turning point radius, 1r . This helps to identify ‘outliers’
in the observational data.  

The second integral is calculated analytically:  

 
1

2 1
2 2 12 2 20

= (2 1) (0)
21

M j
j j

P d L m
j P P

m LM

 
 



    
  

  

Both the observational data and the angular integral of the solar rotation are
expressed in terms of the odd Legendre polynomial of /m L . 

Thus, we obtain a series of the 1D Abel integral equations for the radial
functions of the solar rotation expansion:  

 2 1 2 1

2 21 2

2 2
0,

( ( ) / 2 ) /1
=

(2 1) (0)
1

nl
R j j

r
j

nl

r dr c a

T j PL r
c





 




  

In the asymptotic JWKB/EBK approximation, the a -coefficients are the functions 
of the ratio /L   or the lower turning point radius, 1r . This helps to identify 
‘outliers’ in the observational data. 
  

/ 2 is the rotation rate. It is measured in nHz as well as the a-coeffients. 

=1

/ 2 =
N

nl
nlm nlm k k

k

m
L a P

L
        

 
  

The minus sign was instroduces to get the a-coefficients of the same sign as the corresponding
rotation law terms. 
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Solar rotation law (asymptotic JWKB approximation – ray theory) 
 Consider a special case of a three-term solar differential rotation law:  
 2 4/ 2 = cos cosa b c      

where a , b , and c  are measured in nHz. The corresponding representation in
terms of the associated Legendre polynomials: Consider the intergrals for the

2 1( )jA r  as averaging over the propagation regions for each mode, 1[ , ]r R .  

 2 1
2 1

2 21
1

( )1
=

1 /

R j
j

r

A r dr
A

T cr r


 


          

2 21
1

1
=

1 /

R

r

dr
T

cr r
  

- a ‘half-skip’ travel time, 1 1= ( ) /nlr c r L  is the turning point radius.  
Then, we write the integral equations in terms of the averaged A  coefficients:  

1 1 0 1= / (0) =nl nlA a P a        3 3 2 3

2
= / 3 (0) =

3
nl nlA a P a        5 5 3 5

8
= / 5 (0) =

15
nl nlA a P a  

Substituting     1
1 (cos ) = sinP        1 2

3

3
(cos ) = sin (5 1)cos

2
P      

 1 4 2
5

15
(cos ) = sin (21 14 1)cos cos

8
P        

we get:          2 4
1 3 5 3 5 5/ 2 = ( ) (5 14 ) 21cos cosa a a a a a         

where I dropped the mode indexes ,n l .  

Solar rotation law (variational principle – wave theory) 
 Consider a special case of a three-term solar differential rotation law:  
 2 4/ 2 = cos cosa b c      

where a , b , and c  are measured in nHz. The corresponding representation in
terms of the associated Legendre polynomials: Consider the intergrals for the

2 1( )jA r  as averaging over the voliume:  

 ( , ) 2
2 1 2 1( , ) 0

1
= ( )

R n l
j jn l

A K r r dr
I

           ( , ) ( , ) 2 ( , ) 2 2

0
= [( ) ( 1)( ) ]

Rn l n l n l
r hI l l r dr     

- the mode inertia, l is the mode angular degree, n is the radial order. 
( , ) ( , ) and n l n l
r h   are the radial and horizontal components of displacement. 

Then, we write the integral equations in terms of the averaged A  coefficients:  

1 1 0 1= / (0) =nl nlA a P a        3 3 2 3

2
= / 3 (0) =

3
nl nlA a P a        5 5 3 5

8
= / 5 (0) =

15
nl nlA a P a  

Substituting     1
1 (cos ) = sinP        1 2

3

3
(cos ) = sin (5 1)cos

2
P      

 1 4 2
5

15
(cos ) = sin (21 14 1)cos cos

8
P        

we get:          2 4
1 3 5 3 5 5/ 2 = ( ) (5 14 ) 21cos cosa a a a a a         

where I dropped the mode indexes , ,n l m .  
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Theory of Rotational Frequency Splitting. I 
 

The eigenfrequencies of a spherically-symmetrical static star are degenerate with respect to the azimuthal
number m . Rotation breaks the symmetry and splits each mode of radial order, n , and angular degree, l , into 
(2 1)l   components of = ,...,m l l  (‘mode multiplets’). The rotational frequency splitting can be computed 

using the variational principle. From this variational principle, one can obtain mode frequencies nlm  relative to 

the degenerate frequency nl  of the non-rotating star:  

 * *1
= ( ) ,nlm nlm nl V

nl

m ie dV
I

               
   

  

 where e  is the unit vector defining the rotation axis, and = ( , )r    is the angular velocity which is a 

function of radius r  and co-latitude  , and nlI  is the mode inertia. 

Using the eigenfunctions in terms of the radial and horizontal displacements, r r h he e   
  

, this equation

can be rewritten as a two-dimensional integral equation for ( , )r  :  

 ( )

0 0
= ( , ) ( , ) .

R

nlm nlmK r r d dr


        

 where ( ) ( , )nlmK r  , the rotational splitting kernels:  

2

( ) 2 2 2 2
, , , ,( , ) = 4 ( 2 )( )

m
m l

nlm r nl r nl h nl l h nl
nl

dPm
K r r P

I d
     




       
  

2
2

2

cos
2 ( ) sin .

sin sin

m
m ml

l l

dP m
P P

d

 
  

 


 

Theory of Rotational Frequency Splitting. II 
 

Here ,r nl  and ,h nl  are the radial and horizontal components of eigenfunctions  of the 

mean spherically symmetric structure of the Sun, ( )m
lP   is an associated normalized 

Legendre function ( 2

0
( ) sin = 1m

lP d


  ).  

The kernels are symmetric relative to the equator, = / 2  .  

Therefore, the frequency splittings are sensitive only to the symmetric component of
rotation in the first approximation. The non-symmetric component can, in principle, be
determined from the second-order correction to the frequency splitting, or from local 
helioseismic techniques, such as time-distance seismology and ring-diagram analysis. 

For a given set of observed frequency splittings the equation for nlm  constitutes a 

two-dimensional linear inverse problem for the angular velocity, ( , )r  . 
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 Optimally Localized Averaging Methods 
 
Similarly to the 1-D solar structute inversions these methods explicitly form 

linear combinations of the data and corresponding kernels such that the resulting
averaging kernels are, to the extent possible, localized near the target positions, 0 0,r 

, through appropriate choice of the coefficients ( )
0 0( , )ia r  :  

 ( )
0 0 0 0 0 00 0

=1

( , ) = ( , ) = ( , , , ) ( , ) ,
M R

i i
i

r a r d K r r r d dr


          

 where id  is the observed property, frequency splitting nlm , or splitting 
coefficients ( , )ja n l  (83), 0 0( , , , )K r r   is the averaging kernel given by  

 ( ) ( )
0 0 0 0

=1

( , , , ) = ( , ) ( , ),
M

i i
i

K r r a r K r      

 and M  is the total number of data points. However, the application of the 
Backus-Gilbert  -ness criterion leads to M M  linear equations at each of the 
target positions.  

A modification called ‘Subtractive Optimally Localized Averaging’ (2dSOLA)
allows to keep the same matrix for all target points, and, thus, is computationally
more efficient. In this formulation, sometimes the goal is to approximate K  to a 
prescribed target 0 0( , , , )T r r  , by minimizing  

   22 ( )
0 0 0 0 0 00 0

=1

( , , , ) ( , , , ) d d ( , )
MR

i i
i

T r r K r r r a r


              

 subject to K  being unimodular.  
 
Here the first term ensures that the averaging kernel is close to the target form, while
the second controls the error in the inferred solution, the trade-off between the two 
being controlled by the parameter  . 
 
The results of this method depend on the choice of the target function, 0 0( , , , )T r r  , 
and, currently, there is no general recipe for choosing this function. One of 
approaches is to employ Gaussian targets symmetrized around the equator, with 
the radial width chosen proportional to the local sound speed and constant width in 
latitude.  



16

Regularized Least-Squares Method 
 
The goal of this method is to obtain a smooth solution that fits the data rather than to
construct well localized averaging kernels. This solution is obtained by minimizing the
following functional:  

 
222

2 20 0 0 0
=1

1
( , )d d ( , ) d d

M R R

i i r r
i i

K r r d f r r
r

 
    


           

      

 
22

20 0
( , ) d d ,

R
f r r



   


  
  

    

 where id  are the observed frequency splittings or splitting coefficients, iK  are the 

corresponding seismic kernels, i  are the error estimates of the data, and r  and   are 

the regularization parameters, and rf  and f  are some weight functions which can be

used to regulate the degree of smoothing in different regions. The last two terms provide
smoothing using the second-derivative constraints, which provided good results for
artificial and real data . 

For the numerical solution function ( , )r   is represented in the form of a discretized 

piece-wise linear functions with unknown coefficients or local splines. The coefficients
are calculated using the standard methods of linear algebra.  

 

Rotational frequency splitting 
 

The modes with 0m   represent azimuthally propagating waves. The
modes with 0m   propagate in the direction of solar rotation and, thus,
have higher frequencies in the inertial frame than the modes 0m   which
propagate in opposite direction. As a result the modes with fixed n  and l
are split in frequency: 0nlm nlm nl     . Thus, the internal rotation is

inferred from splitting of normal mode frequencies with respect to the
azimuthal order, m  .  

( ) ( )i t m m im i t
l le Y CP e        



/ 2     is cyclic frequency, measured in Hz
- The oscillation period is (in sec, min, etc).

- displacement of the solar surface in solar modes

 is the angular frequency, measured in rad/s
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Observations of the Sun as a star
rotational frequency splitting is observed only for ‘even modes’, for which 

l+m is even because the rotation axis is almost perpendicular to the ecliptic. 
The ‘odd modes’ are antisymmetric relative to the equator, and their signal is 

canceled.

l=1, m=-1   l=1,m=0 l=1,m=1 l=2, m=-2 l=2,m=1 l=2,m=0  l=2,m=1 l=2,m=2

Illustration of the frequency 
shift due to the solar rotation 

Typical power spectra of solar 
oscillation data from the MDI 
instrument on SOHO. Each 
horizontal curve shows three 
lines of the power spectrum for 
different azimuthal order m  
with radial order 15n   and 
angular degree 19 20l   , and 21 
(from left to right). The slope of
the modal lines is due to the 
rotational frequency shift: 
prograde modes with positive 
m  have higher frequencies than 
retrograde modes with negative 
m . 
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(F. Hill)

3050                        3100                      3150                       3200                          

, mHz

150

100

50

0

-50

-100

-150

Frequency splitting, l=150

Comparison of the sensitivity kernels for rotation (A-C), 
and examples of the averaging kernels (D)
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JWKB solution for the angular 
equation. 3

The propagation region 2 > 0k  is where
2

2

2
>

sin

m
L


 or | sin |>

m

L
 . 

 

Therefore, the ratio 
m

L
 determines the

latitudinal turning points 1  and 2  for the

acoustic modes: 1,2| sin |=
m

L
 . 

 
If = 0m  then the mode propagation
region is extended from the pole to pole.  
 
If =m l  then the modes are confined in a
narrow equatorial strip. 

 
 

1

2

Comparison of solar modes

l=19, m=19           l=19, m=15         l=19, m=15,n=11
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Inversion of MDI data by two different techniques

Averaging
kernels for 
the solar 
rotation rate



21

Solar tachocline

a) b)

tachocline

Torsional oscillations
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1986 2000

Torsional oscillations (Howard & LaBonte 1980)

Evolution of surface velocity field (upper panel) and surface
magnetic field (lower panel)

Ulrich  2001

Variations of the differential rotation 
(“torsional oscillations”) provide insight 

in the dynamo mechanism

Torsional Oscillations were discovered by Carnegie astronomers Robert Howard and Barry 
LaBonte using 150-Foot solar telescope data in 1980. 

