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1. Introduction

These lectures address but a part of the theory of stellar pulsation: the linearized

adiabatic theory of acoustic gravity modes. My discussion is concerned with the -

dominant aspects of the dynamics of small oscillations, and therefore provides an
introduction to the wider theory. Thus, I will consider the determination of the
frequencies of the modes of oscillation, but I will not address the important issue
of how the modes are driven. Consequently, I will not provide any assistance for
judging which stars are likely to pulsate. ‘

Acoustic and gravity modes are probably the most common modes of oscillation
of stars; they are certainly the most commonly studied. They are the simplest to
describe, and can exist in an otherwise static, spherically symmetrical star.

For such medes, both the terms pulsation and oscillation have been uséd in the
literature, and [ will use them interchangeably. I will consider spherically symmet-
rical stars first, and do so in greatest detail. I begin by discussing the simplest of
their oscillations, namely the spherically symmetric (radial) pulsations; this will
give me the opportunity to introduce some of the mathematical techniques I re-
quire, without confusing matters with unnecessary complexity. Then I will con-
sider so-called nonradial oscillations, which are oscillations that are not purely
radial. I will offer but a taste of the complications that are introduced once the
star is considered to be intrinsically aspherical; only a small asphericity will be
permitted, which forms in some sense a small though significant perturbation to
the modes of oscillation.

Deviations from spherical symmetry of the equilibrium structure of a star are
brought about by agents ignored in the spherically symmetrical theory, such as
rotation, a magnetic field or convection. Associated with each such agent, provided
it is globally stable, is a new class of oscillations: inertial oscillations, resonant
Alfvén waves and convective waves, e.g. [ do not discuss any of these.

Several techniques are available for determining the oscillation eigenfrequen-
cies; for accurate frequencies of realistic stellar models they all require resorting
in the end to numerical computation. I will not discuss numerical methods at all
in these lectures. Instead I will concentrate on asymptotic expansions which yield
analytical formulae, and consequently more readily provide physical insight. That
is not to imply that numerical solutions are of lesser scientific value. Indeed, in
practice it is nearly always a numerical solution that must be compared with mea-
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surement in order to make precise inferences about the structure or dynamics of
a star. However, it is usually the case that the nature of the comparison is moti-
vated by the form of an approximate asymptotic formula, and the significance of
the result is appreciated only in the light of the physical insight the formula pro-
vides. For this reason, the development of analytical results, despite their lack of
precision, is essential to the progress on the subject.

One cannot appreciate the small oscillations of a system without some under-
standing of the nature of the equilibrium state. Therefore, at the school these lec-
tures were preceded by a short introductory course on the theory of stellar structure
and evolution. Notes on that course are not reproduced here, because the material
is more than adequately covered in the textbooks on the subject.

These lectures do not constitute a balanced review of the subject, but instead
concentrate on a few specific aspects of current interest. There are some useful
modern textbooks on stellar pulsation to balance my bias, most notably those by
Unno et al. (1979) and Cox (1980). The first is closer in both style and content
to these lectures, and much of what I have to say can be found, sometimes in a
somewhat different form, in it. It deals more widely with the subject than I do
here, and therefore is an invaluable explanatory accompaniment to these notes.
The second book is more descriptive, dwelling more on the nature of the physical
ideas than on their precise consequences; it therefore provides complementary
background reading. I must not fail to recommend the now classical review by
Ledoux and Walraven (1958); although it is some thirty years since it was written,
the article still gives a wealth of useful information that is still relevant today.

Although stellar pulsation is a fluid-dynamical phenomenon, little prior knowl-
edge of fluid dynamics is required to understand these lectures. The linearized
stability equations that form the basis of the subject are easily derived from the
equations of momentum and mass conservation; for understanding the manipula-
tions that follow, it is more useful to have some knowledge of the theory of linear
differential equations.

Partly because this subject is an amalgam of other disciplines, mainly the theory
of stellar structure and the theory of waves, and partly because I use some quite
distinct approaches to discuss the subject, such as the separation of variables in
section 5 leading directly to a set of ordinary differential equations with respect
to each of the spherical polar coordinates and the direct asymptotic attack on the
partial differential equations in section 8 leading to ordinary differential equations
initially along ray paths, I will quickly run out of letters in the alphabet to represent
quantities unambiguously. Of course I could make unambiguous distinctions by
adorning the symbols with accouterments, and indeed at times I have been moved
10 do s, but in order not to complicate the notation unnecessarily and thereby
conceal the import of the equations, I have often preferred to give of some of the
symbols a duplicate meaning, at what I hope is only a slight risk of misunderstand-
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ing. Except in section 7, summation over repeated indices that denote components
of a vector or tensor, is assumed throughout.

I start these lectures by discussing the nature of the fluid that constitutes the
star; | introduce the equations of fluid dynamics, ignoring dissipation without dis-
cussion. I then record in section 2 the relations defining the hydrostatic support
of the background equilibrium state that I will need immediately, and proceed in
section 3 to the formal linearized perturbation equations. As I have remarked al-
ready, the perturbation equations are discussed first for the geometrically simple
radial pulsations; I do this in section 4. Boundary conditions are obtained, orthog-
onality of the eigenfunctions is established and a variational principle is derived
from which I determine a bound on the pulsation frequency. My main interest is
in the dynamics of the stellar interior, where the energy in the oscillations mainly
resides. The outer boundary condition therefore requires a study of the forced os-
cillations of the stellar atmosphere, which is considered to lie outside the surface
enclosing the dynamically most interesting part of the star. The very centre of the
star is merely a coordinate boundary, and conditions there are determined by reg-
ularity. Section 4 is concluded by a discussion of asymptotically high-frequency
oscillations, whose eigenfunctions have the character of waves. To a large extent
the immediately following discussion in section 5 of nonradial oscillations paral-
lels its radial counterpart. Some care is taken to cast the equations in a separable
form that resembles the more familiar oscillation equations established originally
in plane geometry, since then one is in a better position to investigate how the
spherical geometry influences the modes. The asymptotic methods in the previous
section are applied to these equations, to establish what are perhaps surprisingly
simple integral expressions for the eigenfrequencies. The asymptotic analysis is
wave-like, and to complement this approach, a procedure based on representing
the complete eigenfunction as a superposition of resonant, locally plane waves,
which was originally developed for quantum theory and is now often referred to
as semi-classical quantization, is discussed in section 8. In principle this approach
is in some respects more powerful, because it-does not rely on the necessity to
separate coordinates at the outset. However, since in practice I never consider
other than small deviations of the basic state from spherical symmetry, the eigen-
functions are always almost separable and the full generality of the approach is
not utilized. The results I establish from it are completely equivalent to those that
can be obtained by perturbing the separable solutions, which is described in sec-
tion 7. One of the motivations for paying so much attention to asymptotlc solu-
tions is that the Sun is known to be oscillating in many acoustic modes thaf can be
quite accurately described by asymptotic theory. Moreover, some Ap stars have
been observed to oscillate in high-frequency acoustic modes too. One of lhe very
convenient properties of the asymptotic eigenvalue equations established'in sec-
tion 5, is that in their simplest forms they can be inverted analytically, providing
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explicit constraints on the stratification of the background state. This inversion is
presented in section 6. In the case of acoustic modes, one formally obtains the
speed of sound as a function of radius; such an inversion of frequency data has
already been carried out on observed frequencies of the Sun. In the case of grav-
ity modes one obtains a functional constraint on the buoyancy frequency; in the
future this relation may be useful for setting limits on the internal stratification of
white dwarfs. Stellar inverse theory is in its infancy. However, the appreciation
of the dependence of oscillation frequencies on the stratification of a star that can
be acquired by the so-called forward methods described in these lectures, will no
doubt provide a substantial contribution to the future development of that theory.

1.1. The fluid

The fluid will be regarded as a continuum mixture of gas and radiation. Thus there
is an equation of state

p-.=p(p,T;X), (1.1.1)

relating the pressure, p, 1o the density, p, and the temperature, T'. The relation also
depends on the composition of the gas, which I denote as X, each component X;
of which is the relative abundance by mass of the chemical element i; of greatest
interest is the dependence on the most abundant elements, hydrogen and helium,
and throughout this course I will, for simplicity, replace X by the component
X, =: X, which is the hydrogen abundance, [H]. The helium abundance X, =:
Y :=[*Helisthen givenby Y = | — X — Z, where Z is the sum of the abundances,
[Hea], of all the heavier elements.

For the purposes of these lectures it will not be necessary to specify the equa-
tion of state explicitly. It is perhaps worth making the obvious remark, however,
that the accuracy to which one can calculate the dynamical oscillation frequencies
of any given theoretical model of a star is limited by the accuracy to which the
equation of state is known. Observations of solar oscillations have now reached
the point where frequencies are quoted to better than 1 part in 10* (e.g. Jiminez
et al. (1987)), which surpasses by a large margin our ability to compute an ac-
curate equation of state. By the standards of these observations, the physics of
dense plasmas is very poorly understood: we are not yet in a position to take into
account, with sufficient accuracy, the influence of neighbouring particles on the
bound states of neutral atoms or compound ions, e.g., and thereby calculate the
appropriate ensemble average of the energy of their interaction, which it is nec-
essary to know in order to calculate the compressibility of the fluid. But that does
not mean that we cannot make progress with our study of stellar oscillations. It be-
hoves us merely to be aware that the results of our calculations really depend on



Linear adiabatic stellar pulsation 407

certain thermodynamic derivatives that appear in constitutive relations, and not
directly on what one sometimes considers to be the more basic thermodynamic
properties of the gas, such as temperature and composition. The most important
of these is the first adiabatic exponent

dlnp
- ’ (L1
! (alnp)s e

the derivative being taken at constant specific entropy, s. (I do not use a suffix on
~ to distinguish it from the other adiabatic exponents, since this quantity will be
the only adiabatic exponent used in the course.)

To guide ideas, it is often helpful to think in terms of a perfect gas. It is a good
first approximation for main-sequence stars. The equation of state is

- ReT (1.1.4)
n

where R is the gas constant and p is the reciprocal of the number of particles per
hydrogen-atom mass of the gas, the so-called mean molecular mass (or weight).
Since Z « 1, we have for the completely unionized state: »

p =X+ Y pg'Z =1 - 2y, (1.1.5)

where L is the mean atomic mass of the heavy elements, and when the hydrogen
and helium are completely ionized:

pl 22X 43y ~2 -3y (1.1.6)
Taking Y = 0.25, which is roughly the value outside the energy-generating cores
of main-sequence stars, yields 4 ~ 1.2 and 0.6 for the unionized and ionized state,
respectively. Thus, the ratio p/pT changes by a factor two along the ionization
zones in the outer envelopes of stars. Outside the ionization zones vy =~ § When
abundant elements are in a state of partial ionization, work is used to ionize the gas
when it is compressed adiabatically, so the temperature rise is less than it would
have been otherwise. The pressure rise is also smaller, despite the decrease in p.
Thus, v is less than % (though it never drops as low as unity, the value it would
have taken were 7' to have remained precisely constant on compression). Figure 1
illustrates how pT'/p and « vary along the ionization zones of a model of the
envelope of the Sun.
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Fig. 1. Tr.le adiabatic exponent -y and the quantity jz = RpT/p plotied against 7/ R for a solar model
where 7 is the radial coordinate and R is the radius of the photosphere. The equation of state used‘
‘to com;?ule the model is more complicated than eq. (1.1.4), since it 1akes some of the electrostatic
interactions between neighbouring particles into account, and so i is not precisely 4. (Indeed, some
a.ppr.oaches to studying the equation of state are such that when interactions between panicl‘es are
significant even the concept of y is not well defined.)

1.2. Equations of motion

Th§ Euleirian momentum equation, ignoring viscosity, for a fluid moving with ve-
locity uis

Du_ v

Por =~ VPtgp+F, (12.1)
where

D 3 -

Dt T a ™ (1.2.2)

is [h(? Lagrangian time derivative, ¢ the time, g = V& is the acceleration due to
gravity .a.!]d F is the body force due to all agents except gravity (such as a possible
magnetic field). The gravitational potential, ®, satisfies Poisson’s equation:

§
2 = —
V® = —4nGp. (1.2.3)

The equation of conservation of mass is

Dp . dp
D—t+pdlvu=a+d1vpu=0. (1.2.4)
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Throughout these lectures the adiabatic approximation will be used. This deter-
mines uniquely the relation between variations in pressure and density:

Dp ~pDp _ ,Dp
op _APPP _ 2-P 1.2.5
Dt~ p Dt ° Dt - 12y

These equations must be supplemented by the equation of state. For adiabatic
motion, that is all that is required to close the equations, once the basic state, about
which the star pulsates, is defined. Indeed, the sole quantity derived from the equa-
tion of state that is needed to study adiabatic perturbations, and on which the strati-
fication of much of the basic state might not directly depend is the thermodynamic
derivative

v =7, p, X). S - (1.2.6)

We notice immediately from the discussion at the end of section 1.1 that, except in
the ionization zones of abundant elements, 7 is essentially independent of chem-
ical composition. Therefore, since the ionization zones occupy a relatively small
fraction of the volume of the star, the pulsation frequencies, w, should not be very
sensitive to X . That simplifies the task of predicting w. But conversely, it renders
it difficult to determine X from a knowledge of the oscillation frequencies of a
star. ;
To determine the solution to the differential equations describing the motion it
is also necessary to specify boundary conditions. In all cases it will be assumed
that one can define a “surface” of the star outside of which there is negligible ma-
terial. Boundary conditions are then essentially that there is no stress exerted on
the boundary, or, more realistically, that there is no inward flow of energy across
the boundary. The latter condition selects the so-called “causal” solution. In prac-
tice, it will often be found convenient to apply boundary conditions deeper in the
stellar atmosphere, obtained by matching the oscillation in the interior of an ap-
propriate surface with an analytical approximation to the causal solution outside
it. This will be discussed in more detail later.

2. The equilibrium state

I will be limiting my discussion to the linearized theory of small perturbations of
a basic state. That basic state is provided by the theory of stellar evolution. The
time scales characterizing the evolution of a star are normally much longer than
the pulsation periods, and for most stars they are also much longer than the rates
of growth or decay of the pulsations. Therefore, the basic state will be considered
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to be independent of time: an equilibrium state. It satisfies the time-independent
version of the equations in the previous section.

For most of these lectures I will assume the star to be nonmagnetic and nonrotat-
ing. I also ignore the possibility of any large-scale circulatory motion and assume
convective motion to be on a spatial scale that is so small that I can average over the
inhomogeneities to obtain a smoothed-out description of the stratification. Thus,
Isetw = 0and F = 0 in eq. (1.2.1). The equilibrium state is then spherically
symmetrical, satisfying the hydrostatic equation:

d
L0+ g0p0 =0, _ @D

dr

where r is a radial coordinate and the subscript zero denotes equilibrium value. The
quantity go is the magnitude of the gravitational acceleration, which is obtained
by integrating eq. (1.2.3); since the state is spherically symmetrical, this yields

Gmo 2.2)

r2

g0 =

where my is the mass enclosed in a sphere with constant 7

mo(r) = 4m / polryr'” dr’. (2.3)
0

Equations (2.1)—(2.3) and the equation of state (1.1 .1), together with appropriate
boundary conditions, are not sufficient to determine the basic state. That state is
determined as a solution of the full equations of stellar evolution, which I do not
discuss here. Nevertheless, the hydrostatic balance expressed by egs. 2.1)~(2.3)
is all that is necessary for the validity of the linearized perturbation analysis [
will be discussing. Since I have in'mind studying the oscillations about a time-
independent state, the temporal behaviour of the perturbations is sinusoidal with
frequernicy w. .

I should point out that it is possible to study the temporal development of per-
turbations about an evolving state which does not satisfy all the steady-state equa-
tions. In particular, attention has been devoted in the past to the stability to pulsa-
tion of stars that are out of thermal balance. A proper analysis involves the use of
a more sophisticated theory than that which I propose to discuss in this course.

One property of the equilibrium state to which I wish to draw attention is the
behaviour of the variables near the centre. Equation (2.3) implies

™Mo ~ %wpoor3 asr — 0, (2.4)
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where py is the density at the centre. Hence, from eq. (2.2), go oc r and the pres-
sure gradient vanishes at r = 0 as a consequence of py being finite. Equation (2.1)
can be integrated to yield

Po ~ poo — 37Gper’. CoQ@s)

One can analyze the development of py and the temperature Ty away from the
origin in a similar way, using the energy equation, which I have not written down,
and the equation of state, coupled with the expansion (2.5). Let us consider first
the case where the central regions of the star are stable to convection. As a conse-
quence of there being no point source of heat at the centre of the star and the heat
flux being proportional to the temperature gradient, one finds that the gradients of
temperature and density also vanish at 7 = 0, provided that the composition gradi-
ents vanish too. At zero age, the composition is usually presumed to be uniform.
It is subsequently modified by nuclear reactions, whose rates, being a function of
po. Tp and composition, must initially have zero gradient at » = 0. Consequently
the rates of change of X and Z; have zero gradient at » = 0 too, and therefore
Po, po, 1o and all other thermodynamic variables have zero gradient at r = 0 for
all times. When the core is convective, the stellar material is homogenized by the
motion, and the stratification is essentially adiabatic; therefore, it follows again
that density and temperature have zero gradient at the centre.

3. Linearized equations

It is common practice to describe the oscillations about the equilibrium state dis-
cussed in the previous section, in terms of the displacement, £, of the fluid. Then,
bearing in mind that the equations of motion are to be linearized:

D¢ ag. 3.1

I now separate every scalar, dependent variable, say f, into its equilibrium value f;
and a perturbation. I consider two kinds of perturbation: the Eulerian perturbation,
namely the perturbation to f at a given position r, which I denote by f’, and the
Lagrangian perturbation, which is the perturbation at a point following the motion
and which I denote by & f. Thus

f@r,t) = fo(ry+ f(r, ), (3.2)
fr+&,1) = fo(r)+8f(r,t). (3.3)

412 D.O. Gough

The two perturbations are related by an equation which, after linearization with
respect to perturbation quantities, becomes

Sf=f+€-Vfo (3.4)
=f’+£.nd_fo’ (3.5)
dr

where 72 is a unit vector in the outward radial direction. I will employ both Eulerian
and Lagrangian perturbations at will, selecting whichever is the more convenient
for my purposes.

Substituting either the form (3.2) or (3.3} into the equations of motion (1.2.1)-
(1.2.5), subtracting the corresponding equations for the equilibrium state, and lin-
earizing in perturbation quantities, yields

0u

po5r ==V = gonp' + V¥, _ (3.6)
Df" _af  df
Dt = ot + d—rn-u 3.7
ds f
== (3.8)
Vo' = —4nGp, (3.9)
dp+ podivE = p' +div pg€ = 0. (3.10)

Notice that the partial derivative with respect to time is an Eulerian partial deriva-
tive, at fixed r. The Lagrangian time derivative is defined to be the derivative
following the motion, and is thus a full derivative when considered to be oper-
ating on a Lagrangian perturbation; the equivalence of eq. (3.7) and eq. (3.8) is
therefore evident, and can be demonstrated formally by using egs. (3.1) and (3.5)
to expand the expression (3.8). Equations (3.10) were obtained by integrating the
mass conservation equations (1.2.4) with respect to time, requiring that p = 0
and therefore p’ = 0 when £ = 0.

Equations (3.6)—(3.10) must be supplemented by the linearized perturbation to
the adiabatic relation (1.2.5), which can be written

bp.= cj bp. G.11)

Except where it might cause confusion, I now simplify the notation by omitting
the subscript zero from equilibrium quantities.

The oscillation equations (3.6)—(3.11) are homogeneous, linear equations for
perturbations with time-independent coefficients. Likewise, the coefficients in the
linearized boundary conditions, which I have not yet written, are also independent
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of time; and aside from an arbitrary amplitude-normalization condition that one
must formally impose to determine the solution completely, the boundary condi-
tions are also homogeneous. Consequently, the problem admits solutions that are
separable in space and time, with exponential time dependence:

fer 1y =Re[f/(r)e !, (3.12)

where Re denotes real part, with similar expressions for 6 f and £. The partial dif-
ferential equation satisfied by the amplitude f’(r) is essentially elliptic in naturé,
and admits nontrivial solutions satisfying the homogeneous boundary conditions
on the surface enclosing the star only for specific eigenvalues of w. The complete
solution represents what is normally called a mode of oscillation. In general one
would expect w to be complex; it can be separated into its real and imaginary part:

W = WR + lw. (3.13)

I call wy the frequency and wy the growth rate of the mode. Except at the beginning
of appendix V, I will consider wg to be positive throughout these lectures, and, as
will become apparent soon, I will be considering conditions under which w; = 0.
Hence, w will be real, but until that has been justified the reader is advised to
consider the possibility that it is actually complex. I will simplify the notation
yet further by dropping the tilde from the amplitude f’(r), and, hopefully without
causing confusion, use f’, 8 f and & for both the time-dependent perturbations and
the time-independent amplitude eigenfunctions.

4. Radial pulsations

Radial pulsations are spherically symmetrical oscillations, such that the velocity
is in the radial direction. Because they are geometrically so simple, they have been
studied in much greater detail than their aspherical counterparts; indeed, as will be
seen later, the geometrical constraint even excludes an important class of motion,
thereby contributing further to the relative simplicity of the discussion.

4.1. Linearized equations of motion

[ introduce a dimensionless measure é(r,t) of the radial component of the dis-
placement £(r,t), defined such that with respect to spherical polar coordinates

(r,0,¢),
£=(,0,0)r. 4.1.1)
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Taking out the factor r is common practice in the literature, and I do so here t00 so
that my discussion can be compared easily with others. But let me warn the reader
now that, once again in keeping with quite common practice, I will not extract a
factor r in the discussion of oscillations that are not spherically symmetric. I permit
this incongruity, partly so that once again my discussion can be more easily related
to much of what is already in the literature.

One of the simplifications afforded by spherical symmetry is the possibility
of integrating the Poisson equation (3.9), thereby reducing the order of the dif-
ferential system that remains to be solved. Thus, V&' = —(Gm' /T*)n, where
m’ =47 f p'r?dr. Actually it is more convenient to work with Lagrangian vari-
ables. The momentum equation then becomes

. 06
Tp§ = *a—p +4gp€, (4.1.2)
: T
and the equation of conservation of mass (3.10) is
bp 20 3
— — =0 4.1.3
TR =0 (4.13)

where a dot denotes a (Lagrangian) time derivative. Equation (4.1.2) can be de-
rived, after some manipulation, directly from eq. (3.6), by substituting V&', re-
placing p’ and p' with 8p — r€ dp/dr and 8p — r{ dp/dr and using eq. (4.1.3) and
the hydrostatic equations (2.1)—(2.3), satisfied by the equilibrium state. It is actu-
ally much simpler, however, first to transform the spherically symmetrical form of
eq. (3.6) to a Lagrangian coordinate system, so that m takes on the role of the inde-
pendent variable and the radius 7(1+§) at fixed m is a dependent variable, and then
transform back to the original (Eulerian) coordinate system after linearization.

I now eliminate &p from the momentum equation (4.1.2) using eq. (3.11), and
use eq. (4.1.3) to eliminate 4p, yielding

rp§+4 §—— i ['yp (r%% +3§>} =0. (4.1.4)

Next, I introduce the separated form (3.12) for &, and drop the tilde from the am-
plitude €. I also rewrite the equation in self-adjoint form, which is obtained after
multiplying it by the integrating factor 3. The manipulations are straightforward,
and lead to

LE=0, (4.1.5)
where

d d d
Lg:= (wﬂ‘d—ﬁ) + {T35 [(3y ~4)p] +T4Pw2} £ (4.1.6)
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A result of using spherical polar coordinates is that the system is reduced fo a set
of ordinary differential equations. It is now necessary not only to apply bOlgndary
conditions at the surface r = R of the star, but also to impose regularity condi-
tions at the coordinate singularity 7 = 0. Thus the problem is transformed into an
ordinary two-point boundary-value problem.

4.2. Boundary conditions

It is evident from its definition, eq. (4.1.6), that the operator £ is singular at 7 = 0,
since after expanding the first term and dividing by 7 to ensure that at least one of
the coefficients is nonzero at 7 = 0 without any becoming infinite, the'coefficient of
the highest derivative of ¢ vanishes. The boundary condition that must be applied is
therefore that which eliminates the singular solution. This is most readily obtained
by expanding the solution as a power series in 7: '

(o)
E=12) Apr¥, @2.1)
k=0
with Ag # 0. It is also necessary to expand the equilibrium quantities:
p=po—pariHe,  p=po=partae,
=Y -t 4.2.2)

the regularity conditions requiring, as explained in section 2, that there are no terms
linear in 7. The leading term of the first term of L€ is thus a(a + 3)YopoAere*?,
which cannot be balanced by the second term of £ which is O(r3**) as r — 0.
Therefore, the indicial equation is a(a + 3) = 0, and hence a = —3 or 0. The
first value corresponds to the singular solution, which must be rejected. The sec-
ond value yields the regular solution, which after inspecting higher terms-in the
expansion (4.2.2) can be seen to be of the form:

£~ Ao+ Art+- . (4.2.3)

It follows that

€ _o ar=o. (4.2.4)

dr
There is some diversity in the way the outer boundary condition is obtained, and
also in where it is applied. One approach, which, as I will explain soon, is valid
for modes with low frequency, is to ignore the details of the atmosphere and to
approximate the outer layers of the star by a completely plane-parallel polytrope
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with constant index g > 0. (The index u has no relation with the mean molecular
mass, introduced in section 1.1.) Then p and p vanish at the surface r = R of
the star. Indeed, p & 2#*! and p o z*, where z is the depth beneath the surface
(see appendix I). The point z = 0 is a regular singular point of the operator £
defined by eq. (4.1.6), which can be analyzed in precisely the same manner as the
regular singular point at 7 = 0. The indicial equation associated with eq. (4.1.5) is
a(a + p) = 0, from which follows once again that a = 0 for the regular solution.
Unlike the situation at 7 = 0, however, the linear term in the series expansion
does not vanish. Consequently d¢/dr does not vanish at the surface. The resulting
boundary condition therefore relates £ to its first derivative:

2
73§+<h_4_iag=0aw=3, (42.5)
dr wy

where R is the radius in the unperturbed stellar model and

Wl = %4 (4.2.6)
defines a characteristic dynamical time scale wo" of the star. It should be pointed
out that it is not really necessary to assume a plane-parallel polytrope. The regu-
larity condition (4.2.5) follows for any stellar model at the surface of which p and
p vanish in such a way thatdInp/dInp = 1 + p~! with p — p, > Oasr — R,
which requires that c — O as r — R.

In reality, of course, the pressure and density do not vanish at the surface of
the star, and therefore r = R is not a singular point. However, one can argue that -
as one approaches the surface from below, p and p become very small compared
with their values in the deep interior, and the solutions behave as though they are
in the vicinity of a singular point. Thus, unless the true boundary condition were
to select purely the solution that behaves like the singular solution (which it does
not), the “singular” component of the actual solution would decay inwards to such
an extent that for practical purposes the eigenfunction in the deep interior would
be as if the singular component were entirely absent. Inspection of the expansion
that leads to the condition (4.2.5) reveals that this argument is correct provided
that in the region where the sound speed, ¢, deviates from polytropic behaviour
and ceases to appear to be approaching zero at a finite value of r, w? < ¢?/H? is
satisfied, where H is the density or pressure-scale height. This quantifies what [
meant by saying that the argument is valid for low frequencies. The significance of
the inequality will become clear later. In any case, it is evident from this argument
that if conditions are such that the boundary condition (4.2.5) is valid, it does not
much matter precisely where in the surface layers it is applied. Typically, it is
applied near the photosphere.
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The boundary condition (4.2.5) is quite adequate for studying the lower-
frequency radial pulsations of any star, even though it is perhaps not ideal (see
section 4.8.2); in particular, it is an adequate condition for studying the classical
variable stars such as the Cepheids and RR Lyrae stars, for which it is usually
applied in the vicinity of the photosphere.

For studies of higher-frequency modes, such as those observed in the Sun, more
care must be exercised. A common procedure in the solar case is to integrate the
pulsation equation (4.1.5) through the atmosphere up to the base of the corona,
which exerts a small pressure on the atmosphere. Because the corona is at a very
high temperature, it is very rarefied; it has been argued that the absence of substan-
tial inertia implies that the variation of the pressure it exerts on the chromosphere
during the pulsation is negligible. Hence, one might think of applying the approx-
imate condition

dp=0 atr=R, 4.2.7)

and indeed this condition is sometimes used instead of condition (4.2.5). It seems
to me that it would make more sense to argue that since the sound speed is so
high the hydrostatic structure of the corona adjusts essentially instantaneously to
low-frequency pulsations. Hence, the hydrostatic condition

4nrip = gme, (4.2.8)

where gm, is the weight of the corona, would be approximately satisfied at the
moving interface between the chromosphere and the corona. The linearized per-
turbation equation obtained from this equation, assuming m. to be constant, is

26 + L —2¢6 atr=R. (4.2.9)
) v

With the help of the adiabatic relation (3.11) and the continuity equation’(4.1.3),
this becomes

a¢

R=
7 dr

+(3y—-4)£=0 atr=R. (4.2.10)
Interestingly, this is formally the extreme low-frequency (static) limit of the
boundary condition (4.2.5) obtained above. In particular, like condition (4.2.7)
it is perfectly reflecting, as is the condition (4.2.4) at r = 0, and therefore per-
mits the confinement of a mode within the star; it is intuitively obvious that, since
there is no loss or gain of energy, w is real in this case. A formal demonstra-
tion is presented in appendix II. It will be shown in section 4.6, however, that
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u)z/w?) > 37 — 4. Therefore it is inconsistent to ignore the frequency-dependent
dynamical term compared with the geometrical term 3y — 4.

It is more realistic to solve the pulsation equations in the corona and to match
the solution in the chromosphere to the causal coronal oscillation. This is straight-
forward if one assumes the corona to be isothermal, and leads to a condition like
eq. (4.2.5). Another procedure that is sometimes adopted, is to assume the entire
atmosphere to be isothermal and to apply the matching condition in the photo-
sphere. In either case, it is necessary to study first the pulsations of an isothermal
atmosphere.

4.2.1. Oscillations of an isothermal aimosphere
In the plane-parallel isothermal atmosphere under constant gravity, g, described
in appendix I, eq. (4.1.5) reduces to

d _ dé w?
r/H —r/H o _
= <e dT‘) tae £=0, (4.2.11)

where ¢Z = ygH and H is the scale height, both of which are constant, and, con-
sistent with assuming g to be constant, | have ignored terms that are O(H/ R). The
solutions are exponential in 7:

£ o exp(ir), ' (4.2.12)
where
1 4 2172 1/2
Re o ll:t(l— “’CZH > . (4.2.13)

The causal solution is that obtained by selecting the negative sign; although &
increases rapidly with height (i.e. with an e-fold height comparable with H), the
energy density, which is proportional to p€?, does not. (The energy density does
increase rapidly with height for the other solution. Causal solutions are discussed
more extensively in appendix V.)

If w is real and less than w., where

= — 4.2.14

2 ( )
then 7 is real and the energy density decreases exponentially with height. The os-
cillation is said to be evanescent. In that case the atmosphere acts as a perfectly
reflecting boundary for the oscillations in the interior of the star. Since the oscilla-
tions are adiabatic, there is no mechanism by which energy can be lost or gained,
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so w is indeed real, as was assumed at the outset. If, on the other hand, Re(w) > w,
then & is complex, and the causal solution corresponds to a wave propagating up-
wards in the atmosphere. The energy density is now independent of height (for
real w) and energy is propagated away from the star. What would happen in real-
ity under such circumstances is that the amplitude of the wave would become so
large that energy would be dissipated by nonlinear processes such as shocks. The
amplitude of the oscillation in the star would therefore decay with time, unless it
were maintained either by nonlinear interactions with other motions or by nona-
diabatic processes which here are being ignored. Of course, to be consistent it is
therefore necessary to take the fact into account that w is now really complex, and
since energy is being lost one expects w; < 0. Indeed, it can then be demonstrated
that if the motion in the star is everywhere truly adiabatic, then w; < 0 when
WR > we; the argument is a simple extension of that which I use in section 4.5 and
appendix II to show that w is real when wg < wq.

Since w is not real, the energy density of the oscillations in the atmosphere is not
precisely independent of height. The higher in the atmosphere r > R, the earlier
the time at which the outwardly propagating waves had previously crossed the
surface r = R. Since the amplitude at fixed r is declining with time, it follows that
the energy density increases with height for fixed ¢, at a rate that is proportional to
wi. This is demonstrated formally in appendix V.

The quantity w, is the critical frequency below which waves cannot propagate
vertically in an isothermal atmosphere under constant gravity. It was first deter-
mined by Lamb (1908), and is sometimes named after him. I will not adopt that
practice in these lectures, however, because I wish we not to be confused with
another frequency, associated with nonradial oscillations, which is defined by
eq. (5.5.3) and is also called the Lamb frequency. Radial oscillations of the at-
mosphere are essentially acoustic waves. If the atmosphere were uniform, waves
would propagate with speed c, but, as we have already seen, propagation is inhib-
ited by stratification. The force restoring a simple localized adiabatic compression
or rarefaction is provided by the gradient of the pressure perturbation. If the char-
acteristic spatial scale A of the perturbation is much less than the scale height H of
the equilibrium stratification, that stratification can be ignored as a first approxima-
tion, and the wave behaves essentially as though it were propagaling in a uniform
medium; the gradient of the pressure perturbation is greatest between regions of
compression and rarefaction, and has such a sign as to oppose the density pertur-
bation. If, on the other hand, A >> H, the gradient of the pressure perturbation is
dominated by the basic stratification, and is greatest where the density is greatest,
irrespective of whether it is in a state of compression or rarefaction. The result is
essentially a bodily shift of the perturbation, with no local tendency to restore the
original equilibrium: wave propagation no longer occurs. Indeed, since the bulk
of the atmosphere is contained within a characteristic height of order H, one can
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envisage it to be essentially finite; a high-frequency oscillation imposed on the
base would cause sound waves to propagate upwards, but a low-frequency oscil-
lation simply lifts the entire atmosphere up and down in phase with the base. The
transition between the two kinds of behaviour evidently occurs when X is compa-
rable with f{. Taking A = k="', where k is the wave number of a wave satisfying
the acoustic dispersion relation k¢ = w, this condition becomes c/w =~ H, which
to within a factor two is the condition w = we. Note that if the perfect-gas Jaw,
eq. (1.1.4), applies, w, oc T'/2,

The solution (4.2.12) can be used to derive a boundary condition for the os-
cillation eigenfunctions in the body of the star. It is obtained by matching the
eigenfunctions with the causal solution in the atmosphere in such a way that £ and
dp are continuous. The latter condition is obtained by integrating the momentum
equation (4.1.2) across the interface at = R + &, separating the isothermal ai-
mosphere from the interior. If one ignores any discontinuity of + that may exist at
that interface, it follows from eqs. (4.1.3) and (3.11) that the continuity of £ and
bp implies continuity of d¢ /dr. Hence, one may write

d
& FRw) =0 atr=R, (4.2.15)
dr
where of course ¢ and d¢/dr are evaluated at r = R_ but & is evaluated (from
€q. (4.2.13) with the negative sign) at r = R,. Here r = R would be either the
photosphere or the base of the corona if there is one. Provided w? < w?, the square
root in eq. (4.2.13) may be expanded about unity. Keeping only the leading-order
surviving term then reduces the condition (4.2. [5)to

' Rl wiyRH

e 2 E~0 atr=R. (4.2.16)

Since ¢? = ygH, this is similar to condition (4.2.5), except that the term 3y — 4 is
missing. That term arises from spherical geometry. Evidently, since we expect to
find oscillations with w = O(wyp), the neglect of spherical geometry in the atmo-
sphere is formally invalid. In practice, however, both the geometrical terms and
the dynamical terms are numerically unimportant when w ~ wy, so d¢/dr =0 at
T = [ is a good approximation, even though that condition would not select the
regular solution if ¢? were to vanish at the surface. A better condition that takes
into account both the dynamics and the geometry of the region beyond r = R is
obtained in section 4.8.2.

Note that even though w, is much smaller in the corona than it is in the at-
mosphere beneath, the corona transmits ouly a small proportion of the energy,
provided that the transition region between the chromosphere and the corona is
much thinner than an oscillation wavelength and can therefore be considered dis-
continuous. The acoustic energy flux is proportional to ¢p&?. The pressure p and
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displacement ¢ are continuous across the interface, from which it can easily be
shown that the transmission coefficient is approximately four times the ratio of the
atmospheric and the coronal sound speed, which in the case of the Sun is about
20%.

Finally, it is important to realize that in any stellar atmosphere there is a region in
which the motion is not adiabatic. The results of this adiabatic study must therefore
be regarded as no more than an introductory guide to the dynamics. It is worth
pointing out in this connection that when the oscillation is not adiabatic beneath
the photosphere, some care must be taken in selecting the appropriate solution.
This is discussed in appendix V, where the adiabatic response of an atmosphere to
growing or decaying oscillatory forces from below is studied.

4.3. Orthogonality of eigenfunctions

Equation (4.1.4), subject to the boundary conditions (4.2.4) and (4.2.5) or (4.2.15),
admits a sequence of eigenfunctions &, with eigenvalues w?. The system is similar
to the Sturm—-Liouville problem, but it is not identical since the outer boundary
condition depends on the eigenvalue. Nevertheless, the system shares many of its
properties with the Sturm—Liouville system, particularly because boundary terms
arising from integration by parts are usually negligible.