Courtesy of Roger Ulrich (http://obs.astro.ucla.edu/torsional.html) 

Extended solar cycle 23

1989 2008
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SOLAR MAGNETIC CYCLES  

It was found that the strength of polar magnetic field 
measured at a solar minimum predicts the next solar maximum.  

Cycle 24Cycle 23

Variations of the depth of the meridional 
flows with the solar activity cycle

a) b)
1996       1998       2000       2002        2004        2006       2008

 60

 30

 0

-30

-60

year

la
ti

tu
d

e

 3
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2

1

-1

-2

Ω/2π, nHz

Vorontsov et al. 2002
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Two paradigms in solar dynamo
Flux-transport theory (Babcock-Leighton)

• The dynamo process is controlled 
by meridional circulation.

• Toroidal magnetic field is generated 
and stored in the tachocline region. 
Meridional flow in the tachocline 
produces the butterfly diagram.

Dynamo-wave theory (Parker)
• The butterfly diagram is produced by 

dynamo waves.
• Theoretical argument: “Dynamo waves 

propagate along isorotation surfaces” 
(Parker, 1955; Yoshimura, 1975). 

Because of the 
subsurface shear 
layer the dynamo 
wave can 
propagate towards 
the equator
(Brandenburg 2005; 
Pipin & Kosovichev, 
2011; Paradkar, Chitre,  
& Krishan, 2019).

Meridional
circulation

0.7R0.6R

Tachocline

Torsional oscillations at 
different depth are measured 
by global helioseismology for 

two solar cycles 

• Comparison of the magnetic butterfly diagram 
with the corresponding maps of the zonal flows 
(torsional oscillations) at five different depth in 
the convection zone during Cycles 23 and 24.

• Inclined dashed lines illustrate an apparent 
migration of the flow pattern with radius. They 
are drawn through the points where the 
accelerated equatorial branch crosses the equator 
(around the solar maxima). 
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Analysis of zonal flow acceleration 

• The zonal flow acceleration 
calculated after applying  
Gaussian spatial and temporal 
filters to smooth noise and small-
scale variations and reveal large-
scale patterns 

• Overlay of the zonal acceleration 
(color image) and the radial 
magnetic field (gray-scale) reveals 
that the regions of magnetic field 
emergence at mid and low 
latitudes coincide with the zones 
of flow deceleration.

(Kosovichev & Pipin, 2019)

ZONAL ACCELERATION REVEALS PATTERNS OF 
DYNAMO WAVES

Measurements of the zonal 
acceleration revealed zones of 
deceleration, caused by internal 
magnetic fields (blue areas in the 
movie).

The flow deceleration originates at the 
base of the solar convection zone, 
200 Mm beneath the solar surface, at 
about 60 degrees latitude.



26

Principal component analysis (PCA) 

PCA converts 
observational data into a 
set of linearly 
uncorrelated orthogonal 
components called 
principal components, 
which are ordered so that 
the first few retain most 
of the variation present 
in the original data

MIGRATION OF DYNAMO WAVES

The dynamo waves originate at the 
base of the convection zone (in the 
“solar tachocline”) and migrate 
towards the poles and the equator 
with a speed of 1-2 m/s.

It reaches the surface near the 
poles in 1-2 years, but it takes about 
10 years to reach the surface at low 
latitudes where it forms sunspots.

This explains why the polar 
magnetic field predicts the next 
sunspot maximum.

Start of 
Cycle 24 in 
the interior

Cycle 23 at 
the surface

Local correlation tracking
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Tracking the zonal acceleration through 
the convection zone

Cycle 23

HELIOSEISMOLOGY CAN DETECT THE NEXT SOLAR 
CYCLE IN THE INTERIOR

 In the solar interior we already see the 
signal associated with the next 
sunspot cycle (Cycle 25).

 It appears that it will be even weaker 
than the current cycle, indicating on 
continuing long-term decrease of solar 
activity.
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Inner tachocline?
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Lecture 20
Overview of local helioseismology

(Stix, Chapter 5.3.8-5.3.9; Kosovichev, p.53-64; 
Christensen-Dalsgaard, Chapter 8)

Class plan

• Nov.22 – HW2+Quiz3. Lec. 21. Local Helioseismology I.

• Nov. 23 – Lec. 22 Local Helioseismology II.

• Nov. 29 – Work on the final projects in class

• Nov. 30 – Lec. 23 Solar interior modeling (Prof. Guerrero)

• Dec. 6-7 - Presenation of the final projects
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Overview of local 
helioseismology

Two principal approaches
• Global Helioseismology 

– measure global 
oscillation modes from 
the oscillation power 
spectra obtained by 
applying the spherical 
harmonic transform to 
the full-disk oscillation 
data

• Local Helioseismology  
- measure variations of 
oscillation frequencies 
in local areas by 
applying the Fourier 
transform to the 
oscillations in these 
area, or by measuring 
the travel times of phase 
shifts in local areas. 



3

Methods of local-area helioseismology:

Method Observable Inferences
Ring-diagram analysis 
(Gough, Hill, November, 
Toomre, 1981)

Local variations of 
oscillation frequencies

Large-scale sound 
speed perturbations and 
horizontal flows

Time-distance 
helioseismology

(Duvall et al. 1993)

Phase and group travel 
times of acoustic and 
surface gravity waves

3D sound speed, density 
and flows

Acoustic Imaging

(Chou, LaBonte, et al. 
1990)

Phase and amplitude

variations

3D sound speed and 
flows

Acoustic Holography 
(Lindsey & Braun, 1990)

Phase and amplitude 
variations

Phase variations and 
amplitude maps

Input Data
Dopplergrams-

observational requirements:
• long duration (>4 hours)

• high-resolution (0.5 arcsec per 
pixel)

• high-cadence (45-sec cadence)

• stability

SDO high-resolution Dopplergrams
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3D Power Spectrum 
 
Velocity of oscillations ( )v x y t   can be represented in terms of its Fourier
components:    

                       
( )( ) ( ) x yi k x k y t

x ya k k v x y t e dxdydt         

where xk  and yk  are components of the wave vector,   is the frequency.  

 
The power spectrum is:  

   
*

( ) ,  

where  is complex conjugate.

x yP k k a a

a

   
 

  

Compare with the global oscillation 
power spectrum

Spectrum of global oscillations of the sphere
Spectrum of oscillations in a local area 
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Cuts of the local power spectra at constant 
frequencies produce rings 

f-mode

p1- mode

p2- mode

p3- mode

Flows cause displacement of rings 
(Doppler shift of solar waves)

(-kxU)2=c
2+c2k2

Frequency shift caused by flow with velocity U along x-axis.
By measuring the shift for various modes one can determine the 
depth dependence of U. 
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is the horizontal component of flow
velocity,              and             are
perturbations to the local sound speed 
and adiabatic exponent; B(z), F(z), and G(z) are 
the sensitivity functions that are similar to the 
global helioseismology Using this equation one can 
infer the horizontal flow  velocity and sound-speed 
perturbations averaged over some areas (15ox15o) 
as a function of depth.

Ring-Diagram Analysis
The ring-diagram method is based on 

inversion of the local dispersion relation 
(3D power spectrum) for acoustic waves. 

Perturbation to the local variation in 
frequency of the component of the wave 
pattern whose local horizontal wave 
number is k is given by

2

2

k c
BUdz F dz G dz

c

  
  


    
 

U


2 2/c c /  Local 3D power spectrum of 
acoustic waves as a function 
of horizontal wave numbers
kx, ky (horizontal axes) and 
frequency vertical axis).

Time-distance helioseismology
Measures travel times of 

acoustic or surface gravity 
waves propagating  between 
different surface points 
through the interior. The 
travel times  depend on 
conditions, flow velocity U
and sound speed variations c 
along the ray path .

In practice, travel-time 
variations are measured: 

 
2

n Uk c
ds ds

c c


 


   

 

 is a unit vector along the ray path.n

/k is the wave phase speed
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Time-distance diagnostics

• Using the time-distance 
diagram one can measure the 
travel time of acoustic waves 
for various distances, and then 
infer the sound speed along 
the wave paths.

• Can we measure the travel 
times by using the stochastic 
wave field continuously 
generated by the turbulent 
convection? 

Time-distance 
helioseismology

• A remarkable discovery was made by 
Tom Duvall in 1993 that the travel times of the 
solar waves can be measured by using a cross-
covariance function of the stochastic wave 
field:

Time               Distance Oscillation signal (Doppler velocity, intensity
etc) at two points on the Sun’s surface

Integration time

0

( , ) ( , ) ( , )
T

f t r f t r dt      
or C(¿; ¢ )
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Travel times are determined from 
the cross-covariance function:

Time-distance measurements

0

( , ) ( , ) ( , )
T

f t r f t r dt      

Cross-covariance function for a particular distance (30 
degrees in this case) represents a series of wave packets.

Simple interpretation of time-distance 
measurements

• The cross-covariance function collects 
coherent  signals for solar waves excited 
at a given point and traveling to another 
point

• The cross-covariance signal corresponds 
to a strong point source (similar to the 
flare signal) – Claerbout’s conjecture

• The cross-covariance signal corresponds 
to a wave packet of waves in a finite 
frequency range. The solar oscillations 
have periods around 5 min. Thus, we see 
the 5-min periodicity in the wave packet.

• The cross-covariance function can be 
used for measuring group and phase 
travel times.

We measure the group and 
phase travel times from these 

diagrams.

Direct waves Second-bounce 
waves
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Two levels of time-distance 
helioseismology

• Minimalist approach (the next 3 slides)
• Lots and lots of math

– relationship between oscillation frequencies and travel times (ray-mode 
duality)

– calculations of the ray paths
– Fermat’s principle
– magnetic field effects and diagnostics
– finite wavelength effects (Born approximation, banana-doughnut kernels)
– phase-speed filtering
– inversion methods (multi-channel deconvolution, LSQR), etc
– Ref. http://soi.stanford.edu/papers/dissertations/

• Peter Giles, Thesis, 1999
• Aaron Birch, Thesis, 2002
• Laurent Gizon, Thesis, 2003
• Junwei Zhao, Thesis, 2004

Time-distance inferences of the sound 
speed and flow velocity

Measures travel times of acoustic or surface gravity waves propagating  between 
different surface points through the interior. The travel times depend on 
conditions, flow velocity and sound speed along the ray path:

 
2

n Uk c
ds ds

c c


 


   

 

mean

1
( )

2

k c
ds

c

  
 



   

The sound speed and flow velocity signals are separated by measuring
the travel times for waves propagating in the opposite directions along

the same ray paths and calculating the mean travel times and the differences:

 
diff 2

n U
ds

c
   




   

 

n



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Vector velocity measurement scheme

NS
diff

EW
diff

oi
diff

is a travel time difference 
averaged over the 

full annulus. 

Typically, we measure times for acoustic waves to travel
between points on the solar surface and surrounding
quadrants symmetrical relative to the North, South, East
and West directions. In each quadrant, the travel times are
averaged over narrow ranges of travel distance  .  
 
Then, the times for northward-directed waves are 
subtracted from the times for south-directed waves to yield 
the time, NS

diff , which predominantly measures north-south 

motions. Similarly, the time differences, EW
diff , between 

westward- and eastward directed waves yields a measure
of east-ward motion. The time, oi

diff , between outward- and 
inward-directed waves, averaged over the full annuli, is
mainly sensitive to vertical motion and the horizontal
divergence.  
 