Let us multiply eq. (4.1.4) for &, by &k and integrate over the interval (0, R) of
7. On integrating the first term by parts one obtains

R R
4 dgn _ 4%(15”
['ypr & dr |4 0 T dr dr dr
R d
+ / {rjd_’f‘ [(3y -4 pl+ 7‘4sz1} Erbndr=0. (4.3.1)
0

It is common practice to ignore the integrated term; it is zero at r = 0 and one
would expect it to be very small at r = R since p very nearly vanishes. (The ratio
of the pressure in the solar photosphere to that at the median radius in the Sun is
about 10~ '°. However, the argument is not complete unless it is demonstrated that
& d&,, /dr is not 10'° times greater in the surface layers than it is in the interior
of the star. Once again, as we will see later, that condition is satisfied provided
w? & ¢®/H?.) Thus, if one similarly multiplies eq. (4.1.4) for & by &n, integrates
and subtracts the result from eq. (4.3.1), one obtains

R
(W2 —wi) / rpEén dr =0, (43.2)
]

so, provided w? # w2, & and &, are orthogonal over (0, R) with respect to the
weight function r*p. Therefore the eigenfunctions appear to form a convenient
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basis for expanding the solutions of problems that differ in only a minor way from
the simple problem considered here.

In artificial stellar models in which p/p strictly vanishes at the surface, the inte-
grated term in eq. (4.3.1) is always zero and the arguments of Sturm~Liouville the-
ory carry over to this problem. There is an infinite sequence of orthogonal eigen-
functions, which form a complete set of functions on the interval (0, ), satisfying
d¢/dr = 0 atr = 0; the modes can be ordered according to the value of w,,, and the
zeros of consecutive eigenfunctions &, of that ordering interlace. The eigenfunc-
tion &, associated with the lowest eigenvalue, has no internal node. Consequently,
the displacement eigenfunction &, has n nodes, if one includes the zero at r = 0.

In realistic stellar models the integrated term in eq. (4.3.1) is not zero, and is no
longer small compared to the other terms in the equation once w? is comparable
to the value of w? at r = R. In that case there are only a finite number of modes.
The eigenfunctions are almost orthogonal when w? < w?; this would be true
even if the integrated term cannot be ignored, provided the approximate boundary
condition (4.2.16) is valid. But when w? is comparable to w?, orthogonality is lost.

4.4. Some nomenclature

When the modes are arranged in order of increasing frequency,-the lowest fre-
quency corresponding to n = 1, the label n is called the order of the mode. The-
mode of lowest order is called the fundamental (preferably, fundamental radial
mode if there is any danger of confusing it with the nonradial f mode discussed
in section 5) and the higher modes are called overtones; in keeping with standard
musical practice, the mode of order n + 1 is the nth overtone.

This nomenclature is not universally adopted. It is common to call the over-
tones of stellar pulsations harmonics, even though the frequencies do not form
a harmonic sequence. Moreover, contrary to standard musical nomenclature, the
first overtone is not called the second harmonic, as it should have been had it been
a harmonic, but instead it is called the first harmonic. Despite this inconsistency,
people in the field seem to be able to communicate without undue difficulty. Nev-
ertheless, I shall refrain from misusing the term harmonic.

4.5. Variational principle

Equation (4.1.5) subject to the boundary conditions (4.2.4) and (4.2.15), consti-
tutes a self-adjoint problem, and therefore results from a simple variational prin-
ciple. Consider the functional

(':)2(5) = I{(Evg*) - B(gagt)’ (451)

1(€,€*)
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where the asterisk denotes complex conjugate and

K, n) = * padedr 5 d g —4)p]§77} dr (4.5.2)
&,n) = A R 3 137 , 5.
R
1€ = / pri€nr, 453)
Q0 . .
B, n) = ypriing| (4.5.4)

are defined for all twice differentiable functions £ and 7 that satisfy the boundary
conditions (4.2.4) and (4.2.15). Equation (4.5.1) was obtained from eq. (4.3.1) by
setting &, = &, & = n and w2 = &% It is straightforward to show in the usual
way that & is stationary with respect to variations 8¢ to ¢ satisfying the boundary
conditions, when £ is an eigenfunction £,, of the problem (4.1.4), (4.2.4), (4.2.15),
and the stationary values of &2 are the corresponding eigenvalues w2,

One can also demonstrate the reality of the eigenvalues. If w? < w2, so that the

condition (4.2.15) can be replaced by eq. (4.2.16), it follows that
(16, + prHEE™| ] WP = K(&,€). (4.5.5)

All the terms except possibly w?, in this equation are real, from which follows that
w? must be real. The coefficients in eq. (4.1.5) and the boundary conditions (4.2.4)
and (4.2.16) are therefore real, from which follows that one can choose £ to be real.
This argument is generalized in appendix II to the case when w?/w? is not very
small, and the boundary condition (4.2.15) must be used instead of eq. (4.2.16);
the result is that if w s real it must be smaller than w.

4.6. Lower bound to the pulsation frequency

A simple lower bound can easily be derived from eq. (4.5.1) provided the boundary
term B can be ignored, 7 is considered to be constant and provided the mean
density p(r) of that portion of the star within the sphere of constant r decreases
outwards (a condition that always appears to be satisfied in stable theoretical stellar
models). Since the first term of the integrand of K (&, &) is positive definite (see
eq. (4.5.2)), it follows that

f r3(Gmp/r?)€* dr
fo pri&2dr

o) p(R)E? du
fon &2duy

=203y-4)

= 4?”(37 — HGp(R) (4.6.1)
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where
3m
plry = Al 4.6.2)
and
du = prdr. (4.6.3)

In deriving eq. (4.6.1) from eq. (4.5.1) the hydrostatic equations (2.1)—-(2.3) of the
equilibrium state have been used. Since it has been assumed that 5(r)/g(R) > |,
it follows from the inequality (4.6.1) that

wt > 3y - 4)%‘[ = 3y — 4. (4.6.4)

It has already been pointed out that wy is a typical dynamical frequency. Now we
see, since 3y -4 =1 ify = 3, that it gives a lower bound of w. This lower bound
cannot be achieved in practice, since it would require the density to be uniform,
which would be convectively unstable. (If p = const., eq. (4.1.4) is satisfied by
§ = const., and the condition (4.6.1) is satisfied with equality.) A more stringent
bound, applicable to solar-type stars, is discussed by Christensen- -Dalsgaard et al.
(1983).

Notice that if v > %, w? > 0 and the star is dynamically stable. By way of com-
parison it is interesting to note that the fundamental frequency w; of a polytrope
with index 3 is about 3wy; the values for theoretical models of the present Sun are
about 2.6wy.

4.7. Elementary discussion of dynamical stability

Consider the Roche model of a stellar envelope, discussed in appendix I11. For the
purpose of calculating the gravitational acceleration, g, it is assumed in construct-
ing that model that all the mass of the star is concentrated at a point at the centre,
which simplifies the analysis tremendously. I use the model simply as a guide, and
do not assume that 7 is constant (even though I used the perfect-gas law with u
constant to obtain the structure (A3.6)). Substituting the solution (A3.6) into the
adiabatic pulsation equation (4.1.4) yields

d*¢ T 2 GM
— (W — (3v - 4)——— = 4.7.1
a2 T ciro 3y -4 3 £=0, ( )

where cg is the sound speed at some reference value 1 of r. Assume w? 0 and
consider the fundamental mode, for which ¢ has no node. Select a normalization
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such that £ > 0 and recall that d§/dr = 0 at r = O (condition (4.2.4)). Either
dé/dr < Oordé/dr > Oatr = R. Suppose the former: then d*¢/dr’> < 0
somewhere, and there, according to eq. (4.5.1), S = w? — By — H)GM /> > 0.
Suppose now that d¢ /dr > O atr = R;1adopt the outer boundary condition (4.2.5)
and deduce immediately that S > O at 7 = R. Thus S 2 0 somewhere, whatever
the functional form of the fundamental eigenfunction £. Consequently, if the star
is dynamically unstable (w? < 0) to radial perturbations, it must be the case that
v < 43 somewhere.

What [ have just presented is far from a general proof, because it depends on
the structure of the Roche model and it rests on the premise (which is correct
for realistic stellar models, but which I have not proved) that the fundamental
eigenfunction has no node. The result that -y must be less than ‘% somewhere in a
star that is unstable to radial adiabatic perturbations is, however, a general resuit.
It has been proved, e.g., by EJ. Dyson (unpublished), using an energy argument.

4.8. The Liouville-Green expansion of high-order modes

When n > 1, w 3> wy and the eigenfunctions ¢ of eq. (4.1.4) oscillate rapidly
with r. In that case one can utilize the Liouville-Green (JWKB) approximation.
The principle of the approximation is to write the eigenfunction as the product of
a rapidly oscillating sinusoidal function with an appropriate phase and a slowly
varying amplitude, A. Thus one might set £ equal to

Re [A exp (i/\/iﬁdr>] , “4.8.1)

where X 1= w/wy is large and A and %) vary on the same length scale as the equi-
librium state. One then substitutes the form (4.8.1) into eq. (4.1.4) and essentially
equates to zero the coefficient of each power of A.

4.8.1. Reduction to standard form

Before proceeding I will cast eq. (4.1.4) into a form that contains no first deriva-
tive of the dependent variable, in the expectation that the leading-order terms will
then give a more accurate representation of the solution. This is suggested by the
damped-oscillator equation

2

d
9 2 k2 —0, 0<a<l 4.8.2)
dz? dz

where here x and K are constants, and K is large. One could expand y in powers
of x/K about the solution of d?y/dz? + K%y = 0, but this requires some work
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(see appendix 1V). However, if instead the first-derivative term is eliminated by
replacing y with 1 = y exp(xz), the new equation

2

d
S0 (K~ k=0 . (4.8.3)
dz?

is actually solved exactly by a function of the form of eq. (4.8.1), provided one has
the good sense to include the x? term at the outset. Evidently, when K and « vary
slowly with z, one would still expect to reap the benefits of such a transformation.
Accordingly, I set

E=r"2p 2cE, (4.8.4)

which transforms eq. (4.1.5) into

ez,
m + [{ E = 0, (48'5)
where now
2 _ 2
K= - (486
C

is the square of a characteristic wave number (and is not constant), and w is a
critical acoustic frequency which is given by

—4 2 2q1/2
¢ 1 4opy y 407 W | 12H

_ < 487
2H yrH, rH, | “48.7)

We

the prime denoting differentiation with respect to the argument r; also I require
various scale heights:

_ dlnp _ dinp _ din~y
b o Vo 7
H™ = ol H ot HI e
—1 o gt -1 -1
M = H o+ H -4
dlne 1
1. _ -1 -1 -1
H =— = —§(H7 +H, —~H™), (4.8.8)

the first of which will not be needed until later. The density and pressure-scale
heights are defined, as usual, with a minus sign, to make H,, positive everywhere
and H positive throughout most of the star; I include a minus sign in the definitions
of H., and H, for consistency, and will also do so in future for all other scale
heights.
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The quantity w, defined here is a generalization of Lamb’s critical. fre.:quen.cy,
which for a plane-parallel, isothermal atmosphere under constant gravity in which
~ is constant was given by eq. (4.2.14). It clearly reduces to LLamb’s value under
those restrictive conditions. Note, furthermore, that w, is relatively large near the
surface of the star, where scale heights are small; it is evident from making either
the isothermal or the polytropic approximation that w? o< yg/H, the constant of
proportionality, which depends on the stratification of the star, being of order unity.
Furthermore, w, diverges as 7 — 0.

4.8.2. Radial oscillations of the isothermal atmosphere revisited

Having obtained the standard form of the radial-pulsation equation, one can now
take geometry into account in the discussion of the os.cillallons of an isothermal
atmosphere (r 2 R) with constant «y. Using the equilibrium state (Al.14), (A1.15)
of appendix I, one can immediately establish that

$= Wowpo  roRo o p (4.8.9)
T a RH?

where ¢ is constant and

c 42 - nH

is the value of w,. at = R. As far as conditions at the base of the atmosphere
r = I} are concerned, it is only in the lower few scale heights that the structure of
the solution is important. Therefore the right-hand side of eq. (4.8.9) is small, an'd
can be used as the basis of a perturbation expansion. (Even though eq. (4.8.9) is
essentially Airy’s equation, whose solutions are well documented, it fs most con-
venient to develop the expansion ab initio for this small range of the mdepen(.ienl
variable.) Thus one canset = = Zg + HR™'=, + - - -, where here Z; are functions
of r satisfying

=1 2

B2 Ey =0, 4.8.11)

[1]?

|~ KE, =(r-RH 5, ..., (4.8.12)

where k2 = (‘*’30 — w?)/c?. The causal solution (which is that which is not forced
from above) for the case 2 > 0 is

(i

=}
Il

(1]

e (4.8.13)

b

r—R_
I=H3K,2 —0

{1

[1+K(r—R)]e ™™, ..., (4.8.14)
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where = is a constant.

Since ¢ and d¢/dr are continuous at 7 = R, at least when 7y is continuous, a
boundary condition at r = R to be applied to the solution for r < 2 can be
obtained by eliminating = between = and =’ and expressing the result in terms
of £ using the transformation (4.8.4):

j_f Hle =74 RT'Q - JH R 7))E =0 atr = R, (4.8.15)

which replaces condition (4.2.15). It is evidently preferable to either eq. (4.2.5),
(4.2.10) or (4.2.15). For modes with w? < w?, x can be expanded about ¢!

wCOv
reducing the boundary condition to
d¢ w?
YR—=+ 3y-4-—=|€~0 atr=R, (4.8.16)
dr wh

which is identical to condition (4.2.5).

4.8.3. The IWKB approximation

We are now in a position to proceed with the approximation of the solution in the
interior of the star. The idea is to set

Z=Aexp (i)\/d;dr> , 4.8.17)
where R is of order unity, substitute into eq. (4.8.5), yielding
—APPA+INQYA + P A)+ A" + K2A =0, (4.8.18)

and equate powers of A (cf. appendix V). However, I am not going to adhere
strictly to the rules. I recall not only the advantage of retaining the small term 2 in
eq. (4.8.3), but also that w, becomes large near the surface of the star and diverges
at the centre. I therefore consider w, to be possibly O(A\?). I will solve only the
leading-order equations for A and 1, so it will not be necessary to expand these
functions in inverse powers of ), as was done in appendix IV. The equations are
(cf. egs. (A4.8) and (A4.10)):

W — w2

et (4.8.19)
and

21/)% ; %A =0, (4.8.20)
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from which
M) = e Hw? — w2 (4.8.21)
and
A =02 = S AWt — w8, (4.8.22)

where Zg is again a constant.

Stopping at this order is the JWKB approximation. I emphasize again, how-
ever, that by first casting the pulsation equation into the standard form (4.8.5), the
approximation at this order is likely to be considerably more accurate than the
outcome of expanding the raw equation (4.1.4) to even the next order. Moreover,
it requires substantially less effort.

4.84. Form of the solution: wave trapping

Where K2 > 0 (we < w), 9 is real and the solution (4.8.17) is oscillatory: the up-
per and lower signs in eq. (4.8.21) yield waves propagating outwards and inwards,
respectively. A linear combination of two such waves with the same amplitude
produces a standing wave:

¢ ~ So(r*pe) A (w? — w2 sin U(w whH!/? ] (4.8.23)

Where w. > w > 0, 9 is imaginary and the solution is evanescent. This is al-
ways the case near the centre of the star, and is also so near the surface, provided
w does not exceed the value of the critical acoustic frequency in the stellar atmo-
sphere. The mode is then said to be trapped between the two evanescent regions.
In the analysis that follows I will assume that the mode is evanescent in a finite
region immediately beneath r = R.

4.8.5. Bridging the transition: eigenvalue equation
The transition levels between the evanescent layers and the region of propagation,
r =7 and 7 = 7, are turning points of eq. (4.8.5). There, w; = w and A would
be infinite if eq. (4.8.22) were valid, which of course strictly speaking it is not: as
we — w, eq. (4.8.22) implies that |A’/A| — oo, which contradicts the ordering of
the terms assumed in the expansion of eq. (4.8.18).

The transition at the turning point can be obtained from Olver’s (1974) com-
parison method. The principle is to approximate eq. (4.8.5) by another equation
with the same mathematical properties and which can be integrated more readily
through the turning point. Since in general the tumning point is a simple zero of K2
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(i.e. dK?/dr # 0 at the point where K? = 0), the appropriate comparison equation
is Airy’s equation, which [ write in the form:

dZ
d—J:JZ +xzy = 0. (4.8.24)

There is an integral representation of the solutions of this equation, valid for all 2.
Therefore one can connect appropriale asymptotic approximations in the evanes-
cent and oscillatory regions, valid for z — —co and £ — +00, either by evaluating
the integral by the method of stationary phase or by consulting any standard text
on special functions (e.g. Abramowitz and Stegun (1964)). For z — +00, the
solution Ai(—z) that decays to zero from above as £ — —00, is given by

Ai(=z) ~ 7 e~ sin(ad? + by + O ), (4.8.25)
the solution for z — —o0 is

Ai(=z) ~ da7 2 (=)™ expl-2(-2)*/ A {1 +0(z™ "l (4.8.26)

The other solution is Bi(—z), whose asymptotic behaviour far from the turning
point is

Bi(—zx) ~ = 2= /A cos(%n:}/2 + ‘—"ﬂ) forz — o0, (4.8.27)

Bi(—z) ~ 7~} (—z)" /4 exp(2(—2)*/?] forz — —o0. (4.8.28)

The reduction of eq. (4.8.5) is accomplished by the Liouville transformation

2/3
_sgn(K?)l / K dr‘ , (4.8.29)
U = [z K|VPE, (4.8.30)
leading to
2y
‘;—mw r(lz' KDY, (4.8.31)
where
2.~1/2
hls(r)] —s'/zd s (4.8.32)
dr?
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It has been proved that an asymptotic expansion of the solution of eq. (4.8.31) can
then be obtained by regarding the right-hand side as a small perturbation to the
Airy equation, provided, of course, /. does not diverge (Olver 1956, 1974, Langer
1959). 1 will retain only the leading terms Ai(—z) and Bi(—z) of that expansion.

To determine the combination of Ai and Bi that represents the solution to the
pulsation problem, we must first consider the expansions in the evanescent re-
gions near 7 = 0 and r = I, where the boundary conditions are applied. First
consider the solution for  — 0. Unfortunately /. diverges as 7 — 0, and the
asymptotic expansion is invalidated. This should be no surprise since we know
that r = 0 is a singular point of eq. (4.8.5). The existence of a singular point near
the turning point of the equation renders its mathematical structure different from
that of the Airy equation (4.8.24); to be correct we should use a more compli-
cated comparison equation, such as Bessel’s equation. However, in an attempt to
keep the analysis simple, one might consider retaining the Airy-function approx-
imation in the hope that the influence of the singular point is appreciable only in
the tail of the evanescent decay inwards from r = 7|, notwithstanding the fact
that 7 ~ \/—Zw"c(O) — 0 asw — oo, and does not have a severe effect on
the solution in the propagaling region. Thus, we evaluate the asymptotic represen-
tations (4.8.26) and (4.8.28) for Ai and Bi as r — O,'oblaining ¢ « r®, where
a=-3+v2=-0086 for Aiand a = —3 — V2 = —2.91 for Bi. Although
these values are not identical to the roots 0 and —3 of the indicial equation for the
singular point, they are quite close; it is evident that Bi must be rejected and that
Ai corresponds to the regular solution (4.2.3). The asymptotic expansion (4.8.25)
of that solution far from 7 = 7| in the region of propagation, r; < r < 7y, is

=~ 3, K" sin (/ K(s)ds + %) , (4.8.33)

where =, is a constant.
Near the surface | assume that X2 has a single zero, at r = r,. The eigenfunction
¢ is therefore evanescent all the way from 7 = r; to the surface. If the solution is

¥ x Ai(—z) — eBi(—2x) (4.8.34)

for some constant ¢, with z defined by eq. (4.8.29) with r; = r,, then forr > r,
and far from r;

=~ 5 K72 [%exp (—/ | K (s)] ds) —cexp (/ |I\'(s)lds>} ,
" h (4.8.35)

where Z; is also a constant. Application of the boundary condition (4.8.15), which
in terms of Z is dZ/dr + (s — R7'H2k"2)Z = 0 at r = R, determines the
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constant ¢. If the geometrical term is ignored, the condition becomes

{

d=

—+k=Z=0 atr=R, (4.8.36)

dr
and hence

_ I Kk — |I{(R)| ~2d

€= P IK(R)I e, 4.8.37)

where
R
d=/ | K (r)] dr. (4.8.38)

2

Note that |/{(?)| is interpreted as the limit of |I{(r)| as » — R from below;
is the limit of [K(r)| as 7 — R from above. The two are not necessarily equal,
because c and w, could be regarded as being discontinuous at the interface r = R.
The solution in the region of propagation, | < r < ry, far from the turning points
is thus

L) »
=~ Z,K 7 sin </ K(s)ds + % — tan™! e> , . (4.8.39)

where =, = (1 + €23, ~ =,.

The two expressions (4.8.33) and (4.8.39) must be identical, and are also equiv-
alent to eq. (4.8.23) with appropriate limits of integration. Therefore =, = +=,,
and formally

T2
/ Kdr=(n-{m+an"'e, n=12,.... (4.8.40)

1

Equation (4.8.40) determines the eigenvalues w,, of w. Since the asymptotic ex-
pansion was developed subject to the assumption that -

R 2
A=i=o<w/ dl):o(/ Kdr>>>l, (4.8.41)
UJO 0 c T

it follows that eq. (4.8.40) is actually valid asymptotically for large n.

It is important to note that the depth of the evanescent region increases as w
decreases: for the plane-parallel polytropic envelope with index p discussed in
appendix I, e.g., w? = ;(u — 1)ygz~!, and therefore R — r = 1(u — )ygw 2.
Consequently, for relatively low-order modes the details of the upper boundary
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condition, and therefore the structure of the upper atmosphere, are not very impor-
tant. This is reflected in the factor e=2% in eq. (4.8.37) for ¢, which when w? < w?
is approximately {%e[(u + /(e — Dlw/we}®, where a = 24/(2 — 1) and w, is
evaluated in the atmosphere for r > R. A more precise evaluation of ¢ for this
model is presented in appendix VI. As far as acoustic oscillations are concerned,
the outer layers of the Sun, e.g., can be approximated by a polytrope with index 3
(see section 6 and appendix VIII). Therefore the influence of the atmosphere is
seen to be a rapidly varying function of w, and contributes approximately unity
to the integral in eq. (4.8.40) when w & w,. In the Sun, w ~ w, when n ~ 35.
Thus, the relative contribution that the atmosphere makes to the highest-frequency
modes is €/nm, which is about 1%, and is not insignificant. It is a straightforward
matter to verify that this quantity also is an estimate of the ratio of B to K in
eq. (4.5.1), as indeed it must be.

Finally, it is instructive to simplify the asymptotic expression (4.8.40) for the
frequencies. The critical acoustic frequency, we, is comparable with w only very
near the surface of the star and, in’'the form given by eq. (4.8.7), near the cen-
tre. (The natural definition of w. depends on the initial choice of dependent and
independent variables; another expression, based on the use of the Lagrangian
pressure perturbation as dependent variable, is given by eq. (5.4.9). Unlike ex-
pression (4.8.7), that expression does not diverge at = 0. Thus it can be ignored
almost everywhere.) Near the centre, ¢ is approximately constant and w, ~ —¢/r,
as can be seen by expanding expression (4.8.7) about the origin. The contribution
from w, near the centre can therefore be estimated from

r

/ (w? —wcz)'/zc_ldrrv (w? —cz/rz)'/zc_'dr

efw
TW -1 ( c )
= — —COs —
C TWw
"d
~w | LT (4.8.42)
0 C 2

the asymptotic limit being valid for large wr/c and w H,/c. The contribution from
w, in the surface layers can be estimated by using once again the polytropic model
of appendix 1. Now I ignore the atmosphere, because 1 have already estimated its
influence. Consider w, to be insignificant below, say, z = Z. Then the contribution
to the integral in eq. (4.8.40) above z = Z is approximately

VA 2 1/2
w2y | B g zo\'/2 dz
=20 — = —1 = — 4.8.43
T(2) Co/ P 7w )M%J (z) o ( )

the lower limit of the integration being where the integrand vanishes, which is
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taken to be the reference depth zy. Evaluation of the integral is straightforward:

co \p*—1

zZ
=/ 9—% 21, (4.8.44)
o € .

1/2
. rz_llzf (Z_> _g]

It follows immediately from eq. (4.8.40) that when e is ignored, the frequency is
given by

w~n+ %\/uz — Dwao, (4.8.45)

where here

—1
R
m=(w/ %) : (4.8.46)
0

is a new characteristic dynamical frequency (different, yet similar in magnitude, to
the quantity with the same name given by eq. (4.2.6)) defined in terms of the char-
acteristic acoustic travel time [ c¢~'dr from the centre to the surface of the star.
Equation (4.8.44) resembles the equation for the resonant frequencies of an organ
pipe, with a constant shift %\//12 — | resulting from effective phase jumps at the
two reflecting ends. It exhibits the fact that, since the influence of the stratification
of the star is significant only near 7 = 0 and 7 = R, it can be represented simply
as an effective change of boundary conditions. It is interesting to observe that,
on taking account of the contribution from the Airy function, the lower turning
point contributes — ;7 and the upper turning point 3(3 — /2 — D7 to the effec-
tive phase jump. Thus, eq. (4.8.45) is comparable to the exact result (A6.28) with
5 = 0 for a complete plane-parallel polytrope on a rigid base (at which there is no
phase jump), which suggests that the accuracy of eq. (4.8.45) might be improved
by replacing /2 — 1 by u. A similar replacement is suggested in section 5.8 for
nonradial modes.

5. Nonradial oscillations about a spherically symmetric state

The term “nonradial” in this context is a misnomer: it refers to motion that is not
purely radial, and not necessarily to motion that has no radial component. Indeed,
in a spherically symmetrical star, there is no mode with a nonzero frequency that
has no radial component of the displacement &.
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5.1. The equations of motion

Because the equilibrium state is spherically symmetrical, with respect to spherical
polar coordinates (r, 8, ¢) eqs. (3.1)=(3.11) admit separable solutions of the form

— m @dplm imn('r) m i —iwt
&(r,t)—ReKﬁ(r)P, S AR I LsineP, )e } | (5.1.1)
and
P(r, t) = Re[yh(r)P™(cos ) e™¢ 1wt (5.1.2)

for any scalar Eulerian or Lagrangian perturbation 1), where P (cos ) is the as-
sociated Legendre function of the first kind of degree | and order m, and

L=+ D)7, : (5.1.3)

Note that in the case of scalar perturbations I use the same symbol to denote both
the complete perturbation and its 7-dependent amplitude. Note also that £ is now
the amplitude of the vertical component of the displacement, and is not scaled
with »~!, as it was in eq. (4.1.1) for radial pulsations. With this decomposition,
egs. (3.1), (3.6)-(3.8) and (3.10) can easily be reduced to the following two dif-
ferential equations in £ and p’, n having been eliminated using eq. (3.10) and the
horizontal divergence of eq. (3.6), and the density perturbation having been elim-
inated using eq. (3.11):

1d , g L\ p' L
—— -2 N e p 5.1.4
ridr (&) c2§ " (l wir? J pc? S ( )
dp’ g , 5 5 do’
Ea — = 5.1.5
by Al L L (5.1.5)
(e.g. Unno et al. (1979)), where IV is the buoyancy frequéency, given by
L g
:__ (2 _ 9 5.1.6
N'=g ( T c2> (5.1.6)

and H is the density-scale height defined by eq. (4.8.8). The reduced Poisson equa-
tion determining the amplitude of the Eulerian perturbation to the gravitational
potential is

! 2 ! 2
14 (20N Ly g (B Np (5.1.7)
ridr c?

dr r2

g
dbp  p
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[ find it convenient to express the equations in terms of the Lagrangian pressure
fluctuation dp. This is accomplished with the transformation (3.5). After some
straightforward manipulation, eqs. (5.1.4) and (5.1.5) become

dé 2 Ly L2\ &p L,
- - - -] === D 5.1
ar (7‘ wir? t+d w?r? ) pc? wir? " ©-1.9)
dép = Lg i do'  Lg
aop | 5p— 9P ¢ + 299, 5.1.10
dr w2 P Ty £=¢ dr = w?r? ( )
where the discriminant f is given by
| oo L*g

A S 5.1.11

/ g H, wr ¢ )

H, being the scale height of the gravitational acceleration, g, defined with the sign
convention of eq. (4.8.8).

Equations (5.1.8)—(5.1.11), with appropriate boundary conditions at » = 0 and
T = IR, constitute an eigenvalue problem for a general adiabatic mode whose dis-
placement eigenfunction has the form (5.1.1), (5.1.2). The degree [ of the associ-
ated Legendre function is called the degree of the mode, and the order m I will
refer to as the azimuthal order of the mode. Radial modes have { = 0, and indeed
in that case, with the appropriate solution of eq. (5.1.8) and after some tedious
manipulations, egs. (5.1.9) and (5.1.10) can be reduced to egs. (4.1.5) and (4.1.6)
for the dimensionless displacement. For each value of | (and m) the eigenvalues
form a discrete sequence, and will again be labelled with an integer n called the
order of the mode. As we will see later, except when [ = O there are two distinct
types of modes, one with high frequency and the other with low frequency. The
latler are sometimes assigned negative values of 7.

5.2. Boundary conditions

As in the case of radial oscillations, the centre of the star is a regular singular point.
The regularity conditions are :

' = oty (5.2.1)
and

op = 0@, (52.2)
or equivalently

£=0¢"), a=(-1 ifl>1,
a=1 ifl=0, (5.2.3)
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asr — 0. Thus
o’ 1,
~—-®" -0 asr —0, (5.2.4)
dr r

with a similar equation for dp, or

d
S %0 a0 (5.2.5)

The boundary condition for ¢ at the surface = I is determined by matching &’
and its derivative with a causal vacuum field. Thus, ®’ « 7~ '~! forr > R, and
hence

do’ N [+1
dr T

&' =0 atr=R. (5.2.6)

The dynamical condition is obtained by matching with the causal solution in the
region v > . If that region is assumed to be isothermal, and the plane-parallel
approximation is made, the equation of motion for r 2> R (which is obtained by
eliminating 6p using egs. (5.1.9) and (5.1.10) with &’ = 0, neglecting the perturbed
gravitational potential being at present an unjustified assumption, to which I will
return later) is given approximately by

d _ dé 2 N2 B
G (e-r/H w' N o
dr < dr) * [cz K (‘ 2 )} ¢ £=0, (5.2.7)

where k = L/, which reduces to eq. (4.2.11) when k£ = 0. It is immediately
evident from the analysis of radial pulsations that, at least when p and +y are con-
tinuous, the appropriate boundary condition is

%+g@m=o atr=R (5.2.8)

(cf. appendix V1), where &(w) is given by eq. (4.2.13) with w? replaced by w? —
k*c*(1 — N? /w?). Care must be taken to choose the correct square root (appendix
V). It is straightforward to incorporate the geometrical terms, as was described
for radial oscillations in section 4.8, and the influence of the perturbation of the
gravitational potential.

It is important to notice that neither the governing differential equations nor
the boundary conditions explicitly depend on m. Therefore the eigenfrequencies
w = wy, are also independent of m.
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5.3. Variational principle

An integral relation for the frequency can be obtained directly from the basic lin-
earized equations of motion, as in section 4.5. Substituting —iw& for u in eq. (3.6),
taking the scalar product with the complex conjugate, £*, of £, solving eq. (3.9)
for &', eliminating p’ and p’ using egs. (3.11) and (3.10) and integrating over the
unperturbed volume, V, of the star yields

2 _ K&, &) - B.£Y
w’ =

5.3.1
I(€, &%) ’ ( )
where
K, n) = / [yp divEdivn+ & - Vpdivn+n-Vpdive
v
+p (€ Vp)(n - Vp)IdV
G// le p(T‘)E(T)] le [p(r )T]('f' )] dV dvl, (532)
lr — /|
1= [ pg-nav (5.33)
v
and
B, 1) = / ,o(c2 divE ~g - &—dHm-dS, (5.3.4)
S
where
__G/dwmvmwn | 53.5)
[r — 7|

S is the unperturbed surface of the star and div’ means the divergence with respect
to the primed independent variable. This is the Eulerian analogue of eq. (4.5.1),
but of course is valid for both radial and nonradial oscillations.

Suppose now for simplicity that the oscillations are evanescent in the outer lay-
ers of the star and that the surface S is taken to be sufficiently high in the atmo-
sphere that the boundary term 3 can be ignored. It is immediately obvious from
the symmetry of the integrals (5.3.2) and (5.3.3) that eq. (5.3.1) constitutes a vari-
ational principle for all functions £ that do not cause B to be significantly large
(e.g. Chandrasekhar (1964)). (The integral K (£, n7) is symmetric in § and 7 since
in a spherically symmetrical star Vp and V p are parallel.) It can also be shown
that subject to suitable boundary conditions, eq. (5.3.1) is a variational principle
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when B is included, but I refrain from discussing that here, partly because the
boundary conditions have not been discussed. By the same argument as was used
in section 4.3, orthogonality of the eigenfunctions can be established. It follows
also from the symmetry of K and I that w? is real, at least when 3 is negligible;
it is perhaps worth recording the physical tautology that, as is the case for radial
pulsations, w? is real for adiabatic motion whenever the boundary conditions are
perfectly reflecting.

5.4. The Cowling approximation: reduction to standard Sorm
By differentiating eq. (5.1.10) with respect to r, using eq. (5.1.9) to eliminate

d¢/dr and then using eq. (5.1.10) to eliminate &, an equation relating &p to ¢’
is obtained:

d?s _,dé 1 L? N?
L%\ u '—”+L—2(w2+2)— (1——)]6p=—pF, (5.4.1)

dr? dr n) o r? w?

where
Fe (4 4L 4" Lo o\, Laof

pE=—\ F T \P e Yo + Wil e, (54.2)

hl=H;"+2r! (5.4.3)
is the scale height of g/r?,

H'=H '+ H'+h~ ar! (5.4.4)
where H is the scale height of f, and

1 g 2
Aﬂ:g(ﬁ_c_fﬁ)' (5.4.5)

The difference between A2 and N? is the outcome solely of spherical geometry
and self-gravity of the equilibrium state: in the limit of a plane-parallel envelope
under constant gravitational acceleration A2 reduces to V2. However, the scale
height H is different from that defined by eq. (4.8.8) in the discussion of radial
oscillations.

Cowling (1941) showed that, except for modes of low degree { with a numer-
ically small order n, the perturbation ¢’ to the gravitational potential has a rela-
tively minor effect on the modes. Although &’ must be included in accurate nu-
merical computations of all but the high-degree modes, it has little influence on the
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basic dynamics (except for modes with { = 0 and [ = 1, but I will not discuss this
here), and consequently I will ignore it. Thus [ set ' = 0, and eq. (5.4.1) reduces
to a single second-order differential equation for &p.

It will be convenient to reduce eq. (5.4.1) to the standard form of section 4.8.1.
This is accomplished by the transformation

f 1/2
5p=<gri3) ¥ = ud, (5.4.6)

resulting in the equation
¥+ K20 =0, (5.4.7)

where as before the primes denote differentiation with respect to the argument
(here r), and now

wz—wE_L2 (I—Aﬂ)

P )

K?=

— (5.4.8)
w

The critical acoustic frequency, wc, sometimes called the acoustic cutoff fre-
quency, is defined by

2 _ CZ ! g
w = 47_[2(1 2H" b (5.4.9)
Itis different from the definition (4.8.7). That is because here the dependent vari-
able W is based on the pressure perturbation, §p, whereas the radial osciliations
were discussed in terms of the displacement, £. Since these variables do not have a
constant ratio, their points of inflexion must be at different locations, and therefore
the critical frequency (when [ = 0) at those points must be different. Note that H
is the scale height of the factor u defined in eq. (5.4.6).

The notation I have used was chosen to make the equations look similar to those
that have already been developed by Deubner and Gough (1984), who did not take
the spherical geometry fully into account. Equations (5.4.5) and (5.4.9) reduce to
the corresponding equations of Deubner and Gough if A~ — 0and H — H, and
indeed approximate them well everywhere except very close to the centre of the
star. [ will call the limits of w? and N as h~' — 0 the planar values.

5.5. Mode classification

Waves can propagate where K2 > 0 and are evanescent where K2 < 0. Because
of the way in which K? depends on the two parameters characterizing the mode,



Linear adiabatic stellar pulsation 441

w .a'nd L, it is more convenient o discuss the trapping in tetms of the (positive)
critical frequencies wy at which X2 = 0. One can rewrite eq. (5.4.8) as

WP K? = (W — W) (W? — W), | (5.5.1)
where
Wi = J(ST +wd) £ [5(ST +uD)? — NS, (5.5.2)
The quantity
Le
S=— (5.5.3)

7

is usually called the Lamb frequency.

The frequencies w, and w_, computed at various values of { using the planar
values of w, and N, are plotted against r in fig. 2 for a theoretical model of the
Sun. Note that the major spherical factor, in S?, is correctly incorporated. The
other spherical corrections are significant only very close to the centre of th(; Sun
and could not easily be included in the figure because they depend, through 7, on
w. Except near the centre of the star, where w, is approximately constant and /;/ =
Q(r), the frequencies w, and AV are comparable in the radiative regions. (Except in
the S}Jperadiabatic boundary layer immediately beneath the photosphere, N? < 0
and is very small throughout the convection zone; therefore N? is small there
too.) Well beneath the photosphere S} is substantially greater than w? and A2
and therefore w, ~ Sy and w_ ~ N. In the atmosphere S? is typ‘icallycmuch less’
than w? and A2 (unless { 2 2000), and w, =~ w, and w_ =~ 2L(H/R)N.

A wave can propagate where w > w, or w < w_ and is evanescent where
w_ < w < w,. High-frequency waves are determined mainly by the behaviour of
W, 'and hence depend predominantly on ¢ and w.. They are a nonradial general-
ization of the spherically symmetrical acoustic oscillations discussed in section 4
and have been named p modes by Cowling (1941), because pressure perturbalions?
provide the major contribution to the restoring force. Low-frequency waves are
controlled mainly by the buoyancy frequency, N: Cowling called them g modes
because gravity, through buoyancy, is the major contributor to the dynamics. They
are standing internal-gravity waves.

Includ.ed in fig. 2 are several thin horizontal lines, representing the (constant)
frequenqes, w, of various modes. They are drawn continuous in the regions of
propagation and dashed where the modes are evanescent. On the whole, p modes
are confined to an outer region of the star-beneath the photosphere, the trapping re-
gion becoming shallower the higher the value of [. At frequencies near 5 mHz it is
also possible for p modes to be trapped in the chromosphere. Provided [ < 2000,
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Fig. 2. Propagation diagram for a model of the Sun. The corona is represenied by a plane-parallel
isothermal atmosphere at temperature 1.5 X 109 K. Solid curves represent w+ /27 and dashed curves
w_ /2m, in the regions where the critical frequencies w4 are real. Propagation at any frequency is
possible where w are complex. The lower abscissa is the acoustical radius, 7, measured in units of
(he acoustical radius, T', of the photosphere; the upper abscissa is the geometrical radius, 7/ R. The
curves w. are for [ = 2, 5,20, 100 and 500. In all cases w. are increasing functions of [ at fixed 7,
which permits the identification of the curves in regions where Lhey are not labelled explicitly: in the
interior the w_ curves for { > 5 are cssenlially indistinguishable, as are the w_ curves for! > 20
in the corona and all four w4 curves in the chromosphere, where we = we. Notice the dip in the
low-degree wy curves centred at /T = 0.83, corresponding to /R =2 0.98; it is due to the second
ionization of helium, as is evident from fig. 1. The thin horizontal lines represent normal modes; they
are continuous in zones of propagation and dashed in evanescent regions. The lowest-lrequency mode
is a pure g mode. Its amplitude is substantial only in the radiative interior; since it can propagate in
the corona, some energy leakage from the Sun is possible. The next mode is g1 = 2), which has the
character of a p mode in its outer zone of propagation. The third mode is pa(l = 5), which is a simple
p mode confined to a single region of propagation. The highest-frequency mode is pa(l = 500); this
mode resonates in the subphotospheric region of propagation and in the chromosphere, and therefore
has substantial amplitude in both regions.

the chromospheric eigenfunctions are almost independent of [, since the character-
istic horizontal scale of variation, #l~' R, is much greater than the vertical extent
of the trapping region and locally all modes resemble radial modes. I will discuss
later what happens when [ > 2000.

Gravity modes can be trapped either beneath the convection zone or in the atmo-
sphere. Formally, a single mode can exist in both regions; however, the evanescent
decay is so large in the turbulent convection zone that the extremely weak coupling
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between the atmosphere and the interior is likely to be destroyed by the turbulence.
Thus, for practical purposes the interior modes and the atmospheric modes can be
regarded as being distinct.

It is also important to have a formal mathematical classification. An unam-
biguous scheme has not been devised, except when the Cowling approximation
(®' = 0) is applied. For simple models of a star in which, e.g., w? increases and
w? decreases monotonically with 7 for each [, the p modes and the g modes sepa-
rate into two distinct groups. The p modes can be arranged in order of increasing
w and numbered with the order 72, starting at . = 1 for the lowest-frequency mode
and with n also being the number of nodes in £ excluding the zero at r = 0 when
[ #0. Similarly, when ! # 0 the g modes can be arranged in a sequence of decreas-
ing eigenfrequency, with n once again counting the nodes in £. The two sequences
are separated by a mode with no node, whose frequency lies between those of the
g modes and the p modes. This mode can exist only when [ # 0. Cowling called it
the f mode, for fundamental gravity mode.

The modes appear to form a well-ordered sequence even when the star is not
simple. The reason is that only one condition of the form of eq. (5.2.8) relating
d¢/dr to &, is applied at the boundary ~ = R, say. Solutions £ of egs. (5.1.9) and
(5.1.10) with &’ = 0 satisfying the inner boundary condition (5.2.5) form a class
of functions that vary continuously with w?, and pass through eigenfunctions &,
whenever condition (5.2.8) is satisfied. There might be an ambiguity in the order-
ing only if two modes could coincide, which basically would be possible only if
an appropriate average of [(? weighted predominantly over the region of propa-
gation, were stationary with respect to w?; this is not the case since in that region
K? is dominated by either w?/c? or L2N? Jw?r?. Therefore it appears that the
eigenfunctions are well separated. Consequently, if one now considered a realistic
stellar model, to be obtained from the simple model by continuous deformation,
since the modes are continuous functionals of the equilibrium state and cannot
cross, the ordering is preserved. Therefore, in principle the order n of the mode
computed with ' = 0 is a well-defined quantity. I must emphasize that what |
have said is a description and not a proof, since I have not actually proved that the
modes cannot cross.

The order n does not necessarily count the nodes in £. As the equilibrium state
is considered to deform, the eigenfunction £ can develop convolutions, crossing
the axis and generating new nodes in pairs. However, Scuflaire (1974) and Os-
aki (1975) have devised a classification scheme based on a discussion by Eckart
(1960), which counts nodes algebraically according to the behaviour of p’ or &p.
My discussion here is similar, although not identical, to theirs. Equations (5.1.9)
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and (5.1.10) in the Cowling approximation can be rewritten:

d SEN rp
E(?‘zd}&) =— (l - ule) Ffﬂ’, (5.5.4)
d
W op) = %E, (5:5.9)
where
LZ
¥ = exp (‘E / % dr> . (5.5.6)

Let us concentrate our attention on nonradial ({ # 0) p modes. If f > 0, which is
normally the case in the region where p-mode eigenfunctions are oscillatory, then
according to eq. (5.5.5) 9~ 8p has a minimum at a node of ¢ at which d¢/dr > 0
and a maximum at a node where d¢/dr < 0. Moreover, since w? > S? in the os-
cillatory region, it follows from eq. (5.5.4) that the zeros of 6p interlace with those
of £, 724¢ having maxima at zeros of &p at which dép/dr > 0. Figure 3 illustrates
schematically some simple examples of phase diagrams, in which 6p is plotted
against £ as r varies from O to R. Illustrated in fig. 3a is a pure p mode of order
unity. When 7 is small and egs. (5.2.2) and (5.2.3) approximate the eigenfunctions,
dp/€ > 0; thus if the eigenfunction is normalized such that £ > 0 as 7 — 0, the
phase plot starts in the first quadrant. Near the surface £ # 0, and it is easy to see.
that dp/€ is again positive, so the plot must end in either the first or the third quad-
rant. When the equilibrium model is deformed continuously to a state appropriate
to fig. 3b, the beginning and end of the phase plot must have remained in their ap-
propriate quadrants throughout the deformation. Since, according to eqs. (5.5.4)
and (5.5.5), £ and dp cannot vanish simultaneously at a regular point (since ) is
everywhere positive), the phase path cannot cross the origin, and consequently the
number of crossings of the dp-axis in the positive sense, counted algebraically, is
preserved. A simple g mode of order 4, for which f < 0, is illustrated in fig. 3c.
It has four crossings of the dp-axis in the negative sense. Note that in fig. 3b ihe
first crossing is in the negative sense. Here the mode behaves as though it were a
g mode.

The discrimination between p- and g-mode character is made by the sign of the
factor f in eq. (5.5.5). Where f is small, 9p~! 6p hardly varies, and in a simple
stellar model ¢ has no node: the mode is the f mode illustrated in fig. 3d. Of
course, in a real star the f mode can have nodes in £, but the number of p nodes
and g nodes cancel.

In view of this discussion it is sometimes convenient to assign negative integers
n to the g modes. The f mode is designated n = 0. Then w,, is a strictly increasing
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Fig. 3. Schematic phase diagrams. Plolted is 5p against £, characterizing an eigenfunction as r varies
from 0 to R, the arrows indicating the direction of increasing r. Case (a) is a pure p mode of order
unity, (b) is also a p mode of order unity, but with a g-mode-like node near the centre of the star, (c) is
a pure g mode of order 4 and (d) is a pure f mode. )

function of n at constant /. When I refer to a ¢ mode of order 3, say, what I really
mean is therefore a mode of order —3.

Now a remark on the classification of the radial modes. If [ is not constrained to
be an integer, then the fundamental (n = 1) nonradial p-mode “eigenfrequency”
tends continuously to the lowest radial eigenfrequency as { — 0 (Vandakurov
1967a). For this reason | assigned order unity in section 4 to the fundamental radial
mode.

Finally, | must emphasize that once the perturbation ¢’ to the gravitational po-
tential is included, the basis of this simple classification scheme collapses. When
[ is large, @' has little influence, and in practice a scheme of the kind of that dis-
cussed here probably suffices. But when { is small, some modification is necessary.

5.6. The f mode

If one approximates the equilibrium state locally in the vicinity of r = rg, say,
as part of a plane-parallel envelope under constant gravitational acceleration,
egs. (5.1.9)-(5.1.11) in the Cowling approximation reduce to

dE gok? K\ sp
5—7 + 1—7 E=O, (5.6.1)
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dép k2 _
d_r] + g:}_z p—15 " fgop€ =0, (5.6.2)
2 2
—1,_ W gok _
rolf = g_o S (5.6.3)

where go = g(ro) and k = L/rq is the horizontal wave number of the mode.
Under these circumstances the discriminant f is constant. For p modes f > 0 and
for ¢ modes f < 0. The f mode satisfies f = 0. It is evident that under these
circumstances eqs. (5.6.1)-(5.6.3) are satisfied by

dp=0, £ = eklr=—mo), (5.6.4)

W = gk. (5.6.5)

The displacement eigenfunction decays exponentially with depth. It therefore in-
creases exponentially with height, which is an indication that the mode is con-
centrated in the uppermost layers of the star, particularly when k is large. This
suggests that r = ry should be chosen to be near the surface of the star. When £ is
large, the plane-parallel model is a very good approximation, since then the mode
is confined essentially to a very shallow layer, with characteristic depth £~

To complete the solution I first point out that in the plane-parallel approxima-
tion the spherical harmonics reduce to a linear superposition of plane harmonic
functions of the form e**'® for horizontal vectors k such that |k| = k. Hence, it
follows from eq. (3.6) that the amplitude of the horizontal component i of the
displacement £ is

n=i. (5.6.6)

There is a formal companion to the solution (5.6.4)—(5.6.6) of egs. (5.6.1)-(5.6.3)
with the same frequency:

61} = e——k(r-—ro), 5 - ek(r—-rn) /(g-lk _ C—Z)p——l e——Zk(r—-ro) d’l‘,
n=i€+g~ p~ e M), (5.6.7)

The eigenfunction grows with depth and can exist only if the mode were forced
mechanically from below (cf. appendix V). Therefore, in a static star it must be
rejected.

The mode described by egs. (5.6.4)—(5.6.6) is a surface gravity wave. Itis iden-
tical to the waves on the surface of deep water, such as an ocean. Indeed, both the
nature of the fluid and its stratification are irrelevant to the f mode: the solution
depends only on g and k. It is easily verified that the flow is irrotational; pressure
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gradients exactly cancel buoyancy, preventing the generation of vorticity. Thus the
oscillation is independent of the density stratification. Moreover, the flow is also
solenoidal; although the fluid is compressible, it is actually not compressed, so
the motion does not depend on the equation of state. As far as the surface gravity
mode is concerned, a star or a deep lake are indistinguishable. I remark that the
second solution, eq. (5.6.7), is neither solenoidal nor (unless H is constant and
k = H~') irrotational.

The variation of g and the spherical geometry distort the flow associated with
the surface gravity mode so that it is not strictly irrotational, and buoyancy re-
sulting from the density stratification modifies the frequency. To estimate the
modification, it is convenient to use the variational principle (5.3.1). Any close
approximation to the eigenfunctions is adequate. For example, one may choose
£ = —in=elrro/r or & =€k andp =iL~'(2+7k)¢, sothat div € = 0. In
both cases one obtains

w? 3f(r — ro)pe’T dr

~ 1 =207
gok o [ pe?*r dr

= 1 — e(k), (5.6.8)

where the integrals are over the entire star. In obtaining the expression in this form
it was assumed that g oc 7=2. This is consistent with choosing 7 to be near the
surface of the star. It was also necessary to perform an integration by parts and
discard the integrated term k™' p €®*” whilst retaining [ pe?*" dr. If one assumes
that the integral extends well out into the upper atmosphere, and into the corona
if there is one, this is likely to be a good approximation. Defining 7(L) to be the
average of r weighted by pe*™, eq. (5.6.8) can be rewritten as

w? > gro)Lry '[1 = 3(F/ro — 1) — 2L71). (5.6.9)

Equation (5.6.8) shows how w? depends on p. In particular, it shows that pro-
vided ! is large, but not too large (! < R/2H), the mode depends mainly on
conditions in the vicinity of the photosphere. Beneath the photosphere one can ap-
proximate the equilibrium state with a polytrope, as in appendix I. Thus, density
increases downwards only as a power of depth, z. This is overcome by the expo-
nential decay of the displacement eigenfunction, and the weight function pe~2k=
in the integrals rapidly drops to zero. Above the photosphere the atmosphere is ap-
proximately isothermal, and p oc €72/ Thus, provided the density-scale height,
H,isless than (2k) ™', the integrand again decays away from the photosphere (this
determines the upper limit to the degree [ alluded to above). The mode is thus
confined near the photosphere, which is therefore about the best level at which to
choose the value of ro. Then 7 — rq is least where the energy density, p €2k =m0,
of the mode is greatest, and the right-hand side of eq. (5.6.8) is only weakly de-
pendent on L. Indeed, it is easy to show that in that case 7/rg — | = O(L™").
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Moreover, the error in the expression in square brackets in eq. (5.6.9), which can
be estimated from the next term in the expansion of eq. (5.3.1), is O(L~2). It is
interesting to remark that in that term a dependence on the sound speed appears
for the first time.

Equation (5.6.9) can be regarded as expressing the fact that the frequency of the
f mode is approximately its plane-parallel value evaluated at the centre of energy,
7, of the mode. Provided 7/rg — 1 is small, the equation can be rewritten as

w? =1 = 2L~ + O(L)]g(F)L /7. (5.6.10)

There is interesting behaviour at high L that is worth mentioning. As L in-
creases, the more rapid exponential decay of the energy density of the oscilla-
tion with depth causes 7 to rise. Consequently w? falls, and appears to approach
asymptotically a value of gk characteristic of the photosphere. But as k approaches
ke = (2H)™!, there is no longer a rapid-decay of the energy density with height in
the atmosphere. Once k exceeds k. the centre of energy moves upwards as k in-
creases. In the case of the Sun, the movement is halted by the low coronal density.
Thus w?/ L decreases further, essentially to the value of g/r at the chromosphere—
corona transition. This behaviour is illustrated in fig. 4. If ever such modes could
be observed in the Sun, their frequencies might in principle provide a direct me-
chanical means of determining the height h (not to be confused with the scale
height of g/r? defined by eq. (5.4.3)) of the base of the corona above the pho-
tosphere. In practice, however, they are likely to be masked by the irregularities
in the chromosphere. Moreover, if the modes are excited by mechanical interac-
tions in the convection zone, they might perhaps also be masked by modes with a
somewhat higher frequency satisfying eq. (5.6.7) (see appendix V).

Equation (5.6.8) is a relation between the deviation e(k) of wz/gok from unity
and the Laplace transform of the density,

2(p) ::/ p(z)e™P? dz, (5.6.11)
0

and one might therefore hope to use it to measure the functional form of p in
the Sun. (For the rest of this section p is the independent variable of the Laplace
transform, and not pressure.) Now z = ro + h — 7 is the depth beneath the base of
the corona; [ am taking r = 7y to be the photosphere and I am assuming L to be
small-enough for the contributions to the integrals in eq. (5.6.8) from the corona to
be negligible. Noting that the derivative of p with respect to p is an integral over
z weighted in a manner appropriate for evaluating the numerator in the last term
in eq. (5.6.8), the equation can be recast as

b h 4 202
dinpg _ro () _3h_ 4 Y\ (5.6.12)
dp 3
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Fig. 4. Frequencies of high-degree f modes given by egs. (5.6.4)—(5.6.6), drawn schematically for an
idealized mode! of the solar envelope and atmosphere (a plane-parallel isothermal atmosphere over
a polytropic interior, meeling at » = R, as in appendix I, supporting a high-temperature, isothermal
corona) and showing the transition from values of ! for which the energy density is concentrated near
the photosphere, (o those where it is concentrated immediately beneath the corona.

It is now convenient to express w? in terms of the plane-parallel value and its
deviation e(k) defined by the second part of eq. (5.6.8). Then eq. (5.6.12) can be
integrated to

1/2p
A(®) = pop=*3 exp l—hp+§ro / e(k)dk}, (5.6.13)

providing the Laplace transform p in terms of an observable function. The constant
Po is undetermined, as it must be since the right-hand side of eq. (5.6.8) is unaltered
by rescaling p with a constant factor. One might thus hope to determine puptoa
constant factor by inverting the Laplace transform.

5.7. Modes of high degree

I define these modes simply according to the criterion { > 1. In all practical cases,
providedn < [, they are confined within a spherical shell whose thickness is much
less than the radius of the star.

5.7.1. Subphotospheric modes

The discussion in section 5.5 showed how high-degree p modes are confined to the
outer layers of a star. [ will discuss this confinement in terms of acoustic refraction
in section 8. Meanwhile I simply accept the result, and in order to estimate the
eigenfrequencies I model only the outer layers of the stellar envelope. I use the
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plane-parallel polytrope with index p described in appendix I. This problem is
discussed by Lamb (1932) in a different context. Equation (5.4.7) still describes the
motion, and egs. (5.4.8), (5.4.9) and (5.4.5), determining the vertical component
of the wave number K, simplify to

+1 +1\ gk?] _, 1 _
{2+k2=[u—w2+(u—u7 )SL_Z]Z '—Zﬂ(u+2)z 2
Y9

(5.7.1)

where 2 is the depth coordinate. The substitution ¥ = p'/2c2 e~ y o z!*#/2 x
e~ % y, z = (2k)~'( then transforms eq. (5.4.7) into the confluent hypergeometric
equation

Cd@ +(u+2- c)—C +ay =0, (5.7.2)
where . _
2a = ﬂJz —(u+2)+ (u— pY 1) o2, (5.7.3)
¥ ¥
with
o’ =w?/gk. : : (5.7.4)

One must choose the solution such that ¥ does not diverge as { — 00; then \I' ac-
tually decays (exponentially) at great depth, as the preceding discussion requires.
In the notation of Abramowitz and Stegun (1964) it is given by

X = XOU('—a’a ut 2a 2]{}2), (575)

where xq s an arbitrary constant. Provided the quantity a is not very large and pos-
itive (i.e. o2 is not very large, or o2 is not very small with 3, defined by eq. (5.7.8),
positive), the upper turning point, above which the mode is evanescent, is not very
near the surface, and the mode is therefore only very weakly influenced by condi-
tions in the atmosphere. Therefore I can safely approximate the envelope by the
complete polytrope, extending upwards right to z = 0, which is the regular singu-
Jdr point of the confluent hypergeometric equation. The condition that U does not
diverge at z = 0 gives that ¢ should be a non-negative integer n — 1, in which case
U=(-D*n- 1 L(’”z)(o where L is the (generalized) Laguerre polynomial.
Hence,

uaz—ﬂ+<u—ﬂ>a"2=2m n=1,2,3.... (5.7.6)
Y v
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As with the isothermal atmosphere, this is a quadratic equation in w?, with p-mode
and g-mode roots. For p modes ¢* is quite large compared with unity, and the third
term on the right-hand side of eq. (5.7.3) is small. Then

w? 2y Jéj
gk~ p+ l(TH'M/ ) 2n+pu/2)’ (5.7.7)
where
+1 N?
f=p-L -2 (5.7.8)
Y g

A plot of the frequency, w(k), is thus essentially a sequence of parabolae with
apices at the origin. Actually, in a star like the Sun, with an outer convection zone,
the stratification is almost adiabatic, so 3 is small, and the buoyancy correction
term is extremely small indeed. Since the envelope is really neither plane parallel
nor polytropic, eq. (5.7.7) is not strictly satisfied. Nevertheless, the approximately
parabolic appearance of the dispersion relation persists (fig. 5).

If the outer layers of the star were stably stratified (N2 > 0), the envelope could
also support g modes, with frequencies given by the smaller root of eq. (5.7.6):

w8 [1+ (n+1)B
gk~ 2(n+pu/2) dy(n+u/2)?|"

(5.7.9)

Equations (5.7.7) and (5.7.9) approximate the p-mode and g-mode eigenfrequen-
cies of order n.

When n is large, the upper turning point for p modes approaches the surface,
and it is perhaps wise to refine the equilibrium model by replacing the very outer
layers of the polytrope by an isothermal atmosphere (see appendix I). Then the
boundary condition (5.2.8) (or, equivalently, eq. (AS5.7)) must be applied to the
solution (5.7.5). The resulting eigenfrequency equation is complicated (appendix
V1), but, provided Hk < 1 in the atmosphere, the discontinuity in the stratification
lies in the evanescent region and the correction to eq. (5.7.6) is small; when n is
large the eigenvalue equation can be simplified to

0f= — ~

gk = " T (u+ DT+ T (a+3)

|
— + l -
2(u )wcO

R wz ) 27 l: :l 2(2+2)
)

(5.7.10)
where wy is the acoustical cutoff frequency in the atmosphere and s, =~ [2ny/(u+

)]/ solves eg. (5.7.6) for o and specifies the frequency of the p mode of order
n in the complete polytrope. The modification of that value due to the atmosphere
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Fig. 5. Cyclic (requencies v of modes of a solar model, plotted against degree [. Points associated with
modes of the same order 2 are joined by straight lines. When { is large, the modes separale inlo two
distinct groups. The modes in the higher-frequency group are the p and f modes. When { > n. their
v — L relation is roughly parabolic, as is predicted by the analysis of the oscillations of a plane-parallei
polytrope. For low {, the p and f modes are not so severely concentrated in the outer layers of the
star, and the p-mode frequencies tend to finite values as { — 0, which for large 7 are given by an
asymptotic formula of the form (4.8.45) (cf. eq. (5.8.31)). The lower-frequency group contains the g
modes. (For clarity, g modes with {n| > 40 arc not plotied.) Because the solar convection zone is
essentially adiabatically stratified aimost throughout, 8 ~ 0 and the analysis of section 5.7.1 docs not
apply. Instead, the modes are conlined beneath the convection zone: for { > n the frequencies tend
to 4 finite limit, given by eq. (5.7.17), and for n 3> [ they are given by cq. (5.8.34), varying almost
linearly with { and inversely proportional to n (from Christensen-Dalsgaard (1986)).

is thus a strong function of frequency. Observations indicate that in the surface
layers of the Sun, e.g., the effective polytropic index is about 3 (see section 6),
and hence at fixed k, (62 = s2)/52 o (w/wep)? ™D = (w/we)®.

For an adiabatically stratified plane-parallel polytrope, whose index is o = (y —
1)7', eq. (5.7.6) simplifies to w? = 2(n + u/2)u~ ' gk. It has been remarked that
this relation includes the f mode, since it implies w? = gk when n = 0. It has
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been concluded that in view of this result the f mode must be the fundamental p
mode. It is obvious both from the analysis in this section and from the discussion
in section 5.6 that that conclusion is both mathematical and physical nonsense.
Perhaps the most immediate reason is that w? = gk whenn = Qis a formal solution
of the quadratic equation (5.7.6), with the definition (5.7.4), only if the envelope
is adiabatically stratified; otherwise the roots are different. But more important is
that condition (5.7.6) holds only for n > 1; if n were zero, U(—a, i + 2, 2kz)
would diverge as z — 0, which is not permitted. Of course one might then argue
that, in that case, to prevent the divergence of x one must set xo = 0, implying
x = 0 everywhere, which is indeed a property of the f mode. However, in its
raw form that reasoning is obviously bogus because it could be applied for any
value of w. One cannot deduce anything about the eigenvalues from the trivial
solution of eq. (5.7.2) alone; it is necessary to find a nontrivial solution of the
full pulsation equations (5.1.9) and (5.1.10) in the Cowling approximation that is
consistent with that trivial solution for x. As was demonstrated in section 5.6, such
a solution exists only when w? = gk. For the mathematically minded, the argument
is thus complete. But I wish to add the physically compelling remark that when
x = 0 there is no compression, nor rarefaction: the very essence of acoustics is
therefore totally absent, so the high-degree f mode cannot possibly be an acoustic
oscillation. '

5.7.2. Atmospheric modes

In the other limit, Hk > 1, the situation for p modes is quite different. Now
the penetration of the mode into the polytropic interior is negligible: the mode re-
sides mainly in the atmosphere and is essentially a horizontally propagating acous-
tic wave. Provided the star has a corona, or at least a temperature minimum, the
greater sound speed both high in the atmosphere and deep in the subphotospheric
layers renders the atmosphere into a wave guide by refracting the waves back into
the cooler regions. The dispersion relation is then given by

(5.7.11)

where h is the height of the corona above the photosphere and c is the mean sound
speed in the atmosphere. The phase factor € is determined by the degree of pene-
tration of the mode into the corona and into the (polytropic) interior. It is evidently
positive, since the penetration increases the effective vertical extent of the wave
guide, and decreases with increasing k. These modes are the closest approximation
one can find to Lamb waves (see appendix VI) in a real stellar atmosphere.

A g mode can also be channelled in the atmosphere between the corona and the
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subphotospheric layers where N? is small. Its frequency is given by

) h2kEN?

~ M (5.7.12)

w

The phase factor ¢ arises here in just the same way as it did for the p modes. It is
not given by the same formula, of course, though it does decrease with k.

5.7.3. Interior g modes _ ‘

For | — oo, the critical frequency w_, given by eq. (5.5.2), tends to N, and g
modes are trapped near r = ', the locations of the local maxima N, of A/, This
has been discussed by Christensen-Dalsgaard (1980). After expanding N about
N, €q. (5.4.7) becomes

L2 [b+2 b r—Tm—T0 2 '
"N | — - = _— T ~ 0, 5.7.13
G ) [b+3 ﬁ+(b+3)< - ) ( )
where here
2 32
_ T &N _ g 5.7.14
ﬁ— Nm dr2 1-=1-m’ b—ﬂwz ( o )
and
ro = bT}' (5.7.15)

By inspection of the coefficient of W ineq..(5.7.13) itis evident that for low-order
modes, w? ~ (3 + b)N2/(2 + b) and that the eigenfunction ¥ is concentrated
about 7 = 7, + o, somewhat above the position 7 = 7y of the maximum of
N If the peak in V2 is sharp, then b > 1 and 19 < 7m; the geometrical term
arising from the variation in L?/72 being small and w? ~ N7 as L — oo. The
solutions of eq. (5.7.13) are parabolic cylindrical functions, which are regular as
L¥r — 7 — 10)? /72, — 00, provided

_ L (L b+2
2Vb+3\B8 b+3

Evidently —n' is the order n of the mode. Thus

b+2 . 2n] - HVbL+3
b+3 L ’

>~2n'—l, n=1273,.... (5.7.16)

(5.7.17)

w—2 NN—2 l:
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where now b ~ %(ﬁ -3+ /(% +28+9). Moreover, the modes are concentrated
within £r,6 around 7 = r, + rg, where

_ 2n| — 1\'?
&~ m . (5.7.18)

Of course, since the modes are confined to a very thin layer inside the star, one
cannot expect to observe them at the surface.

5.8. Modes of high order

When n is large, the characteristic scale of variation of W is generally much less
than the scale heights of the equilibrium state, and the JWKB approximation can
be applied. Equation (5.4.7) subject to the condition that ¥ — 0 as 7 — 0 (which
follows from the transformation (5.4.6) and the regularity condition (5.2.2)) and
the surface boundary condition (5.2.8) or, more appropriately, an analogous condi-
tion of the form ¥'+ZW = 0 at 7 = R, is formally the same problem as eq. (4.8.5)
subject to the condition = — 0 as r — 0 (which follows from the transforma-
tion (4.8.4) and the regularity condition (4.2.4)) and the surface boundary condi-
tion (4.8.36). The principal difference is between the definitions (5.4.8) and (4.8.6)
of 2. However, since > = O(r~2) as 7 — 0 in both cases, the two problems
have essentially the same mathematical structure, save for the difference in the
dependence of the quantities /{2 and & on w. Therefore the solutions (4.8.33) and
(4.8.37)—(4.8.39) hold for ¥, and the eigenvalues are given by eq. (4.8.40). Ex-
plicitly,

2 UJZ—UJg LZ | Aﬂ 172
N = Sl |

~(n—%)7r+lan”e, n=1,2,3..., (5.8.1)

where w? and A% are given by egs. (5.4.9) and (5.4.3)~(5.4.5) and ¢ is defined
similar to eq. (4.3.37). Strictly speaking, this equation is valid only for large n.
For the case of p modes the term w™2A/? can be ignored to a first approximation,
and eq. (5.8.1) reduces to

m(n + &) N ci/” | w_f B L*c? 12 dr
L L/, w?  w?r? c’ (58.2)

For high-order g modes

IR P :
L "ol NN A —dr, (5.8.3)
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where .
a=n""tan7'e— 1. (5.8.4)

In both cases the turning points 7| and r; are to be interpreted as the zeros of the
respective integrands.

I wish also to record the eigenfunctions in the region of propagation (K2 > 0).
The Lagrangian pressure perturbation is obtained from ¥ using the transforma-
tion (5.4.6):

5p ~ Toull ="/ ?sin (/ K dr + g) , (5.8.5)

where
u=(rgpH? (5.8.6)

and Vg is a constant. The amplitudes (&, 77) of the displacement eigenfunction can
then be obtained from the governing differential equations. The radial component
can be obtained directly from eq. (5.1.10) with ¢’ neglected. For p modes it is
then most convenient to obtain » from the horizontal component of the momen-
tum equation (3.6). That is not a convenient route for the g modes, because whenn
is large, p’ = &p + gp€ is small and it is troublesome to evaluate a small difference
between relatively large quantities. It is more expedient to work from the continu-
ity equation (3.10) and the equation of state (3.11); this route is not suitable for p
modes, because for them one encounters severe cancellation. The expressions for
the amplitudes for p modes are (cf. Shibahashi (1979)):

Yo K12 "
¢~ =2 cos (/ Kdr+ 1) , (5.8.7)
rliu . 4
\I-’()L’U, . r m
7’) ~ m sin ([l I{dT' + Z) . (588)

For g modes they are

YoL?g . " s
~ m sSin /TI Kdr+ Z , (589)
WoLgkK'/? "
N~ %cos (/ Kdr+ f) . (5.8.10)
werly - 4
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Notice from the approximation (5.8.2) that in the casc of p modcs

2
A <1 + “’C(r‘)) L (5.8.11)

cry) — 2w? ) w

This shows explicitly how the radius of the lower turning point increases with [ at
fixed frequency.

From the approximate solutions (5.8.7)—(5.8.10) one can evaluate the asymp-
totic displacement amplitude ratios. For p modes

£l WK K
= ~ (5.8.12)

7 Lgf ~ L

Except near the turning points, where K vanishes, K is dominated by the first term
of eq. (5.4.8): w/c > L/r whenn >> 1, and therefore |£/7]| >> 1. The motion
of high-frequency p modes is almost vertical everywhere, except in the vicinity of
the turning points, where it is nearly horizontal. The reason for this will become
clear in the light of the discussion of acoustic ray paths in section 8. For ¢ modes
£ L
‘77 K (5.8.13)
Near the turning points the motion is nearly vertical. But well in the region of
propagation '

rK ~ LN /Jw> 1, (5.8.14)

and consequently |£/n| ~ w/AN. The value of the ratio depends on the relative
values of n and (. More precisely, it depends on the local ratio of the horizontal
wave number, L /7, to the vertical wave number, K, as eq. (5.8.13) makes quite
clear. The formula follows from the fact that §p is small, and that therefore the
magnitude of div £ is much smaller than its constituent terms. Since the variation of
N (or, more precisely, w_ ) is typically quite smooth (see fig. 2), L/rK ~ {/n: the
eddy motion of g modes is mainly vertical when {/n >> 1| and mainly horizontal
when [/n < 1.

The reason I have laboured on the discussion of the amplitude ratio for g modes
is that there seems to be a myth pervading the literature that the motion of ¢ modes
is always nearly horizontal, which is clearly not the case. It appears from Cox
(1980) that the misunderstanding might have arisen from not reading Cowling’s
(1941) first discussion on the subject with sufficient care. Cowling, quite correctly,
showed that [{/n| < 1 when [/n < 1, but the condition on [/n has often been
overlooked since.
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The amplitude ratio of p-modec displacements depends also on the local ratio of
vertical and horizontal wave numbers, but in the opposite sense. The reason why
the conclusion is not merely the inverse of that at which I arrived for g modes
is that, unlike AV, the Lamb frequency, S, varies steeply throughout the star, and
very quickly becomes small compared with w/c ~ K above the lower turning
point. Therefore one cannot equate L/r K with [ /n: indeed, away from the lower
turning point the value of [ is hardly relevant and all acoustic modes look like
radial modes. These remarks are correct, of course, only if [ is not so large as
to dominate X throughout the region of propagation, producing the atmospheric
pseudo-Lamb wave discussed in section 5.7.2.

It is also worth noting that the phase relations exhibited by the asymptotic so-
lutions are just as one would expect from the basic physics of acoustic waves and
internal gravity waves. In acoustics, the pressure fluctuation, &p, is generated di-

" rectly by the compression and rarefaction of the dominant motion, which, except

near the turning points, is nearly vertical. Therefore &p is in phase with 9£/0r,
and %n out of phase with £. The horizontal displacement must be %TI' out of phase
with £ and in phase with 6p to maintain continuity. In the case of g modes, the
motion is so slow that the pressure has plenty of time to readjust (by acoustic
communication); the Eulerian pressure fluctuation, p’, is small and consequently
the (Lagrangian) pressure in a moving fluid element is determined simply by the
pressure of the environment into which it has been displaced. Since the pressure
in the equilibrium state varies only in the vertical direction, &p is in phase with £,
Once again, n must be %n out of phase to maintain continuity.

It is instructive to look in a little more detail at the asymptotic relations for
large and small [. I will restrict the attention to p modes. In the case of small /
the lower turning point » = ry is close to the singularity at 7 = 0. Evaluating the
exponentially decaying branch of the appropriate Airy-function representation (cf.
section 4.8.4) yields 8p  rZ~'/2 and £ « rL~3/2, These forms are close to, but
not precisely equal to, the correct values obtained by analyzing the behaviour of
the solution in the vicinity of » = 0. It is interesting to note, however, that if
L = /Il +1)isreplaced by [ + %, then the Airy-function representation yields the
precise behaviour (5.2.2)—(5.2.3) when [ # 0. It makes very little difference to the
solution when ! is large. As [ am about to demonstrate, the replacement of L by l+%
also improves the estimates of the eigenvalues; it is a general feature of the JWKB
representation of the operator V2, which occurs in the acoustic wave equation, and
appears to have been noticed originally in connection with the asymptotic solution
of Schrédinger’s equation for a Coulomb potential (e.g. Kemble (1937)).

One can investigate the behaviour of the solution near 7 = 0 by ignoring the
small term w?/w? in the p-mode approximation to K used in eq. (5.8.2). That
term is important only near the surface (u.)c2 is bounded as r — 0), and is the sole
term in the eigenvalue equation that depends on the density stratification. One can
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simplify the problem still further by letting the sound speed be constant and re-
placing condition (5.2.8) by a simpler condition such as ép = 0 at r = R. The
simplification of the analysis is substantial, but since d¢*/dr — O asr — 0in
any star, it does not significantly alter the mathematical structure of the approx-
imation. The problem is now reduced to that of finding the eigenfrequencies of
an isothermal sphere in the absence of gravity, with a constant pressure applied
to the bounding surface, whose unperturbed position is 7 = R. That problem is
solved in appendix VIL. In the limit n/l — oo, the eigenfrequencies are given
approximately by

w~ cR™'(n+ 1), (5.8.15)
whereas the expansion of eq. (5.8.2) in that limit yields
w~cR(n+ 30— 1) (5.8.16)

These two formulae become identical when L is replaced by { + %

When [/n >> 1, p modes are confined to a relatively shallow subphotospheric
layer, and, as usual, one can approximate the equilibrium state of the envelope by
the complete plane-parallel polytrope with index p described in appendix L. In this
case € = 0, and eq. (5.8.1) reduces to

(n—%)w
2 (p+ Dw? +1Y) gk?  (a+3)? v
[ e
. Y9z ¥ wiz z
2
_! M+<u_ﬂ_+' @_2a_l]ﬂ (5.8.17)
2 gk v ) W

(cf. eq. (5.7.1)), where z| and z; are the upper and lower turning points and
a=up+2)"7? -1 (5.8.18)

The eigenvalue equation (5.8.17) can be rewritten as

I
EAL Y N Y (,J - &> o2 =2, (5.8.19)
v v

where 02 = w?/gk. This equation would be made identical to the exact re-

sult (5.7.0) if a were replaced by %p,, a replacement which is similar to that sug-
gested for radial modes at the end of section 4.8.5. It is equivalent to replacing
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Wi = fu(+2)272 by Hu+ 1)2272 = $H; 2. As with the expansion near
the singular point at r = 0, this change is quite minor. Note that as & increases,
the quantity «, defined by eq. (5.8.18), approaches its exact value %u. It is now
straightforward to evaluate the depths of the turning points. These are given by

2= RL” {n+jpt [+ 3 — fu+ 172}, (5.8.20)

in which [ have set & = %u. In view of the equivalence of egs. (5.8.19) and (5.7.6),
this result can be used even when n is not large.

Itis also interesting to note that for the plane-parallel polytrope the effect of w,
is equivalent to subtracting (c + %)ﬂ' from the left-hand side of eq. (5.8.17). This
provides the basis of an expansion of eq. (5.8.2) about the polytropic value wep of
we. One is tempted to write, e.g.,

7T(n+a)N r | LA 172 dr
w wir? c

l R< L262>—|/2 we = W r 5.8.21
- — —2 (5.8.21)
2w f, Wep c

wir?

where w, is the critical frequency of a polytropic envelope whose structure ap-
proaches that of the stellar envelope well beneath the photosphere, and the lower
turning point 7| now satisfies wry = Lc(r|). The second integral on the right-hand
side is small. Notice that I have now replaced the upper limit of integration by R,
my “surface” of the star, for the same reason as when I had removed the critical fre-
quency, wc, from the integrand in eq. (5.8.17) then it would be necessary to replace
z) by zero. | have never defined my surface precisely, because [ wished to retain
the flexibility of choosing it to be different in different discussions to suit my pur-
poses. Here I have in mind essentially the position where ¢* would have vanished
had it been extrapolated linearly outwards from the polytropic subphotospheric
regions. Since L2c?/r?w? < 1 in the atmosphere, any change in the definition of
R would add a term to « that is proportional to w. The reason for expanding the
integral in this way is that the leading integral is invertible and therefore provides
a means of inferring the distribution of the sound speed throughout a star from
knowledge of the frequencies of oscillation. 1 will discuss this inversion in sec-
tion 6. I will also have more to say about the weighting factor (1 — L2¢?/wr?)~'/2
when 1 discuss in section 8 the eigenfunctions in terms of interference between
locally plane acoustic waves.