This provides a qualitative picture of the motions, and is
useful for a preliminary analysis. However, in numerical
inversions, all three components of the flow velocity are
properly taken into account. The averaging procedure is 
essential for reducing noise in the data.  

Surface travel times
measured at location
() for distance 

Subsurface
perturbation
at grid point
(i,j,k)



11

Surface focusing
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Deep focusing
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a)

b)

Deep- and surface-focusing observing schemes

Surface focusing Deep focusing

H- = ingression H+ = egression

Helioseismic holography

The idea of helioseismic holography 
is to reconstruct the acoustic wave 
field at particular locations beneath 
the surface by using measurements 
on the surface and a theoretical 
Green’s functions for the wave 
propagation from point sources.

The ingression and egression 
estimate of the wave field at some 
point in the solar interior assuming 
that the observed wave field resulted 
entirely from waves diverging from 
that point (for the egression) or 
waves converging towards that point 
(for the ingression). Egression 
propagates signals back in time.

The ingression and egression power is sensitive to 
sources, sinks at focus.

(z = depth, r = horizontal position, = surface amplitude,  G±= Greens’ functions)

2( , , ) ( , , , ) ( , )
P

H z t d G z t t    r r r r r

(Lindsey & Braun, 1990)



12

Far-side imaging with helioseismic holography

Lindsey & Braun 2000, 
Science 287, 1799

1. egression, ingression:

2. correlation:

4. travel-time perturbation:

3. correlation phase:

2( , , ) ( , , , ) ( , )
P

H z d G z       r r r r r

*( , , ) ( , , ) ( , , )C z H z H z   r r r

 ( , ) arg ( , , )z C z


 


r r

( , ) ( , ) 2t z z  r r 

Helioseismic holography is used to obtain 
images of solar active region on the far-side 
of the Sun by placing the focal point on the 
far-side surface. 

The analysis on calculations of the phase 
shift (or equivalent travel time) between the 
ingression and egression signals.

Daily far-side imaging data are used for space-weather forecasts 
because most solar storms are produced by active regions

http://gong.nso.edu/data/farside

GONG               MDI

http://jsoc.stanford.edu/data/farside/

Composite Map of Far and Near Solar Hemispheres. Line-of-sight magnetic field in the Sun's near 
hemisphere is rendered in blue-gray, in Gauss. Seismic map of the Sun's far hemisphere is rendered in 
yellow. The far-side seismic image maps a phase shift between solar acoustic noise with periods of 
about five minutes embarking into the solar interior from the Sun's near hemisphere and its echos
from respective locations in the far hemisphere. This phase shift is expressed here as a travel-time 
perturbation in seconds. 
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Diagnostics of sunspots and 
emerging active regions
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Flow patterns under the sunspot

Vmax=1.4 km/s

Depth 0-3 Mm, Vmax=1 km/s

Depth 6-9 Mm, Vmax=1.6  km/s

Observations of emerging active region by time-distance 
helioseismology

magnetogram

Sound-speed perturbation
(~1 km/s: 300 K or 3000 G)

460 Mm

18
 M

m
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Observation of emerging active region with 2-hr resolution

AR 10488

AR 10486

AR 10484

Subphotospheric imaging of active regions
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Evolution of AR 10486-488: October 24 – November 2, 2003

Sound-speed map and magnetogram of AR 10486 on October 25, 2003, 4:00 UT
(depth of the lower panel: 45 Mm)

AR 10486
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Sound-speed map and magnetogram of AR 10486 on October 26, 2003, 12:00 UT
AR 10488 is emerging 

AR 10486 AR 10488

Emergence of AR 10488, October 26, 2003, 20:00 UT

AR 10488
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Emergence of AR 10488, October 26, 2003, 20:00 UT

AR 10488

Emergence of AR 10488, October 27, 2003, 4:00 UT

AR 10488
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Growth and formation of sunspots of AR 10488, October 29, 2003, 4:00 UT

AR 10488

Growth and formation of sunspots of AR 10488, October 31, 2003, 12:00 UT

AR 10488
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Cut in East-West direction through both magnetic polarities, showing a loop-like structure
beneath  AR 10488, October 30, 2003, 20:00 UT

AR 10488

New helioseismology method of detection of 
emerging magnetic flux inside the Sun
Deep-focus Time-Distance Helioseismology: solar oscillation signal is 
filtered to select acoustic waves traveling to depth 40-70 Mm (right), 

averaged over arcs (left), and cross-correlated  for opposite arcs. Travel-
time perturbations are measured by fitting Gabor wavelet. This method has 
been tested with 3 different instruments (MDI, HMI, GONG) for many quiet 

and emerging flux regions.

Ilonidis, et al., 2011; Stefan, 2020
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Results of ARs 10488, 8164, 8171, 7978

AR 10488 AR 8164

AR 7978 AR 8171

Active region NOAA 1158, February 2011
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Synoptic maps of subsurface flows (0-20 Mm)

Similar maps are obtained from the ring analysis (Haber et al 2002)

Solar Subsurface Weather

Depth 2 Mm

A small sample of a synoptic map of subsurface flows
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Global characteristics of the synoptic 
flows for CR 1923

Differential Rotation Meridional circulation

Vorticity Torsional oscillations

• converging 40 m/s flow toward the neutral line in the upper layers
• diverging flow below 9 Mm

(example AR9433, April 2001)
Large-scale flows around active regions:
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Lecture 21
Time-distance helioseismology

Quiz 3 in Canvas 1:05-1:20pm

Please, upload in Canvas HW2 files by tomorrow
HW2 presentations (Monday Nov.22+ Quiz 3)

• 2.1 (a) Ying

• 2.1 (b) Sheldon

• 2.2 Sadaf

• 2.3 Bhairavi

• 2.4 Yunpeng
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Class plan

• Nov.22 – Quiz3+HW3. Lec. 21. Local Helioseismology I.

• Nov. 23 – Lec. 22 Local Helioseismology II.

• Nov. 29 – Work on the final projects in class

• Nov. 30 – Lec. 23 Solar interior modeling (Prof. Guerrero)

• Dec. 6-7 - Presenation of the final projects

Overview of local 
helioseismology



3

Two principal approaches
• Global Helioseismology 

– measure global 
oscillation modes from 
the oscillation power 
spectra obtained by 
applying the spherical 
harmonic transform to 
the full-disk oscillation 
data

• Local Helioseismology  
- measure variations of 
oscillation frequencies 
in local areas by 
applying the Fourier 
transform to the 
oscillations in these 
area, or by measuring 
the travel times of phase 
shifts in local areas. 

Methods of local-area helioseismology:

Method Observable Inferences
Ring-diagram analysis 
(Gough, Hill, November, 
Toomre, 1981)

Local variations of 
oscillation frequencies

Large-scale sound 
speed perturbations and 
horizontal flows

Time-distance 
helioseismology

(Duvall et al. 1993)

Phase and group travel 
times of acoustic and 
surface gravity waves

3D sound speed, density 
and flows

Acoustic Imaging

(Chou, LaBonte, et al. 
1990)

Phase and amplitude

variations

3D sound speed and 
flows

Acoustic Holography 
(Lindsey & Braun, 1990)

Phase and amplitude 
variations

Phase variations and 
amplitude maps
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3D Power Spectrum 
 
Velocity of oscillations ( )v x y t   can be represented in terms of its Fourier
components:    

                       
( )( ) ( ) x yi k x k y t

x ya k k v x y t e dxdydt         

where xk  and yk  are components of the wave vector,   is the frequency.  

 
The power spectrum is:  

   
*

( ) ,  

where  is complex conjugate.

x yP k k a a

a

   
 

  

Compare with the global oscillation 
power spectrum

Spectrum of global oscillations of the sphere
Spectrum of oscillations in a local area 
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Cuts of the local power spectra at constant 
frequencies produce rings 

f-mode

p1- mode

p2- mode

p3- mode

Flows cause displacement of rings 
(Doppler shift of solar waves)

(-kxU)2=c
2+c2k2

Frequency shift caused by flow with velocity U along x-axis.
By measuring the shift for various modes one can determine the 
depth dependence of U. 
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is the horizontal component of flow
velocity,              and             are
perturbations to the local sound speed 
and adiabatic exponent; B(z), F(z), and G(z) are 
the sensitivity functions that are similar to the 
global helioseismology Using this equation one can 
infer the horizontal flow  velocity and sound-speed 
perturbations averaged over some areas (15ox15o) 
as a function of depth.

Ring-Diagram Analysis
The ring-diagram method is based on 

inversion of the local dispersion relation 
(3D power spectrum) for acoustic waves. 

Perturbation to the local variation in 
frequency of the component of the wave 
pattern whose local horizontal wave 
number is k is given by

2

2

k c
BUdz F dz G dz

c

  
  


    
 

U


2 2/c c /  Local 3D power spectrum of 
acoustic waves as a function 
of horizontal wave numbers
kx, ky (horizontal axes) and 
frequency vertical axis).

Time-distance helioseismology
Measures travel times of 

acoustic or surface gravity 
waves propagating  between 
different surface points 
through the interior. The 
travel times  depend on 
conditions, flow velocity U
and sound speed variations c 
along the ray path .

In practice, travel-time 
variations are measured: 

 
2

n Uk c
ds ds

c c


 


   

 

 is a unit vector along the ray path.n

/k is the wave phase speed
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Time-distance diagnostics

• Using the time-distance 
diagram one can measure the 
travel time of acoustic waves 
for various distances, and then 
infer the sound speed along 
the wave paths.

• Can we measure the travel 
times by using the stochastic 
wave field continuously 
generated by the turbulent 
convection? 

Time-distance 
helioseismology

• A remarkable discovery was made by 
Tom Duvall in 1993 that the travel times of the 
solar waves can be measured by using a cross-
covariance function of the stochastic wave 
field:

Time               Distance Oscillation signal (Doppler velocity, intensity
etc) at two points on the Sun’s surface

Integration time

0

( , ) ( , ) ( , )
T

f t r f t r dt      
or C(¿; ¢ )
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Travel times are determined from 
the cross-covariance function:

Time-distance measurements

0

( , ) ( , ) ( , )
T

f t r f t r dt      

Cross-covariance function for a particular distance (30 
degrees in this case) represents a series of wave packets.

Simple interpretation of time-distance 
measurements

• The cross-covariance function collects 
coherent  signals for solar waves excited 
at a given point and traveling to another 
point

• The cross-covariance signal corresponds 
to a strong point source (similar to the 
flare signal) – Claerbout’s conjecture

• The cross-covariance signal corresponds 
to a wave packet of waves in a finite 
frequency range. The solar oscillations 
have periods around 5 min. Thus, we see 
the 5-min periodicity in the wave packet.

• The cross-covariance function can be 
used for measuring group and phase 
travel times.

We measure the group and 
phase travel times from these 

diagrams.

Direct waves Second-bounce 
waves
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Time-distance inferences of the sound 
speed and flow velocity

Measures travel times of acoustic or surface gravity waves propagating  between 
different surface points through the interior. The travel times depend on 
conditions, flow velocity and sound speed along the ray path:

 
2

n Uk c
ds ds

c c


 


   

 

mean

1
( )

2

k c
ds

c

  
 



   

The sound speed and flow velocity signals are separated by measuring
the travel times for waves propagating in the opposite directions along

the same ray paths and calculating the mean travel times and the differences:

 
diff 2

n U
ds

c
   




   

 

n




Vector velocity measurement scheme

NS
diff

EW
diff

oi
diff

is a travel time difference 
averaged over the 

full annulus. 