It is particularly interesting to expand the eigenvalue equation (5.8.2) for the
case of small {. The reason is that only the low-degree modes are likely to be
observed in the immediate future in stars other than the Sun. The leading-order
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terms are of thc samc form as eq. (5.8.16), even thougli ¢ is not constant and w?
is included. I will take the expansion up to the next term. The principle is to note
that near the lower turning point, 7, where L2c? /w?r? is comparable with unity,
c? varies slowly since ry is small and de/dr = 0 at r = 0. Also, w?/w? < 1.

Therefore, using the acoustical radius
Tdr

o C

T = (5.8.22)

as the independent variable, one can expand the integrand about (1 — L2 /w?72)!/2
in the inner regions of the star:

Tm 2 222 1/2 T 12 1/2
111=/ <~w—°2-2—cz> d'r:/ (_l——22> dr
U w wr L/iw weT

i 2Ny W
_ /L/w <1 - sz2> (m + 2w2> dr, (5.8.23)
where
,
d
Y=T —r/c=/ gd—: dr, (5.8.24)
0

71 = 7(r1) and 7, is some median value of T between the centre and the surface
of the star. Note that the integrand in the second term of the expansion (5.8.23)
diverges at the turning point 7 = L/w. Nevertheless the integral is much smaller
than the leading term, and the expansion does indeed provide a good approxima-
tion to the integral ;. One can convince oneself of this by expanding /7 and
w? in a Taylor series about the turning point and retaining the first four terms. For

example, the expansion of
/ (1= +ex)/at)2de (5.8.25)
|
in the way of eq. (5.8.23) is identical to order € to the expansion of the exact
integral. One cannot take the expansion further, however, since subsequent terms

can be infinite. For 7 > 1, chz/u.)zr2 is much less than unity, and it is therefore
a suitable expansion parameter:

T2 wZ LZCZ 1/2 () w2 172
Iz::/Tm ( —w—;—w—zr2> dT:/Tm ( —j) dr

L2 [ w2\ 2
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where 73 = 7(ry). After substituting [, + I into eq. (5.8.2) and rearranging the
terms, one can obtain after a further reduction of the second term of the expan-
sion (5.8.26), a formula that is independent of the somewhat arbitrary value 1, of
the acoustic radius for the division between the two regimes of expansion:

Tw ~ (n + %L +am — (AL — B)rwy/w, (5.8.27)
where '
) r2
A= L[ _/ cdedr (5.8.28)
2wy \ 7 LejwTdr C
2 2.2N\"1/2 2\ }/2
B=" o e 1—(1- ﬂ) dar (5.8.29)
TWo J Lejuw wir? w? c

and the characteristic frequency

R R d -1
= ay -7 5.8.30
Wo =7 ( /0 ¢ ) 7(R) (5.8.30)

of section 4.8.5 has been reintroduced. The details of the reductions are presented
by Gough (1986). If the outer layers of the star are represented by a polytrope
with index y and the substitutions L = [ + 5 and w?/c* = ;H,* are made, the
eigenfrequency equation becomes

w~[n+ 30+ 3+ awy — (AL? = §)wi/w, (5.8.31)
which generalizes and extends eq. (4.8.45), where « is still given by

1 (5.8.32)

N—

=
and*

(1 + 1)?

= (5.8.33)
™

§=-—

It is evident that eqs. (5.8.31)-(5.8.33) also approximate the eigenfrequencies
when the outer layers of the envelope in the vicinity of r = 7, are not strictly poly-
tropic, and when g is now interpreted to be a representative value of (d Inp/dIn p—
1)~'. A formal demonstration of that can be constructed by using Olver’s method

* Formula (8.19) in Gough (1986) for 6 should read § = —2b2/n? = —(2a + )2 /272
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with the confluent hypergeometric equation, rather than Airy’s equation, as the
comparison equation for integrating through the upper turning point.

Equation (5.8.31) is similar to an expression obtained previously by Tassoul
(1980), the leading term of which had been obtained earlier by Vandakurov
(1967b), although Tassoul’s expansion differs in several respects from that pre-
sented here. Perhaps the most important is that she did not first cast the equa-
tions into the standard form (5.4.7) and consequently it was necessary to carry the
Liouville-Green expansion further than I have. Her result for p modes is of the
form (5.8.31), but it differs in having the lower limit of integration in eq. (5.8.28)
for A set to zero (the difference is of higher order than any of the terms re-
tained and is therefore formalily insignificant); moreover the formula for § is dif-
ferent: if the plane-parallel polytrope is substituted into her formula, one obtains
6= (2p — 1)(2p — 3)/872, which when = 3, the value characteristic for the sur-
face layers of the Sun, is only about 30% of the value obtained from eq. (5.8.33).

Despite this discrepancy, it is useful to find the regions of the star that contribute
the most to the parameters in the asymptotic expression (5.8.31). The characteristic
frequency wy is the characteristic acoustical frequency of the entire star; as has
already been pointed out in section 4.8, it is of the same order of magnitude as the
frequency wy defined by eq. (4.2.6), which appeared as the natural unit in which to
measure the frequencies of the radial modes. The explicit integral in eq. (5.8.30)
is weighted most strongly near the surface of the star, where c is small. It is more
natural to think of acoustic waves in terms of the variable 7, however, with respect
to which the contribution to wy is uniformly distributed. The quantity A depends
principally on the conditions near the lower turning point, 7| = Lc/w, particularly
when considered with respect to 7. This must be the case in the light of my earlier
remark that it is only near the lower turning point that X is appreciably dependent
on L; it is also evident from formula (5.8.28), which is dominated by an average
of the gradient of the sound speed weighted with r~! (irrespective of whether r or
7 is the independent variable). The quantities « and § both depend predominantly
on the conditions near the surface: § is part of B and « contains &, the remainder
of B, and a term again coming from the surface regions, above the (frequency-
dependent) upper turning point 5, which emerges from expanding 7r'rz“' about
wo = w[7(R)]~'. The phase factor & arises from the upper boundary condition
(although it contains a (constant) contribution —} coming from the Airy-function
representation near the lower turning point) and B comes from the influence of w;
on K, which is substantial only near the upper turning point.

A similar analysis can be carried out for g modes. Since the details of the results
depend on the positions of the convection zones and since the buoyancy frequency
at the interface between the convection zone and the radiative zone is probably
almost discontinuous when viewed with a resolution comparable with the inverse
vertical wave numbers of most g modes of interest, the fine details of the formulae
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are more diverse. I record here only that when /1 > 1, eq. (5.8.3) yields for a star
like the Sun, with a radiative interior and a deep, adiabatically stratified convective
envelope:

P+ il— 35PR/L, (5.8.34)

where P = w /27 is the period of oscillation, whose natural unit is the character-
istic period

re -1
Py =2r? ( / TN dr> , (5.8.35)
0

where 7. is the radius of the base of the convection zone. For further informa-
tion the reader is referred to the asymptotic analyses by Zahn (1970), Ledoux
and Perdang (1980), Tassoul (1980), Ellis (1986), Gabriel (1986) and Provost and
Berthomieu (1986).

Finally it behoves me in this section to remark that for low-degree modes the ne-
glect of the perturbation ¢’ to the gravitational potential is not entirely negligible.
This is particularly so for g modes which, according to the asymptotic represen-
tations (5.8.7)—(5.8.10), induce a larger density fluctuation at fixed mode energy
than the p modes do. The effect of &’ has been incorporated as a small pertur-
bation in the Liouville-Green expansion by W.A. Dziembowski and myself (to
be published) in a way not unlike that by which Tassoul (1980) coupled her two
formulations of the adiabatic oscillation equation in the Cowling approximation.
The principal modification for high-order modes is to subtract wj = 47Gp from
w? and to add wir/gfH to H~" where it appears in the definitions (5.4.9) and
(5.4.5) of wcz and A2, The extent of the influence of & on radial modes can be
Jjudged from a careful comparison of eq. (5.8.2) with { = 0 and eq. (4.8.40), which
includes perturbations to the gravitational potential.

6. Inversion of asymptotic formulae

The starting point of this discussion is the approximation to eq. (5.8.21) obtained
by neglecting the second integral on the right-hand side:

» i 2 ]/2d

R
=/ (@?-w " 2dnr, (6.1)

=ri=c/w
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wlhere
w=w/L , (6.2)

is a reduced frequency, formally equal to the frequency of oscillation of a sinu-
soidal wave with L wavelengths around a circle rotating with respect to the ob-
server with angular velocity w, and

a=S (6.3)
T

is the angular velocity of circular motion with linear velocity c at radius 7.

Notice that when HL/R < 1 in the atmosphere, the quantity a depends es-
sentially only on the frequency. It contains a contribution from the boundary con-
dition via € (defined by eq. (4.8.37) in terms of & in section 5.8 and K given by
eq. (5.4.8)), which is only very weakly dependent on L, a term resulting directly
from the removal of wz from the integrand, and a term linear in w (discussed in
section 5.8) that is associated with how R is chosen. Explicitly,

w 2 w? /2 dr Rar
a~a+— / l~<1——°2> —+/ — >, (6.4)
T | Jr w c Jn, ¢

where & is defined by eq. (5.8.4). In deriving this result I have ignored L JuwPr?
compared with unity, which is a good approximation in the surface layers near
and above r = 5, well beneath which the integrand is small and above which
the second integral is evaluated. Neglecting w? in the first integral deep in the star
where L2c2/w?r? is not negligible, is consistent with ignoring A2, which in the
radiative interior is comparable with w?. The first integral is small when w < wc
at T = R, since then ¢(r) is large, and the second integral is always small, since,
when HL/R < 1, the range of values of R to be considered (measured in units
of the acoustical radius, 7) is much less than 7(R) — 7(r), which estimates the
integral on the right-hand side of eq. (6.1). Thus one can conclude that « is a
function of w alone, and, except possibly when w =~ wc(R), it varies only weakly
with w. Moreover, m(n + ) /w is a function of w = w/L alone.

This remarkable result was first noticed empirically by Duvall (1982), from an-
alyzing real solar data. His motivation was to make the dispersion relation for solar
oscillations resemble the formula for sound waves travelling in an acoustic wave
guide with fixed depth d with uniform sound speed ¢, for which the dispersion
relation is

(n+€)=[l i ]‘”d’

™

w 2 (w/k)? 6.5
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Fig. 6. (n + a)r Jw with a = 1.3, plotled against w = w/ L for p modes, some of whose frequencies
are plotted in fig. 5. The units of w are 5!

where k is the longitudinal wave number and the phase € depends on the nature of
the reflecting walls. This equation has basically the same structure as eq. (6.1), with
the right-hand side being a function of d and w/k alone. When c depends on the
crosswise coordinate, the right-hand side of eq. (6.5) is replaced by an appropriate
average; and even if the wave is prevented by refraction from reaching a wall,
the right-hand side remains a function of w /k alone, since the crosswise direction
of propagation of the wave is reversed at locations where ¢ = w/k, which is a
function only of w. Stratification under gravity does not alter the nature of the
result provided buoyancy is small, as the dispersion relation (5.7.7) for a plane-
paraliel polytrope (with 3 neglected), which does not rely on asymptotic theory,
illustrates. Duvall confirmed the result by plotting m(n + a)/w for high-degree,
five-minute modes against w for different constants «, showing that when ¢ >~ 1.5
the distinct p-mode branches of the dispersion relation illustrated in fig. 5, all fall
on a single curve (fig. 6). This is the function F(w). Since o = %u, Duvall’s result
also indicates that the effective polytropic index in the subphotospheric layers of
the Sun, where five-minute modes are reflected, is about 3. Duvall’s technique has
been improved by writing a = ap + a{w), where ag is a constant, and fitting
(N + ag)/w to a sum of a function of w alone and a function of w alone. That
determines not only F, up to an undetermined additive constant, but also ¢, to

. within an additive linear function of w. Notice that the integrand in the second

term on the right-hand side of eq. (5.8.21) is significant only near r = R, where
usually chz/wzr2 « 1. Therefore that term is a function of w alone, and can be
considered to have been incorporated into ay.

The importance of this approximation is that eq. (6.1) can be inverted to yield
a(r) as a functional of the observable quantity F(w). The result immediately pro-
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vides information on the sound speed c(r) throughout the region spanned by the
lower turning points 7 (w). This information is not complete, because the result
depends on the undetermined sound speed in the region above the greatest value
of ry, for which data are available.

To carry out the inversion one first differentiates eq. (6.1) with respect to w:

w di
dF _ -3 / (@2 — w2240 g, (6.6)
dw Ja da

where a; = a([t). One can transform to the independent variable a quite safely pro-
vided a(r) is monotonic. This condition is satisfied for stars with unmixed cores,
such as late-type main-sequence stars, even though ¢ might decrease towards the
centre due to the higher mean molecular mass of the material processed by nuclear
reactions. The core of an early-type star is mixed by convection, and there is a near
discontinuity in the sound speed. Of course the JWKB approximation cannot be
applied across the discontinuity; it is necessary to divide the star into two regions
and match across the interface. [ do not present those details here.

Equation (6.6) can be cast into Abel’s integral equation by the substitutions
a™?=¢ w™? = u. Then

du "/ @ -w 20 e, 6.7)
d¢’
where & = a;? and 1 have formally replaced the dummy integration variable
& by ¢’. This equation is inverted by multiplying both sides of the equation by
(u — &)~'/? and integrating with respect to u over the range within which F has
been determined from observation. After interchanging the order of the double
integration, one obtains

“o dF
Y Ve R
/£ (u—¢§) o™ U

up . ¢
=_%/ dl_”,’dg'/ [(w— & —w)™ " du
¢ 4 3

s Ug
1 / e / [ — O~ w)™"/ du, 6.8)
ug 6 13

where ugy = wo_2 and wy is the smallest value of w for which data are available.
The first of each of lhe double lnlegxals is easily calculated with the help of the
substitution u = £’ sin §+¢& cos? . The indefinite integral is simply 6. Hence, after
restoring the original variables, and some minor rearrangements, one derives

T _ _E ¢ -2 _, 172 & dF
E—exp{ 7r/ (w ) o dw — Adwg)|, 6.9)
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where

R 2 ag | wo_2 — a—2 1/2
3 - -/
A=1In <E) ot ;/ﬂ,zwnmn al_z—_.a—z dlny y (610)

Ry = r(wp) and o’ = a(r’). Of course, eq. (6.9) must be evaluated numericaily, so
it is a trivial matter to invert (a) to determine, with eq. (6.3), ¢(r).

Except near r = Ry, A is approximately constant, and its sole effect is to mul-
tiply 7/ R by a constant scale factor. Provided high-degree data are available, this
factor is close to unity, and is then approximately 1 — A. For example, if the sound
speed in the outer layers of the star above r = Ry is represented by the approxi-
mation ¢ o 22, which is suggested from an extrapolation of solar observations,
then very roughly A ~ 0.28(ng + )/ Lo, where ng and Ly correspond to the least-
deeply penetrating modes (appendix VIII).

Refinements of the procedure are imaginable. For example, if A2 /w? is treated
as a small term in the eigenvalue equation (5.8.1), rather than being neglected, the
expansion (5.8.21) becomes, in the variables of eq. (6.1):

7r(71,+ao) - Flw) — ey (w) . Q:::)’ 6.11)
where
G(w) := Lz /(a—2 —w )™M dinr (6.12)
2w

reflects the contamination of the acoustic dynamics by buoyancy and ¢ (w) is con-
sidered to contain the frequency-dependent contribution from the critical acoustic
frequency we, represented by the second integral in eq. (5.8.21). Once again the
right-hand side of eq. (6.11) has a very special functional form, and therefore in
principle it should be possible to determine the functions F, o and G from the
data. The fitting procedure has not yet been carried out with resounding success
with real solar data. One might think that if it were possible to so determine G(w)
from observations, then eq. (6.12) could be inverted yielding N?(r), since the
equation is transformed into eq. (6.6) by the substitution w- dF/dw — —G(w),
dinr/da — IN?dInr/da, and hence.

Aﬂ:—f d /w—'(w—z—a—2)~'/2g(w)dw+M, (6.13)
mdlnr /.

where M is a quantity analogous to A, which takes into account the contribution
to G from regions in the star above r = Rq. However, the dominant contribution
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to eq. (6.11) from the neglected perturbation to the gravitational potential is also
of the form w2 multiplied by a function of w alone, and therefore cannot, at this
order of approximation, be separated from the contribution from the buoyancy
frequency.

Finally, I remark that if the last term in parentheses in the integrand of eq. (5.8.3)
for g-mode frequencies is negligible, then each side is a function of w alone:

A B P /”(/\ﬂ — )2 dnr. (6.14)
L W Jy

This equation can also be cast into Abel form, by a procedure similar to that used
for p modes. Now, of course, the natural independent variable N7 is not monotonic
with 7; it is necessary to split the range of r into regions within which A/? is
monotonic, and invert each contribution to 7 separately. If it is assumed that A2
has a single maximum A2 at 7 = 7y, as in fig. 2, then there are just two regions,
and the data J(w) provide information on the distance between the two turning
points:

B Nm d
raN) = (V) = —% /N (W? — NH~1/? a(wJ)dw. (6.15)

This information is useful, but alone it is insufficient to determine N (r) com-
pletely.

7. Perturbation theory

In this section I discuss two kinds of perturbation: (a) that arising from small spher-
ically symmetric changes in the equilibrium structure of the star and (b) that arising
from small aspherical perturbations. The latter can result from large-scale motion,
such as giant convective cells, or, in a magnetic rotating star, from the neglected
small-body force F in eq. (1.2.1) and from advection due to rotation of the ba-
sic state. The first kind of perturbation is relevant to the study of small frequency
differences between two similar stars and of frequency differences resulting from
small changes in the structure of a given star, such as may occur during a stellar
cycle. In the case of the solar cycle, the changes might have arisen from the spher-
ically symmetric component of a magnetic perturbation, J. Perturbations of type
(a) are also important to helioseismology and asteroseismology, in which small
differences between the observed frequencies of a star and the eigenfrequencies
in a theoretical model of that star are used to estimate the structural differences
between the star and the model.
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Although perturbations of type (b) may have a spherically symmetrical compo-
nent, the main interest lies in their symmetry breaking, which induces a splitting
of the degeneracy of the eigenfrequencies with respect to the azimuthal order m
of the modes.

7.1. Spherically symmetric perturbations

My starting point is the variational principle (5.3.1)~(5.3.5). Suppose the differ-
ence between two equilibrium states is denoted by Ap, Ap and A+, and the cor-
responding changes in the eigenfunctions and their associated eigenfrequencies
by A¢ and Aw, where, when referring to functions, A denotes the difference be-
tween the two at a fixed position in space. Then, provided the changes are small,
in the sense that [Ap/p| < 1, etc. everywhere in the star, the two integral rela-
tions (5.3.1) corresponding to the two states can be subtracted and the resulting
equation linearized in the perturbation quantities. The expression thus obtained for
the frequency perturbation, Aw, depends formally on two kinds of terms: those
depending directly on the differences Ap, Ap and A+ between the two equilib-
rium states and those depending indirectly on these differences through A&. How-
ever, since eq. (5.3.1) is stationary with respect to variations in £ that satisfy the
boundary conditions of the problem, the terms containing A¢ cancel. If all one
is interested in is frequencies, this allows a very substantial simplification, since
this requires one to know the eigenfunctions and eigenfrequencies of only one
of the two states; it is not necessary to solve the appropriately perturbed equa-
tions (5.1.4)-(5.1.7) or (5.1.8)—(5.1.11).

Itis important to realize that for eq. (5.3.1) to be valid, the equilibrium state must
satisfy the equations of hydrostatic support (2.1)~(2.3). Unless the equilibrium
state is static on a dynamical time scale, the decomposition (3.12) is not valid,
and the concept of frequency is not well-defined. However, because of the large
disparity between the dynamical and thermal time scales, it is hardly necessary for
the star to be in thermal balance.

In connection with this point it is also worth remarking that adiabatic oscilla-
tions of a star do not depend directly on temperature. They depend basically on
the momentum equation, which balances the rate of change of momentum against
pressure gradients. This relates inertia-density, p, and frequency, via acceleration,
to pressure p. It is also necessary, of course, to know how p responds to changes
in p, and this is provided by the constitutive relation & Inp = ~ 8 In p for small adi-
abatic changes. This fundamental dependence is quite evident from the fact that
p, p and -y are the only functions of the equilibrium state upon which the adiabatic
pulsation equations (3.6)—(3.11) depend. It follows, therefore, that frequency dif-
ferences depend only on differences in p, p and . Conversely, it is not possible
to learn anything other than the stratification of p, p and - from a knowledge of
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only the frequencies of oscillation of a nonmagnetic, nonrotating star. To make
deductions about the temperature, or any other derived thermodynamic quantity,
requires the utilization of the equation of state, which cannot be accomplished
without knowledge of at least the chemical composition of the stellar material.

It is straightforward to perturb eqs. (5.3.1)-(5.3.5). For simplicity 1 assume w
to be well below the critical acoustic frequency, w,, in the atmosphere, so that the
boundary terms, such as B, can be ignored. [ also assume, again for simplicity, that
the two equilibrium states have the same mass and radius; it is straightforward to
retain the additional terms when this is not the case. Then, since perturbations to
£ do not contribute to first order,

R R
TAW? = — w? E+ 1 Apdr + / pxriDy dr
0

0
R dinp .\ dAp dAlnp
2 _ 2 Zd
+ [ [ocaneag (xs Ble) GO0 — gprBlne 2,
— AW, 7.1.1)

where £ and 7 are the vertical and horizontal components of the displacement
amplitude defined by eq. (5.1.1), x represents the amplitude of the dilatation:

d L
=2 20y _ 2 7.1.2
X=T dr(7 £) r'f7, ( )

where L? = I(l + 1), and I have used the quantity

R
I= / (€% +pH)prtdr, (7.1.3)
0

which is proportional to the measure [(£,£) of the modal inertia, defined by
eq. (5.3.3). The quantity W is the perturbation to the gravitational energy asso-
ciated with the oscillations:

R
W=—/ &' divp £ rtdr,
0

and is equal to 1 /4 of the magnitude of the second of the two terms on the right-
hand side of eq. (5.3.2). It can be conveniently rewritten in terms of the amplitude
p' = —divp€ = —px — &dp/dr of the Eulerian density fluctuation by using
eq. (3.10) and substituting for @’ that solution of eq. (5.1.7), with —47Gp’ on the
right-hand side, which is regular both at the origin and at infinity:

_ 87G R
T2+ 1

r—‘”p’(r)/ st/ (s) ds dr. (7.1.4)
¢
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(Here, as in eq. (7.1.3), the prime denotes Eulerian perturbation due to the oscii-
lations.) On perturbing at constant £ the equilibrium state implicit in eq. (7.1.4),
AW is obtained in terms of Ap(r) and its first derivative.

Since both basic states are in hydrostatic equilibrium, the perturbations Ap and
Ap, defining their difference, are not independent. Instead, they are related by the
perturbed hydrostatic equations (2.1)-(2.3):

dAp G
5 —T—Z(pAm +mAp), (7.1.5)
where
Am(r) = 4n / s Ap(s)ds, (7.1.6)
0

from which follows that for any regular function f(r),
R
/ f(r)H dr
0 dT‘
jid ) r
= — / r2 () [47rp(r) / szAp(s)ds+m(r)Ap(r)] dr
0
. 0
- / FApdr, (7.1.7)
0
where
R
F(r)y=-G [471'7"2/ s"zp(s)f(s)ds+r_2m(r)f(r)} : (7.1.8)

Thus the term in eq. (7.1.1) involving dAp/dr can be written in terms of Ap. After
integration by parts, the term involving the undifferentiated Ap can be written in
terms of dAp/dr, and hence in terms of Ap. The term involving dAp/dr is also
integrated by parts. The final result can thus be written in the form

A R
ov =/ Ky, Aliny+ K, Alnp)dr, (7.1.9)
w 0

where

Kyp = 3072 ypri(div €)?, (7.1.10)
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and, after some manipulation (and using the assumption that both equilibrium
states have the same mass and radius, so that Am(R) = 0),

R
22 IK, ., = 4nGpr? / P(s)ds + Gmpp(r) + G’%(mp{z)

— W prt€ )+ iff’]’ {(z + Dri¢ —m) / s'*2p'(s)ds
0
R
—lr“'[§+(l+1)n]/ s“*'p’(s)ds}, 7110
where
I AP dinp .

Y(ry=r / vs*x" ds — (2x+§ )f- (7.1.12)

0 dr

Equation (7.1.9) can be used for inferring the hydrostatic stratification of the
Sun from measurements of solar oscillation eigenfrequencies. If Aw? represents
the difference between observed and theoretical frequencies, the coupled integral
constraints can be used to estimate Aln+y and A lnp, from which an improved
estimate of the solar structure can be obtained. Methods by which that might be
accomplished are reviewed by Gough (1985). The procedure can be repeated until,
hopefully, the iterations converge.

If, on the other hand, one wanted to compute frequency changes resulting from,
say, a thermal redistribution in a star, the relation between A~, Ap and Ap might
then be known. In that case A Iny can be eliminated from eq. (7.1.9); K , is for-
mally set to zero and the consequent modifications to K, , are adding to the right-
hand side of eq. (7.1.11) the term ypri(div 5)27,, and replacing y ineq. (7.1.12) by
(1 +7,), where 7y, and -, are the partial logarithmic derivatives of -y with respect
to p at constant p and to p at constant p, respectively. In addition there will be a
contribution to A Inw from any spatial redistribution of the hydrogen abundance,
X (which itself would be expressible in terms of A In p if the Lagrangian variation
were zero), the kernel for A In X being ~ypri(div €)*y, , in an obvious notation.

It is possible to recast eq. (7.1.9) in terms of other pairs of perturbation variables
with the help of egs. (7.1.5) and (7.1.6), or, equivalently, transformations such as
egs. (7.1.7), (7.1.8). For example, since high-frequency p modes depend mainly
on the sound speed, c, it might be considered more useful to use ¢* and, say, a
variable, such as -y, that one expects not to vary a great deal. This can be achieved
by transforming just sufficient of K, , A In pineq. (7.1.9) back to a term inAlnp
to make it possible to write the outcome in terms of A In c?, using the relation

Alncd=Alnp—Alnp+Alny. (7.1.13)
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§peciﬁcally, one can set X, , = ®| — ®,, chaosing the separation into two terms
in such a way that

R bid .
/ @,Alnpdr=/ ®, Alnpdr. (7.1.14)
0 0

Then
Aw R 5
- = | Ky Alny+Kea ., Alne’)dr, (7.1.15)

where K2 ., = ¢ and K, 2 = K, , — $,. With the help of the hydrostatic con-
straints (7.1.5) and (7.1.6) and some integrations by parts, taking care that the
integrated terms vanish (which is assured at 7 = 0 by the behaviour of the eigen-
functions discussed in sections 4.2 and 5.2), one can show that in order for condi-
tion (7.1.14) to be satisfied, $, must be chosen to be p d®/dr, where

d (p d®\ d (Gm®\ 47Gp d /p
dr (7’2,0 dr>_a< 4 )* 2 ¢=—5(;Km). (7.1.16)

Thus one finds, as indeed is usually the case when transforming the perturbation
variables, that the new kernels cannot be written in closed form, but are instead
expressed in terms of the solution of a second-order, linear, inhomogeneous differ-
ential equation, the inhomogeneous term containing one of or both the old kernels.
In general this equation must be solved numerically. However, in the special case
of a plane-parallel envelope model in the Cowling approximation, e.g., which is a
good approximation for high-degree p modes, it is possible to express the kernels
K., » and K. ., in closed form (Gough and Toomre 1983). It is a very simple
matter to cast Aw? in terms of A In p and A In ¢? directly from eq. (7.1.1).

For asymptotic modes, the forms (5.8.7) and (5.8.8) or (5.8.9) and (5.8.10) can
be substituted into formulae such as eqs. (7.1.10)—(7.1.12) for the kernels. How-
ever, it is simpler to perturb the eigenvalue equation (5.8.1) directly. For high-order
p modes one can approximate eq. (5.8.1) by eq. (5.8.21) with the second integral
neglected; a sound-speed perturbation Ac produces a frequency shift

Aw R Ac

7_/1; }CTdT', (7.117)
where

K=58""e "1 —a?/uwh~"/?, (7.1.18)
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R
S=/'a%1—&mh”“m, (7.1.19)

T
and 7, satisfies wry = Le(ry). In deriving this formula I have ignored the sma-ll
contribution from the variation in ¢ The quantity S is proportional to asymptotic
approximations to the measures 1(§, §), defined by eq. (5.3.3), and Z, defined by
eq. (7.1.3), of the inertia of the mode. _

7.2. Aspherical scalar perturbations: degenerate perturbation theory

The variational principle (5.3.1)~(5.3.5) does not assume the stz}r to be? §phprically
symmetrical. Therefore, if the star is essentially in hydrostatic equmbnum'bul
deviates from being spherically symmetrical by a small amount, the perturbations
to the eigenfrequencies can still be calculated by the same procedure. Some care
must be taken, however, to ensure that the eigenfunctions, &, satisfy the boundgry
conditions in the perturbed model. This can easily be accomplished by introducing
a distorted radial coordinate

=1 +h0,)r, |h <1, 7.2.1)

such that z = 1 on the perturbed surface of the star. Then, if £ =: (£, n) is regarded
as a function of z, rather than 7, in the perturbed model, eq. (5.3.1) can be perturbed
at constant &. In principle, for infinitesimal perturbations, one has the freedom to
choose h at will, provided it is such that the linearized equation for the sur.face of
the star is 7 = (1 — h)R. In practice, however, for small, finite pe.rturbatxon.s, it
is prudent to choose h such that it follows in some sense the.dlslomon 'of.reglons
of rapid variation, such as ionization zones, since then ignoring the variation of §
introduces a smaller error than it otherwise might do. ‘

The analysis is carried through in much the same way as for spherically sym-
metrical perturbations, although now the angular integrals introduce geometrical
factors causing Aln~, Alnpand Aln c?ineqs. (7.1.9) and (7.1.15) to be replaced

by
[omde [ For, 1 OV, ¢ ds

(7.2.2)
T dg [T 1Y, 91 di

fi=

where ;1 = cos 8, Y] is a spherical harmonic of degree [ and is an appropriate linear
combination (which [ will determine below) of functions F™(cos #)e™? of the
same degree { and different orders m, determining the angular dependence'of the
eigenfunction, and f = Aln-y, Aln por A In ¢? as appropriate, tl?e pertu.rbatlons to
<, p and ¢* now being computed at constant . This can be seen immediately from
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an inspection of the structure (5.1.1) of £ and the forms of K and I, defined by
eqgs. (5.3.2) and (5.3.3), on noting that if the radial component of £ is proportional
to Yy (u, ¢) then so is div £, and that £* . & o« [Yi(yi, )]* + terms which integrate
to zero.

One consequence of the symimetry breaking is that the modes represented by the
expressions (5.1.1) and (5.1.2) are no longer degenerate. The different unperturbed
eigenfunctions corresponding to different values of 7n or to different coordinate
axes, e.g., are no longer equivalent, and only to the members of a particular set
of the eigenfunctions can one ascribe, to leading order in the perturbation, single
frequencies. The nature of the aspherical perturbation to the basic state determines
such a set. Of course any eigenfunction of degree [ of the unperturbed spherically
symmetrical state can be written as a linear combination of any 2{+ | independent
eigenfunctions of degree [ and the same order n. Here | take

1\ (@ —my]'?
£lk = Z [(l + i) ((l"'—::;))':l Cm&lmy (7.2.3)

where each §;,,, is of the form given by eq. (5.1.1), the scaling factors in front of
the coeflicients ¢,, having been chosen to normalize the spherical harmonics such
as o have an rms value of unity over the surface of a sphere. The superscript £ is
a label that identifies one of the 2{+ | possible independent linear combinations. It
is omitted from ¢, to simplify the notation. Note that the summation convention
is not being used in this discussion.

The coefficients c,,, are determined by the form of the perturbations f. It is

convenient to expand the angular dependence of these perturbations in spherical
harmonics:

A
Jomd) =Y D PR EPP (e, (7.2.4)
A>0 m=—)
where 97} is real and (A — m)! 111;/{" = (A +m)! ¥7¥\, ensuring the reality of f.
Then the analogue of eq. (7.1.9) is

§ } CmCmy
m m'
k

' R 1" ’" Aw
X § :Qﬁm (,C'Y;Pw',yrf\ + KPFT"/};}\ )d'l‘ - il 6mm’ = 07
A /0

nl

(7.2.5)

mm' _ (DY [A=m)td =2t
A= (“ 5) [m] ./v| B )P (WP () dys,
(7.2.6)

where
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m—-m' +m’ =0 (7.2.7)

and &, is the Kronecker delta. Since the expression on the left-hand side of
eq. (7.2.5) is stationary with respect to variations in the eigenfunctions, and hence
variations in the coefficients c,,, it follows that the coefficients are the eigenvec-
tors of the matrix equation

k

A
Z <Amm’ - S 6mm'> cm =0, (7.2.8)

Whnl

m'

where

I
Amm = Z Q™ / [}C%pw:ﬁm_m ) +_Kpﬁ¢,:f>fm—m Ndr
0
Iy

: Zafoﬂml, (7.2.9)
X

and that the relative perturbations Aw/w are its eigenvalues. The resuiting set of
eigenfrequencies of modes with the same [ and n is often called a multiplet, each
member of which is a singlet.

The geometrical factors 'Qf{;ml are related to Clebsch-Gordan coefficients.
Their symmetry properties are discussed, e.g., by Edmonds (1957). The first prop-
erty to which I wish to draw attention here, which is immediately evident by in-
spection of the definition (7.2.6), is that if m and m’ are replaced by —m and —-m/,
Q’ﬂm’ is unchanged. The scalar perturbations f have the same effect on eastward
and westward propagating waves that are otherwise identical. Consequently, the
20 + 1 eigenvalues Awk, are degenerate in pairs, whatever the order of the mode.
In general, therefore, there are only [ + I distinct eigenfrequencies; of course, for
particular perturbations 1/),’7",\(r), 1/);’;(1") there may be additional accidental coin-
cidences, but these would occur only for specific modes rather than for all orders
n. A second property is that Q’;}’"I = 0if A is odd; this follows from the reflec-
tional symmetry properties of /™ and the selection rule (7.2.7). Consequently,
only about half of the terms in the expansion (7.2.4) contribute in leading order to
the frequency splitting.

In the special case of axisymmetric perturbations to the basic state the problem
simplifies considerably. If one takes the coordinate axis to be the axis of symmetry,
then 7 = 0if m # 0,and the matrix A 1 diagonal. The solution of eq. (7.2.8)
for mode k is simply ¢, & 8k, Which means that the basis functions &;., are the
leading-order eigenfunctions. The frequency perturbations are given by

Awnim "
B0 = A = D Qrtm / (K35 + Kpyipa) dr, (7.2.10)
N 0

Wnt
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where Qam = Q% [ have lowered the mode label in my notation for the fre-
quency perturbation to emphasize that it now meaningfully denotes azimuthal or
der m. It is interesting to note that

4
S Qam =0 forA >0, 7.2.11)

m=—1

so the mean frequency of a multiplet is equal to the frequency of the degenerate
modes of the spherically symmetrical unperturbed state. This result is also true for
nonaxisymmetrical perturbations to the equilibrium state, since

l
3 Awk; = war trace(A) = Saxd Qum=0. (7.2.12)
k

A>0 m=—1

When A = 0 and Qxm = 1, the spherically symmetric contribution to the per-
turbation to the equilibrium state causes the frequencies of all the modes with the
same 7 and ! to be shifted by the same amount, and does not contribute to the
degeneracy splitting.

For the purpose of comparing the results of this expansion in the axisymmetric
case with the asymptotic discussion of section 8, it will be convenient to separate
Py (y) into its powers of p. Thus, e.g., for a sound-speed perturbation

Ac 2
T = XU:CV(T)IL (7213)

(the coefficients ¢, (r) being different from the constants ¢, of eq. (7.2.3)), the
frequency perturbation Aw of a high-order p mode with degree | and azimuthal
order m satisfies

Aw ~ R
— = Z Quhn / Ke, dr, (7214)

w

with K defined by eq. (7.1.18) and where

~ N\ (¢=my [
Qulm = (l + 5) ((ITZZ—))' | HZV[le(y.)]z d[l. (7215)

From using the recurrence relation

QL+ DpP™ =+ 1 —m)Py + L+ m)PT, (7.2.16)



Linear adiabatic stellar pulsation 479

follows that

Qum = R}y + R, (7.2.17)

Qum = Si + ST, etc., (7.2.18)
where

l2 _ m2 ’ .

R;TL = m, S[m = R‘lm(erl + le + RF-:I)7 etc. (7.2.19)

Since [ am concentrating now on asymptotics for which the wavelength of the
wave is much smaller than the scale of variation of the equilibrium state, including
that of the aspherical perturbation, only the case [ >> v is relevant. Then

m 1 m?

Using this approximation in the recurrence relations (7.2.17)-(7.2.19) yields

- 2 ! 2 174 ’
Quim ~ 22(—%1;% (1 - %) . (7.2.21)

This relation is rederived by a direct asymptotic expansion of the wave equation
in section 8. From the expansions of the Legendre polynomial

RS . (4v — 2k)! 2o—h)
Pr(cos0) = g( D G oy 2 9 (1.2.22)
RS ok (4v — 2k)! . —k)
= o) g( D ook — ke — e " 9,
(7.2.23)
follows immediately that, when [ >> A,
—Dren!
Q2rtm ~ ENEY Poy(m/L). (7.2.24)

222 (A2

7.3. Advection by rotation

The introduction of slow rotation Q2(r, 8) = (r, 8) k about a unique axis defined
by the constant unit vector k (which is not to be confused with the wave number
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elsewhere) also breaks the symmetry and splits the degeneracy of the eigenfre-
quencies. There are two contributions. One comes from the extra advection terms
in the linearized adiabatic oscillation equation (3.6). The other comes from the
distortion of the equilibrium state by the centrifugal force. The latter is simply a
scalar perturbation to p, p arid -, and can be dealt with by the method outlined in
the previous subsection.

To keep the discussion simple, I restrict attention to correction terms that are lin-
ear in Q/w. These arise only from the advection terms in the equations of motion.
As I will discuss later, if the star contains a large-scale rigidly rotating magnetic
field it is convenient to transform to a coordinate system rotating with the field.
In that case the Coriolis force must also be included. The effects of the centrifu-
gal force on both the equilibrium state and the oscillation dynamics are quadratic
in Q/w, and will be ignored here; if they were included it would be necessary
to include also the perturbed advection terms and the first-order correction to the
eigenfunctions. This is discussed by Gough and Thompson (1990).

To evaluate the perturbation due to any steady velocity field U(r) in the equi-
librium state one simply replaces uw by U + w in the adiabatic equations of mo-
tion (1.2.1)—(1.2.5), and linearizes them to obtain the analogue of egs. (3.6)—(3.11).
I will restrict attention to the case of pure rotation, where U = 2k x 7.

An integral relation for the eigenfrequency w can be obtained by following the
procedure of section 5.3. This relation is

1€, 8" w? — 2R(E, " w — (€, €%) + B(§, €)= 0, (7.3.1)

where I, I and B are defined by eqgs. (5.3.2)—(5.3.4) and
RE,ET) = i/ & (U-VEpdV. (7.3.2)
v

1t was pointed out in section 5.3 that in the absence of R eq. (7.3.1) is a variational
principle. Actually, in view of the symmetry properties of R, it is straightforward
to demonstrate that it remains a variational principle when R is retained (it is a
special case of the more general variational principle derived by Lynden-Bell and
Ostriker (1967)), though that stronger property is not needed here. It is adequate
to note simply that the modifications to the eigenfunctions of the nonrotating star
make no first-order contribution to (X — B)/I, implying that the correction to
the eigenfrequency to leading order in Q/w is wq = R/I, where R and [ are
evaluated with the appropriate eigenfunctions of the nonrolating state.
If k is chosen to be the axis of spherical polar coordinates, then

R€pn, &) =0, ifm#m’, (7.3.3)
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where, as in the expansion (7.2.3), §;,, is given by eq. (5.1.1). Consequently, the
leading-order terms of the perturbed nondegenerate eigenfunctions are the func-

tions &;p,. The azimuthal order m can therefore be retained to label the modes,
and eq. (7.3.2) can be rewritten:

REun 1) = [ mé - €° +ik - (€ x €120V, (13.4)
%
If the angular velocity, §2, is expanded in even powers of ;2 = cos 8, thus

A, 0) = Q) (7.3.5)
A

(as in the case of scalar perturbations, there is no contribution to R from odd
functions of u), the frequency perturbation Awnym is given by

Awpim =

. ~
mz Y [T =207 e+ 1 = L0+ DA DI} Qi
PRAY

+ L7IARA = DPQa—11m) Qupr? dr, (1.3.6)

n
I=/ (& +nh)prt dr. (13.7)
0
From é,\[ m = @,\,m follows that
Awny —m = —Awpim (7.3.8)

and, of course,

A
Z Awniy = 0. (7.3.9)

m=—X\

In the case of spherically symmetrical rotation (2 = 0if A #0)
R .
Awnim =mI ™! / ({2 +n? =207 "%n - L72®)Qpr? dr; (7.3.10)
0

the perturbed frequency is proportional to m. A direct consequence of this result is
that in a frame rotating with angular velocity m™! Awn, degeneracy is restored.
Another way of stating the result is that the effect of a spherically symmetrical
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angular velocity £2(r), to first order in Q /w, is simply to rotate rigidly, with angular
velocity m ™! Awqyrm, each wave pattern formed by a superposition of modes with
the same n and . In the case when Q is independent of r, that angutar velocity is
(1 — O)Q2, where

R
C=I“/O L' 26+ L™ 'p)ynprt dr, (7.3.11)

a result first derived by Cowling and Newing (1948) and Ledoux (1951).

It is useful to record the rotational splitting formulae for asymptotic modes,
which are obtained by substituting the expressions (5.8.7), (5.8.8) or (5.8.9),
(5.8.10) into eq. (7.3.6). Of course, strictly speaking these forms are valid only
far from the turning points; nevertheless, despite the formal divergences of the in-
tegrands when these forms are used, the contributions from the neighbourhoods of
the turning points are finite, and actually are quite small. Therefore the resulting
expressions are quite good approximations. For p modes I simplify the formula by
neglecting w?/Q? and (LcN/rw?)? compared with unity in the expression (5.4.8)

for K and by approximating u? by w?r~2p, yielding

Awnlm E)\ fr{e(@/\lm + aw_]T)\lm)(l - az/wz)_l/2€~lQ,\ dr

m frl,{(l — a2/w)~1/2c— dr

)

(7.3.12)

where
Thim = L7HACA = D@x—11m — O+ DA+ DQim]- (1.3.13)
Since a/w <« 1 well away from the lower turning point, provided A is not large

compared with L the contribution containing Thm is much less than that contain-
ing Qaum. Therefore the formula may be simplified still further:

m

A nim -~ R
5 Qi / Ky dr, (1.3.14)
) 7

where K(r) is given by eq. (7.1.18). For g modes, (w? — w?)r?/L*c? is ne-
glected compared with unity in the definition of K and u? is approximated by
—L*w™%r~4¢2p, resulting in

A“)nlm =~ 2 _ ~ 2 +
—m Ay Qumf K=Qudr+Tum | K*udr), (7.3.15)

m
A
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where

(1 — W/ NHYE2p =1 pr

K@) =
O A AN P

(7.3.16)

Except when [ is large, the two contributions for each value of \ are comparable.
7.4. Internal magnetic field

As in the case of rotation, a magnetic field B(r) influences the oscillations both
directly, through the introduction of a (perturbed) Lorentz force in the oscillation
momentum equation, and indirectly via the modification of the equilibrium state
by the unperturbed Lorentz force.

I will restrict attention to magnetic fields that do not penetrate the surface, S, of
the star and which produce stresses that are everywhere much less than the gas-
pressure gradient. In that case nonsingular (degenerate) perturbation theory can be
applied. (If a significant field were to penetrate the surface, there would be aregion
where the Lorentz force is potentially large, producing a singular perturbation.
That is much more difficult to deal with (e.g. Goossens et al. 1976, Biront et al.
1982, Roberts and Soward 1983, Campbell and Papaloizou 1986).) The analogue
of eq. (7.3.1) is then

(I +Ipw* — (K +Kp) —2M+ B =0, (7.4.1)

where

2M = —;I,O—I / £ (! div p€)(curl B) x B
V
+(curl B') x B + (curl B) x B']dV, (7.4.2)

in which g is the magnetic permeability of vacuum; the linearized Eulerian per-
turbation to the equilibrium magnetic field, B, is B’ = curl(§ x B), in the absence
of magnetic diffusion. In eq. (7.4.1) the integrals I and K are defined in terms of
the pressure and density distribution of the equilibrium state in the absence of B.
The quantities /g and KX g are the linearized perturbations to I and K at constant
§ arising from the static perturbations to p, p and 7y of the equilibrium state. The
integral M represents the direct effect of the perturbed Lorentz force on the dy-
namics of the oscillations. Formally all the terms in eq. (7.4.1) arising from B are
of the same order, namely B?R*/u,GM? times the corresponding unperturbed
terms, where B is a characteristic value of |B|. Thus the situation differs from
that in section 7.3, where in general the perturbation is dominated by the direct
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effect of advection, the centrifugal force that distorts the equilibrium state in that
case being of higher order in the perturbation.

In the way of the previous section the integral equation (7.4.1) can be linearized
in the magnetic perturbation. The perturbation wp to the eigenfrequency is thus
given by

wp =M+ 1(Kp — Ipw?), (74.3)

the integrals being evaluated with appropriate eigenfunctions of the correspond-
ing nonmagnetic equilibrium configuration referred to an appropriately stretched
independent variable, as was described in section 7.2. The appropriate zero-order
eigenfunctions are each sums of eigenfunctions &;,, with the same order and de-
gree, as in eq. (7.2.3).

The evaluation of wg is discussed for certain simple magnetic-field configu-
rations by Goossens (1972) and Gough and Thompson (1990). I will not repro-
duce the details here, since the formulae are cumbersome. I remark simply that if
the magnetic-field configuration is axisymmetric, about the axis of symmetry the
modes are represented simply by eigenfunctions £,,,, of the form (5.1.1), as was
the case in section 7.2. If, e.g., the equilibrium magnetic field is either azimuthal,
of the form

B(r)= By(r) = [0, 0, ﬁ¢(r):—9Pk(cos N, (7.4.4)

or poloidal, of the form

1dg3, d
B(r) = Bp(r) = |k(k + 1)ﬁp(r) Pi(cos §), ~ 4B — Pi(cos ), 0] ,
r? r dr df
(7.4.5)
it can be shown that the perturbed eigenfrequency is of the form
2%
A‘-‘Jn.lrn = Bpm = Z Q,\lm[;mg1 (7.4.6)
A=0

where the quantities 13 8(£,,m, £2,,,,) are integrals containing those components
of I'p, K and M whose integrands contain products of eigenfunctions &,,;,, and

nim (Or their derivatives) multiplied by Py(cos ). The quantities B,,,,, intro-
duced in eq. (7.4.6) represent the nonzero components of a diagonal matrix By,
by analogy with the matrix A,,,,- defined by eq. (7.2.9). Notice that even if B is

an odd function of cos §, the Lorentz force, which is quadratic in B, is even, and
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therefore gives a nonzero contribution to the frequency perturbation. It follows
also that, since the Lorentz force is quadratic in B there can be no distinction
between B and —B. Therefore the system is invariant under reflections about
the equator, which implies that there can be no distinction between eastward and
Yvestward propagating waves. Consequently the frequency perturbation must be
independent of the sign of m, as is evident from eq. (7.4.6); it follows also from
eq. (7.2.11) that the sum over m of the frequency perturbations to the modes with
the same n and [ is zero. More generally, one deduces from the symmetry of the
Lorentz force that if B were not axisymmetric, the eigenfrequencies would remain
degener.a_te in pairs, as is the case for the nonaxisymmetric scalar perturbations dis-
cussed in section 7.2. The eigenvalue equation is eq. (7.2.8) with A, replaced
by B, except that now the matrix B is no longer diagonal.

It is useful to record the form of the perturbations for asymplotic modes. The
terms K g and Ip arise from the scalar perturbations to the equilibrium state pro-
d-uced by the equilibrium Lorentz force. They have already been discussed in sec-
tion 7.2. There remains the term M, arising directly from the perturbed Lorentz
force. For an equilibrium toroidal magnetic field configuration of the form (7.4.4),

R U/Zx
M ~ Sklm /rI K:C_z dr (747)

for h’igh-frequ-ency p modes, where v3 = ﬁi/pop measures the square of the
Alfvén speed in the equilibrium state and the kernel K is defined by eq. (7.1.18).
The geometrical factor is defined by

~ N @ —my [ 4P\
Skim = (l‘*' E) Tem)l [l(l - ph) (Tf) [P,m(p,)]2 dpe. (7.4.8)

An asymptotic approximation to this result for modes with [ >> 2k, together with

an asymptotic formula for the frequency perturbation due to a poloidal field, is
presented in section 8.7.4.

7.5. Adding perturbations

The preceding discussions have dealt separately with perturbations caused by dif-
fereql agents. What if there are several such perturbations together, as, e.g., in a
rotating magnetic star?

The first remark I should make, which is very important, is that for the analysis
to be valid there must exist a coordinate frame, S, in which the basic (equilibrium)
structure of the star is steady. Otherwise, time-dependent perturbation theory must
be employed. In a rotating magnetic star, e.g., one would expect B to be advected
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by the rotation velocity. However, one can imagine, e.g., that the region of the star
containing the magnetic field is rotating rigidly, with angular velocity €2, say, so
that if S rotates with angular velocity §2. the magnetic field could be steady in
S. Outside the field-containing region, the star might be rotating steadily with a
nonuniform angular velocity relative to an inertial frame, and, provided that this
angular velocity is about the same axis as €2, the flow would also be steady in the
frame S.

The case of an axisymmetric equilibrium magnetic field B whose axis of sym-
metry coincides with the rotation axis, is straightforward. Then a possible choice
of S is the inertial frame whose origin is the centre of the star. With respect to such
a frame the components &, of the fundamental representation (5.1.1) are sepa-
rately eigenfunctions of both the corresponding rotating nonmagnetic configura-
tion and the nonrotating magnetic configuration. It is evident that they are eigen-
functions of the rotating magnetic configuration too; therefore the total frequency
perturbation, Awpim, is obtained simply by adding the contributions (7.3.6) and
(7.4.6).

[f the magnetic symmetry axis does not coincide with the rotation axis, the sit-
uation is more interesting. Now it is essential to work in the rotating frame S in
which B is steady. In this frame the frequency perturbations cannot simply be
added, since in the forms presented in egs. (7.3.6) and (7.4.6) they given with
respect 1o different coordinate systems. If, e.g., one works in spherical polar co-
ordinates, choosing the polar axis to coincide with the axis of rotation (which I
now call the coordinate frame S), the magnetic field is not axisymmetric about
the coordinate axis, and the functions &, are no longer eigenfunctions. To lead-
ing order in the perturbations the eigenfunctions are linear combinations of &nim.
asineq. (7.2.3).

To determine the coefficients ¢, of the expansion (7.2.3) and the perturbed
eigenfrequencies, it is first necessary to transform the matrix B,,,,,» from the coor-

- dinate frame &', in which B is axisymmetric, to the frame S. This is accomplished

by expressing the function &! s> Whose form is given by eq. (5.1.1) with respect
to spherical polar coordinates (r, 6, #') about the magnetic axis, in terms of the
coordinates referring to the rotation axis:

E:dm’ = Z dr(,ll)mfﬁnlm- (751)

m

The coefficients ) , are given, e.g., by Edmonds (1957). They depend on the

mm’

angle 3 between the two coordinate axes and the origins of ¢ and ¢'. I choose
the planes ¢ = 0 and ¢’ = 0 to coincide; then d,(f&n, is real. Moreover, &pim =

Yo d® ¢ The diagonal matrix B!, in eq. (7.4.6) (I have renamed it to

mm/Snlm/’*
B’ to indicate that the values of the components refer to the coordinate frame S”)
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thus transforms to

B = ) dy) Bld\), (7.5.2)
1,7

in the coordinate frame S. Of course, the matrix B,,,, could alternatively be
computed directly by expressing B with respect to the coordinates (r, 6, ¢) in S
and evaluating separately the elements from the products of the components of
the expansion (7.2.3), but that would require more work. The eigenfunctions and
perturbed eigenfrequencies are then determined, according to the arguments in
section 7.2, by the eigenvalue equation analogous to eq. (7.2.8), namely

Z Bmm’cm’ + [_lRCm - Aw:\;fcm = Oa (753)

m'

where [~'R is the right-hand side of the analogue of eq. (7.3.6) in the rotating
frame S. (The appropriate expression could be derived by repeating the analysis
of section 7.2 in the rotating frame, which requires including the Coriolis force.
However, it is simpler to note what the result must be by transforming the fre-
quency perturbation (7.3.6) to the rotating frame: all the integrals with A % 0 in
the sum remain unchanged and the integral for A = 0 is reduced by /€..) Recall
that the superscript k here labels the solution (Aw¥?, ck ), the superscript having
previously been omitted from c,, for simplicity; it is not the degree of the Legen-
dre polynomial used to define the simple magnetic-field configurations (7.4.4) and
(7.4.5). The label S has been added to make clear that the frequency is measured
in the rotating frame S. Notice also that the method of analysis outlined in this sec-
tion does not actually require the magnetic field to be of the simple forms (7.4.4)
or (7.4.5), nor even to be axisymmetric; if it were not axisymmetric, the matrix
B,.,,,,» would no longer be diagonal, but eq. (7.5.3) would still be valid. Moreover,
one can simply add to eq. (7.5.3) terms arising from other perturbations, such as
the term A, Cme of eq. (7.2.8), resulting from additional scalar pérturbalions to
the equilibrium state that do not arise from magnetic effects.

Finally, let us recall that the frequency perturbations Awfl‘ls are referred to the
rotating frame S. When they are referred to the inertial frame, the multiplicity
of the degeneracy splitting is increased further. The reason is clear. In the frame
S a magnetic field or a scalar asphericity splits the degeneracy into | + | differ-
ent eigenfrequencies, the eigenfunctions associated with each being in general the
linear combination (7.2.3) of all 2/ + | degenerate eigenfunctions of degree [ of
the unperturbed spherically symmetric equilibrium state. The transformation to
the inertial frame of the frequency associated with each component &,,;,, of the
combination is

AwF = AwkS + mA.. (7.5.4)

nim ni
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Thus the frequencies w,,; + Awﬁ‘f of each mode in S are split into 2/ + 1 separate
components, yielding a multiplicity of (I + 1)(2!{ + 1) in the inertial frame.

7.6. Horizontal inhomogeneity

The predominant asphericities in real stars are often more complicated than the
simple examples [ have discussed in sections 7.2-7.4. In particular, a scalar per-
turbation in late-type stars is likely to be greatest in the convective envelopes,
where it is associated with velocity fields of considerably greater complexity than
the simple rotation discussed in section 7.3. If one ignores magnetic fields, and
for the moment the inevitable time-dependence of the convective flow, one can
proceed as in the preceding discussion by expanding the convective (and rota-
tional) velocity and its associated scalar (e.g. ¢? and -y) perturbations in spherical
harmonics, and computing the resulting degeneracy splitting of the normal modes
of the corresponding unperturbed spherically symmetrical equilibrium state. The
outcome is formally an ensemble of many closely spaced, discrete frequencies
associated with each spherical harmonic component (I, m) of the oscillatory mo-
tion, some of which result from the frequency perturbations discussed above, the
others being the frequencies of other modes whose perturbed eigenfunctions have
spherical-harmonic components ({, m). In practice, these frequencies could never
be measured individually (except, perhaps, those of the lowest-degree modes),
since the convective flow is not steady on the observation time scale that would
be necessary for resolving them. The difficulties are compounded by the fact that at
any instant one can view only one side of a star, even, at present, in the case of the
Sun, so one cannot unambiguously isolate the separate spherical-harmonic compo-
nents. What can be measured, of course, is the shape and position of the broadened
lines in the oscillation power spectrum to which the unresolved, discrete compo-
nents contribute. Therefore, in principle, one could carry out the (time-dependent,
if necessary) normal-mode perturbation analysis, and compute the outcome of the
observations. For all but the lowest-degree modes, such a calculation is tedious,
and in any case no doubt is not the most effective way of characterizing the os-
cillations. It is probably more prudent to concentrate on modes for which there is
a considerable difference between the horizontal and temporal scales of variation
of the mode and of the inhomogeneity of the basic state. (By “basic state” | mean
the nonoscillating state, which, in the presence of time-dependent convection, is
not strictly an equilibrium state.) Of course one can envisage situations where that
is not possible, but [ will not dwell on those here. Two situations naturally arise:
that in which the spatial horizontal scale, A, of the inhomogeneity is much less
than that of the oscillation (L ~'R) and that in which it is much greater. Both of
these could be similarly subdivided according to temporal scales. Each case can
then be analyzed by performing a scale separation, the evolution of the small-scale
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motion being expanded about the case where the large scale is infinite, its mean
properties then being used to determine the evolution of the large-scale motion,
as in the method of averages for determining adiabatic invariants of dynamical
systems (e.g. Landau and Lifshitz (1960)).

In the case where the spatial scale of the dominant convective motion, e.g., is
much less than that of the oscillations, one can average the convection over an
intermediate scale, yielding the familiar Reynolds-stress and convective heat-flux
terms in the leading-order equations of motion describing the dynamical oscilla-
tions of the star. To close the system of equations it is necessary to have a the-
ory of time-dependent convection; this is sadly lacking, although mixing-length
formalisms used to compute static stellar models, have been generalized for the
purpose.

In the other extreme the convection is on a scale much larger than the oscilla-
tions, and JWKB (Liouville-Green) theory can be used to describe the horizontal
variation of the latter. Under these circumstances the characteristic time scale of
the convection is much greater than the periods of oscillation, at least for p modes,
so JWKB theory can also be used to develop the temporal evolution of the os-
cillatory motion. Of course, to complete the description of the entire motion the
transport properties of the oscillations so calculated should then be entered into
the equations of motion for the convection. However, since to leading order for
the oscillation equations no understanding of the dynamics of the convection is re-
quired, the convective perturbations to the oscillations can be computed in terms of
an arbitrarily specified convective velocity and, say, pressure and density pertur-
bations. (Care must be taken when interpreting the results, however, because only
those frequency perturbations that arise from possible convective flows, which
do satisfy the equations of motion, are actually realizable.) If these perturbations
could be observed for the Sun, the theoretical relations might be used to invert the
data to determine the large-scale convective flow, and thus, hopefully, further our

understanding of the complicated dynamical processes that take place in the outer

layers of stars.

What JWKB theory provides is a description of the ensemble of modes that
one would observe with limited resolution. Thus, to leading order it represents
the superposition of distorted eigenfunctions, each with its associated multiplicity
of frequencies. It therefore provides directly and simply the tool one requires for
inverting the data, through an average dispersion relation which relates the appar-
ent frequency, @(r, t), of a group of waves to their mean local horizontal wave

‘number, k(7). (Since k := LR™' > A~! z R™!, I am restricted to high-degree
modes, for which I can make an appropriate plane-parallel (sinusoidal) approxi-
mation to the spherical harmonics.) This dispersion relation contains two kinds of
terms. One is that associated with the horizontal component, U, of the convective

velocity; it is simply an advection by an appropriately weighted average, U, of
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U, the weight depending on the mode of oscillation, and produces an equal and
opposite frequency perturbation k - U to otherwise identical waves travelling in
opposite directions. The other results from alt other aspects of the structure of the
star — the (horizontal) Jocal variation of p, p, v and the vertical component of the
convective velocity — whose influence on the dispersion relation do not depend on
the direction of k. Thus, from the symmetry properties of the dispersion relation
one can immediately disentangle the effect of U from the other perturbations.

It is a straightforward matter to write down the formulae for the perturbations
in this limit. I wilt not do this in all its generality. I simply want to demonstrate
the equivalence of this approach and the normal-mode perturbation expansion. To
this end 1 will oversimplify unrealistically, but without losing the essential physics
[ wish to illustrate, by considering the Lamb wave (the horizontally propagating
acoustic wave mentioned in section 5.7.2 and appendix V) propagating in a static
plane-parallel atmosphere with constant 7, in which the sound speed, c, is inde-
pendent of height.

To simplify matters still further, I will isolate just one Fourier component of the
sound-speed variation, aligning the z-axis of a local Cartesian coordinate system
with the direction of variation. Thus,

¢ = c3(1 —esinkx), (7.6.1)
where ¢, € and & = A~ ! are constants. The basic state is assumed to be one with no
motion, and must therefore satisfy hydrostatic support. In particular, p = v~ pc?
is independent of . Under these circumstances the linearized equations of motion
of section 5 for a wave (mode)} with frequency w reduce to

0 [10d6p %p  w?
— |- —bp=0 7.6.2
paz(pax>+ay2+czp ( )

for the Lagrangian pressure fluctuation 8p, and can be reduced to standard form
(cf. sections 4.8 and 5.4) with the substitution 8p = p'/?¥, i.c.

ViU + K20 =0, _ (7.6.3)

where V1 is the horizontal Laplacian operator and

2_ .2
K? = ‘*’__2“’1 (7.6.4)
c
2
2 _ 7

and the prime denotes differentiation with respect to z. Here A is the horizontal
density-scale length of the equilibrium state, defined with the usual sign conven-
tion: A := (—01n p/dz)~". Itis interesting to note the structural similarity between
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egs. (7.6.3)—(7.6.5) and the plane-parallel limit of egs. (5.4.7)—(5.4.9), particularly
for solutions independent of y. Notice also that for egs. (7.6.3)~(7.6.5) to be valid
it is required that the equilibrium sound speed is a function of z alone, but it does
not require the isolation of the single Fourier component (7.6.1).

If the expression (7.6.1) is introduced into egs. (7.6.3)-(7.6.5), bearing in mind
that X is minus the scale length of c?, and the outcome expanded to first order in
€, which now | presume to be small, there results

Vﬁ\IJ +k°0 ~ —£ AV sin &z, (7.6.6)
where

k=w/c (7.6.7)
and

A =2k + k. (7.6.8)

The solution to eq. (7.6.6) can then be obtained by expanding about a solution of
the unperturbed state (¢ = 0), which I take to be a plane Lamb wave, yielding

2e Ak,

lp:COS(k’Q:—wt)'i'm

X [cos kxsin(k - x — wt) — % sinkx cos(k - x — wt)] (7.6.9)

xz

=Acos(k -z — wt — 6), (7.6.10)

where k = (k;, k) is the (horizontal) wave number, whose magnitude is k,

1/2
A 1 A Gin 2 + 4 Ak, 2 :
= - T [ — -
ak2 =2 M) A — 7y ©0

N eA .
~ | —mSlnﬁx, (76“)
and
5 = tan-" 2e Ak, . cA . -
= ——————— COSKZI s
@k2 — r2) k2 — 2 2N
cAcoskx

= ek, (1 — R2J4KE) (7.6.12)

492 D.0. Gough

Alternatively, one can solve eq. (7.6.6) in the JWKB approximation by setting
¥y = A(@) exp(xik, p(z) L ikyy — iwt), (7.6.13)

with k large. The calculation is much simpler than the preceding method. The two
leading equations are

Pr=1+ 2—? sin kT (7.6.14)
T
from which
cA
~po 7.6.15
Y~z 2k COS K, ( )
and
A= @) V2 (7.6.16)

To first order in £ the combination %(\Il,r + ¥_) is identical to the expres-
sions (7.6.10), with A and é given by egs. (7.6.11) and (7.6.12) in the limit
K/ke — 0, which establishes the equivalence of the two methods of analysis,
at least for this simple example. Both describe a motion which locally resembles
a wave with frequency w = w (I have been able to use a representation with a
well-defined frequency because my basic state is in static equilibrium) and a wave
number whose x component is k(z) = kg + (¢ A/2k,)sin kx. Notice that what
emerges as the spatial variation of the dispersion relation from the JWKB approx-
imation arises from the spatial distortion to the eigenfunction in the perturbation
expansion. This is the case whatever the nature of the perturbation. Thus it is ev-
ident, e.g., that a local asymptotic analysis of travelling waves in a rotating (or
magnetic) star could lead to the detection of a north—south asymmetry in the an-
gular velocity (or magnetic field). In a perturbation analysis of normal modes, one
must investigate the first-order corrections to the zero-order eigenfunctions, which
entails taking the analysis further than I have outlined in sections 7.2-7.4.

Strictly speaking the two methods 1 have discussed, are not equivalent, since
the conditions for their validity are different. The perturbation expansion (7.6.9)
requires that e 4/(4k2 — x?) and € Ak, /x(4k2 — x?) are small, with no further
restriction on #/k,, whereas the JWKB approximation requires «/k; be small
with no restriction on €. The two analyses are therefore complementary. In the
next section [ develop the idea of representing the eigenfunctions locally as waves
in the JWKB approximation further.

8. Asymptotic representation by locally plane waves

The Liouville-Green expansion, discussed in sections 4.8 and 5.8, makes a wave-
like approximation to the radial variation of the eigenfunctions. Eigenfunctions



Linear adiabatic stellar pulsation 493

are represented as standing waves formed by constructive interference of inward
and outward propagating waves that are reflected at the turning points 7} and 7.
Strictly speaking, the resulting approximations should be valid only when the or-
der n of the mode is large, so that there are many wavelengths in any scale height
of the equilibrium state between | and 7. In practice, however, the formulae often
provide quite a good approximation even when n is only moderate. This property
is well known from the JWKB approximation to other wave equations, such as the
Schrodinger equation.

It is also possible to make a similar wave-like decomposition in three dimen-
sions, by performing a Liouville—Green expansion on the basic equations of mo-
tion without any separation of variables of the type (5.1.1) and (5.1.2). The condi-
tions for constructive interference, also known as resonance, are naturally rather
more complicated, but the method has the advantage that it can be applied directly
to nonspherical stars, when the eigenfunctions are not separable. In these lectures,
however, I will apply it only to spherically symmetrical stars and to stars that are
perturbed from the spherical state by only a small amount, reducing the formu-
lae to the results obtained in sections 5 and 7. Except in some highly idealized
circumstances, the governing equations for stars which deviate substantially from
spherical symmetry, would need to be solved numerically; and this has never been
carried out. The method of imposing resonance conditions played an important
role in the early development of quantum theory, and has since become known as
Einstein-Brillouin~Keller (EBK) or semi-classical quantization, for reasons that
soon will be made clear. It is currently used particularly by theoretical chemists
for solving the Schrodinger equation for complicated molecules.

8.1. The adiabatic wave equation in standard form

I first seek a single equation that describes the motion for a scalar, dependent vari-
able ¥, analogous to eq. (5.4.7) but in three dimensions. 1 will assume a static
“equilibrium” background state in which there is no motion and no magnetic field,
so that the linearized perturbation equations governing the oscillations are given
by egs. (3.1), (3.6), (3.10) and (3.1.4). Bearing in mind that 1 will be dealing with
short-wavelength asymptotics, I will, for simplicity of presentation, ignore the
local variation of the gravitational acceleration, g, and make the Cowling approx-
imation, ®' = 0. Thus I will be analyzing the oscillations in terms of locally plane
waves on a locally plane-parallel background. Note that I refer to “background”
rather than “equilibrium” state, since, as before, I assume only hydrostatic equi-
librium, to ensure that the only motion on the dynamical time scale is the oscilla-
tory motion under study; I permit the possibility of thermal disequilibrium, e.g.,
causing the background state to evolve on a time scale much longer than the char-
acteristic period of the waves. Thus in sections 8.2 and 8.3 I perform the analysis
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considering the coefficients of the wave equation to be slowly varying functions
of time. However, for simplicity I will regard the background state to be static
when deriving the simple wave equation (8.1.8), and therefore also in the explicit
application of EBK quantization 1o stars.

The derivation of the wave equation follows the usual principles: eliminate u
and p’ from the equations of motion, leaving an equation for a single scalar vari-
able, which here I take to be x := div& = —y~'p~! 8p. The details of the analysis
follow closely the derivation by Lamb (1932) of the wave equation for a per-
fect gas. First one eliminates p’ and p’ from the momentum equation (3.6), using
eqgs. (3.10) and (3.11):

aZ

pa_tf =pV(Ex+g-O+(Px+g-EVp—gpx —g€-Vp.  (8.11)

As usual, I have omitted the subscript zero from quantities pertaining to the back-
ground state, and I have rewritten u in terms of £ using eq. (3.1). I have also used

* the equation of hydrostatic support, Vp = gp, constraining the stratification of the

background state.

From the hydrostatic equation (and its curl) follows that g, Vp and Vp are
parallel. Therefore I can simplify eq. (8.1.1) by writing

g=-gn, Vp=-gpn, * Vp=-H 'pn, (8.1.2)

where n is an upward directed unit vector and H is the density-scale height, yield-
ing

a2

a—tf = V(c*x — gn - &) - I'yn, (8.1.3)

where
F=H"'¢?—g=g"'*N?, (8.1.4)

with IV the buoyancy frequency defined by eq. (5.1.6).

The vector equation (8.1.3) is a relation for the three components of the dis-
placement §. The aim now is to eliminate two of the dependent variables, leaving
an equation essentially for the third. I do not wish to end up with an equation for
the component of a vector, however, because that is coordinate dependent. Instead
I seek an equation for the scalar y. To this end one first takes the divergence of
eq. (8.1.3):

9%y

Y =Vic*y — gn-£€)—n- V(). (8.1.5)
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This equation depends on the vertical component n - £ of £, an expression for
which can be obtained in terms of x by taking the double curl of eq. (8.1.3), thereby
eliminating the gradient term on the right-hand side:

2 2

n - — curl(curl §) = FY?)

5 (n-Vx-Vin.&=—gViTy), (8.1.6)

where V? is the horizontal Laplacian operator. Thus, if g is independent of ¢,
egs. (8.1.5) and (8.1.6) combine to yield a single equation for X alone:

oty @ 2,2 -1.2 2x72,.2

a—t“_ﬁ[v (C x)—n-V(H CX)]_N Vh(c X)=0 (8.17)
This is the required generalization of Lamb’s equation. It is not in the required
form for a Liouville-Green expansion, however, since it implicitly contains odd
derivatives of the dependent variable. These can be removed by means of the sub-
stitution ¢’y = p~'/20, yielding the desired equation:

02 2w 2
-2 2 2 22y,
¢ (a?*‘“c)a—tz“a—tzV‘I’—NVh\P—O, (8.1.8)
where here
= %o, 1/2
we =52 (1 = 2n - VH) (8.1.9)

is the planar value of the critical acoustic frequency in section 5, defined by
eq. (5.4.9). Aside from a constant factor, the relationship between the dependent
variable ¥ and &p, i.e. 5p = —p'/2¥, is also the plane-parallel limit of the more
accurate expression (5.4.6) of section 5 that was derived for a spherically symmet-
rical background state.

Equation (8.1.8) is the master equation that should be used for quantization.
However, to keep the presentation simple, I will specialize to acoustic oscillatiois
and work with the simpler equation obtained by neglecting N2

2
<% +w3>\D—c2V2\I/=O. (8.1.10)

This is essentially the classical wave equation, modified by the acoustical cutoff .

term w?, although, of course, w? and ¢? are considered to be slowly varying func-
tions of position.

8.2. The three-dimensional Liouville-Green expansion

As in the one-dimensional case, it is necessary for the validity of the approximation
that the scale of variation of the wave is much smailer than that of the background
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state. Let the ratio be characterized by A~', which is considered to be small. The
principle is to substitute into eq. (8.1.10) a wave-like function of the form

U= Aer? (8.2.1)

where the amplitude A(r,¢) and the phase function ®(r, t) are presumed to vary
on a length scale comparable with the scale of variation of the background state,
and successively equate to zero the coefficients of descending powers of A. Ac-
knowledging the possibility that w, might be O(A), as indeed we know it must be
in the surface layers of the star, the two leading equations are:

2 — (W /AP = VD VO =0, (8.2.2)
%(A%b) — A div(A’V ) = 0, ' (8.2.3)

where the dot denotes the partial (Eulerian) derivative with respect to time. This
can be regarded as the three-dimensional JWKB approximation.

8.3. The eikonal equation

It is convenient to define the quantities
w(r, t) = —Ad, k(r,t):=AV®, (8.3.1)

which can be regarded as a local frequency and a local wave number. In terms
of these quantities eq. (8.2.2) can formally be solved for w in terms of k and the .
background state, yielding

w= Wk, t)= (W?+2k>)2, (8.3.2)

This is called the dispersion relation.
One can now proceed by the route of geometrical optics (e.g. Whitham (1974)).
It follows immediately from the structure of eq. (8.3.1) that

k+VW =0, (8.3.3)

irrespective of the explicit expression in eq. (8.3.2) for W, where the operator V
denotes the gradient taking into account the spatial variation of k. Since k is the
gradient of a scalar, and consequently curl k = 0, with respect to Cartesian coordi-
nates, zj, after expanding the gradient in terms of partial derivatives with respect
to z; and k; at constant k; and z;, respectively, where k; is the ith component of
k, eq. (8.3.3) can formally be rewritten as

dk

o =k+v-Vk=_-VW. (8.3.4)
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Here V is the usual gradient operator, thus, on the riglit-hand side of the equa-
tion, it operates on W at constant k. The quantity v has Cartesian components
v; = OW/dk,; it is known as the group velocity of the wave. I should perhaps in-
troduce at this point also the commonly used term phase velocity, whose Cartesian
componenls are W/k;. Unlike the group velocity, it is not a vector; it is the more
useful concept of phase slowness, k; Jw, that is a vector.

The components z; of the position vector z(¢) of a point moving with group
velocity v satisfies

_d.’L‘i _ ow

v = i a—ki’ (8.3.5)
where, according to eq. (8.3.4),
dk; ow
e _ 2 3.6
det ox; (8.3.6)

Equations (8.3.5) and (8.3.6) are Hamilton’s equations for the Hamiltonian W
expressed in terms of the canonical variables x;, k;. Therefore the theoretical ma-
chinery of classical mechanics is available for describing the properties of the
waves. In particular, in section 8.7, I will utilize the principle of least action to
simplify the quantization conditions for a nearly spherical star. Equation (8.3.6)
describes the evolution of the wave number, k, at a point that moves along a ray
path, which is determined by eq. (8.3.5). In geometric optics it is called the eikonal
equation.

One can similarly obtain an equation for the evolution of the frequency, w. Dif-
ferentiating the dispersion relation (8.3.2) with respect to time along a ray yields

dw W oWdz; oW dk;
— =t —— + .
dt ot ox; dt ok; dt

(8.3.7)

In view of Hamilton’s equations (8.3.5) and (8.3.6), the second and third terms on
the right-hand side cancel, yielding

dw oW .
T (8.3.8)
It follows immediately that if the function W is not explicitly dependent on time,
then w is constant along a ray. This statement is the analogue of the conservation
of energy for a system moving in a time-independent potential in either classical
or quantum mechanics. In all the applications I will discuss, it will be assumed
that this condition holds, which permits the separation of variables

U(r,t)= U(r)e (8.3.9)
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in terms of a well-defined frequency w.