Typically, we measure times for acoustic waves to travel
between points on the solar surface and surrounding
quadrants symmetrical relative to the North, South, East
and West directions. In each quadrant, the travel times are
averaged over narrow ranges of travel distance  .  
 
Then, the times for northward-directed waves are 
subtracted from the times for south-directed waves to yield 
the time, NS

diff , which predominantly measures north-south 

motions. Similarly, the time differences, EW
diff , between 

westward- and eastward directed waves yields a measure
of east-ward motion. The time, oi

diff , between outward- and 
inward-directed waves, averaged over the full annuli, is
mainly sensitive to vertical motion and the horizontal
divergence.  
 
This provides a qualitative picture of the motions, and is
useful for a preliminary analysis. However, in numerical
inversions, all three components of the flow velocity are
properly taken into account. The averaging procedure is 
essential for reducing noise in the data.  
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Surface travel times
measured at location
() for distance 

Subsurface
perturbation
at grid point
(i,j,k)

Surface focusing

-40 -20 0 20 40
radial distance, Mm

-20
-15
-10

-5
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Deep focusing

-40 -20 0 20 40
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 z

,  
M
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a)

b)

Deep- and surface-focusing observing schemes

Surface focusing Deep focusing
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Definition of normal modes
One way to represent the oscillations is as a sum of standing waves or normal
modes, where the signal observed at a point ( )r     at time t  is given by  

 ( ) ( ) exp( [ ])nlm nlm nlm nlm
nlm

f r t a r i t                                    (1) 

In this equation, the three integers n , l , and m  identify each mode and are 
commonly called the radial order, angular degree, and azimuthal order

respectively. For each mode, nlma  is the mode amplitude, nlm  is the 
eigenfrequency, and nlm  is the phase.  
 
The spatial eigenfunction for each mode is denoted by nlm . For an 
axisymmetrical Sun, the eigenfunctions can be separated into radial and 
angular components:  

 ( ) ( ) ( )nlm nl lmr r Y                                              (2) 
where lmY  is the spherical harmonic and the radial eigenfunction is denoted
now by ( )nl r .  

Cross-covariance function in terms of 
normal modes

The cross covariance function of the oscillation signals f  for two points at 

coordinates 1r  and 2r  on the solar surface is defined as the integral  

               1 20
( ) ( ) ( )

T
f t f t dt         r r

                                                       (3)  

Here   is used to denote the angular distance between the two points and T  is the 
total length of the observations. The time delay   measures the amount that one 
signal is shifted relative to the other. In practice, it is quite time-consuming to 
compute the cross correlation with the integral in equation 3. Fortunately, the 
convolution theorem allows us to change the integral into a product in the Fourier 
domain,  

 1 2( , ) ( ) ( )F F        r r  (4) 
Here   is used to represent the temporal ( ) Fourier transform of  , and F
represents the temporal Fourier transform of f . The length T  of the observations 
is assumed to be long compared to any time lag   of interest. Since Fourier 
transforms can be computed very efficiently, equation 4 provides a relatively fast 
way to compute cross correlations.  
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Calculation of the cross-covariance function 
 

 Convolution theorem: the Fourier transform of a convolution of two
functions is the product of their Fourier transforms.  

Using the convolution notation, we write:  

      
0

( , ) = ( , ) ( , )
T

f f t dt    r r  

             as 1 2( , ) = f f   . 
If F  is the Fourier transform in time, then the according to the convolution
theorem:  

            *
1 2 1 2[ ( , )] = [ ] = [ ] [ ]F F f f F f F f     

 
The cross-covariance of two functions is calculated using the inverse 

Fourier transform of the product of the Fourier transforms of these 
functions:  

                 1 *
1 2( , ) = [ [ ] [ ]]F F f F f     

 

The oscillation signals 1f  and 2f  can be represented in terms of the
superposition of the normal modes with random phases nlm . The phases are random 
because of the stochastic excitation of solar oscillations.  

 ( , , , ) = ( ) ( , )
i t inl nlm

nlm nlm lm
nlm

f r t a r Y e
         

The eigenfunctions are normalized as ( ) = 1nl R . 
Thus, at the surface ( =r R ):  
 [ ] = ( , ) ( )

i nlm
nlm nlm nlm

nlm

F f a Y e
      

Here we used  

 ( )1
= ( )

2
i tnlm

nlme dt
    


  


  

Because the solar oscillation spectrun has a shape close to a Gaussian with the central
frequency 0  (the corresponding cyclic frequency is about 3 mHz), we approximate
the mode amplitudes as:  

 
2

0
2

( )
= exp

2nlma A
 


 
 
 

 

 


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Then,  

 
2

0
2

( )
[ ] = exp ( ) ( , )

2
i nlm

nlm nl
nlm

F f A e Y
      


 
  
 

  

Defining 
2

0
2

( )
( ) = exp ( )

2nl nlmG
    


 
  
 

, we get:  

 * 2
1 2 1 1 2 2[ ] [ ] = ( ) ( , ) ( ) ( , )

i inlm n l m
nl lm n l l m

nlm n l m

F f F f A G e Y G e Y
         

   
  

   
       

   

Because the mode frequencies nl  are different for different ,n l , and nlm  is a 
random function, all terms except = , = , =n n l l m m    are canceled.  
 
Thus,  

 
2

* 2 *0
1 2 1 1 2 22

=

( )
[ ] [ ] = exp ( ) ( , ) ( , )

2

l

nlm lm lm
nl m l

F f F f A Y Y
        
 

 
   

 
   

Using the addition theorem (Jackson, Classical Electrodynamics):  

 *
1 1 2 2

=

2 1
( , ) ( , ) = (cos )

4

l

lm lm l
m l

l
Y Y P    



  

where   is the great circle distance between the points:  
 1 2 1 2 1 2cos = cos cos sin sin cos( )         

and performing the inverse Fourier transform, we obtain:  
 

 
2

2 0
2

( ) 2 1
( , ) = exp ( ) (cos )

2 4
i

nlm l
nl

l
A e d P      

 
 



   
      

  
   

 
the real part of the Fourier transform:  

 
2

2 0
2

( ) 2 1
( , ) = cos( )exp (cos )

2 4
nl

nl l
nl

l
A P

   
 

  
    

 
  
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 Following Jackson, for 1l   we approximate:  

 0

2
(cos ) (2 1)sin cos( / 4)

2lP J l L
L

 


        
 

where 0J  is the Bessel function, and = 1/ 2 ( 1)L l l l   .  
Then,  

 
2

2 0
2

( )2
( , ) exp cos( )cos( )

2 2
nl

nl
nl

L
A L

L

   
  

 
       

  

 

 
2

1/2 0
1 2

( )
( , ) exp cos( )cos( )

2
nl

nl
nl

A L L
   


 

     
 

  

 
Now the double sum can be reduced to a convenient sum of integrals if we 
regroup the modes so that the outer sum is over the ratio /v L  and the 
inner sum is over .  

We have learned that the radius of the lower turning point is determined by the ratio
v L  . Thus, the travel distance   of an acoustic wave is also determined by this ratio v ; 
  is otherwise independent of  .  
 
In this case, given the band-limited nature of the function G , only values of L  which are 
close to 0 0L v   will contribute to the sum, and we can expand L  near the central 
frequency 0 :  

           0 0
0 0( ) ( )

L
L L

v u

    


                
                                                  

where u L   .  
 
 
Furthermore, the product of cosines  can be changed into a sum; one term is  

                     0

1 1
cos

u u v
  

 
 
 
 
 

          
   

                                                                      

and the other term is identical except that   has been replaced with   (i.e. the time lag is 
negative). The result is that the double sum becomes  
 

2
0

02

( )2 1 1
( ) exp cos

v u u v

     


 
 
 
 
 

                       
                                
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The inner sum can be approximated by an integral over  : 

                
2

0
02

( ) 1 1
exp cosd

u u v

    


   
 

  
 

                   
    

                           
22

2
0       = exp cos

4 u v

    
                     

                       

 
The limits ( )  pose no particular problem since the amplitude function 2G  is 
essentially zero for very large and very small frequencies.  
  
Finally, then, the cross correlation can be expressed as  
 

22

0( ) exp cos
4v u v

    
                       

  

where v L   and u L   . 
 

The cross correlation function at any particular distance is thus described by two
characteristic times; the group time, defined as g u   , and the phase time, defined 

as p v   . Furthermore, the cross correlation will have two peaks; one near g , 

and the other near g . These two peaks correspond to the two directions of

propagation.  

Two representations of the covariance 
function

2
0

2

( )
( ) exp cos( )cos( )nl

nl
nl

L
    


 
     

 


 22

0( ) exp cos
4v u v

    
                       



-in terms of the normal mode frequencies. (Once you know changes in mode 
frequencies you can find the corresponding changes in the cross-covariance
function and travel times.) 

- in terms of the phase and group velocities or travel times.

The key difference between “global” helioseismology and time-distance 
helioseismology is the mode coupling in the cross-covariance function.
Thus, we can apply time-distance helioseismology to the non-axisymmetrical Sun.
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Summary
2

0( ) expG
 


      
   

1 2
0

( ) ( ) ( )
T

f t f t dtr r       

( ) ( )exp( )nlm nlm nlm nlm
nlm

f t r a r i t i              ( ) ( ) ( )nlm nl lmr r Y         

1 2( ) ( ) ( ) exp( )F F i dr r    
 


      2

0( ) ( ) ( ) ( )expnl nl lm nl
nlm

F r a r Y
         


           
   



2

0
1 2 1 1 2 2( ) exp ( ) ( )

l

nl nl lm lm
nl m l

i Y Yr r
        






            
   

 

1 1 2 2( ) ( ) (cos )
l

lm lm l l
m l

Y Y P    



     1 2 1 2 2 1cos cos cos sin sin cos( )        

(2 1) / 4l l  
2

0( ) (cos )exp nl
nl l l nl

nl

a P i
    


          
   



nlv L  1
2L l 22

0( ) cos exp
4v

v

a
v u



   
                        



- frequency filter

Phase speed:

u - group velocity

Ray approximation
• Originally, time-distance 

helioseismology was intuitively 
derived from the picture of 
acoustic ray paths.

• In fact, the acoustic waves 
observed on the Sun can be 
considered high-frequency 
acoustic waves. In most of the 
region in which these waves are 
confined, their wavelengths are 
short compared to the local 
temperature and density scale 
heights. In this wavelength regime, 
the wave propagation can be 
approximated with ray theory. 



17

Time-distance diagnostics

Fermat’s Principle 

A powerful property of ray paths is that they obey Fermat’s
Principle, which states that the travel time along the ray is
stationary with respect to small changes in the path. This implies
that if a small perturbation is made to the background state, the 
ray path is unchanged.  
The perturbation to the travel time can then be expressed as  

 
0

0

1
k ds  

 
    

Here k  is the perturbation to the wavevector due to
inhomogeneities in the background state, and Fermat’s principle 
allows us to make the integral along the unperturbed ray path 0 .

In the solar convection zone, the Brunt-Väisälä frequency N  is small 
compared to the acoustic cutoff frequency and the typical frequencies of solar
oscillations. Neglecting this frequency, the dispersion relation can be written as
   

 

2 2 2 2
2

2
2

1

( 1)

r C h

h

k k
c
l l

k
r

  
 
 

   


 

 

 
If we allow small perturbations (relative to the background state) in  , 2c , and 

2
C , then the integrand in Fermat’s equation can be written to first order as  

 

 
2

2 2 2
C C

C

k ds c k
ds

c k c c k

    
   

           
     

  

 

where I have neglected terms which are second-order in c c   and u c   .  
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One possible perturbation to the spherically symmetric background state is a
velocity field. If the flow field is described by u  then the observed frequency 
will be Doppler shifted by the advection of the oscillations,  
 
 ˆk    n u  
  
so that the Fermat’s equation becomes  
 

 
0

2

0 2 2 2

ˆ( ) C C

C

c k
ds

c c c k

   
  





               
     


u n

 

  
where n̂  is a unit vector tangent to the ray path. Here I have defined the 
quantity    as the perturbed travel time in one direction along the ray path 
(unit vector ˆn) and    as the perturbed travel time in the opposite 
(reciprocal) direction (unit vector ˆn ). 

Effect of velocity field

Separation of the velocity field signal 
from the other perturbations

To separate the effects of the velocity field from the other perturbations, we thus
define  

 
0

diff 2

ˆ
2 ds

c
   




    

u n
 

  

0

2

mean 0 2 2

( )

2
C C

C

c k
ds

c c k

     
  

 



             
     

   

 
 
This equation thus provides the link between the measured travel time differences
and the flow field along the ray path. This simple equation is in the heart of the
time-distance helioseismology.  
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Magnetic field effects
• Magnetic field in sunspots, particularly, in the sunspot umbra may 

significantly affect the time-distance diagnostics for 3 main reasons:
– The standard Doppler shift measurements may not provide accurate estimate of 

the actual line-of-sight velocity
– Magnetic field inhibits convection (reducing excitation) and presumably 

absorbs waves causing inhomogeneous distribution of the acoustic power on 
the solar surface, resulting systematic shifts in the standard travel times 
(Woodard’s effect)

– Magnetic field causes changes in the dispersion properties of acoustic waves 
resulting in anisotropy in the travel times 

• Magnetic effects are particularly strong when plasma parameter is of the 
order of unity or smaller:  =4p/B2.                  

• For most sunspot models this happens above the photosphere. This regime 
is poorly understood, and avoid this we mostly work with low-frequency 
waves that are reflected below the photosphere.

• At high frequencies, magnetic effects (“shower-glass effect”, “inclined 
field effect”) become strong, particularly, in acoustic holography (Doug 
Braun’s talk tomorrow). Our tests show that for time-distance 
measurements these are much less significant.
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Sensitivity kernels for travel-time measurements in the 
Born approximation

• Properties of the solar interior are related 
to the measured travel times through 
sensitivity kernels (e.g. for  sound speed):

where integration is over the whole 
volume of the Sun. 

• These kernel are calculated in the Born 
approximation as in terms as a 
combination of normal mode 
eigenfunctions.

• The sound-speed variations, flow velocity 
and other solar properties are determined 
from this equation by inversion.

( ) ( , )T

V

c
K r dV

c

   


Examples of travel-time sensitivity kernels for the first 
and second bounces calculated in the Born 
approximation. The black curves show the 
corresponding ray paths.

“Banana-doughnut kernel”

Testing the ray and Born approximations 
for a simple spherical sound-speed 

perturbation

Wave source
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Banana-doughnut structure of the travel-time sensitivity 
kernels is caused by the wave-healing effect

direct wavediffracted
wave

wave front

sound-speed 
perturbation

Comparison of the ray and Born approximations with 
numerical simulations

0 5 10
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−50

0
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dt
 (

s)
 

0 5 10

−200

−100

0

100

200

A=±0.1, Smooth Sphere

R (Mm)

Ray theory

Numerical
modeling

Born 
approx.

Ray approximation 
overestimates travel 
times for small structures. 
This means that such 
structures are 
underestimated in the 
inversion results.

Born approximation is 
sufficiently adequate 
when diffraction effects 
are not significant.
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Sound-speed structure beneath a sunspot (Couvidat 
et al 2005)

Born theory (new)Ray approximation (old)
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Lecture 22
Time-distance helioseismology II

Travel times are determined from 
the cross-covariance function:

Time-distance measurements

0

( , ) ( , ) ( , )
T

f t r f t r dt      

Cross-covariance function for a particular distance (30 
degrees in this case) represents a series of wave packets.
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Simple interpretation of time-distance 
measurements

• The cross-covariance function collects 
coherent  signals for solar waves excited 
at a given point and traveling to another 
point

• The cross-covariance signal corresponds 
to a strong point source (similar to the 
flare signal) – Claerbout’s conjecture

• The cross-covariance signal corresponds 
to a wave packet of waves in a finite 
frequency range. The solar oscillations 
have periods around 5 min. Thus, we see 
the 5-min periodicity in the wave packet.

• The cross-covariance function can be 
used for measuring group and phase 
travel times.

We measure the group and 
phase travel times from these 

diagrams.

Direct waves Second-bounce 
waves

Definition of normal modes
One way to represent the oscillations is as a sum of standing waves or normal
modes, where the signal observed at a point ( )r     at time t  is given by  

 ( ) ( ) exp( [ ])nlm nlm nlm nlm
nlm

f r t a r i t                                    (1) 

In this equation, the three integers n , l , and m  identify each mode and are 
commonly called the radial order, angular degree, and azimuthal order

respectively. For each mode, nlma  is the mode amplitude, nlm  is the 
eigenfrequency, and nlm  is the phase.  
 
The spatial eigenfunction for each mode is denoted by nlm . For an 
axisymmetrical Sun, the eigenfunctions can be separated into radial and 
angular components:  

 ( ) ( ) ( )nlm nl lmr r Y                                              (2) 
where lmY  is the spherical harmonic and the radial eigenfunction is denoted
now by ( )nl r .  
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Cross-covariance function in terms of 
normal modes

The cross covariance function of the oscillation signals f  for two points at 

coordinates 1r  and 2r  on the solar surface is defined as the integral  

               1 20
( ) ( ) ( )

T
f t f t dt         r r

                                                       (3)  

Here   is used to denote the angular distance between the two points and T  is the 
total length of the observations. The time delay   measures the amount that one 
signal is shifted relative to the other. In practice, it is quite time-consuming to 
compute the cross correlation with the integral in equation 3. Fortunately, the 
convolution theorem allows us to change the integral into a product in the Fourier 
domain,  

 1 2( , ) ( ) ( )F F        r r  (4) 
Here   is used to represent the temporal ( ) Fourier transform of  , and F
represents the temporal Fourier transform of f . The length T  of the observations 
is assumed to be long compared to any time lag   of interest. Since Fourier 
transforms can be computed very efficiently, equation 4 provides a relatively fast 
way to compute cross correlations.  
 

Calculation of the cross-covariance function 
 

 Convolution theorem: the Fourier transform of a convolution of two
functions is the product of their Fourier transforms.  

Using the convolution notation, we write:  

      
0

( , ) = ( , ) ( , )
T

f f t dt    r r  

             as 1 2( , ) = f f   . 
If F  is the Fourier transform in time, then the according to the convolution
theorem:  

            *
1 2 1 2[ ( , )] = [ ] = [ ] [ ]F F f f F f F f     

 
The cross-covariance of two functions is calculated using the inverse 

Fourier transform of the product of the Fourier transforms of these 
functions:  

                 1 *
1 2( , ) = [ [ ] [ ]]F F f F f     
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The oscillation signals 1f  and 2f  can be represented in terms of the
superposition of the normal modes with random phases nlm . The phases are 
random because of the stochastic excitation of solar oscillations.  

 ( , , , ) = ( ) ( , )
i t inl nlm

nlm nlm lm
nlm

f r t a r Y e
         

The eigenfunctions are normalized as ( ) =1nl R . 
Thus, at the surface ( =r R ):  

 [ ] = ( , ) ( )
i nlm

nlm lm nl
nlm

F f a Y e
      

Here we used  

 ( )1
= ( )

2
i tnl

nle dt
    


  


  

Because the solar oscillation spectrun has a shape close to a Gaussian with the
central frequency 0  (the corresponding cyclic frequency is about 3 mHz), we
approximate the mode amplitudes as:  

 
2

0
2

( )
= exp

2nlma A
 


 
 
 

 

 



Then,  

 
2

0
2

( )
[ ] = exp ( ) ( , )

2
i nlm

nl lm
nlm

F f A e Y
      


 
  
 

  

Defining 
2

0
2

( )
( ) = exp ( )

2nl nlG
    


 
  
 

, we get:  

 * 2
1 2 1 1 2 2[ ] [ ] = ( ) ( , ) ( ) ( , )

i inlm n l m
nl lm n l l m

nlm n l m

F f F f A G e Y G e Y
         

   
  

   
       

   

Because the mode frequencies nl  are different for different ,n l , and nlm  is a 
random function, all terms except = , = , =n n l l m m    are canceled.  
 
Thus,  

 
2

* 2 *0
1 2 1 1 2 22

=

( )
[ ] [ ] = exp ( ) ( , ) ( , )

2

l

nl lm lm
nl m l

F f F f A Y Y
        
 

 
   

 
   
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Using the addition theorem (Jackson, Classical Electrodynamics):  

 *
1 1 2 2

=

2 1
( , ) ( , ) = (cos )

4

l

lm lm l
m l

l
Y Y P   




  

where   is the great circle distance between the two points:  
 1 2 1 2 1 2cos = cos cos sin sin cos( )         

and performing the inverse Fourier transform, we obtain:  
 

 
2

2 0
2

( ) 2 1
( , ) = exp ( ) (cos )

2 4
i

nlm l
nl

l
A e d P      

 
 



   
      

  
   

 
the real part of the Fourier transform:  

 
2

2 0
2

( ) 2 1
( , ) = cos( )exp (cos )

2 4
nl

nl l
nl

l
A P

   
 

  
    

 
  

 Following Jackson, for 1l   we approximate:  

 0

2
(cos ) (2 1)sin cos( / 4)

2lP J l L
L




         
 

where 0J  is the Bessel function, and = 1/ 2 ( 1)L l l l   .  
Then,  

 
2

2 0
2

( )2
( , ) exp cos( )cos( )

2 2
nl

nl
nl

L
A L

L

   
  

 
       

  

 

 
2

1/2 0
1 2

( )
( , ) exp cos( )cos( )

2
nl

nl
nl

A L L
   


 

     
 

  

 
Now the double sum can be reduced to a convenient sum of integrals if we 
regroup the modes so that the outer sum is over the ratio /v L  and the 
inner sum is over .  
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We have learned that the radius of the inner turning point is determined by the ratio
v L  . Thus, the travel distance   of an acoustic wave is also determined by this ratio v ; 
  is otherwise independent of  .  
 
In this case, given the band-limited nature of the function G , only values of L  which are 
close to 0 0L v   will contribute to the sum, and we can expand L  near the central 
frequency 0 :  

           0 0
0 0( ) ( )

L
L L

v u

    


                
                                                  

where u L    is the group angular velocity (recall kh=L/r).  
 
 
Furthermore, the product of cosines  can be changed into a sum; one term is  

                     0

1 1
cos

u u v
  

 
 
 
 
 

          
   

                                                                      

and the other term is identical except that   has been replaced with   (i.e. the time lag is 
negative). The result is that the double sum becomes  
 

2
0

02

( )2 1 1
( ) exp cos

v u u v

     


 
 
 
 
 

                       
                                

 

The inner sum can be approximated by an integral over  : 

                
2

0
02

( ) 1 1
exp cosd

u u v

    


   
 

  
 

                   
    

                           
22

2
0       = exp cos

4 u v

    
                     

                       

 
The limits ( )  pose no particular problem since the amplitude function 2G  is 
essentially zero for very large and very small frequencies.  
  