A similar deduction can be made from eq. (8.3.6): if W is not explicitly depen-
dent on a particular Cartesian coordinate z;, say, then the component k; is con-
stant along a ray. This is the asymptotic basis for the harmonic separation elkr™ for
waves in, e.g., a plane-parallel atmosphere, where ky, is a constant wave-number
vector perpendicular to the direction of variation of the background state. Similar
results hold for cylindrically symmetric and spherically symmetric background
states. The transformation to spherical polar coordinates (7, 8, ¢) is carried out in
appendix 1X; there is shown that if the background state is independent of ¢, then

rsinfky, = M, (8.3.10)

where M is a constant, and if the background state is spherically symmetric, then
in addition to condition (8.3.10),

7‘2/»‘,% = 7‘2(k’5 + ki) =12 (8.3.11)

where L is a constant. It will be shown in section 8.5 that the quantization con-
ditions in a sphere constrain the constants M and L to be simply related to non-
negative integers, m and [ say: M = m, which can be identified with the azimuthal
order of the mode, and L is a representation of the quantity (5.1.3) with the same
name that was introduced in eq. (5.1.1).

8.4. EBK quantization

The asymptotic representation of the solution of the wave equation (8.1.10) is
obtained in terms of locally plane waves by the methods of semi-classical quan-
tization developed by Einstein (1917), Brillouin (1926) and Keller (1958), which
correct the earlier Bohr-Sommerfeld quantization conditions. An example of a
ray path of a stellar wave, which is the trajectory of a point satisfying egs. (8.3.5)
and (8.3.6), is illustrated in fig. 7. The illustration is for a spherically symmetrical
stellar model. From the usual arguments of central-orbit theory for a Hamilto-
nian system, the ray lies in a plane passing through the centre of the sphere and
is confined between two radii, r; and 7, defining two caustic spheres, which are
envelopes of the rays. | will call the domain between 7y and 3, within which the
ray lies, the region of propagation. In general, the path is not closed, and the ray
comes arbitrarily close to every point in the space betweenr; and r2. Thenasingle
ray essentially fills the propagating region, and when all the appropriate resonance
(quantization) conditions are satisfied, it interferes with itself to generate an eigen-
mode of oscillation. In principle, it is only under this condition that the procedure
outlined below is valid, since otherwise a ray would occupy a lower-dimensional
subspace of the region of propagation, and neighbouring rays would not necessar-
ily constitute a regular solution of eq. (8.1.10) with a unique frequency, w.
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Fig. 7. Ray paths in the Sun. On the left are two acoustic rays; the more deeply penetrating ray is a
constituent of pg(! = 2), with a cyclic frequency v = w/2x = 1.38 mHz, and the shallower ray is
a constituent of pg(! = 100), with v = 3.39 mHz. On the right is a constituent of g1y(l = 5), whose
cyclic frequency is 0.19 mHz.

Since a ray in a spherically symmetrical system lies in a plane through the cen-
tre of symmetry, it cannot by itself cover the three-dimensional region of propa-
gation. However, since all points on a sphere r = constant have the same values of
we and ¢, similar rays on different planes have essentially the same paths, and con-
sequently it is possible to choose appropriate waves on neighbouring planes that
match smoothly onto one another. Einstein (1917) regarded this case as simply the
spherically symmetrical limit of a more general aspherical situation in which the
ray paths genuinely fill the region.

Two classes of space-filling rays were contemplated by Einstein: (a) those for
which, as the ray passes through an element of volume, dV, there is only a finite
number of values of k, and (b) those for which there is an infinite number of
values. Rays of the second class produce what is now called quantum chaos, and
will not be considered here. 1 will consider only situations in which the waves
are of class (a), and | assume that the stars of interest fall into that category too.
Brillouin (1926) and Keller (1958) also considered only situations in this class.
The general asymptotic solution of eq. (8.1.10) can then be represented as a finite
sum of waves:

J
\P:lel]:

J
Ajeit®s 8.4.1)
j=1 j=1

where the amplitudes A; and phases D, separately_satisfy equations of the
type (8.2.2) and (8.2.3) for the same frequency w = ~Ad;. Of course, | appreciate
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that strictly speaking this is not an accurate representation of stars, which in reality
have (lime-dependent) convection zones which scatter the waves, but here I will
ignore such scattering and deal only with idealized stellar models.

To make the discussion concrete, I will first discuss the oscillations of a spher-
icafly symmetrical star, and then discuss small perturbations from it. Thus, I start
by considering rays in a plane such as that illustrated in fig. 7. The ray can be
divided into segments of two distinct types: those propagating inwards and those
propagating outwards. Thus there are just two ray segments, each travelling an-
ticlockwise about the centre of symmetry of the background state, and that pass
through any given point of a ray plane within the region of propagation. Therefore
one can construct the components of the solution in that plane by setting J = 2,
Of course, there is another similar pair of waves travelling clockwise, which in
general should also be included. However, to keep matters simple, even when |
consider axisymmetric perturbations from spherical symmetry, [ will restrict atten-
tion separately to clockwise and anticlock wise waves. (Strictly speaking, 1 should
keep all four waves in the plane and demonstrate that there is no coupling. How-
ever, it is simpler to anticipate the result, and show that a solution composed of
only two waves can be found: we know from the discussion in section 7 that the
eigenfunctions can be approximated by the separable forms (5.1.1) and (5.1.2),
the coordinate axis being the axis of symmetry. Each function has a well-defined
azimuthal order mn, the sign of which determines whether azimuthal propagation is
purely clockwise or purely anticlockwise. In the more general nonaxisymimnetric
case, however, the eigenfunctions cannot be described so simply. They are ap-
proximated by the linear combination (7.2.3) of separable functions with different
values of m, and in general both negative and positive values are contained in the
suim.)

The inward and outward ray segments are Jjoined at the caustic surfaces. Rather
than consider k to be double-valued in the region of propagation, Einstein (1917)
found it convenient to consider k to be single-valued in a more complicated do-
main D, in which the intersection of the plane of fig. 7 and the region of propa-
gation is represented, in the way of Riemann sheets in complex function theory,
by two surfaces joined at the caustics. Thus, the ray is considered to propagate
outwards on, say, the upper sheet, and inwards on the lower sheet. In the case of a
single ray for a spherically symmetric star, propagating in a plane, the domain D
has the topology of a torus in three dimensions, and the ray spirals on its surface.
It is simplest to keep at first this physically two-dimensional situation in mind.
Einstein called the domain D the rational coordinate space; Keller used the now
common parlance: covering space. Because k is single-valued in D, and because,
according (o eq. (8.3.1), k is the gradient of a scalar, lines that are everywhere
orthogonal to k exist. They are the intersections of the plane of fig. 7 and surfaces
of constant phase, and they also spiral the torus, but with opposite helicity. The
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Fig. 8. The thick curve represents a segment of an acoustic ray, such as one of those illustrated in
fig. 7. The dashed curve is the intersection of a surface of constant phase with the ray planc, and for the
simplified dispersion relation (8.3.2) is orthogonal to the inward propagating rays, which are labelled
with single arrow heads, intersecting them at P and Q. The circles are caustics.

condition that the solution ¥ to eq. (8.1.10) is a well-defined eigenstate is simply
that A exp(iA®) is single-valued. Consequently, a ray starting at P in fig. 8 and
ending at Q on the same surface of constant phase must satisfy the quantization
condition

AdD =2n'mr+i81n A, (8.4.2)
where n’ is an integer and the symbol 6 represents the difference of the values at
QandP.

Since the system is nondissipative, we may seek solutions for which A4 is inde-
pendent of . Then eq. (8.2.3) for the amplitude becomes

div(A%k) =2k - VA+AA VP =0, (8.4.3)

whose solution is

A= Agexp (—%A / IS vEY ds) , (8.4.4)
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the integral being taken with respect to distance s along the ray path. Thus, since ¢
is real, the phase of A does not vary along the ray, except possibly at the caustics,
where V2@ diverges.

The fundamental contribution that Keller (1958) made to the theory was to de-
termine how the phase of A changes at a caustic surface. Roughly speaking, the
conservation equation (8.4.3), or equivalently eq. (8.2.3) with 8/8¢ = 0, implies
that '

A’ko = constant (8.4.5)

along a tube of rays with cross section ¢. At a simple caustic surface the rays cross
on a line, and o changes sign. Consequently A% changes sign (provided & is not
zero on the caustic) and the phase of A is retarded by %ﬂ'.

One might wonder why in this argument it is that the phase of A is retarded and
not advanced by %w. To see this, one must examine the solution of the wave equa-
tion (8.1.10) in the vicinity of the caustic more closely. The resuit is well known in
optics, and with a little thought one can readily convince oneself that the problem
is a simple turning-point issue of the type 1 have already discussed in connection
with the JWKB approximation; the retardation comes from demanding that the
disturbance decays, rather than grows, exponentially away from the caustic in the
evanescent region. One can easily convince oneself of the sign of the phase jump
simply by drawing a sinusoid matched smoothly at the origin to an appropriately
decaying exponential function.

Equation (8.4.2) can thus be rewritten:

Q ’
/ k.dr=2 (n' + E) T, (8.4.6)
Jp 4

where the path of integration is along a ray and where m/ is the number of simple
crossings of caustic surfaces encountered between P and Q. If a crossing were to
occur at the confluence of two caustic surfaces, so that the cross section of the tube
of rays is reduced to a point rather than a line (in other words, the dimensionality of
the cross section is reduced by two, rather than one) the crossing would be counted
twice.

Notice now that since k is perpendicular to the surfaces of constant phase, one
can add to the integral on the left-hand side of eq. (8.4.6) an integral from Q to
P along the line of constant phase in the covering space D without changing its
value. Hence

!
}z{k dr=2 (n + ﬁ) m, (8.4.7)
p 4
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Fig. 9. Covering space for wave propagation in a plane with circular symmetry between two caustic
circles, as in fig. 7, showing the contours C’ and C"/.

where C is a closed contour that winds around the torus D, formed by a segment
of aray and a segment of a line of constant phase.

The condition (8.4.7) must be satisfied for all points P and Q in D. That does
not lead to an infinite number of independent quantization conditions, however.
The number of independent quantization conditions is finite, and is equal to the
number of degrees of freedom of the system. As Einstein (1917) pointed out, for
a space-filling ray (i.e., a ray that fills the region between 7, and 7, in the plane of
propagation) one can now continuously deform the contours C at will, provided,
of course, they remain on the surface of the torus; it follows from eq. (8.3.1) that
curl £ = 0, and therefore from Stokes’ theorem that the values of the integrals
are invariant. | should point out also that for such a generalization of the con-
tour C the direction of the crossing of a caustic must be taken into account, and
the sign of the contribution to m’ assigned accordingly. If a contour can be con-
tracted to a point, the integral is zero, m’ is zero, and n’ must be zero: the quan-
tization condition provides no useful information. Otherwise, the contour can be
deformed to a combination of integral numbers of basis curves of the covering
space. Consequently, the integrals around all the basis curves provide a complete
set of quantization conditions. These are the analogues of the correct expressions
for the Bohr—Sommerfeld conditions in quantum theory.

To see more clearly how these conditions arise, let us first specialize to two
dimensions, seeking the solution of eq. (8.1.10) in the area enclosed by a circle.
The ray in fig. 7 then constitutes the complete solution. The entire covering space
is the torus depicted in fig. 9, whose basis curves are C’ and C”. Therefore there are
two independent quantization conditions. The caustics are the curves concentric
with C" having the minimum and maximum radius in D. The curve C' crosses
each caustic once and C” crosses neither. Hence, the two independent quantization
conditions are given by

?{ k-dr=2 (n' + %) T, (8.4.8)
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Fig. 10. Projection of fig. 9 onto the ray planc.

f k-dr=20r, (8.4.9)

for nonnegative integers n’ and I’. The contours C’ and C" are shown projected
onto the physical two-dimensional configuration space in fig. 10. One is purely in
the radial direction and the other is a circle concentric with the caustics. Of course,
C’ and C” could be deformed further, but usually the contours as drawn in the figure
are the most convenient to adopt for evaluating the integrals in conditions (8.4.8)
and (8.4.9).

'The generalization to oscillations of a sphere is discussed by Keller and Rubi-
now (1960). Now a solution can be found which is composed of a superposition
of plane rays obtained by rotating the plane of figs. 7, 8 and 10 about the axis of
spherical polar coordinates (r, 8, ¢). As will become apparent, to satisfy the quan-
tization conditions, the angle %7r — 8 between the coordinate axis and the normal
to the planes must take only specific quantal values. Moreover, the phases of rays
on neighbouring planes must be appropriately related, so that the dashed line in
fig. 8 maps out a unique surface within the region of propagation as the plane of the
figure is rotated. Figure 11 illustrates the plane of fig. 10 imbedded in the sphere.
By considering all points P between the caustics of the plane as it is rotated, it is
clear that the waves occupy that region of space between the spherical surfaces
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r o= 7 and # = 7, forming the caustic spheres, thal lies outside the cone with
semi-angle §y about the axis. Evidently, the cone is also a caustic surface. The
covering space is the three-dimensional surface in the four-dimensional space de-
fined by rotating the torus in fig. 9 about the coordinate axis: topologically, D is
the Cartesian product of a torus and a circle. There are now three independent
basis curves, which may be taken to be C’ and C” of figs. 9 and 10, and, say, the
circle C" within the region of propagation and arbitrarily close to the intersection
of the cone § = g, with the inner caustic sphere r = ;. The quantization condition
(8.4.8) is unchanged, because the contour C’ still intersects two caustics, which
are now the spheres r = r; and = r,. Condition (8.4.9) is modified, however, be-
cause the contour " now intersects the caustic cone twice. C’” touches no caustic.
Therefore the quantization conditions are

1
%k-dr:Z(n'+§> 7, n'=01,2,..., (8.4.10)
1
7{ k-dr=2<l+§>7r, (=0,1,2,..., ' (8.4.11)
}{ k«dr =2mm, m=0,1,2,.... (8.4.12)

8.5. Evaluation of the quantization conditions

"Evaluation of conditions (8.4.10)—(8.4.12) for a spherically symmetrical star is
straightforward. In view of the restrictions (8.3.10) and (8.3.11) on the azimuthal
component kg and the total horizontal component k; of the wave number under
these circumstances, conditions (8.4.11) and (8.4.12) become

2rriky = 27 L = 27(L + 3) (8.5.1)
and

27y sinfp kg = 2mM = 2mm. (8.5.2)
Thus

L=1+} (8.5.3)

and M = m. The radial component, k,, required for evaluating the quantization
condition (8.4.10) can now be obtained from ky, and the total wave number £k,
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Fig. 11. Imbedding of fig. 10 in a sphere. The dotled line between A and B represents the contour
C’, which lies in the ray plane between the two spherical caustic surfaces which bound the region of
propagation. Shown also is the caustic cone, which is the envelope of the planc of fig. 10 as it is rotated
about the coordinate axis (which is not shown), and inside of which the waves are evanescent.

which is given in terms of the frequency, w, and the structure of the star by the
dispersion relation (8.3.2). Thus, condition (8.4.10) becomes

2 L] 2 _ 2 211/2 1
/ Kdr :=/ [‘” e L_z] dr = (n - —> m (8.5.4)
" " c T 2

where 1 have set n = n’ + 1, so that counting starts from n = 1, in accord with
the classification discussed in section 5.5. Equation (8.5.4) here provides a defi-
nition of K, which is simply the vertical component of the wave number, and is
essentially the same as that given by eq. (5.4.8) with N7 neglected. This equa-
tion is essentially eq. (5.8.1), with A and e ignored, which was derived from the
JWKB approximation to the separable solution (5.1.1), (5.1.2), except that now the
definition (5.1.3) of L has been replaced by the slightly different quantization con-
dition (8.5.3). Had I worked from the dispersion relation obtained from eq. (8.1.8),
rather than the more highly simplified relation (8.3.2) derived from eq. (8.1.10), 1
would have included a contribution from buoyancy, yielding eq. (5.8.1) withe =0
and N replaced by its planar value N. (Of course, 1 could even have included the
spherical geometry in deriving eq. (8.1.8), in which case w. and N would have
been correctly represented.) Strictly speaking, ray theory is valid only when all
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components of k are large compared with the inverse scale of variation of the
background state. Therefore one should expect eq. (8.5.4) to be valid only when
[ > 1, so the difference between eqgs. (5.1.3) and (8.5.3) shouid not be signif-
icant. One might expect eq. (5.1.3) to be superior, since the analysis leading to
eq. (5.8.1) placed no restriction on the value of [. It is pertinent to recall, however,
that, as mentioned in section 5.8, in practice eq. (5.8.1) or eq. (8.5.4) often pro-
vides a closer approximation to the exact solution when eq. (8.5.3) is used for L.
That can be true also when solving Schddinger’s equation by asymptotic methods
(e.g. Kemble (1937)).

Conditions (8.4.11) and (8.4.12) also determine the quantization of the angle 6y
that the planes of figs. 7, 8 and 10 make with the coordinate axis. Since both the
contours C" and C""' lie essentially on the caustic r = r|, they are always tangent
to horizontal rays. Hence k4 = &, for the particular choice of C” and C'” that |
have made. Dividing condition (8.5.2) by eq. (8.5.1) thus yields

=sin' [ 8.5.5
8y = sin (l+l/2)' ( )

Clearly, we can identify [ and m with the degree and the azimuthal order of the
separable solutions discussed in section 5. This will become even more evident in
the next subsection, in which I construct the eigenfunctions. We note here simply
that the waves avoid a cone about the coordinate axis, and that for sectoral modes
with high degree, m/(I+4) = [/(I+1) ~ | and the modes are localized close to the

equatorial plane, lying between the latitudes + cos™'[1/(l + })] = £(/ + 1)~!/2,
8.6. Construction of the eigenfunction

The eigenfunction ¥ is given by eq. (8.4.1); at any point P it is the sum of all the
distinct waves W that pass through P. As I deduced in the preceding two sections,
for a spherically symmetrical star the ray paths lie on planes inclined at an angle 8,
(given by eq. (8.5.5)) to the coordinate axis, on each of which there are two distinct
ray segments through P. Furthermore, provided P lies outside the caustic cone,
there are two planes with inclination 8y that pass through P; these are illustrated in
fig. 13. To construct the eigenfunction, one must therefore compute the amplitudes
A; and the phases ®; of the four constituent waves ;. After ensuring that the
separate values of A; and ®; are appropriately related (which is accomplished by
considering the matching conditions at the caustics; since each ray is space-filling
in its plane, the four waves all lie essentially on different segments of the same
ray, if we take Einstein’s view that the extension of a ray from one orbital plane
to ancther can be considered to be the same ray (strictly speaking, segments of a
single ray that is not closed cannot all pass through P, but they come arbitrarily
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close to P, and by continuity of ¥ their amplitudes and phases arbitrarily close
to P determine the amplitudes and phases of ray segments that do pass through
P), and their amplitude and phase relations are therefore well-determined), it is a
straightforward matter to sum the waves W to determine W. I consider first the
phases, then [ compute the amplitudes and finally 1 construct V.

8.0.1. The phases

The great circle of intersection of one of the planes of a ray path through a point
P and a sphere with radius r (satisfying 7| < r < 77) concentric with the star,
whose centre is O, is illustrated in fig. 12. Shown are Cartesian axes (x,y, z), with
respect to which 1 define spherical polar coordinates (r, 8, ¢). It is convenient to
define two additional coordinate frames: (z', y', 2’) defined by rotating the original
frame about the z-axis by an angle ¢y such that the z’-axis coincides with the
intersection of the ray plane with the equatorial plane of the original frame, and
(@”,y", 2'") obtained by a further rotation about the z’-axis such that the 'y -
plane coincides with the ray plane; in the z"'y"-plane 1 also introduce the polar
angle ¢”, satisfying " = r cos ¢"'. Thus, the ray lies in the plane 2 = 0.

Let the point P in the ray plane have coordinates (r, 8, ¢) in the original frame;
without loss of generality [ assume the angle QOP to be less than %w, so the seg-
ment QP of the great circle does not touch the caustic cone. Let Q be the inter-
section of the ray plane and the equator of the sphere with positive z’, and let Q'
be its antipodal point. Also, let R be the intersection of the great circle passing
through P and the poles in the (z,y, z) frame and the equator; it has coordinates
(r, %ﬂ', ¢). Finally, let S be the intersection of the z-axis with the sphere. I will use
a notation for angles such that @qop, €.g., is the angle subtended at O by Qand P
in the direction Q — P.

First I relate the phase @, to the point T at (ry, %7!’,0), the intersection of the
z-axis with the inner caustic sphere, at which I presume the phase to be ®+. This
point T is not indicated in fig. 12 since it is of no material importance. The phase
®; with respect to T is now given by

P J P
(I)]'»— b = / k.dr= / k. dr +/ ky - dr = q)rj + (I)hjy (8.6.1)
T JT s
$,; and dy; being the integrals from T to S and from S to P, respectively. For the

outward propagating wave, ¥, the phase component ®,; is obtained by integrat-
ing directly from T to S:

3, =/ Kdr - }, (8.6.2)
L]

where K = |k|, in which, for symmetry, I have included half the phase retardation
at the caustic sphere r = . For the inward wave, W5, the path of the integral must
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2,7

Fig. 12. Diagram showing the ray plane in a sphere of radius r and the coordinates used in the con-
struction of the eigenfunction.

cross the outer caustic (once is sufficient) and join with S without encountering the
inner caustic on the way. In view of the quantization condition (8.5.4), the phase
component &, modulo an integral multiple of 27 (which is immaterial for the
purposes of evaluating the eigenfunction) is @2 = —®,1.

The horizontal integral is the same for both waves: $y,; = ®p,. 1t is given by

By = goL cos(3m — 6p) + LPqop, (8.6.3)

since, according to eq. (8.3.11), 7~'L is the magnitude of the horizontal com-
ponent of the wave number and 7~'Lcos(3m — o) is evidently the equatorial
component at § = %71’. Indeed, one can rewrite the first term on the right-hand side
of eq. (8.6.3) as mdy, either by substituting the quantization conditions (8.5.2),
(8.5.5) and (8.5.3) into that term or by writing it directly as [ rsinf kg d¢ and
using eqs. (8.3.10) and (8.5.2). It is also convenient to rewrite the second term
as m®Pqor — mMPqor + LPqop, combining the first of these terms with ma¢g to
obtain m¢. The angles ®qor and Pqop can then be obtained from the coordinate
transformations

y' =rsinfsin(g — do) =y sinfy = 7sin ¢ sin by, (8.6.4)
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Fig. 13. Diagram showing the ray plane of fig. 12 and the other ray plane passing through the point P.
The notation is the same as in fig. 12.

2 =rcosf =ru=y" cosfy=:rsing” cos b, (8.6.5)

in which I have used the fact that z” = 0 in the ray plane. Dividing eq. (8.6.4) by
eq. (8.6.5) yields

oy ftanbe . mi )
Pqor = ¢ — ¢po = sin (m> = sin [,LM(l — ,uz)‘/z] ; (8.6.6)

one obtains ®qop directly from eq. (3.6.5):

oo feosON (B 8.6.7
Dgop = ¢ =sin (cosﬂo)—sm (M) ( )

In these equations I have introduced the quantity M, defined by
M :=cosp = (1 — m?/LH'?, (8.6.8)

the second relation having being obtained from eq. (8.5.5). These relations com-
plete the determination of the phases @, and ®, of the outward and inward waves
propagating in the ray plane illustrated in fig. 12.



Linear adiabatic stellar pulsation 511

The phases ®3 and ¢4 of the outward and inward waves W3 and W4, propagating
on the other plane containing P and which also makes an angle 6, with the 2-
axis, illustrated in fig. 13, are constructed in a similar way. But before one can
write down their values, it is necessary to establish the conditions for these waves
to match correctly onto appropriate waves ¥, and ¥, at the caustics. Evidently,
®3 = ¢, and ¢y = D,,. Therefore it is only necessary to consider the matching
of the horizontal contributions. To this end I first evaluate the phase component
@y at Q' from egs. (8.6.3), (8.6.6) and (8.6.7) by setting 6 = 17; Poor = Pqop =
$qoq = 7, whence

$,(Q) = Lw — sw=lm; (8.6.9)

notice the inclusion of the phase retardation of %7r resulting from passing the caus-
ticcone at ¢ = ¢+ %w. (One might also note, in passing, that the phase increment
around the entire great circle through Q and P is 2{w, which is an integral multiple
of 2w, as it should be.) Thus, if Q" is the intersection of the second ray plane with
the equator such that the great-circle segment Q”P does not encounter the caustic
cone, and Q' is its antipodal point, one obtains

‘I)h] = (I)hd, = Tn(,‘b() — mq)Q()Qw +{m+ L‘I’Quop
= md) + mq)QOR - L(I)Qop + (l —m)m
=me¢ — (P, —me)+ ( — m)m. (8.6.9double)

At this point, for tidiness, I now set &1 = — %(l - m)7, which causes the constant
contribution to be shared equally between all the phases. This yields

YA . mit
Pp; + Oy =me + [L sin (ﬂ) TS A TM = iy

1
- Sa- m),r], (8.6.10)

where the principal value of sin™! is implied; the plus sign refers to j = I and 2,
the minus sign to 7 = 3 and 4.

8.6.2. The amplitudes
The ampilitudes are obtained from the asymptotic conservation equation (8.4.5). It
is necessary, therefore, to calculate the spatial variation of the cross section, o, of
a pencil of rays.

First consider waves on two neighbouring ray planes with the same inclination
6y whose intersections Q and Q' (in the notation of fig. 12) with the equatorial plane
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are separaled by a small ditference 8¢ in the polar angle ¢. The planes intersect
on the y”’-axis, and therefore the perpendicular distance between them is

z" cos 0y 6¢ = 7 cos ¢”' cos Oy 6 = r(M? — 1)/ 5, (8.6.11)

the second of these relations having been obtained with the help of eq. (8.6.7).
Now consider two neighbouring rays on one of these planes, one being generated
from the other by a small rotation 8¢” in the polar angle ¢”’ about the z"-axis. If
1 is the inclination of the ray from the vertical at radius r, then the perpendicular
distance between the two rays is

rcosp 8¢” =k~ k| 89", (8.6.12)

where, as before, |k;| = K is the magnitude of the vertical component of the wave
number k. The right-hand side of eq. (8.6.13) follows immediately after recalling
thatin this section I am ignoring the buoyancy frequency and that therefore the ray
is parallel to k; 1 am interested only in the magnitude of the distance between the
rays, the sign having already been taken into account by Keller’s phase retardation
at the caustics.

For a given pencil of rays, ¢ and 8¢" are constant. Therefore, combining
eqs. (8.4.5), (8.6.12) and (8.6.13) yields

Aj o r T KTV MR -ty (8.6.13)

Since eq. (8.4.5) also indicates that the amplitude is the same at equal small dis-
tances in the covering space at either side of a caustic, it follows that eq. (8.6.14)
holds for all j, with the same constant of proportionality.

8.6.3. The eigenfunction

The phases and amplitudes computed in the previous two subsections give suffi-
cient information to construct the eigenfunction ¥. Substituting into eq. (8.4.1),
after rewriting the phases (8.6.11) in terms of inverse cosines, yields

U~ Wor~ K2 cos (/ frar= %) Py (e, (8.6.14)

Al
where, assuming 7 to be non-negative,

le.(u) — (MZ _ N2)—I/4

s ™
X CO$ [Lc:os~l (%) — mcos™! (m) — Z} (8.6.15)
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and Wy is a constant; principal values of cos™' are to be taken. In constructing
these solutions, I considered only waves propagating around the coordinate axis
in the direction of increasing ¢. There is another eigenfunction composed of waves
propagating in the direction of decreasing ¢; it is easy to see from the preceding
analysis that it is obtained simply by reversing the sign of m in the exponential in
eq. (8.6.15).

It is interesting to note that the quantized eigenfunction (8.6.15) is separable
in its coordinates (r, i« = cos 8, ¢), even though separability was not explicitly as-
sumed at the outset. (One can readily trace this property back to being the result of
considering the superposition of waves only on planes inclined with the same an-
gle 8, to the coordinate axis.) Recalling that here U = —p~1/2 §p, one can see that
it is similar to the separable solution for 6p of the form (5.1.2), whose asymptotic
radial component (for w? > ¢/7), obtained by the JWKB approximation, is given
by eq. (5.8.5). The sole difference in the dependence on r arises from the fact that,
for simplicity, I have used the ray theory only for high-frequency acoustic modes;
to reduce eq. (5.8.5) to the component of expression (8.6.15) that depends only
on 7, it is necessary to ignore w™2N? compared with unity in eq. (5.4.8), ignore
the geometrical terms in eq. (5.4.9) by omitting the last term and replacing H by
H, and retaining only the dominant term w?r/g in the expression (5.1.11) for the
discriminant f. The dependence on @ differs only by the deviation of P/ from
the associated Legendre function P/™. It is shown in appendix X that the JWKB
approximation to PJ™ is asymptotically equivalent to P;™ when [ is large.

This construction provides an interpretation of the quantities L and ! in geomet-
rical terms. Roughly speaking, what I have done is represent the eigenfunction as
. a superposition of sectoral modes whose planes of symmetry all lie at an angle of
approximately sin™ '(m /1) with the coordinate axis. As the plane is rotated about
the coordinate axis, the phases of the constituent sectoral modes must be such as
to produce constructive interference. Each sectoral mode can be regarded as the
interference pattern of waves lying close to its equatorial plane: it is channelled
by the spherical geometry of its container, which acts like a wave guide with half-
width ér, intersecting the surface of the star in a band with half-width 6 R about
a great circle. The wave has [ wavelengths around the great circle, as is evident
from the discussion leading to eq. (8.6.10). Thus the component of the horizontal
wave number along the great circle is [l2 ™! and the component perpendicular to it
is roughly (7/28)R~". The square of the total horizontal wave number is therefore
(2 + 1726~ R-? ~ L*R~2, from which follows that § ~ /2yl ~ |='/2 in
agreement with the deduction from eq. (8.5.5). Indeed, this is just as one would
expect from wave-interference arguments: it is straightforward to show that at any
radius 7 the length of a circle of latitude at latitude 8, in a coordinate system orien-
tated such that the ray path of the sectoral mode lies in the equatorial plane, differs
from the length of the equator by half a horizontal wavelength of the mode.
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8.7. Aspherical perturbation theory

Calculating the effect of small spherical perturbations is straightforward. The
structure of the ray equations is not materially altered, and evidently the eigen-
functions remain separable, the angular dependence being unchanged. Thus the
perturbations to the eigenfrequencies and eigenfunctions can be obtained simply
by formally perturbing the formulae obtained in the previous two sections. On
the other hand, when the perturbation to the basic state of the star is aspherical,
the rays are additionally refracted; in particular, they are no longer planar, which
increases the complexity of the geometry substantially. However, when the dis-
tortion is small, linearized perturbations to the oscillations can be expressed in
terms of integrals along the unperturbed contours in section 8.4, and the problem
is simplified enormously. As an introduction to how the analysis is carried out,
first derive a variational principle.

8.7.1. The principle of least action
Consider the function

S=/£dt, 8.7.1)

ﬁ(:c,k,t):=k-(:i—T—W=k-u—W, (8.7.2)

W being given by eq. (8.3.2), and the integral in eq. (8.7.1) is taken along a ray
path either between two fixed points in space or from one point of a surface, ¥,
of constant phase to another. It does not matter whether or not the ray intersects
¥ en route. Recall that under the approximation (8.3.2), k is parallel to the rays
and therefore the ray is orthogonal to X. It is also worth recalling the analogy with
classical mechanics and noticing that £ is a Lagrangian and S an action.

Consider now a perturbation 8S to S, generated by independent perturbations
5 and 6k to the path z(t) and the wave number k, the perturbation to the path of
integration being such that it continues to start and end either at the two fixed points
or on ¥, although in the latter case not necessarily at the same points. Retaining
only terms linear in the perturbations, one obtains from eq. (8.7.1):

dz, déz; oW _ oW
= i+ kg — — 1 — ok; | dt, (8.7.3

o5 / <5k‘ @ 0z, T ks )
the integral being along the unperturbed path. Integrating the second term by parts
yields

dz; OW dk; oW _
6S=[ki6mi]+/<g— aki>6kidt—/<—£+ a$i>6zldt,

(8.7.4)
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where the square brackets denote the contribution from the perturbation at the end
points. Since the path of integration is along a ray, the first term vanishes, either
because dx = 0 at the end points or because dx lies in X and k is orthogonal to
3. Moreover, the integrals both vanish in view of the ray equations (8.3.5) and
(8.3.6). Consequently

58 = 0. (8.7.5)

The action S is stationary with respect Lo the perturbations. This resuft is valid
whether or not W depends explicitly on t. (It is evident that it holds also if the ray
path were to start and end on different surfaces of constant phase.)

My interest is when the background state is independent of time: W /dt = 0,
so that, according to eq. (8.3.8), w is constant along a ray path, and

w=W(k, ). (8.7.6)

Now consider a perturbation (dx, 5k) that is constrained to satisfy eq. (8.7.6). The
components of the perturbation are related according to the linearized equation

oW ow
— ki + — bz, = 0. 8.7.7
ok Ok; + oz, Sx; =0 ( )

Substituting this relation into eq. (8.7.4) yields
dz
6S=6/k-d—tdt=6/k-dw. (8.7.8)
Hence, in view of eq. (8.7.5):
é/k -dz =0. (8.7.9)

In other words, when W is not explicitly dependent on £, the phase integral f k-dx
along a ray path is stationary with respect to arbitrary perturbations in the path
of integration, whose end points remain either fixed or on the same unperturbed
surfaces of constant phase and in which k is perturbed such as to preserve the
dispersion relation (8.7.6).

Note, in passing, that for a nondispersive wave with phase speed ¢, satisfying
w = ke, eq. (8.7.9) can be rewritten as

5 ds =0, (8.7.10)

¢
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where s is distance along the ray. This is Fermat’s principle.

8.7.2. The perturbed eigenfrequency
Let the perturbed dispersion relation be

w= W+ W, (8.7.11)

where w = W, is the local dispersion relation for the unperturbed system and W),
is small compared with Wy. Assume that the perturbation is not so severe as 10
alter the topology of the covering space of the rays. Of course, the introduction of
a perturbing agent such as rotation or a magnetic field (rather than a perturbation
describing the difference between two similar stellar models constructed with es-
sentially the same physics but with different controlling parameters), might add a
new class of modes, such as inertial oscillations or torsional MHD modes, whose
ray topology might be quite different, but here I am addressing only the small
modification to the modes that already exist.

Although the ray paths are not closed, they are assumed to be space filling within
the domain of propagation. Consider, therefore, a ray path C in the perturbed sys-
tem which passes arbitrarily close to its starting position, so that for the purpose
of computing phase integrals along it, it can be considered to be closed. Since
the topology of the rays is unaltered by the perturbation, corresponding to C is a
ray path Cy of the unperturbed system, which can also be considered to be almost
closed and which can be generated by a continuous deformation of C. Thus the
form of the Bohr-Sommerfeld quantization conditions ts unchanged by the per-
turbation. In particular, eq. (8.4.6), where k is the wave number of the perturbed
system but C is now the corresponding contour Cy of the unperturbed system, is a
correct quantization condition for the perturbed system.

The quantization condition can be modified yet further. Because Cy is a ray
path of the unperturbed system, the variational principle expressed by eq. (8.7.9)
holds (there being no boundary terms to worry about), and k& may be modified by
arbitrary simall perturbations provided the dispersion relation (8.7.11) is preserved.
Finally, because the resulting wave vector must still satisfy curl k = Q, the contour
may be distorted further at will, as before.

Itis evident that there is a great deal of flexibility in"how one perturbs the phase
integrals. It is prudent to adopt a procedure that leads to integrals that are easy to
evaluate. For example, when perturbing a phase integral such as eq. (8.4.10) which
leads to an expression for the eigenfrequency, it is expedient to retain the zero-
order horizontal components of the wave number, which are given by eqs. (8.5.1)
and (8.5.2), leaving the vertical component to be calculated from them and the
perturbed dispersion relation (8.7.11). This is the procedure that is used in all the
examples discussed below.
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8.7.3. Sound-speed perturbations

Perhaps the conceptually simplest example is a perturbation of the sound speed. [
will assume the perturbation, dc, to be substantial only deep in the star, so that it
is not necessary to worry about related perturbations to wk.

As I explained above, aspherical sound-speed perturbations refract rays out of
the planes of propagation of the unperturbed spherically symmetrical configura-
tion. Typically a ray will sample the whole of the three-dimensional region of
propagation, being genuinely space filling. However, locally a ray is nearly pla-
nar, and lies close to one of the space-filling plane rays of the unperturbed star. Its
path may therefore be considered to be generated by the planar ray path of the un-
perturbed system, but with the plane of propagation (OQP in figs. 12 and 13) itself
rotating about two independent axes. In general, the ray samples the whole of the
region of propagation for a given mode before returning to the vicinity of the point
from which the path of the phase integral began. The perturbed phase integral de-
termining the eigenfrequency is therefore an average of the integral (8.4.10), this
average being over all polar angles ¢”' in the unperturbed plane of propagation
and over all permissible orientations of that plane.