Finally, then, the cross correlation can be expressed as  
 

22

0( ) exp cos
4v u v

    
                       

  

where v L   and u L   . 
 

The cross correlation function at any particular distance is thus described by two
characteristic times; the group time, defined as g u   , and the phase time, defined 

as p v   . Furthermore, the cross correlation will have two peaks; one near g , 

and the other near g . These two peaks correspond to the two directions of

propagation.  
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Two representations of the covariance 
function

2
0

2

( )
( ) exp cos( )cos( )nl

nl
nl

L
    


 
     

 


 22

0( ) exp cos
4v u v

    
                       



-in terms of the normal mode frequencies. (Once you know changes in mode 
frequencies you can find the corresponding changes in the cross-covariance
function and travel times.) 

- in terms of the phase and group velocities or travel times.

The key difference between “global” helioseismology and time-distance 
helioseismology is the mode coupling in the cross-covariance function.
Thus, we can apply time-distance helioseismology to the non-axisymmetrical Sun.

Ray approximation
• Originally, time-distance 

helioseismology was intuitively 
derived from the picture of 
acoustic ray paths.

• In fact, the acoustic waves 
observed on the Sun can be 
considered high-frequency 
acoustic waves. In most of the 
region in which these waves are 
confined, their wavelengths are 
short compared to the local 
temperature and density scale 
heights. In this wavelength regime, 
the wave propagation can be 
approximated with ray theory. 



8

Time-distance diagnostics
Fermat’s PrincipleA powerful property of ray 
paths is that they obey Fermat’s Principle, which 
states that the travel time along the ray is stationary
with respect to small changes in the path. This 
implies that if a small perturbation is made to the 
background state, the ray path is unchanged.  

The perturbation to the travel time can then be
expressed as  

 
0

0

1
k ds  

 
    

Here k  is the perturbation to the wavevector due
to inhomogeneities in the background state, and
Fermat’s principle allows us to make the integral
along the unperturbed ray path 0 .  

In the solar convection zone, the Brunt-Väisälä frequency N  is small 
compared to the acoustic cutoff frequency and the typical frequencies of solar
oscillations. Neglecting this frequency, the dispersion relation can be written as
   

 

2 2 2 2
2

2
2

1

( 1)

r C h

h

k k
c
l l

k
r

  
 
 

   


 

 

 
If we allow small perturbations (relative to the background state) in  , 2c , and 

2
C , then the integrand in Fermat’s equation can be written to first order as  

 

 
2

2 2 2
C C

C

k ds c k
ds

c k c c k

    
   

           
     

  

 

where I have neglected terms which are second-order in c c   and u c   .  
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One possible perturbation to the spherically symmetric background state is a
velocity field. If the flow field is described by u  then the observed frequency 
will be Doppler shifted by the advection of the oscillations,  
 
 ˆk    n u  
  
so that the Fermat’s equation becomes  
 

 
0

2

0 2 2 2

ˆ( ) C C

C

c k
ds

c c c k

   
  





               
     


u n

 

  
where n̂  is a unit vector tangent to the ray path. Here I have defined the 
quantity    as the perturbed travel time in one direction along the ray path 
(unit vector ˆn) and    as the perturbed travel time in the opposite 
(reciprocal) direction (unit vector ˆn ). 

Effect of velocity field

Separation of the velocity field signal 
from the other perturbations

To separate the effects of the velocity field from the other perturbations, we thus
define  

 
0

diff 2

ˆ
2 ds

c
   




    

u n
 

  

0

2

mean 0 2 2

( )

2
C C

C

c k
ds

c c k

     
  

 



             
     

   

 
 
This equation thus provides the link between the measured travel time differences
and the flow field along the ray path. This simple equation is in the heart of the
time-distance helioseismology.  
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Magnetic field effects
• Magnetic field in sunspots, particularly, in the sunspot umbra may 

significantly affect the time-distance diagnostics for 3 main reasons:
– The standard Doppler shift measurements may not provide accurate estimate of 

the actual line-of-sight velocity
– Magnetic field inhibits convection (reducing excitation) and presumably 

absorbs waves causing inhomogeneous distribution of the acoustic power on 
the solar surface, resulting systematic shifts in the standard travel times 
(Woodard’s effect)

– Magnetic field causes changes in the dispersion properties of acoustic waves 
resulting in anisotropy in the travel times 

• Magnetic effects are particularly strong when plasma parameter is of the 
order of unity or smaller:  =4p/B2.                  

• For most sunspot models this happens above the photosphere. This regime 
is poorly understood, and avoid this we mostly work with low-frequency 
waves that are reflected below the photosphere.

• At high frequencies, magnetic effects (“shower-glass effect”, “inclined 
field effect”) become strong, particularly, in acoustic holography (Doug 
Braun’s talk tomorrow). Our tests show that for time-distance 
measurements these are much less significant.

Sensitivity kernels for travel-time measurements in the 
Born approximation

• Properties of the solar interior are related 
to the measured travel times through 
sensitivity kernels (e.g. for  sound speed):

where integration is over the whole 
volume of the Sun. 

• These kernel are calculated in the Born 
approximation as in terms as a 
combination of normal mode 
eigenfunctions.

• The sound-speed variations, flow velocity 
and other solar properties are determined 
from this equation by inversion.

( ) ( , )T

V

c
K r dV

c

   


Examples of travel-time sensitivity kernels for the first 
and second bounces calculated in the Born 
approximation. The black curves show the 
corresponding ray paths.

“Banana-doughnut kernel”
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Testing the ray and Born approximations 
for a simple spherical sound-speed 

perturbation

Wave source

Banana-doughnut structure of the travel-time sensitivity 
kernels is caused by the wave-healing effect

direct wavediffracted
wave

wave front

sound-speed 
perturbation
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Comparison of the ray and Born approximations with 
numerical simulations

0 5 10

−100

−50

0

50

100

A=±0.05, Smooth Sphere

R (Mm)

dt
 (

s)
 

0 5 10

−200

−100

0

100

200

A=±0.1, Smooth Sphere

R (Mm)

Ray theory

Numerical
modeling

Born 
approx.

Ray approximation 
overestimates travel 
times for small structures. 
This means that such 
structures are 
underestimated in the 
inversion results.

Born approximation is 
sufficiently adequate 
when diffraction effects 
are not significant.

Sound-speed structure beneath a sunspot (Couvidat 
et al 2005)

Born theory (new)Ray approximation (old)
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Detailed maps of subsurface flows

A small sample of a synoptic map of subsurface flows



14

Synoptic maps of subsurface flows (0-20 Mm)

Similar maps are obtained from the ring analysis (Haber et al 2002)

Solar Subsurface Weather

Depth 2 Mm

• converging 40 m/s flow toward the neutral line in the upper layers
• diverging flow below 9 Mm

(example AR9433, April 2001)
Large-scale flows around active regions:
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Sunspot structure and dynamics

Parker’s model

Monolithic model Cluster Model

Helioseismology provides strong evidence for the cluster model.
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Observations of emerging active region by time-distance 
helioseismology

magnetogram

Sound-speed perturbation
(~1 km/s: 300 K or 3000 G)

460 Mm

18
 M

m

Observation of emerging active region with 2-hr resolution
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Evolution of AR 10486-488: October 24 – November 2, 2003

Sound-speed map and magnetogram of AR 10486 on October 25, 2003, 4:00 UT
(depth of the lower panel: 45 Mm)

AR 10486
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Sound-speed map and magnetogram of AR 10486 on October 26, 2003, 12:00 UT
AR 10488 is emerging 

AR 10486 AR 10488

Emergence of AR 10488, October 26, 2003, 20:00 UT

AR 10488
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Emergence of AR 10488, October 27, 2003, 4:00 UT

AR 10488

Growth and formation of sunspots of AR 10488, October 29, 2003, 4:00 UT

AR 10488
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Growth and formation of sunspots of AR 10488, October 31, 2003, 12:00 UT

AR 10488

Cut in East-West direction through both magnetic polarities, showing a loop-like structure
beneath  AR 10488, October 30, 2003, 20:00 UT

AR 10488
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Detection of Emerging Active Regions
in the Deep Interior

New methodology of detection of 
emerging flux 

Deep-focus Time-Distance Helioseismology: solar oscillation signal is filtered to 
select acoustic waves traveling to depth 40-70 Mm (right), averaged over arcs (left), 
and cross-correlated  for opposite arcs. Travel-time perturbations are measured by 
fitting Gabor wavelet. This method has been tested with 3 different instruments 
(MDI, HMI, GONG) for many quiet and emerging flux regions 

Ilonidis et al (2011)
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1/21/2022 43

Example: Emergence of AR 10488: Oct 24 – Nov 2, 2003

Results for AR 10488

03:30 UT 26 Oct 2003 03:30 UT 26 Oct 2003

03:30 UT 27 Oct 2003

Depth 40-70 Mm Solar surface

Depth 40-70 Mm Oct.26, 3:30UT Solar surface Oct.26, 3:30UT

Solar surface Oct. 27, 3:30UT
24h
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Travel-time maps of AR 10488

-11 h

-8 h

-5 h

-10 h

-7 h

-4 h

-9 h

-6 h

-3 h

Active region NOAA 11158, February 
2011
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Example of analysis of subsurface 
flows in flaring AR 11158

Example of AR analysis: 
NOAA 11158
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Photospheric magnetic field and subsurface flows at depth 0-
1 Mm in AR 11158, February 10-18, 2011
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Subsurface converging flows and X2.2 
flare

divU (depth 0-1 Mm)

X2.2 flare

Approximately one day 
before the X-class flare 
strong shearing flows are 
developed 0-3 Mm below 
the surface. This is 
reflected in a sharp 
increase of the flow 
convergence. 
Potentially new method 
of forecasting flaring and 
CME activity of active 
regions based on 
helioseismology analysis 
and MHD modeling of 
subsurface flows.

Converging flows
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Lecture 23
Time-distance helioseismology:

Fermat principle
Inversion results

(Stix, Chapter 5.3.8-5.3.9; Kosovichev, p.53-64; 
Christensen-Dalsgaard, Chapter 8)

Spectrum of normal modes calculated 
for a standard solar model. Note the 
‘avoided crossing effect’ for f and 
g-modes. 

Solar oscillation spectrum obtained 
from the HMI instrument on Solar 
Dynamics Observatory. 
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For l n , 1 0r  , and we get:  

0

( 2 )
R

n L
dr
c

    
 


  

That is the spectrum of low-degree p-modes is approximately equidistant with

frequency spacing: 
1

0
4

R dr

c



    
   

Low-degree p-modes (l=0,1,2, and 3)

Large frequency separation: =68 Hz

Solar -modes from 1979 days of the GOLF 
experiment, B. Gelly - M. Lazrek- G. Grec -
A. Ayad - F. X. Schmider- C. Renaud - D. 
Salabert - E. Fossat, A&A 394, 285-297 
(2002) 

1, 2

2
0

(4 6)
2

nl nl n l

R

nl

nl

dc dr
l

dr r

  

 

   


   



31(2 2 ) (2 )2 2nl n l n l           

Small frequency separation : 
=9Hz

   Using the scaling laws: 

              3

M

R
  ,             

2

5

P GM

R R
  

we obtain the scaling law for the speed of sound: 

                     
P M

c
R




   

Then, the scaling law for the oscillation frequencies is: 

                           
3

c M

R R
    

Since for the Sun the large frequency separation: =68 Hz we can estimate 
 for other stars: 

1 2 3 2

68 ( )
M R

Hz
M R

 


   
     

    

 

Asteroseismology Scaling Law
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Solution to the Inverse Problem 

We have a system integral equations  

                             
( )

( ) ( )
( ) 0 0

n l R Rn l n l
n l

K dr K dr   
  
  


 
       

 for a set of observed mode frequencies. If the number of observed frequencies is
N  (typically 2000), then we have a problem of determining two functions from
this finite set. In general, it is impossible to determine these functions precisely.
We can always find some rapidly oscillating functions, ( )f r , that being added 
to the unknowns,    and   , do not change the values of the integrals, e.g. 

 ( )

0
( ) ( ) 0

R n lK r f r dr 

    

Such problems without an unique solution are called "ill-posed". The general 
approach is to find a smooth solution that satisfies the integral equations by 
applying some smoothness constraints to the unknown functions. This is called a
"regularization procedure".  
There are two basic methods for the helioseismic inverse problem:  

1. Optimally Localized Averages (OLA) method - (Backus-Gilbert 
method)  
2. Regularized Least-Squares (RLS) method - (Tikhonov method)  

Examples of the sensitivity kernels



4

Optimally Localized Averages Method 
The idea of the OLA method is to find a linear combination of data such as the
corresponding linear combination of the sensitivity kernels for one unknown will
have an isolated peak at a given radial point, 0r , (resemble a  -function), and the 

combination for the other unknown will be close to zero. Then this linear
combination provides an estimate for the first unknown at 0r : 

 
( )

( )
( )

n l
n l

n l
a







 ( ) ( ) ( ) ( )

0 0

R Rn l n l n l n la K dr a K dr   
 
 

   
       

 

If                 ( ) ( )
0( ) ~ ( )n l n la K r r r   

    and   ( ) ( ) ( ) ~ 0n l n la K r 
 

   

then  

 

0

( )
( )

( )

n l
n l

n l

r

a







    
 

  

is an estimate of the density perturbation at 0r r .  

The coefficients, ( )n la  , are different for different target radii 0r . 

 
Averaging Kernels 

The functions,  

 ( ) ( )
0( ) ( )n l n la K r A r r 

 
     

 

 ( ) ( )
0( ) ( )n l n la K r B r r 

 
     

are called "averaging kernels".  
The coefficients, ia , are determined my minimizing a quadratic form (here, we
use index i  instead of double index ( )n l ):  

  2

0 0 00
( ) ( ) ( )

R
M r A J r r A r r dr         

  2

00
( )

R i j
ij

i j

B r r dr E a a 


     

where 2
0 0( ) 12( )J r r r r   , ijE  is a covariance matrix of observational errors,

  and   are the regularization parameters. The first integral in this equation

represents the Backus-Gilbert criterion of  -ness for 0( )A r r ; the second term 

minimizes the contribution from 0( )B r r , thus, effectively eliminating the

second unknown function, (   in this case); and the last term minimizes the
errors.  
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Optimally localized averaging kernels

Inversion results for the observed solar 
frequencies

radiative zone convection zone Solar radius R=696 Mm
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Theory of Rotational Frequency Splitting. I 
The eigenfrequencies of a spherically-symmetrical static star are degenerate with

respect to the azimuthal number m . Rotation breaks the symmetry and splits each mode
of radial order, n , and angular degree, l , into (2 1)l   components of = ,...,m l l  (‘mode 

multiplets’). The rotational frequency splitting can be computed using the variational 
principle. From this variational principle, one can obtain mode frequencies nlm  relative 

to the degenerate frequency nl  of the non-rotating star:  

 * *1
= ( ) ,nlm nlm nl V

nl

m ie dV
I

               
   

  

where e  is the unit vector defining the rotation axis, and = ( , )r    is the angular 

velocity which is a function of radius r  and co-latitude  , and nlI  is the mode inertia. 

The first term is due to the wave advection by rotation; the second term represents 
the Coriolis effect. 

       nlm m   ,   where   is a mean angular velocity. 

For the rotational frequency splitting measured in Hz: 

/ 2nlm m    .    For the Sun: / 2 460 nHz   

The corresponding mean period of rotation: 2 /P    

Illustration of the frequency 
shift due to the solar rotation 

Typical power spectra of solar 
oscillation data from the MDI 
instrument on SOHO. Each 
horizontal curve shows three 
lines of the power spectrum for 
different azimuthal order m  
with radial order 15n   and 
angular degree 19 20l   , and 21 
(from left to right). The slope of
the modal lines is due to the 
rotational frequency shift: 
prograde modes with positive 
m  have higher frequencies than 
retrograde modes with negative 
m . 
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Inversion results for solar rotation

The radial profile of solar rotation
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Quiz

Two principal approaches
• Global Helioseismology 

– measure global 
oscillation modes from 
the oscillation power 
spectra obtained by 
applying the spherical 
harmonic transform to 
the full-disk oscillation 
data

• Local Helioseismology  
- measure variations of 
oscillation frequencies 
in local areas by 
applying the Fourier 
transform to the 
oscillations in these 
area, or by measuring 
the travel times of phase 
shifts in local areas. 
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Time-distance 
helioseismology

• A remarkable discovery was made by 
Tom Duvall in 1993 that the travel times of the 
solar waves can be measured by using a cross-
covariance function of the stochastic wave 
field:

Time               Distance Oscillation signal (Doppler velocity, intensity
etc) at two points on the Sun’s surface

Integration time

0

( , ) ( , ) ( , )
T

f t r f t r dt      
or C(¿; ¢ )

Definition of normal modes
One way to represent the oscillations is as a sum of standing waves or normal
modes, where the signal observed at a point ( )r     at time t  is given by  

 ( ) ( ) exp( [ ])nlm nlm nlm nlm
nlm

f r t a r i t                                    (1) 

In this equation, the three integers n , l , and m  identify each mode and are 
commonly called the radial order, angular degree, and azimuthal order

respectively. For each mode, nlma  is the mode amplitude, nlm  is the 
eigenfrequency, and nlm  is the phase.  
 
The spatial eigenfunction for each mode is denoted by nlm . For an 
axisymmetrical Sun, the eigenfunctions can be separated into radial and
angular components:  

 ( ) ( ) ( )nlm nl lmr r Y                                              (2) 
where lmY  is the spherical harmonic and the radial eigenfunction is denoted
now by ( )nl r .  

Is the Sun axisymmetrical?

What happens to the normal modes if the structure is not  axisymmetrical?
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Cross-covariance function in terms of 
normal modes

The cross covariance function of the oscillation signals f  for two points at 

coordinates 1r  and 2r  on the solar surface is defined as the integral  

               1 20
( ) ( ) ( )

T
f t f t dt         r r

                                                       (3)  

Here   is used to denote the angular distance between the two points and T  is the 
total length of the observations. The time delay   measures the amount that one 
signal is shifted relative to the other. In practice, it is quite time-consuming to 
compute the cross correlation with the integral in equation 3. Fortunately, the 
convolution theorem allows us to change the integral into a product in the Fourier 
domain,  

 1 2( , ) ( ) ( )F F        r r  (4) 
Here   is used to represent the temporal ( ) Fourier transform of  , and F
represents the temporal Fourier transform of f . The length T  of the observations 
is assumed to be long compared to any time lag   of interest. Since Fourier 
transforms can be computed very efficiently, equation 4 provides a relatively fast 
way to compute cross correlations.  
 

Assuming that the oscillation signal f  can be written in the form of equation 1, the 
Fourier transform F  of the observed oscillation signal is given by  
 
 ( ) ( ) ( ) ( )nlmi

nlm nl lm nlm
nlm

F R a R Y e                                         (5) 

Here the solar surface is denoted by r R . The power spectrum of solar oscillations
is band-limited. For convenience, let us assume that the amplitudes depend on n  and 
l  in the following way:  
 

( ) ( ) ( )nlmi
nlm nl lm nlm

nlm

a R Y e         ( ) ( ) ( )nlmi
l nl lm nlm

nlm

G Y e           (6) 

 

where  
2

2 0
2

( )
( ) 2 1explG l

 


 
    

 
                                               (7) 

If I then compute the product in equation 4 and perform the inverse Fourier integral,
the result is  

2
1 1 2 2( ) ( )exp( ) ( ) ( )nlm nlmi i

l nl nl lm lm
nl m m

G i Y e Y e          




                     (8) 

Since the phases are random, we assume that on average the terms ( )nlm nlmie     will 
tend to cancel, except of course when m m . In this case, equation 8 becomes  
 

 
2

1 1 2 2( ) ( )exp( ) ( ) ( )l nl nl lm lm
nl m

G i Y Y                                       (9) 



11

The addition theorem for spherical harmonics  
 
 
 
(see, for example, Jackson, Classical Electrodynamics) allows the simplification  

 2 2 1
( ) ( )exp( ) (cos )

4l nl nl l
nl

l
G i P    


     

 
                               (10) 

where   is the distance between the two points 1 1( )   and 2 2( )  :  
 1 2 1 2 1 2cos cos cos sin sin cos( )                                      (11) 
and lP  is the Legendre polynomial of order l .  
 
Again following Jackson we can approximate  

  0

2
(cos ) 2 1 sin cos

2 4lP J l L
L




               
                          (12) 

where 0J  is the Bessel function of the first kind. We have introduced the new symbol
1 2L l   ; these approximations are valid where   is small, but L  is large.  

 
Then we have  

 
2

0
2

( )2
( ) exp cos( )cos( )nl

nl
nl

L
    


 
       

                          (13) 

Now the double sum can be reduced to a convenient sum of integrals if we regroup the
modes so that the outer sum is over the ratio v L   and the inner sum is over  .  

1 1 2 2( ) ( ) (cos )
l

lm lm l l
m l

Y Y P    



    

You have learned that the radius of the lower turning point is determined by the ratio  v L  . 
Thus, the travel distance   of an acoustic wave is also determined by this ratio v ;   is 
otherwise independent of  .  
 
In this case, given the band-limited nature of the function G , only values of L  which are close 
to 0 0L v   will contribute to the sum, and we can expand L  near the central frequency 0 :  

          0 0
0 0( ) ( )

L
L L

v u

    


                
                                                    (14) 

where u L   .  
 
 
Furthermore, the product of cosines in equation 13 can be changed into a sum; one term is  

                    0

1 1
cos

u u v
  

 
 
 
 
 

          
   

                                                                         (15) 

and the other term is identical except that   has been replaced with   (i.e. the time lag is 
negative). The result is that the double sum in equation 13 becomes  
 

2
0

02

( )2 1 1
( ) exp cos

v u u v

     


 
 
 
 
 

                       
                              (16) 
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The inner sum can be approximated by an integral over  ; it can be shown that  
2

0
02

( ) 1 1
exp cosd

u u v

    


   
 

  
 

                   
                     

22
2

0       exp cos
4 u v

    
                     

                                           (17) 

 
The limits ( )  pose no particular problem since the amplitude function 2G  is 
essentially zero for very large and very small frequencies.  
 
 
Finally, then, the cross correlation can be expressed as  
 

22

0( ) exp cos
4v u v

    
                       

                (18) 

 

The cross correlation function at any particular distance is thus described by two
characteristic times; the group time, defined as g u   , and the phase time, defined as 

p v   . Furthermore, the cross correlation will have two peaks; one near g , and the 

other near g . These two peaks correspond to the two directions of propagation.  