Calculating the extent of the region of propagation and how it is sampled is a
difficult task for a general aspherical perturbation. It is the geomeltrical analogue
of the degenerate perturbation theory discussed in section 7.2. 1 will therefore
consider only perturbations that are axisymmetric about the z-axis in fig. 12. In
that case the plane of propagation rotates only about that axis, and as it rotates the
background state in that plane remains unchanged. Consequently, the integral over
the ray is equivalent to averaging eq. (8.4.10) over only the polar angle, ¢”. After
setting ¢(r, ) = co(r) + Ac(r, ) and w = wy + Aw, and dropping the subscript
zero of the zero-order terms, the quantization condition (8.4. 10) becomes

2« 2 2 24\ /2

¢ / <("’ ICA:ZC)Z We _ %) dr=(n—br, (8.7.12)
which generalizes eq. (8.5.4). It is now a straightforward matter to subtract the
zero-order condition (8.5.4), retaining only terms linear in perturbed quantities, to
* obtain an expression for the perturbed eigenfrequency Aw. It is convenient also to
transform the polar angle ¢” in the plane to p = cos 6 of the basic spherical polar
coordinate system, using eq. (8.6.7). Noting that each value of 1 is sampled twice
as ¢ rotates through 2, the outcome is

, —1/2
&NL/M(/\,(Z__Nz)—lﬂdu/7 l_w_g_'ﬁ gdi
w w8 o ] " w? wir? ¢ ¢’

(8.7.13)
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where

e 2.2y ~1/2
g _ _c _ L% dr (8.7.14)
wr? c

It is evident from the symmetry of the kernel (M? — ;2)~!/2 that only the com-
ponent of ¢! Ac that is symmetric about the equator, contributes to the frequency
perturbation Aw, as was deduced earlier from the perturbation theory described
in section 7.2.

It is a simple matter to show from egs. (8.4.5), (8.6.14) and (8.5.4) that what
€qs. (8.7.13), (8.7.14) express is that the relative perturbed frequency is a weighted
average of Ac/c; the weight is proportional to (gv) ~'r? dr dy, where v is the mag-
nitude of the group velocity which can be obtained from egs. (8.3.5) and (8.3.2)
and o is the area of a tube of rays, and it is thus the relative time the wave spends
in any element of volume, dV. Moreover, this weight can be computed from the
ray of the unperturbed star, which is analogous to expressing the frequency per-
turbation as an integral of Ac/c weighted by eigenfunctions of the unperturbed
star, as was done in section 7. The justification for the validity of this procedure
is based on the variational principle in section 8.7.1, which takes the place of the
variational principle in section 5.3, upon which the perturbation theory in section 7
depends.

Since the major contribution from w? to the integrals comes from very near
the surface of the star, they can be incorporated into the phase factor a(w) in-
troduced in section 6. Let me also assume that Ac is north-south symmetric:
Ac(r,—p) = Ac(r, u). (Alternatively, consider Ac now 1o be the north-south
symmetric component of the full perturbation.) In this case, bearing in mind that
by assumption Ac is negligible in the surface layers, eqs. (8.7.13) and (8.7.14)
reduce to

M R 2y ~1/2
§Av L 2/ du/ (M = )12 (1 - “_2> A 4r, (87.15)
T Jo | w ¢

w

where

12
S~ /(1-—> dar 232 (8.7.16)
dw

In these equations, as in section 6, a = ¢/r, w = w/L, T is the acoustical radius, de-
fined by eq. (5.8.22), and the phase factor a(w) is given by eq. (6.4). I have already
argued that « varies only weakly with w. Indeed, in practice the term —7 da/dw
makes a relatively small contribution to S, and can, as a first approximation, be
neglected.
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The analysis can easily be generalized to include the contribution from the mod-
ified buoyancy frequency, NV It can also be generalized formally to include sound-
speed perturbations that are substantial near the upper turning point, together with
the associated perturbation to w?2. In both cases it is prudent to adopt a distorted
coordinate system of the form (7.2.1), designed to prevent perturbations in A and
we from becoming too large near the boundaries of convection zones and in the
outer layers of the star. The outcome is to replace the common quantity in paren-
theses in eqs. (8.7.13) and (8.7.14) by cK /w, where K is defined by eq. (5.4.8), to
multiply the integrand in eq. (8.7.14) by the factor | — (aV /ww)? and to replace
Ac/eby (1 -wi [w)(De/ e+ h)+Hwe Awe ~ PN AN [w?) jw? +(cK fw)dh/d InT,
the perturbations Ac, Aw. and AN now being evaluated at constant z.

The formulation (8.7.15), (8.7.16) lends itself to ready inversion. Note, first of
all, that the integral on the right-hand side of eq. (8.7.15) depends on the quantum
numbers n, [ and m and the unperturbed frequency w only in the combinations
m/L and w = w/ L, the reduced frequency w being related to n. and w by eq. (6.1).
Moreover, S is a function of w alone. Therefore SAw/w is a function of m/L and
w alone, and, once the sound-speed inversion of section 6 has been carried out, can
be regarded as an observable quantity. Equation (8.7.15) is a double Abel integral,
and can therefore be inverted, yielding Ac(a, 1) in terms of the data:

Ac  2a 3% [* N
= T d i
¢ 7wA auaa/o M o

[

v ’ lUM.A(a')Aw/w
717
" / G — MO — @ )i/ ®.7.17)
where a, = a(R),
A= =S5t (8.7.18)
da

and a is related to r in terms of the unperturbed frequencies according to eq. (6.9).
Of course, to carry out the inversion it is necessary to be assured that the degen-
eracy splitting Aw is actually the outcome of a sound-speed asphericity. It is also
necessary to know the unperturbed frequencies. [f the aspherical component of
the perturbation Ac(r, 1) is defined in such a way that f_ll Acdu = 0, any other
component of the perturbation being regarded as spherically symmetric, then for
[ large

ZAw ~ / Awdm

{
-1

| |
o</ dM/ dp (M? — =21 = MO 2A¢ (8.7.19)
-1 —1
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[
(x/ Acdu =0. (8.7.20)
-1

Equation (8.7.20) was obtained from eq. (8.7.19) by interchanging the order of
integration, the first integral then being just that encountered in eq. (6.8). Thus the
frequency of the unperturbed (i.e., spherically symmetric component of the) star is
simply the uniformly weighted average of all the frequencies with the same 7 and
{ and varying m. This conclusion was drawn in section 7 for all modes, asymptotic
or otherwise, from the relations (7.2.10) and (7.2.1 1).

Finally, I should point out that if Ac is expanded in even powers of y, as in
eq. (7.2.13), and if 7 da/dw is neglected in the expression (8.7.16) for S, then
eq. (8.7.15) becomes

. R
2953, / Ke, dr, (8.7.21)

w

where K is given by eq. (7.1.18) and

G, -2 MOopde Qo
vim = 7 o (M2 — 22 " iy

(8.7.22)

The final expression in eq. (8.7.22) is identical with the asymptotic expres-
sion (7.2.21) for Qi defined by eq. (7.2.15), and therefore eq. (8.7.21) is the
asymptotic approximation to eq. (7.2.14) for large I. This establishes the equiv-
alence of the perturbation method in this section and that in section 7. One can
do so alternatively starting from eq. (7.1.17) with Ac replaced by its appropriate
angular average Ac defined by eq. (7.2.2), and substituting the asympltotic expres-
sion (8.6.16) for F™ into the formula for the spherical harmonics. Provided [ is
large compared with the characteristic harmonic scale of the perturbation, the os-
cillatory contribution from the square of the spherical harmonic averages (o zero,
and one is left with eq. (8.7.15), the small second term in expression (8.7.16) for
S again being neglected.

8.74. Frequency perturbations by a deeply buried magunetic field

[ restrict attention to a deeply buried magnetic field B(r), to be assured that the
Lorentz force is always small compared to the gradient of the gas pressure. There-
fore I can ignore the density stratification, thereby neglecting w?. Under these con-
ditions the local dispersion relation becomes

w? = kX + vk sin® 9), (8.7.23)

where v, is the Alfvén speed and 3 is the angle between (he magnetic field and the
wave number k. Once again the dispersion relation, now eq. (8.7.23), can be used
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to definc K in the quantization condition (8.4.10), the perturbation linearized in
small quantities, and appropriate spatial averages carried out. Restricting attention
once more to only axisymmetric fields, the result can be written as

Aw 2\ 7122
- - 2 2y~ 1/2 a v
» 27r5/ du] (M ) (l —w—2> —’;‘sm 3.

(8.7.24)

Note that this is just the contribution arising directly from the magnetic term in
the dispersion relation (8.7.23). The eigenfrequency is perturbed also by the dis-
tortion of the equilibrium state, but that can be handled in the way discussed in
section 8.7.3.

I first evaluate the frequency perturbations (8.7.24) separately for azimuthal and
poloidal magnetic fields. For an azimuthal field defined by b := (ugp)~'/?B =
(0,0, by), where uyg is the magnetic permeability of vacuum,

m

k-b= b
—g e (8.7.25)
from which one obtains
Aw _ / 4 a? (1 —M?
w 218 H A )
x (M? — uz)—'/zlc—f dr, (8.7.26)
C

where K is given by eq. (7.1.18). For the poloidal field determined by b =
(brabG)O)y

w? L? /2 1 m?2 2
k-b=|—=5-—= - (L - ——
(cz r2> br + <L Sin29> be , (8.7.27)
whence

A 1 M R 1 2 2 _
_wz_/ du/ _2{9_2b3+[1_a_<u 2
w218 J_pm o lw w? \ 1 —p?

x (M? — 15~V dr. (8.7.28)

In obtaining the last integral, it must be recalled that the integral with respect to
7 is really to be carried out in both directions, being the integral (8.4.10) around
the closed contour C’ in the covering space, and consequently the cross term that
arises when squaring eq. (8.7.26), integrates to zero.
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For a general axisymmetric magnetic field, further cross terms are generated in
the computation of sin® 3, but it can be shown that these also integrate to zero. Con-
sequently, the frequency perturbation is obtained by simply summing the contribu-
tions (8.7.25) and (8.7.27). Unlike the expression (8.7.15) for degeneracy splitting
by aspherical sound-speed perturbations, these formulae do not lend themselves
to easy inversion.

8.7.5. Rotational splitting

As in section 7.3, I assume the star to be rotating with angular velocity €(r, 1)
about a unique axis. Provided I > 1, curvature plays only a minor role in the
local dynamics of the oscillations, and the dispersion relation (8.3.2) continues to
hold essentially unmodified in a frame of reference moving with the fluid. Thus,
viewed from an inertial frame, the frequency of oscillation is given by

w—-m= (wc2 + kN2, » (8.7.29)

where, as usual, m is the azimuthal order of the mode with respect to a coordinate
system whose axis is the axis of rotation. (I refrain from using the unit vector k
of section 7.3 to specify this axis, for fear of confusing it with the wave number.)
When this relation is substituted into the quantization condition (8.4.10) and lin-
earized in the perturbations, the result is simply egs. (8.7.13)—(8.7.16) with Ac/e
replaced by mQ/w. The qualitative difference between the two forms of split-
ting, as was already noted in section 7, is that Aw is now an odd function of m,
whereas all other forms of splitting, which arise from agents that cannot distin-
guish between east and west, are even functions of m. Thus from measurements
of the odd component of the degeneracy splitting one can infer unambiguously the
angular velocity from the formula (8.7.17), in which Ac/c is replaced by € and
Aw/w is replaced by Aw/mn.

8.8. On the averaging of (solar) frequency data

For a star like the Sun, for which thousands of frequencies have been measured and
even more are foreseen, it is neither practical nor useful to publish in the scientific
journals the frequencies of all the individual modes: these should be available
from data banks. However, it can be informative to publish certain properties of
the data. These properties would typically be expressed as certain combinations of
frequencies of different modes. There has been a tendency in the past to publish
simple means of solar frequencies, the averages merely being taken over some
limited range of one or more of the quantum numbers n, [ or m, often without a
clear indication of how different frequencies were weighted. It is apparent from
the foregoing discussions that that is not the most informative thing to do.
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[t is not always possible to select specific combinations of mode frequencies at
will. Very often, particularly at high [, individual modes cannot be resolved, and
certain combinations of modes are forced upon one by the technique of observa-
tion. Nevertheless, it is useful to bear in mind what mode combinations are likely
10 be diagnostically the most useful, since it might be possible to tailor instrumen-
tal design and analysis techniques to suit the objectives of an investigation.

For the purpose of determining the spherically symmetrical component of the
stratification of the Sun, it follows from eqs. (7.2.11), (7.2.12) and (8.7.19) that
what is required for each . and [ are uniformly weighted averages of the frequen-
cies over all values of m. If further averaging is to be carried out, that should
be such that the result is expressed as a function of w = w/L. For the purpose
of describing asphericity, the results are evidently best described in terms of the
parameters w and m/ L, rather than the raw quantum numbers.

In parametrizing asphericity, at the end of section 7.2 and in section 8.7 I ex-
panded the sound speed in even powers of u = cos §. These expansion functions
were chosen quite arbitrarily. Indeed, earlier in section 7.2 I used spherical har-
monics, which have the advantage of orthogonality. Moreover, provided the de-
gree of the mode is much greater than the degree of the spherical harmonic describ-
ing the perturbation, at least for axisymmetric perturbations the dependence of the
splitting frequencies on 1/ L also separates into orthogonal (Legendre) functions,
as is evident from eq. (7.2.24). Thus, expressing splitting frequencies as a series of
Legendre polynomials P, (m/L) is mathematically both natural and convenient.

When thinking of modes in terms of interference patterns formed by waves
propagating in planes, it may seem more natural to use orthogonal functions that
weight the angle of inclination of the plane uniformly, i.e. cos[vcos™'(m/L)]},
where v is an integer. These functions bear a superficial resemblance to the asymp-
totic representation in appendix X of the Legendre polynomial P, _yj2lcos(m/ L))
in the oscillatory region, but they are not exactly the same. Such a weighting has
essentially been considered recently by T.M. Brown and C.A. Morrow, and sub-
sequently by F. Hill, for analyzing advection of waves by a horizontal subsurface
flow. The dominant component of the flow is rotation, but superposed on it could
be a flow associated with giant convective cells and large-scale meridional circu-
lation.

The method of analysis is to restrict attention to only modes with high de-
gree [, which are observed in a relatively small patch of the surface of the Sun,
within which there is a mean horizontal velocity U. (The mean is considered to
be weighted uniformly with respect to horizontal coordinates over the area of ob-
servation and weighted vertically with the kernel implied by eq. (7.3.10), or al-
ternatively its asymptotic representation (7.1.8) if the velocity varies slowly with
depth.) Setting up local Cartesian coordinates z, y on the surface, with, say, z in-
creasing towards the east and y increasing towards the north, and at each instant
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averaging the wave disturbance perpendicular to some fixed direction inclined
with an angle ¢ to the x-axis and taking its Fourier transform along that direction,
extracts the locally plane components of the wave field. On Fourier transforming
in time, one obtains a power spectrum P(w, [; 1), where w and [ are the tempo-
ral and spatial transformed variables. Thus, w is the temporal frequency, as usual.
However, [ does not have its usual meaning; it is the magnitude of the compo-
nent of the locally defined dimensionless horizontal wave number along the direc-
tion of the Fourier transform, measured in units of the inverse radius of the Sun.
If the Sun were spherically symmetrical, the oscillation eigenfunctions would be
separable, with spherical-harmonic angular dependence of degree {, where { is a
constant integer. But when asphericity is taken into account, the angular varia-
tion of the eigenfunctions is distorted, as was discussed in section 7.6, and | now
varies as the position of the observed patch is changed. Regarding the oscilla-
tions simply as waves in the surface of the Sun, with dimensionless wave number
(=g, 1y) = (lcos i, lsin), the local asymptotic dispersion relation is

w=ol)+R™'U -1, : (8.8.1)

where R is the solar radius and the function & () determines the dispersion relation
for a spherically symmetrical solar model (with U = 0) whose radial stratification
is the mean radial stratification of the actual Sun averaged over the spherical angle
subtended by the observed patch. Thus, e.g., asymptotically &(l) is given implicitly

* by eq. (6.1) oreq. (8.5.4), where a(r) is to be interpreted as an angular average.

The procedure now is to consider the projection of the power spectrum onto a
surface of constant w. If the Sun were spherically symmetrical, the power would
be a series of concentric circular rings about { = 0 whose radii, {, decrease with
the order n, of the modes. Because only a patch of the Sun is observed, individual
modes cannot be isolated; the power from the contributing modes rmerges, forming
continuous rings with finite thickness. The velocity U causes both a displacement
and a distortion of those rings, which can be parametrized by a radial variation
dl(3)), as illustrated in fig. 14. Since the influence of the advection on the wave
is small, the value of &/ can be calculated by expanding & in a power series in
6/ = — I, about the value [y that [ would have had for modes with frequency w if
U were zero:

-~ l 2..
o, 1dw

= EW(M)Z + -+ Rl cos(y — ) = 0, (8.8.2)

where 1y defines the inclination of U to the z-axis,

U =: (U cos 1y, U siny), (8.8.3)
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Fig. 14. Ring diagram produced by a flow with horizontal component U. Shown is the ring of the power
produced by high-degree modes with the same order at a fixed {requency. The thin circle centred at the
origin is where the ring would have been had U been zero.

and the derivatives of @ are evaluated at { = ;. Equation (8.8.2) can be solved for
8!, yielding

8y = = > " A, cos vy — gy), (8.8.4)

where

1 /doN"2 |1 /do\"! 4% U? U
Ag =~ [ 8¢ ey 4w Yt WY
0 z“’(az) [2“’(&) T R2+O<R4>’

Lo
A2=A()+O(0 ), (885)

Thus, one could consider estimating [y and the coefficients A, by, e.g., maxi-
mizing the cross correlation between the power and a function P, 4, 0), where
P is perhaps a Gaussian ring with standard deviation o (in [) centred about
I = Iy + 8l(1)). By analyzing rings with different frequencies one can obtain the
derivatives of @, and hence determine U, which, asymptotically, should be a func-
tion of w = w/L alone. Bearing in mind that U is an average over depth, these
averages can in principle be inverted, yielding the radial variation of the horizontal
velocity, averaged horizontally over the area defined by the observed patch.
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One can perform a similar analysis with global modes. If the frequencies w
of individual modes with the same order n can be isolated, one can construct a
continuous variable L(¢) at constant frequency w by interpolation between modes.
It is important to realize that this procedure is conceptually quite different from
the one described above, because L is now an interpolant of the global parameter
Lo=1+ % (where [ is the degree of the corresponding oscillation in a spherically
symmetrical solar model to which the solar mode would tend continuously as the
asphericity were imagined to be reduced to zero), which characterizes a pure mode.
It does not take the distortion of the mode into account and it does not vary across
the surface of the star. In this case ¢ = cos™'(rn/L), which is also obtained by
interpolation. Expanding the eigenfrequency equation in powers of 8L = L — Ly,
as in eq. (8.8.4), yields, for an axisymmetric star rotating with angular velocity
and with sound-speed asphericity Ac,

. _dw 1 d?@
m{Q) +wlc™'Ac) = —dLéL ~ 542
where & is the multiplet frequency (i.e. uniformly weighted average of the (singlet)
frequencies of modes with the same order and degree over all azimuthal orders m),
and the angular brackets denote the appropriate spatial averages determining the
splitting frequencies. Since rotational splitting is an odd function of §y = %7r -
and the splitting due to the sound-speed asphericity is even, the two contributions
can be separated, and the result inverted to obtain Q(r, u) and Ac(r, 1) separately.
In particular, if » and [ are large enough for the asymptotic analysis to be valid,
the angular brackets represent an average weighted with the double Abel kernel,
as in eqs. (8.7.15), (8.7.16), which can then be inverted using eq. (8.7.17) and its
analogue for the angular velocity.

(BLY? +---, (8.8.6)

9. Concluding remarks

The basic theory outlined in these lectures should be sufficient to equip one with
the necessary expertise to develop techniques for recognizing particular patterns
in oscillation eigenfrequencies that characterize certain stellar properties. Usually
these techniques are based on asymptotic theory, which provides invaluable ana-
lytical formulae which depend on the equilibrium state of the star. In the case of
the Sun, the simple polytropic representation (5.7.6) for high-degree p modes and
Tassoul’s formula (5.8.31) for low-degree p modes were the first to be used, to
make deductions about the stratification of the convection zone and to calibrate
the quantities A and wy defined by eqgs. (5.8.28) and (5.8.30). Tassoul’s formula is
likely to be of considerable importance to asteroseismology when stellar acous-
tic spectra become available, since it are only the low-degree modes that can be
detected in distant stars.
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As an illustration of how the theory that I have described can be used to search
for some property of the background state, let us consider what might be the
signature in the p-mode frequency spectrum of a steady axisymmetric jet in an-
gular velocity, confined to some very narrow range in both latitude and depth
near cosf =1 u = po and r = 5. We might represent it by the function
Qo o(r — 70) 6(12 — o), where g is a constant and 6(z) is the Dirac delta func-
tion. For high-frequency p modes the effect of advection by rotation is to split
the degeneracy by an amount Aw which is approximately equal to m (2}, the an-
gular brackets denoting a mean, weighted by the kinetic energy density of the
unperturbed mode. All that is required now is to estimate this mean, which can be
accomplished with the help of asymptotic analysis. Provided the ring with coor-
dinates (ry, /10) lies well inside the mode’s region of propagation, the unperturbed
displacement £ of the oscillation in the jet is dominated by its vertical component
&. Therefore the horizontal component 7 can be ignored for the jet, which is equiv-
alent to ignoring L?c? /w*r? compared with unity in expression (8.5.4), defining
the vertical component, I, of the wave number. Using the expressions for £ and
7 derived from the equations of motion (3.6), (3.10) and (3.11), the definition of
¥ immediately preceding eq. (8.1.8) and the asymptotic relations (8.6.15) and
(8.6.16), or alternatively from eqs. (5.1.1), (A10.10) and (5.8.7), (5.8.8) suitably
simplified by ignoring A2 and approximating u by wr~'p!/2, one obtains

m~ Aw ~ (mcpS) ™ [l — sin 2(wF — an)]Q, 9.1)
where
U, m) = (M?* — pg)~1/?

. _| & _ _| & l“‘Mz
x { | +sin| 2L cos <M) 211 oS (M 7l—u(2) , (9.2)

with ¢y = ¢(rg), L = + 21 M is given by eq. (8.6.8), S by eq. (8.7.16) and 7 is
the acoustical depth T — 7 := 7(R) — 7(r) beneath the surface 7 = R of the star.
In deriving this equation I have used the polytropic approximation for the outer
layers of the star, as in section 5.8, to express the phase integral directly in terms of
the acoustical depth 7 and the phase shift o, which is half the effective polytropic
index in the vicinity of the upper turning point.

The resulting equations provide the signature that was sought. One sees in
eq. (9.1) that the frequency splitting is oscillatory with respect to the mean fre-
quency, w, of the multiplet, with “frequency” 27. A measurement of that “fre-
quency” therefore immediately determines the depth of the jet. Moreover, a mo-
ment’s thought makes one realize that the presence of such an oscillatory feature
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in the frequency splitting is actually indicative of a degeneracy-splitting compo-
nent of the structure of the star that is confined in radius within a region that is
thin compared with the vertical wavelength of the mode; the antisymmetry with
respect to m indicates that the splitting agent must be rotation. The dependence on
[ and m given by eq. (9.2) is rather more complicated, but can evidently be used
both to recognize confinement in latitude and to determine /.

A word is in order about the meaning of the level r = R which I have called the
surface of the star. On the whole I have regarded it to be the place at which I apply
boundary conditions, and since these lectures have been devoted mainly to the os-
cillations of the interiors of stars, and not their visible atmospheres, I have usually
had in mind the interface between the optically dense interior and the atmosphere.
There have been occasions, such as in the previous paragraph, at which I have
invoked the complete plane-parallel polytrope to represent the outer layers of the
star. This is indeed quite a good first approximation, since many stars are roughly
polytropic immediately beneath their photosphere; provided the frequency of the
mode is well below the acoustical cutoff frequency of the atmosphere, so that the
transition to atmospheric stratification occurs well in the evanescent region for the
mode, the detailed structure of the atmosphere is unimportant for the gross dy-
namics of the mode, and 7 = [ is then best taken to be the level at which, if ¢?
were extrapolated linearly outwards from the polytropic interior, it would vanish.
In the Sun, e.g., this occurs roughly 1000 km above the photosphere. With this
extrapolation, one can meaningfully assign a reasonably precise definition to the
acoustical depth 7.

In reality the surface layers of stars are not polytropic. Deviations are brought
about mainly by ionization of hydrogen and helium, which causes sharp variations
in -y (see fig. 1) and even sharper variations in w?, sometimes on length scales
comparable with or shorter than the characteristic wavelength associated with the
vertical variation of the oscillation eigenfunctions. For this reason the asymptotic
analysis discussed in these lectures is not as accurate in the surface layers as one
might like; further study of the properties of the oscillations in the superficial layers
is therefore certainly needed.

There are, however, even more serious problems associated with the surface lay-
ers that need to be addressed. The most obvious are the nonadiabatic effects and
the interaction with convection. To keep matters simple, I have addressed neither
of these issues in these lectures. Nevertheless, it is important to appreciate their
significance. Nonadiabaticity is brought about by radiative and convective energy
transfer. Radiative transfer is important only in and immediately beneath the atmo-
sphere, where also the scale heights are very much less than the stellar radius and
the horizontal variation of the oscillations is of comparatively little importance. A
study by Christensen-Dalsgaard and Frandsen (1983) of radial modes has shown
that the dynamical effects of radiative transfer can be represented quite well in
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the Eddington approximation, which reduces the complicated integro-differential
equations to relatively simple differential equations; we can safely assume that this
approximation will work well for nonradial modes too, at least when the degree {
is not large.

One does not expect nonadiabatic processes to modify the frequencies of high-
degree f modes. The flow in these oscillations arranges itself such that the La-
grangian pressure perturbation &p vanishes; their is no compression nor rarefac-
tion, and consequently the intrinsic compressibility of the gas is irrelevant to the
dynamics. That is why the oscillation frequency is independent of the state of the
gas. The principal effect of heat gains and losses is to influence the relation be-
tween pressure and density as they vary with the motion: but since the frequency
does not depend on that relation it cannot be affected by the heat exchange. Of
course, the relative magnitudes of and the phase relations between, e.g., velocity
and temperature, are affected.

The effects of convection are more difficult to take into account. There is a
nonadiabatic process, brought about by modulation of the convective heat Aux
by the oscillations. There is also a direct contribution to the momentum flux, via
the Reynolds stresses. To describe both these phenomena requires a reliable time-
dependent theory of convection, which is lacking. In addition to these, the spatial
inhomogeneities and the intrinsic temporal variation of the convection modify the
propagation speed and scatter different acoustic and gravity waves into each other,
contributing to their growth or decay. Brown (1984) has recently discussed an as-
pect of this phenomenon, arising from the difference between acoustic Doppler
shifts associated with upward and downward fluid motion, which tends to de-
crease the mean propagation speed and thereby diminish the oscillation frequen-
cies. Temperature fluctuations associated with the convection behave similarly. It
is important 1o realize, however, that Brown’s discussion is principally didactic,
and is intended to be no more than illustrative of one of the processes that is taking
place; his estimated contribution to the frequency shift should not be used to esti-
mate the entire influence of convection on oscillation frequencies without taking
due account of the modification to the reflection properties associated with the crit-
ical cutoff, which is of the same order of magnitude. Convective inhomogeneities
influence the dynamics of f modes in addition 1o the p modes, but perhaps to a
lesser extent. Internal g modes are unlikely to be strongly affected, since the in-
homogeneities are substantial only in the upper convective boundary layer, which
lies in their evanescent tails.

Magnetic fields can also be dynamically significant in the outer layers of stars. In
the Sun magnetic fields modify the convective flow, at least in the region of gran-
ulation, and thereby modify the influence convection has on the eigenfrequencies.
It can also have a direct effect on the dynamics of the oscillations via the Lorentz
force, as I have discussed in sections 7.4 and 8.6.4. In stars with magnetic cycles,
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the oscillation frequencies are therefore expected to be modulated by the cycle.
In the Sun the amplitude of this modulation is small. In stars with more substan-
tial magnetic inhomogeneities, however, such as rapidly oscillating Ap stars, the
magnetic field is likely to have a significant dynamical influence on the control of
the oscillations that are excited, either directly through the perturbed Lorentz force
or, more likely, indirectly through the magnetic modification to the thermal strat-
ification of the background state. There is also a class of magnetic modes whose
very existence depends on the presence of a magnetic field, which have received
very little attention, but which might be significant in some stars. Indeed, it has
been suggested that it is these, and not the more fashionable turbulent dynamo,
that actually control stellar cycles.
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Appendix 1. The plane-parallel envelope

To first approximation the thin outer layers of a star can be represented by a plane-
parallel envelope in hydrostatic equilibrium under constant gravitational acceler-
ation g, satisfying the equation

dp
L (AL.D)
plalCly

where z is the depth beneath some reference level.
The polytropic interior: if p and p satisfy the polytropic relation with constant
index

p = Kop'*'/", (A1.2)

where K is a constant, eq. (A1.1) admits the solution

5 Jitl 2 I
- [ 2 =a0l(Z), (AL3)
per(Z) . ma(2)

where

(u+ 1) po = gpo2o (Al.4)
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and zy is simply an arbitrary scaling constant. The sound specd, ¢, satisfies

c2=¥=c5zi, (AL5)
i

provided -y is constant, where

=192 (AL.6)
w+ 1

The density and pressure scale heights are, respectively,

di -ty
H;( "f’> - (ALT)
dz 0
-1
dinp z
= = . Al.8
Hy: ( dz ) w1 (A18)

The so-called complete polytrope extends downwards from z = 0,
The isothermal atmosphere: assume the perfect gas law
RpT

p= , (A1.9)
1o

where 4y is the mcan molecular mass (not to be confused with the polytropic index
of the envelope) and R the gas constant. Here 7" is constant, and so is the sound
speed:

2=aP R (A1.10)
p

o

provided 119 and v are assumed to be constant. Using eq. (A1.9) to substitute for
p in the hydrostatic equation (A1.1) yields

do__» (AL11)
ar - H
where
2
p=Rr_< (A1.12)
g 9

and I am now using the upward radial coordinate 7. The solution is:

p=poe!tTH = g H py e H (AL.13)
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where pg is the density at = 2. The quantity H is now the scale height of both
density and pressure, and is much less than the radius of the star, The major pro-
portion of the atmosphere is therefore confined (o a very thin shell, which justifies
the plane-parallel approximation.

It is sometimes convenient to model the surface layers of a star by matching
an isothermal atmosphere onto an incomplete polytrope represented by eq. (A1.3)
for z > 2. If both the pressure and temperature (and hence density) are contin-
uous at the interface at z = z,, where r = R, say, then py = gH pg, from which
follows that zp = (o + D H. However, a more realistic representation is obtained
by permitting a temperature discontinuity, to take into account the rapid variation
in the superadiabatic convective boundary layer.

The effect of the small variation in the gravitational acceleration that is actu-
ally present, can easily be taken into account by expanding the solution about
eq. (A1.13). Neglecting the self-gravity of the atmosphere, to leading order in the
corrections the solution in the isothermal atmosphere is

P = pot, P = goH pyip, (Al.14)
where
(R—7)/H (r— R)?
p=e e ), | (A1.15)

go =9() = GM/R? and H is now the scale height evaluated at r = [,

Itis useful to record expressions for the acoustical cutoff frequency, w,, defined
by eq. (5.4.9), and the buoyancy frequency, defined by eq. (5.1.6). In the polytropic
interior (A1.3),

2o e+ 2nyg  pp+2)c

= Al.l
4+ 1z 4zpz (AL.16)
I
N2=<H_“+ )Q_ (AL17)
7y z
In the isothermal atmosphere (A1.13),
c g
o= — =2 All
“T3H T 2 (ALI8)
AW g
N=[1--)ZL=n_-nL. Al.19
( 7) 17 (v )Cz ( )
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The critical acoustic frequency, defined by eq. (4.8.7), in the plane-parallel limit,
is

. 2 l 1/2
wc=ﬂ(“ ) (A1.20)
2 202

in the polytropic interior; in the isothermal atmosphere it is again given by
eq- (A1.18). If the spherical correction is included, as in eq. (A1.14), in the isother-
mal atmosphere eq. (4.8.7) becomes

c 42 -vH r—R
e~ — {1 - -2 . .
“ 21-1< VR R > (Al:2D)
Appendix 2. Reality of eigenfrequencies below the critical cutoff
Equation (4.5.1) is
16,8 W = K(&,€7) — yprR(w)EE| g (A2.1)

where & is given by eq. (4.2.13) with the negative sign. This may be rewritten in
the form

aw? — b= /\(wz - wz)'/z, (A2.2)

where A\ = %1, w? is evaluated at 7 = R and

a=Al, b= AK - — ¢

, A= ———— ) A2.3
2H l=p YPRAYE*E| g ( )

The coefficients a and b are real, with a > 0. Setting w? = z + iy, with z and y
real, the real and imaginary part of the square of eq. (A2.2) are

a’(x? - y*) — Qab — Az + b* — /\2wc2 =0 (A2.4)
Qa’z —2ab+ Ay = 0. (A2.5)
It follows from eq. (A2.5) that

b X\ .
1—5—2—0’2, Ify 7(0 (A26)
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Moreover, eq. (A2.4) can be solved formally for z, giving

b 2 1
S — (M — 4)2ab + 4X 22 + 4ayh)' /2. (A2.7)
a 2a! 7 2a?
Thus, if y # 0, the two equations (A2.6) and (A2.7) must be identical; the square
root in eq. (A2.7) must therefore vanish, and hence

yP = (=2 +4X%ab — 42%e%W?) /44, (A2.8)
from which follows that

b A2
2 _ )2
w. . < E -/- 4—042 =!I W, (A2.9)
since y is real.
If the inequality (A2.9) is not satisfied, then ¥ = 0 and w? is real. Then eq. (A2.2)
becomes

x=9+5(w3—x)‘/2. (A2.10)
a a

This is possible only when w? < w?. Comparing this with eq. (A2.7) requires
choosing the positive square root in eq. (A2.7). However, the two expressions are
still not necessarily equivalent; when w? < b/a the solution (A2.7) with y = 0
satisfies eq. (A2.10) with A = —1. For A = +1, which applies to eq. (A2.1), wcz
must exceed b/a; at the critical value b/a, z = w?. Otherwise z < w.

If, on the other hand, the inequality (A2.9) is satisfied, so that w? is complex,

then z is given by eq. (A2.6) and is independent of w?2. The real part, wg, of w is
related to x and y by

wi = g+ 3V +y)
=dz+i?+a M@+ a2 —wd)'?, (A2.11)

which implies that wg = z when w? = w% = z + $a=2. It is now a simple matter
to show from this expression and the discussion in the previous paragraph that if

w? < wkthenw? < z and wg > we.

Appendix 3. The Roche stellar model and its radial pulsations

This model approximates the structure of a highly centrally condensed stellar
model with mass M, luminosity L and radius R. The stratification of the star is
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estimated by assuming the gravitational acceleration to be given by the assump-
tion that the entire stellar mass is concentrated in a small core, so that hydrostatic
support outside the core is determined by
dp GMp
dr = 2

In addition it is assumed that the stellar material satisfies the polytropic relation

(A3.1)

p=Kop', (A3.2)

where Ky and I are constants. This would be so if the envelope were fully con-
vective, and therefore essentially adiabatically stratified, with I' = ~, provided
one could assume v to be constant. It is also the case if the envelope is in radiative
equilibrium, with a power-law opacity

k= ko TV, (A3.3)
such as Kramers' law (A = 1, » = 3.5). In this case, dividing eq. (A3.1) by the
radiative transport equation

ar 3kpL

dr = 16macriT?’

where a is the radiation constant and ¢ is the speed of light, and assuming the
perfect gas law (1.1.4) with x constant, yields

. A
2dp _ 16matGM <R> ey (A3.5)

Prar = 3mel \n

(A3.4)

On integration it follows that p is proportional to a power of T', and hence a power
of p, at least deep in the interior where any constant of integration of eq. (A3.5),
required for satisfying suitable boundary conditions at the surface, is negligible.
For simplicity I take the approximate opacity law (A3.3) with A = I, v = 3; then
egs. (A3.1), (A3.2) can be integrated, yielding

T P\ r\ "’ r\"*
26 B w
Ty To Po To Do To

where Ty, po and po are the temperature, density and pressure at some arbitrary
reference radius ro. This solution can be used, e.g., as a crude representation of a
red-giant envelope, in which the sound speed is given by

P\
c=co <—> . (A3.7)

To
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Setting 79 = R, for convenience, and substituting the second and third of the
expressions (A3.6) into the hydrostatic equation (A3.1) to relate py and pq yields

2 YPo | 9 2
= —— = = R ,
] 00 37V Wy (A3.8)

wp being the characteristic pulsation frequency defined by eq. (4.2.6).
Adiabatic radial pulsations in the Roche model satisfy eq. (4.7.1). This is trans-
formed into the Bessel equation

d 1 d 22 ;
Trz(‘” 3¢y + EE(:E”'”{H (1 - F) =0 (A3.9)

by the substitution

_2wR (r )3/2
- (E (A3.10)
4 I S |
)\2=§(3’7~4) CSO +§=%(49’7—64)~ (A3.11)

The eigenfunction is the solution to eq. (A3.9) that is regular at the origin (one
cannot apply the boundary condition (4.2.4) since the representation (A3.6) of the
equilibrium model is not valid all the way to 7 = 0), i.e.

2R T \3/2
=r!/2 maatehdl SN
E=r"7°], [ 300 (R) ] . (A3.12)

Note that for small radii & oc 7@**Y/2, consistent with Epstein’s (1950) finding that
the fundamental eigenfunction of a giant star is small near the centre. Substitut-
ing the solution (A3.12) into the approximate surface boundary condition (4.8.16)
yields the eigenvalue equation

2wR , (2wWR 1 w? Wi
— Ll =—+—{|7T7-8-2= —-— | =
3c A<3CO> 37< Y w5>JA<3CO> 0, (A3.13)

where the prime denotes differentiation with respect to the argument. The funda-
mental solution to eq. (A3.13) is w = w| =~ 1.6wy when v = % At high c;rder, n,
the solution can be obtained from the asymptotic expansion of the Bessel function
and its derivative:

W =Wy ~ Wy n+l/\—£+ 256 + 3y
n 2 4 727r27(n+%/\—41)

+ om-%] . (A3.14)
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where

—1
_ 3mey gy
= ——= _— .l
@o o0 T (/0 - ) , ‘ (A3.15)

is the characteristic frequency defined by eq. (A3.15), the second part of
eq. (A3.15) being obtained by evaluating the integral with the help of eq. (A3.7).
From egs. (A3.15), (A3.7) and (A3.8) one obtains &g = %ﬂ Y wp. Thus wy o
M'/2R=3/2 is the natural frequency unit for modes of all orders. Since the low-
frequency boundary condition (4.8.16) was used to derive the eigenvalue equa-
tion (A3.13), approximation (A3.14) of the eigenfrequencies, valid for n > 1,
breaks down once w becomes comparable with the critical cutoff frequency in
the atmosphere. For such high frequencies the more accurate condition (4.8.15)
should be used.

Appendix 4. JWKB expansion of the damped oscillator equation
We seek an approximate solution of the equation with constant coefficients:

2 d
Vv y K0, 0<z<l, (Ad.1)
dz? dz .

where I{2 > | and x = O(]), subject to the boundary conditions

y=0 atx=0andz = | (A4.2)
and

d

Yo az=o0 (A4.3)

dz

A direct attack can be made simply by setting

T
y = Aexp [i[(/ () ds] ‘ (Ad.4)
0
and expanding the functions A and 1) in inverse powers of K:
A=Ag+ K "A+ K2 Ay + - (A4.5)

Y=o+ K "+ K2+ .. (A4.6)
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Substituting the form (A4.4) into eq. (A4.1) yields

—KMP A+ IKQUA + 9 A+ 26p A) + A" + 25 A" + K2A = 0, (A4.7)
where the prime denotes differentiation with respect to x. The expansions (A4.5)

and (A4.6) are then entered into eq. (A4.7) and the coefficient of each power of K
is equated to zero. The leading term is

I -2 =0, (A4.8)
which has the solutions

o = %1, (A4.9)
The coefficient of K is

—21/}01/)1 AO + 2[’(!10(146 + K,Ao) = O, (A4. 10)
since ¢, = 0. This relates 1, to Ao. There is no additional restriction on the relation
between 4, and Ay from higher-order terms in the expansion, so without loss of
generality I may set ¢, = 0. Then

[:A() = A6 +KAg = 0, (A4.11)
whose solution is

Ag=Aer= (A4.12)
Note that if, e.g., I had set 4y = A, from €q. (A4.10) I would have had ; = ix,
and Agexp(iX{ f K", dz) would not have been affected. The constant A will
eventually be determined by the normalization condition (A4.3); in order to spec-
ify the higher-order terms in the sequence (A4.5), which satisfy inhomogeneous
equations of the form LA, = f, and therefore admit complementary functions
proportional to Ag, I will insist that A; = 0 at z = 0. One can now equate to zero
the coefficient of K©:

—2oypa Ao + 2itho(A} + KA + Af + 2k A) = 0, (A4.13)

which may be rewritten as

A+ kA = —iIAG MY + ) e (A4.14)
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Once again | have some freedom, and this time I choose A, = 0. Then
P = — Lty (A4.15)
To this order of approximation, the solution satisfying y = 0 at z = 0 is thus
y=Ae " sin(K — JK'k2 4oz (A4.16)
Application of the remaining boundary conditions yields the eigenvalue equation
K—%K"nz+---=nﬂ, n=12,... (A4.17)
and the normalization
A=K-"+§K—~‘m2+.--. | (A4.18)
Had I'set ¢ = 0in eq. (A4.14), the solution would have been obtained in the form
Ae™™*(sin Kz — K " 'kPrcos Ko+ - ), (A4.19)
from which eqs. (A4.17) and (A4.18) also follow.
If, instead of attacking the raw problem, one first reduces eq. (A4.1) to the stan-

dard form

dzr/ K2
az2 T =T =0, (A4.20)

where 7 = y €**, one obtains immediately (from the JWKB approximation!)

y=Ae " sin(K? — k)2, (A4.21)
from which

(K2 =) =nr, n=12,. . (A4.22)
and

A=(K?-rH"V2 (A4.23)

Equations (A4.17) and (A4.18) follow immediately from an expansion of
egs. (A4.22) and (A4.23) in powers of /K, but in fact we well know that the
latter pair of equations is best left untouched.
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Appendix 5. Causal adiabatic oscillations of an isothermal atmosphere

For the plane-parallel isothermal atmosphere of appendix I under constant gravi-
tational acceieration, the equation of motion (5.2.7) for adiabatic oscillation with
horizontal wave number of magnitude k can be rewritten as

w wz—wz 5 N2\
ﬁ{ LY <l—ﬁ)]w=0, (AS.1)

where 2 is the height above r = R,
w(z,t)=e /21 gz)e it (A5.2)

and w is given by eq. (4.2.14). Note that w is not the vertical component of the
velocity; it is the vertical component of the displacement scaled by the square root
of the equilibrium density. '

We first note that the coefficient of w in eq. (A5.1) is constant, and therefore the
equation admits wave-like solutions

w = wy e FTen, (AS5.3)

where

22 N? 1/2
K=i[“’72%—k2<1 ——>] (A5.4)
C

is the vertical wave number. This equation may alternatively be regarded as a dis-
persion relation determining w in tenms of k£ and /(. Then it is a quadratic equation
for w? with roots

w? = wl = X% £ (et - N, (AS.5)
where
X =ik K2+ wl/cb). (AS5.6)

Let us first assume that K is real, so that the solution (A5.3) represents a prop-
agating wave. The positive root (AS5.5) is for acoustic waves, modified by the
stratification; when the total wave number (k2 + K?2)'/? is large, eq. (AS.5) ap-
proximates the acoustic dispersion relation w? =~ (k* + K(?)c? for a uniform gas.
The negative sign is for internal gravity waves; when K? is large the usual disper-
sion relation w? ~ k?N?/(k? + K?) is recovered. In both cases the positive and
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negative values of w resulting from the two possible square roots, correspond to
waves whose vertical phase propagation speed, w/ K, is upwards and downwards,
respectively (if K is positive).

The solution (A5.3) can be used to derive a boundary condition

dé I
dr (21{ ' ) ¢ (A>7)
tobe applied at 7 = R to the stellar oscillation eigenfunctions, once the causal root
of eq. (A5.4) has been established.

One approach to ascertaining that root is to compute the vertical component of
the group velocity from the dispersion relation (A5.5):

Oow wKc?

= T, (A5.8)
0K  2(w?— x2c?)

which has the same sign as w/K for acoustic waves and the opposite sign for
internal gravity waves, assuming both w and K to be real. To begin, ] take w to be
real and positive. Since the causal solution should have an outward directed group
velocity, one must therefore choose the positive root of eq. (A5.4) for p modes and
the negative root for g modes. Of course, if energy is propagating outwards, w is
unlikely to be real, but the solution with complex w can be obtained by analytic
continuation from the appropriate root with real w.

When o? < w? < wf the mode is evanescent; in that case one would expect
the causal solution to be the one for which energy density decreases upwards. |
now demonstrate that if the atmospheric motion is the response to an oscillation
of the star below, that is indeed the case.

Consider an initial-value problem for which the entire atmosphere is at rest
when { < 0, and subsequently the base of the atmosphere is given an oscillatory
displacement such that

w=Wsinwt atz=0,1t 20, (A5.9)

where W is a constant and now w(z,t) = exp(—z/2H) £(z,t). The problem can
be solved by taking the Laplace transform

oo
Wiz, p) = / e Pt w(z, t)dt, (A5.10)
0
with Re(p) > 0. The transformed equation of motion is

— — KW =0, (A5.11)
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sincew =0and dw/0t =0at ¢t =0,z > 0. Here
2, )2 NANKE -
K@) = & [”_2“’0 K (1 +—2)] (A5.12)

(cf. eq. (AS5.1)). Equation (A5.11) is to be solved subject to the boundary condi-
tions

wW

o0 .
ﬁ=W/ e Plsinwt dt = — s—— atz=0 (A5.13)
0 : P +w
and
w—0 asz— oo. (AS5.14)
The solution to the problem is then given by
] pt -~
w=— [ e wdp, (AS.15)

2mi C
where £ is the Bromwich contour extending from —ico to +ico to the right of all
the singularities of @ in the complex p-plane.
The solution of eq. (A5.11) satisfying the condition (A5.13) is

wW

W=-——-e
P+ w2

Re (A5.16)
where, to satisfy condition (AS5.14), k is to be interpreted as that branch of the
square root of the right-hand side of eq. (AS5.12) whose real part is positive on L.

The calculation of the integral (A5.15) depends on the value of ¢. Noting that
as |p| — oo, k ~ p/c, it follows that if ¢ < z/ec, Re(pt — kz) < O on the semi-
circle C at infinity in the half-plane: Re(p) > 0. Hence the integral along C is
zero, and therefore the contour £ can be closed by C without changing the value
of the integral. Since the resulting contour encloses no singularity, it follows from
Cauchy’s theorem that w = 0.

Whent > 2/c, Re(pt — kz) < 0 when Re(p) < —1, and it is useful to attempt
to move L leftwards 1o p = iv — oo, where v is real. But before doing so, it is
convenient to make two cuts in the p-plane that join pairs of branch points of ,
such as those illustrated in fig. 15a. Then each branch of x, and therefore each
branch of we?*, is single-valued in the resulting p-plane. After moving £ far to
the left, two loops, L’l and £}, encircling the branch cuts are left, together with
small circles about the pole of « at the origin and about the poles of @ at p = *iw.
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Fig. 15. (a) The complex p-plane, cut between pairs of branch points of x, showing the Bromwich
contour £ and the three contours [2’, B £’2 and the circle about the origin into which it can be deformed,

for the evanescent case having w:’; < w? < w%. The dashed arrows represent the movement of

two of the points on £ that approach the poles of w as the contour is deformed. There arc other paths,
approaching the poles from the opposite side of the branch cut, bul these have not been shown in order
not to clutter the diagram excessively. The corresponding x-plane is illustrated in (b), which shows
how the branch cuts and the dashed arrows are mapped; (c) and (d) are the corresponding x-planes for
propagating acoustic waves and propagaling gravily waves, respectively.

Figure 15a illustrates the evanescent case, in which the poles of @ lie on the
branch cut. The contributions to the (otal integral can now be divided into three
classes: (i) integrals around small circles, of radius e, say, about the branch points
and the pole of k(p), which are at p = +jwy and p = 0, respectively, (ii) integrals
adjacent o the cut portions of the imaginary axis and (iii) integrals around the
poles of @. The integrand @ eP* is bounded on the small circles about p = Fiws.
and p = 0, and therefore the integrals of class (i) vanish as ¢ — 0. The integrals
adjacent to the cuts represent the transient to the initiation of the oscillation of
the lower boundary, producing what is sometimes called a “tail” behind the front
of the propagating disturbance. The integrand has a factor ePt, which becomes in-
creasingly oscillatory as ¢ increases, and by Riemann’s lemma the integrals vanish
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in the limit £ — oo. Since our interest is only in selecting the appropriate root of
the long-term response to the movement of the lower boundary, we may take that
limit and ignore the transient. There remain only the integrals around the poles at
p = *iw. To trace the appropriate square root in eq. (A5.12) for evaluating the
residues at those poles, it is convenient to map the p-plane onto the x-plane. The
dashed paths in the p-plane from points on £, where Re(x) > 0, to the two poles
of the integrand, are drawn schematically in the complex k-plane in figs. 15b—d.
To see how they map, it is convenient to set p = u +iv, where u and v are real;
then eq. (A5.12) can be rewritten as

wiu? -0, N2u? — v?)
K= [—62_+k <1+W>

2iuy N2t 172
e <l-§(u2+vz)2):l . (AS.17)

Figure 15b illustrates a case for the evanescent solution with w* > N?k2c? when,
asu — Oand v — +w, k2 — —K? =: £ with kg real and positive. It is evident
that the appropriate root is & = xg. Then

w~We ™ sinwt ast — oo. (A5.18)

If w* < N%k%c2, fig. 15b still applies, at least if £ is close to the imaginary axis
in the p-plane, except that the labels on the dashed curves are interchanged; if C
is far to the right of the imaginary axis in the p-plane the dashed curves cross on
the real axis of the k-plane, as they do in fig. 15d. The solution is still given by
eq. (AS5.18), with w = 0 where z > ct.

Propagating acoustic-wave solutions, for which k2 — — K2 = —K3 as p —
Fiw, with g real and positive, are illustrated in fig. 15c. Note that in this case
the Bromwich integral can again be reduced to integrals around closed contours

“analogous to £} and £ and the circle about the origin of fig. 15a, except that now

the poles at p = tiw are no longer between the branch points of ; there continues
to be a transient coming from the integrals either side of the branch cut, and the
long-term response can be reduced to integrals around isolated contours encircling
the poles of @. Since w* > N2k?c?, the dashed paths do not cross the real axis on
their approach to the singularities of . Consequently, & — ikg as p — +iw,
and

w~ Wsin(wt — kgz) ast — oo. (A5.19)
Internal gravity waves are treated similarly. They satisly w* < N2k2¢2, and there-

fore now the dashed paths in the x-plane to the poles of w do cross the real axis be-
fore they reach —K.(2), as is illustrated in fig. 15d. Therefore x — Firkpasp — +iw,
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and
w o~ Wsin(wt + Kkgz) ast — oo. (A5.20)

These results agree with the conclusions drawn earlier in this appendix from apply-
ing the radiation condition to propagating waves and by insisting that the energy
density decreases upwards for the evanescent oscillations.

An interesting consequence of the condition that the energy density decreases
upwards is that the f mode given by egs. (5.6.4)—(5.6.6), can be excited from
below only if k£ < k. := %H—‘. If & > k., then it is the second solution (5.6.7)
that is excited. It is not obvious that such a transition would occur in a real star,
such as the Sun, however. In a star there is no oscillating rigid boundary in the
convection zone; unless the nonlinear interactions are strong enough to prevent
the exponential rise of the amplitude with depth, it would seem that f modes given
by eq. (5.6.7) are unlikely to be excited to observable amplitudes. If that is so, then
if f modes with k > k. are observed in the Sun, one might expect them to have
been generated from above.

The initial-value problem can be solved for the adiabatic response of the atmo-
sphere to a mode with nonzero growth rate. If eq. (A5.9) is replaced by

w=Wesinwt atz=0,t2>0, (A5.21)

the only change is to move the poles off the imaginary axis in fig. 15a by an amount
77; the points to which the dashed paths in figs. 15b—d lead are also moved off
the real axis. Otherwise, aside from minor distortions of the contours £} and £,
the analysis is unaltered. If 772 < w?, the solutions (AS5.18)-(A5.20) become,
respectively,

w ~W e™ "% sin[w(t — n2)), (A5.22)
W e™t=w¥2) sin(wt — Ko2), (A5.23)
W et ¥2) sin(wt + koz), (A5.24)

as t — oo, where

Y= “ 1 Nk A5.25
- 6250 4 ( ’ )

w

and kg = | K|; also w = 0 for z > ct. In all cases, whether the waves are acoustic
waves or gravity waves, or whether they are evanescent, the front of the distur-
bance propagates upwards with the speed of sound. Finally, I record that in the
propagating cases (A5.23) and (A5.24) the energy density, and consequently also
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the energy flux, increases upwards when 5 < 0. This is because the disturbance
at any given height in the atmosphere has passed some reference level in the star,
say the photosphere, before the disturbance at any lesser height does, and thus at
a time when the pulsation amplitude in the star was greater.

Appendix 6. The oscillation of a plane-parallel polytrope supporting an
isothermal atmosphere

The purpose of this appendix is to illustrate the influence of the atmosphere on the
frequencies of p modes. I consider separately the modes with high and low degree.

The equations of motion, in the various forms I will need them, are given in the
main text, and will be referred to explicitly when the need arises. For high-degree
modes the solution must decay to zero at great depths, and for & = 0 I impose an
artificial lower boundary condition which I will discuss later. The upper boundary
condition is obtained by selecting the causal solution (cf. appendix V). 1 will con-
sider only modes with frequencies below the acoustical cutoff in the atmosphere,
so the appropriate solution is the one whose displacement amplitude grows the
more slowly with height. On the perturbed interface between the two regions the
pressure and the vertical component of the displacement must be continuous. It is
straightforward to show that after linearization these conditions are equivalent to
the continuity of £ and &p on the unperturbed surface z = 2.

High-degree modes are confined to the outer layers of the star, which I represent
by the plane-paralle] polytrope with index g supporting an isothermal atmosphere
with scale height H discussed in appendix 1. For simplicity I regard the density to
be continuous at the interface at z = zp, so that zo = (u + 1)H.

In the polytrope, z > z, the quantity x = p~"/2c72e** ¥  e* div £ satisfies
eq. (5.7.2) and has the solution (5.7.5) for which div £ and the perturbations dp
and &p vanish as z — oo. In the atmosphere eq. (5.4.8) reduces to

K? | =4[y~ (0% — 072y + 0 21Hk + 4H*K?}, (A6.1)

1
=t
where k = R~ L is the horizontal wave number. Hence,

x = xoU(—a, 1 + 2, 2kz) e "Rz —20) z < 29, (A6.2)

where a is defined by eq. (5.7.3), x = %H" — K with K > 0 for the causal
solution (cf. appendix V), and I have chosen the constant of proportionality so as
10 ensure that x, and hence dp, is continuous at z = zy.

The frequency is determined by requiring the continuity of the vertical compo-
nent, £, of the displacement, which, according to eqgs. (5.1.10), (5.1.11) and (5.4.6)
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is given by
'dd; k
gocp! (—” - —26[)> : (A6.3)
dz o]
dp o pcteky, (A6.4)
where
2 W’
o= g_k (A6.5)

In view of the continuity of p, ¢* and &p, this implies that dx/dz is continuous at
z = 2y. Hence, the boundary condition to be applied to x at the top of the polytropic
region z 2 zg is

d
Zé +(k—k)x=0 atz= 2z, (A6.6)

which is equivalent to eq. (5.2.8).

The cigenvalue equation (A6.6) can be simplified for low-frequency modes,
for which zpk = (u + 1)HE < 1. In that case one can expand the confluent
hypergeometric function U for small values of its argument (e.g. Abramowitz and
Stegun (1964)):

X0 1 B 2kz
X(z)—sinpw [A' <l /,t+2+ )

— Ay Qkz) ! (1 + a++'+]2kz+ >] , (A6.7)

where
Ay =T(=1 = p— DI +2), (AG.8)
Ay = T(—a)[(—p). (A6.9)

Expression (A6.1) can also be expanded to first order in Hk, yielding
k=3H "= K~y (¢®> -0 +0 k. (A6.10)
With the help of the identity

[(=2)['(z+ Dsinnz = —7 (A6.11)
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the negative signs in the arguments of the gamma functions in the defini-
tions (A6.8) and (A6.9) can be removed; in transforming I'(—a) it should be no-
ticed that, since z is in the evanescent region, the atmospheric correction to the
eigenfrequency is small, a ~ n — 1 (which is the value when 2z, = 0), and con-
sequently I'(—a) ~ (- 1)*{(a — n + DIL(n)]1~ 1. Then, substituting eq. (A6.7) into
eq. (A6.6) and retaining only the leading terms in the resulting expansion, yields

(Y Ho? =07 +207 2 a+ p+2)

@-ntle- Tl (u + 20 + 3)

Qkz)**2. (A6.12)

(On first performing this analysis, Belvedere et al. (1983) omitted a factor (u +
2) in the denominator on the right-hand side of eq. (A6.12). I am very grateful
to B. Roberts for pointing this out to me.) One can now substitute for a using
eq. (5.7.3), and set

ot =(1+6)s2, (A6.13)

where 6 is small and s, is the value of o for the complete polytrope (2o = 0) which
satisfies eq. (5.7.6). Expanding eq. (A6.12) and retaining only the dominant term
then yields

Lo (pt DB +n+ 1)
T+ 2)T(w + 3)

QHE)»*, (A6.14)

where
s2 + 2y — 1)s;?

S DS~ (uy—p— Dsa®

(A6.15)

T

For high-frequency p modes s is large, and one can simplify the expression even
further. Writing 5% ~ w?/gk ~ 2yn/(u + 1), and using the asymptotic relation

Fn+p+1)

~ it A6.16
T n asn — 0o (A6.16)

and the properties of the equilibrium model given in appendix I, yields
§ = —[n(u+ DD +2)D( + 3)] 7 (3 (1 + Dw fweelP#*?, (A6.17)

where wg is the value of w, in the isothermal atmosphere. Equations (A6.13) and
(A6.17) are asymptotically equivalent to eq. (5.7.10).

It is worth remarking at this point that the wave equation in the atmosphere ad-
mits a solution in which the displacement is horizontal and independent of height.
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The disturbance is simply a horizontally propagating pure sound wave, uninflu-
enced by gravity, and has frequency w = kc. It is sometimes called the Lamb
wave. It can exist only when ¢ is independent of height, and under no other cir-
cumstances. Strictly speaking, this solution cannot be matched onto the solution
in the thermally stratified polytrope, and so a pure Lamb wave cannot exist in real
stellar atmospheres. However, if an essentially isothermal atmosphere is bounded
above by a high-temperature corona, waves with kH >> | can be channelled in
the atmosphere by refraction, and, as was pointed out in section 5.7.2, w ~ k¢
as k — oo. The vertical component, £, of the displacement must in general be
nonzero, and must have at least one node. The wave, therefore, is really a member
of the ordinary p-mode class. It is discussed further in section 5.7.

Oscillations with k£ = 0 must be treated separately. Although radial modes ex-
tend right to the centre of the star, where the plane-parallel envelope model no
longer applies, for the purpose of assessing the influence of the isothermal atmo-
sphere it is sufficient to study the oscillations in detail only in the outer layers,
where the model does apply. The deep interior can be replaced by a rigid bound-
ary placed at a node of the eigenfunction, at a depth 2 = Z, which, of course, must
be regarded as a function of w; the result of the calculation is most useful when
expressed in a form that does not depend explicitly on Z.

In the plane-parallel approximation eq. (4.1.5) for radial modes reduces to -

¢ ygde  w?
—+ = =4+ —=£=0 A6.18
dZ2+Cde+CZ§ ’ ( )

where ¢ is the displacement. In the polytropic envelope (z > z) this equation can
be rewritten as

2 2
¢ prlde (b
dz? z dz Y9z

=0, (A6.19)

whose general solution is

~uf2 1/2 1/2
£=¢, (i) {Jﬂ (Zil) reY, (i) ] (A6.20)

where J, and Y, are Bessel functions of the first and second kind, & and ¢ are
constants and

Y9

= . A6.21
U A+ Dt (A6.21)
In the isothermal atmosphere eq. (A6.18) becomes
d?¢  1d¢ W
— +—=—+—=£=0 A6.22
a2 " HdG czé ’ ( )
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whose causal solution is

£ = &[T (V) + €Y, (V)] e 0, (A6.23)
where

28\ 1/2

n=2—l—[l—<1—:j—2> } (A6.24)
c0

N
)= (Z—") . (A6.25)
1

Continuity of £ has been ensured by the choice of the normalization constant in
eq. (A6.23). From eqgs. (3.11) and (4.1.3) follows that continuity of 6p then requires
continuity of d6¢ /dz. This is expressed as

JuN + eV (A) = 2oz (nzg ' — 26)[J, () + €Y, (W], (A6.26)

in which the primes denote differentiation with respect to the argument. When
w <K wep, then A < 1, and one can expand the Bessel functions in power series in
A (see, e.g., Abramowitz and Stegun (1964)), yielding

- I 2(1+2)

Formally, the eigenvalue equation is now obtained by the condition ¢ = 0 at the
undetermined depth z = Z. For n >> 1, this can be simplified by expanding the
Bessel functions in eq. (A6.20) for large arguments, yielding

w2 m+Sp— H1+ 6w, (A6.28)
where wy satisfies

mlyg
4+ 12

2 _
wy =

and is now to be considered to be analogous to the characteristic frequency defined
by eq. (4.8.46), which removes its explicit dependence on Z, and

€ 1 1 w 7P
b~ — ~ —(u+ H)— A6.29
nt nl(p+2)(u+3) [2(H )wco] ( )
1 1 2(34+2)
e — - Dw?! 2ud 6.30
PGe+ 20+ 3) {2(N * Do J W (A )
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Equation (A6.28), with § = 0, is similar to the eigenvalue equation (4.8.45) ob-
tained from the JWKB approximation.
Appendix 7. Acoustic oscillations of an isothermal sphere
Acoustic oscillations of a homogeneous isothermal sphere with radius I in the

absence of gravity have been discussed by Rayleigh (1896). The Lagrangian pres-
sure perturbation dp satisfies

Vip — = — =0, (A7.1)
¢
which can be separated in the usual way:
&p(r,t) = Re[r "W (r)P™(cos §) o —iwt] (A7.2)

whence the radial amplitude function satisfies

42y wW? L?
A <? _ ﬁ) ¥ =0, (A73)

where L? = {({+1). Equation (A7.3) is simply eq. (5.4.7), appropriately simplified,
aside from a scaling factor in the definition of W. [ts regular solution is

U =2, (“’—C’) (A7.4)

where J) is the Bessel function of the first kind and A = [ + % If the perturbed
surface of the sphere is maintained at a constant pressure (which could be imagined
to be accomplished by imbedding the sphere in a very hot diffuse gas, whose inertia
is negligible), then

Sp=0 atr=R, (A7.5)
from which follows the eigenvalue equation

w=7"" juxwo, (A7.6)

where

wy =7/ (A7.7)
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and j,,» is the nth zero of Jj.
An expansion of the zeros of J), valid for high n/l, is

) (+D
- 1 v h .
Jna=Mm+ 30w 2T 1)2) +oee (A7.8)
from which follows that
w~(n+ %l)wo - L2w3/27r2w +en, (A7.9)

when n/l > 1. The leading term yields eq. (5.8.15). Equation (A7.7) is a special
case of eq. (5.8.30), and it is evident that eq. (A7.9) is a special case of eq. (5.8.31).

Appendix 8. The scaling factor in the Abel sound-speed inversion

Let the sound speed, ¢, be approximated by

g
c=c0<i> , (A8.1)

20

where § is a constant, z is the depth below the stellar surface r = R and ¢g = ¢(2g),
29 being the shallowest lower turning point, which I take to be associated with a
mode with order ng and degree ly. I will assume that the data contain high-degree
modes, so that zp/R < 1. Provided interest is in values of R — r much greater
than z, then a 3> wy > o’ in eq. (6.10), and

- 20 2 2= A
A_—ln(l—ﬁ)——ﬂR [ sin (z—0> dz (A8.2)
2| w8 b VP dy 20
*{“;[(5) ‘/0 0 }E (A8.3)
|, gmye-n T'(b) z0
= ll (2) +_-—\/7?I‘(b+%) = (A8.4)

where I' is the gamma function and b = (1 + 8)/23. Equation (A8.3) can be ob-
tained from eq. (A8.2) with the help of the substitution u = (z/2)".

The surface layers of the Sun are roughly polytropic, so we expect 8 ~ 0.5. In
that case, eq. (A8.4) can be approximated by

A~ — 0.37ﬂ"'5")%, (A8.5)
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the coefficient of 29/ R being in error by no more than about 0.02 for 0.4 < 3 < 0.8,
One can estimate zg from the turning-point condition w = kco ~ lgR ™" ¢y, coupled
with the polytropic approximation to the eigenfrequency. Using just the leading
term of eq. (5.7.7) (note, in passing, that the 3 in eq. (5.7.7) is not related to the Jé]
here), one obtains

-21% ~ Ao + )l (A8.6)

Taking the polytropic value 0.5 for 3 then yields
A =~ —0.14(ng + 3 )5 ". (A8.7)

Equation (A8.7) actually underestimates the magnitude of A, since the coeffi-
cient in eq. (A8.5) changes sign at § ~ 0.52, close to the polytropic value that was
adopted. It is therefore prudent to use a more realistic value of 3. From eq. (6.1),
using eq. (A8.1) for ¢, one obtains

26—1)
_ T (Rw
F(w) = Ao ( o ) , (A8.8)
where
I'b—1/2)
=2y/r=——"r= .
A=2/m T 1) (A8.9)
Note that eqgs. (A8.8) and (6.1) imply that
2—1;’ = A(no +a)ly ", (A8.10)

since Rwg/co = 1. -

Current solar observations satisfy m(n + a)/w « w%% with @ ~ 1.5 when
| ~ 10%, suggesting that in the vicinity of the lower turning points of those modes
the sound speed is more accurately represented by eq. (A8.1) with 3 ~ 0.6. With
this value, egs. (A8.4), (A8.9) and (A8.10) then provide the improved estimate:
A=1.42and

A ~0.28(ng + 1.5)(5 . (A8.11)

Appendix 9. Invariants from eikonal equations under symmetries in a
sphere

Consider the local dispersion relation, such as eq. (8.3.2), to be written with respect
to spherical polar coordinates:

w=W(k,, ko, kg, 7,0,0,0). (A9.1)
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The transformation of the wave number k from Cartesian components
(kz, by, k;) = (k), k2, k3) to spherical polar components (k,., kg, k) is given by

ky = (kzcos g + kysing)sing + k, cos 6, (A9.2)
kg = (kzcos ¢+ kysing)cosf — k, sin @, (A9.3)
kg = ~kgsing + ky cos . (A9.4)

The inverse transformation is

ki = (k, sin8 + kg cos 0) cos ¢ — kg sin ¢, (A9.5)
ky = (k. sinf + kg cos 8) sin ¢ + kg cos @, (A9.6)
k,=k,cos8 — kgsiné. (A9.7)

Any other vector, such as the group velocity v, transforms similarly.
The Cartesian components of the eikonal equation (8.3.6) can be written as

Oy g, Qi v Ok vy Ok (aw) , i=1,2,3, (A98)
ot or r 068 rsinf 3¢ dx; K,
where (21, x2, T3) = (2, Y, 2) and the partial derivatives (W /dx;)y, are taken at
constant Cartesian components k; of k, and, of course, at constant Cartesian co-
ordinates z,; (I # 7). The quantities (v, vg, v4) are the spherical polar components
of the group velocity, v, defined by eq. (8.3.5), which can easily be shown to be
given by (0W/0k,,0W/0ky, 0W/0ks).

To construct the eikonal equation for kg, multiply eq. (A9.8) for ¢ = 2 by cos ¢,
fori =1 by sin ¢, and subtract. With the help of transformations (A9.4)~(A9.6),
the result can be written as

: ; sgcotd 1 ow
s | oy Wk, + Lok, Vekocod ( ) . (A9.9)
ki

ot T T " rsind W

The partial derivative of W with respect to ¢ is now taken at constant 7 and ¢, but
the parentheses with subscript k; have been retained as a reminder that it is still at
constant Cartesian components of k.

The equation for ks is obtained by muitiplying eq. (A9.8) for i = 1 by
cosflcos @, for i = 2 by cosfsin ¢ and adding, and then subtracting sin 8 times
the equation for i = 3, yielding

dkg vokr _ vgkgcotd 1 <3W> _ (A9.10)
ki

o v Vker = v -\
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It is now necessary to transform the derivatives of W. The ¢ derivative, e.g.,
can be expanded thus:

OWN W AW (Bk\ QW (Bky) W [dk,
06 )i, 00 "0k \ 06 ), " Bko \ 39 ), T ks \ 39 ),

(A9.11)

where the partial derivalives of W are now taken at constant values of its other
arguments listed in eq. (A9.1). The partial derivatives of (kr, kg, k) are obtained
by differentiating eqs. (A9.2)~(A9.4). The result is

ow ow
< ) = + (Urky — vpk,)sing + (voky — vyke)cos

W),
=%+(vxk)z. (A9.12)
Similarly, one obtains
ow ow ow
(T&)ki = W""U,»kg —’Uokir— W*‘(’U X k)¢ (A913)

Equations (A9.9) and (A9.12) can now be combined to give

ow

26" (A9.14)

d -
d—t(rk¢ sinf) = —
where the full time derivative, d/dt, along the ray path is defined by eq. (8.3.4).

Equations (A9.9) and (A9.10) can be combined to provide an equation for kﬁ =
k2 + ké, which, with the help of egs. (A9.12) and (A9.13) becomes

1 d

2
=5 (kD) = =2 x k) x k], — 2ky, - (VW)
74 dt T

2
= = Z(v x k) kg cotd - 2k, - VW, (A9.15)

where ky = (0, kg, ky) is the horizontal component of k, the gradient (V W, is
taken at constant Cartesian components of k and the gradient VIV is taken at con-
stant spherical polar components of k. The second part of eq. (A9.15) is obtained
from the first simply by expanding the gradient, regarding W as a function of the
spherical polar components of k and z, as in eq. (A9.1), and using the transforma-
tion (A9.2)~(A9.4) to evaluate the spatial derivatives of the components k., kg, k
of k at constant Cartesian components &;, and then regrouping the terms.
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The invariants (8.3.10) and (8.3.11) follow immediately. If W is not explicitly
dependent on ¢, then 9W /3¢ = 0 and, according to €q. (A9.14), r sin 8k is con-
stant along a ray path. If the background state is genuinely spherically symmetri-
cal,sothat W = W(k,, ky, r, t), thenk, - VW = Oand v x k = (OW/ki)k™ " (ky x
k.), where k, = (k,., 0,0), from which follows that (v x k), = 0; hence rky, is also
invariant along a ray path. Notice that the latter condition requires genuine spher-
ical symmetry. If the stratification of the background state were spherically sym-
metrical, but the entire system were pervaded by, say, a uniform magnetic field,
which defines a preferred direction, then W would depend explicitly not only on
ky, but also on k4, and the conditions for the invariance of rky would no longer be
satisfied.

Appendix 10. Asymptotic associated Legendre functions

The associated Legendre function of the first kind P™ with degree | and order
m 2 0 is the regular solution of the equation

I d . dpm m?2
—_ - P" =0, Al10.1
Sind a0 (sm@ a0 >+[l(1+l) .29] f (A10.1)

sin
This can be reduced to standard form by the substitution

P =csc'?9 Q. (A10.2)

Then @ satisfies

d’Q 2 ~2 .2

92 + (L7 —m cse 9)Q =0, (A10.3)
where

L=+ % (A10.4)
and

m’=m? - L. (A10.5)

Equation (A10.3) has turning points at § = 4, := cos~! wand 8 = 6, =
cos ™M (—pu) =7 — @, where

=1 —m?/L2
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Asymptotic solutions can be obtained by Olver’s method, which is summarized in
section 4.4.

To accommodate both turning points, two separate approximations in terms
of Airy functions are required, which are then matched in their common re-
gion of validity: the region at low latitudes far from the turning points, where
L? — m%csc? 6 > 1 and the solution is oscillatory. In view of the symmetry of
the problem, both turning points are treated similarly, the outcome being a solu-
tion which is either symmetric or antisymmetric about the equator. An appropriate
new independent variable is obtained from the Liouville transformation:

0 2/3
P =+ sgn(@ — ) (;/ |L? —ﬁzzcsczt9|l/2 d6’> , (A10.6)
2

the plus sign and 6, = 6, being employed for the representation where 8 is less
than and not very close to #,, which I call region 1, the minus sign and 6, = 6,
being employed in region 2, where @ is greater than and not very close to §,. With
respect to this variable, the asymptotic representation with L >> 1 of the solution
of eq. (A10.3) that in the appropriate evanescent region decays away from the
turning point, is

Q ~ V2Qi (L — i esc 0) | " Ai(—), (A10.7)

where i labels the region in which the representation is valid and the @Q; are con-
stants, which may possibly take different values for the two representations.

Several different techniques are available for evaluating the integral in the def-
inition (A10.6) of ¢. Alternatively, one can verify the following expressions by
differentiation, confirming that they vanish at § = 6,:

~ 2/3
P = {% [Lcos‘l (:tc‘;w) —mcos™! (imgzw)]} , lcosf| <
1 1
(A10.8)

(L2 — m2)l/2

2/3
i (Mm? — L*sin0)'/% + i cos 6 / cosf] >
(m2 — L?sin? 6)/2 — fhcos 8 ' pu:

~2 1202 \1/2
1/)=—{% lLln (:}:L0059+(m L*sin” 0) )

N —

F

(A10.9)
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For the representation in region 1 the plus signs are required and for the represen-
tation in region 2, which can be obtained from the first representation by replacing
# by m — 8, the minus signs are required.

The solution in the oscillatory region can be obtained by replacing the Airy func-
tion, Ai, in eq. (A10.7) by the leading term of its asymptotic expansion (4.4.25).
Together with eq. (A10.2), this yields

) /2
le ~ (_) Qi(L2 sinz § — ,,:hZ)—I/4

s

m cot
X sin [Lcos"' <ic039) — mcos™! (imco 0) + 1] )
h Ly 4

(A10.10)

These two representations must be asymptotically equivalent, which can be so
only if 72 is an integer. This suggests replacing eq. (A10.5) by m = m (although
at this stage of the argument we must admit the possibility that m = m + k, where
k is an integer that is not zero). It then follows that when { — m is an even integer,
Q, = @, and the solution is an even function of cos §. When [ — m is odd, 02 =
—@Qy and P™ is an odd function of cos 0.

It is instructive now to consider the behaviour of the solution in the neighbour-
hood of the singular points, § = 0 and § = 7. Expanding the regular solution of
eq. (A10.1) about § = 0 yields P/ o« 6™. Introducing the asymptotic approxima-
tion (4.4.26) into the solution (A10.7), (A10.2) yields

Iglm N(zﬂﬁ)—l/leam asf — 0 (A10.11)

there is a similar expression in the limit & — . This approximation can therefore
be made exact when ™ is once again replaced by m, confirming the suggestion
from the matching in the oscillatory region. Notice also that when m = m, the
representation (A10.10) in the oscillatory region is proportional to the function
P defined by eq. (8.6.16).

It should be noticed that the matching of the two representations is possible only
if the oscillatory region exists. Therefore L? sin? @ must exceed m? somewhere,
which implies [m| < L and hence |m| < . It is also evident that ™ has [ — m
zeros in0 < 0 < .

[t remains to determine the constant ();. Adopting the normalization (e.g.
Abramowitz and Stegun (1964)):

2 (+myt (A10.12)
2041 (—m)

i
I = / (P (o)) dp =
—1
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one obtains from the asymptotic expression (A10.10)

H
Iim ~ 7' QL™ [ (=)™ P du=L7"Q1, (A10.13)
—H

from which one deduces that

('
Q|—<m> : (A10.14)
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