Two representations of the covariance 
function

2
0

2

( )2
( ) exp cos( )cos( )nl

nl
nl

L
    


 
       



 22

0( ) exp cos
4v u v

    
                       



-in terms of the normal mode frequencies. (Once you know changes in mode 
frequencies you can find the corresponding changes in the cross-covariance
function and travel times.) 

- in terms of the phase and group velocities or travel times.

The key difference between “global” helioseismology and time-distance 
helioseismology is the mode coupling in the cross-covariance function.
Thus, we can apply time-distance helioseismology to the non-axisymmetrical Sun.
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Travel times are determined from 
the cross-covariance function:

Time-distance measurements

0

( , ) ( , ) ( , )
T

f t r f t r dt      

Cross-covariance function for a particular distance (30 
degrees in this case) represents a series of wave packets.

Simple interpretation of time-distance 
measurements

• The cross-covariance function collects 
coherent  signals for solar waves excited 
at a given point and traveling to another 
point

• The cross-covariance signal corresponds 
to a strong point source (similar to the 
flare signal) – Claerbout’s conjecture

• The cross-covariance signal corresponds 
to a wave packet of waves in a finite 
frequency range. The solar oscillations 
have periods around 5 min. Thus, we see 
the 5-min periodicity in the wave packet.

• The cross-covariance function can be 
used for measuring group and phase 
travel times.

We measure the group and 
phase travel times from these 

diagrams.

Direct waves Second-bounce 
waves
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Book: Passive Imaging With Ambient Noise
J. Garnier, G. Papanicolaou, 2016

Correlation-based imaging with an array of passive sensors(triangles). 
Data acquisition, in which the reflector to be imaged (diamond) is located 
at Zr, and is illuminated by noise source (circles).

Time-distance diagnostics
Fermat’s PrincipleA powerful property of ray 
paths is that they obey Fermat’s Principle, which 
states that the travel time along the ray is stationary
with respect to small changes in the path. This 
implies that if a small perturbation is made to the 
background state, the ray path is unchanged.  

The perturbation to the travel time can then be
expressed as  

 
0

0

1
k ds  

 
    

Here k  is the perturbation to the wavevector due
to inhomogeneities in the background state, and
Fermat’s principle allows us to make the integral
along the unperturbed ray path 0 .  
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In the solar convection zone, the Brunt-Väisälä frequency N  is small 
compared to the acoustic cutoff frequency and the typical frequencies of solar
oscillations. Neglecting this frequency, the dispersion relation can be written as
   

 

2 2 2 2
2

2
2

1

( 1)

r C h

h

k k
c
l l

k
r

  
 
 

   


 

 

 
If we allow small perturbations (relative to the background state) in  , 2c , and 

2
C , then the integrand in Fermat’s equation can be written to first order as  

 

 
2

2 2
C C

C

k ds c k
ds

c c k

   
   

           
     

  

 

where I have neglected terms which are second-order in c c   and u c   .  

 

Travel time of acoustic waves

One possible perturbation to the spherically symmetric background state is a
velocity field. If the flow field is described by u  then the observed frequency 
will be Doppler shifted by the advection of the oscillations,  
 
 ˆk    n u  
  
so that the Fermat’s equation becomes  
 

 
0

2

0 2 2 2

ˆ( ) C C

C

c k
ds

c c c k

   
  





               
     


u n

 

  
where n̂  is a unit vector tangent to the ray path. Here I have defined the 
quantity    as the perturbed travel time in one direction along the ray path 
(unit vector ˆn) and    as the perturbed travel time in the opposite 
(reciprocal) direction (unit vector ˆn ). 

Effect of velocity field
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Separation of the velocity field signal 
from the other perturbations

To separate the effects of the velocity field from the other perturbations, we thus
define  

 
0

diff 2

ˆ
2 ds

c
   




    

u n
 

  

0

2

mean 0 2 2

( )

2
C C

C

c k
ds

c c k

     
  

 



             
     

   

 
 
This equation thus provides the link between the measured travel time differences
and the flow field along the ray path. This simple equation is in the heart of the
time-distance helioseismology.  
 

For simplicity, we will neglect variations of  c .  

This is not valid in sunspot regions. 
   

Time-distance inferences of the sound 
speed and flow velocity

Measures travel times of acoustic or surface gravity waves propagating  
between different surface points through the interior. The travel times 
depend on conditions, flow velocity and sound speed along the ray path:

 
2

n Uk c
ds ds

c c


 


   

 

mean

1
( )

2

k c
ds

c

  
 



   

The sound speed and flow velocity signals are separated by measuring
the travel times for waves propagating in the opposite directions along

the same ray paths and calculating the mean travel times and the differences:

 
diff 2

n U
ds

c
   




   

 

n



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Vector velocity measurement scheme
NS
diff

EW
diff

oi
diff

is a travel time difference 
averaged over the 

full annulus. 

Typically, we measure times for acoustic waves to travel
between points on the solar surface and surrounding
quadrants symmetrical relative to the North, South, East
and West directions. In each quadrant, the travel times are
averaged over narrow ranges of travel distance  .  
 
Then, the times for northward-directed waves are 
subtracted from the times for south-directed waves to yield 
the time, NS

diff , which predominantly measures north-south 

motions. Similarly, the time differences, EW
diff , between 

westward- and eastward directed waves yields a measure
of east-ward motion. The time, oi

diff , between outward- and 
inward-directed waves, averaged over the full annuli, is
mainly sensitive to vertical motion and the horizontal
divergence.  
 
This provides a qualitative picture of the motions, and is
useful for a preliminary analysis. However, in numerical
inversions, all three components of the flow velocity are
properly taken into account. The averaging procedure is 
essential for reducing noise in the data.  

Surface travel times
measured at location
() for distance 

Subsurface
perturbation
at grid point
(i,j,k)
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Surface focusing
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a)

b)

Deep- and surface-focusing observing schemes

Surface focusing Deep focusing

Ray approximation
• Originally, time-distance 

helioseismology was intuitively 
derived from the picture of 
acoustic ray paths.

• In fact, the acoustic waves 
observed on the Sun can be 
considered high-frequency 
acoustic waves. In most of the 
region in which these waves are 
confined, their wavelengths are 
short compared to the local 
temperature and density scale 
heights. In this wavelength regime, 
the wave propagation can be 
approximated with ray theory. 
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Sensitivity kernels for travel-time measurements in the 
Born approximation

• Properties of the solar interior are related 
to the measured travel times through 
sensitivity kernels (e.g. for  sound speed):

where integration is over the whole 
volume of the Sun. 

• These kernel are calculated in the Born 
approximation as in terms as a 
combination of normal mode 
eigenfunctions.

• The sound-speed variations, flow velocity 
and other solar properties are determined 
from this equation by inversion.

( ) ( , )T

V

c
K r dV

c

   


Examples of travel-time sensitivity kernels for the first 
and second bounces calculated in the Born 
approximation. The black curves show the 
corresponding ray paths.

“Banana-doughnut kernel”

Sound-speed structure beneath a sunspot (Couvidat 
et al 2005)

Born theory (new)Ray approximation (old)
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Magnetic field effects
• Magnetic field in sunspots, particularly, in the sunspot umbra may 

significantly affect the time-distance diagnostics for 3 main reasons:
– The standard Doppler shift measurements may not provide accurate estimate of 

the actual line-of-sight velocity
– Magnetic field inhibits convection (reducing excitation) and presumably 

absorbs waves causing inhomogeneous distribution of the acoustic power on 
the solar surface, resulting systematic shifts in the standard travel times 
(Woodard’s effect)

– Magnetic field causes changes in the dispersion properties of acoustic waves 
resulting in anisotropy in the travel times 

• Magnetic effects are particularly strong when plasma parameter is of 
the order of unity or smaller:                    

• For most sunspot models this happens above the photosphere. This regime 
is poorly understood, and avoid this we mostly work with low-frequency 
waves that are reflected below the photosphere.

• At high frequencies, magnetic effects (“shower-glass effect”, “inclined 
field effect”) become strong, particularly, in acoustic holography (Doug 
Braun’s talk tomorrow). Our tests show that for time-distance 
measurements these are much less significant.

¯ = 4¼P=B 2 ꞏ 1
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Detailed maps of subsurface flows

A small sample of a synoptic map of subsurface flows
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Synoptic maps of subsurface flows (0-20 Mm)

Similar maps are obtained from the ring analysis (Haber et al 2002)

Solar Subsurface Weather

Depth 2 Mm

• converging 40 m/s flow toward the neutral line in the upper layers
• diverging flow below 9 Mm

(example AR9433, April 2001)
Large-scale flows around active regions:
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Sunspot structure and dynamics

Parker’s model

Monolithic model Cluster Model

Helioseismology provides strong evidence for the cluster model.
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Observations of emerging active region by time-distance 
helioseismology

magnetogram

Sound-speed perturbation
(~1 km/s: 300 K or 3000 G)

460 Mm

18
 M

m

Observation of emerging active region with 2-hr resolution
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Evolution of AR 10486-488: October 24 – November 2, 2003

Sound-speed map and magnetogram of AR 10486 on October 25, 2003, 4:00 UT
(depth of the lower panel: 45 Mm)

AR 10486
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Sound-speed map and magnetogram of AR 10486 on October 26, 2003, 12:00 UT
AR 10488 is emerging 

AR 10486 AR 10488

Emergence of AR 10488, October 26, 2003, 20:00 UT

AR 10488
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Emergence of AR 10488, October 27, 2003, 4:00 UT

AR 10488

Growth and formation of sunspots of AR 10488, October 29, 2003, 4:00 UT

AR 10488
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Growth and formation of sunspots of AR 10488, October 31, 2003, 12:00 UT

AR 10488

Cut in East-West direction through both magnetic polarities, showing a loop-like structure
beneath  AR 10488, October 30, 2003, 20:00 UT

AR 10488
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Detection of Emerging Active Regions
in the Deep Interior

New methodology of detection of 
emerging flux 

Deep-focus Time-Distance Helioseismology: solar oscillation signal is filtered to 
select acoustic waves traveling to depth 40-70 Mm (right), averaged over arcs (left), 
and cross-correlated  for opposite arcs. Travel-time perturbations are measured by 
fitting Gabor wavelet. This method has been tested with 3 different instruments 
(MDI, HMI, GONG) for many quiet and emerging flux regions 

Ilonidis et al (2011)
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Results for AR 10488

03:30 UT 26 Oct 2003 03:30 UT 26 Oct 2003

03:30 UT 27 Oct 2003

Depth 40-70 Mm Solar surface

Depth 40-70 Mm Oct.26, 3:30UT Solar surface Oct.26, 3:30UT

Solar surface Oct. 27, 3:30UT
24h

Travel-time maps of AR 10488

-11 h

-8 h

-5 h

-10 h

-7 h

-4 h

-9 h

-6 h

-3 h
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1/21/2022 61

Example: Emergence of AR 10488: Oct 24 – Nov 2, 2003

Active region NOAA 11158, February 
2011
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Example of analysis of subsurface 
flows in flaring AR 11158

Example of AR analysis: 
NOAA 11158
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Photospheric magnetic field and subsurface flows at depth 0-
1 Mm in AR 11158, February 10-18, 2011
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Subsurface converging flows and X2.2 
flare

divU (depth 0-1 Mm)

X2.2 flare

Approximately one day 
before the X-class flare 
strong shearing flows are 
developed 0-3 Mm below 
the surface. This is 
reflected in a sharp 
increase of the flow 
convergence. 
Potentially new method 
of forecasting flaring and 
CME activity of active 
regions based on 
helioseismology analysis 
and MHD modeling of 
subsurface flows.

Converging flows


