10. Principles of helioseismologqy:
Global helioseismoloqy



Oscillation power spectrum
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Propagation diagram of solar oscillations
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p-modes (acoustic
modes):

w>S, w>N

g-modes (internal
gravity modes):
w<S§, wO<N
the Lamb frequency:
L2C2
S/ =

2
r

L'=I1(+1)

the Brunt-Vaisala
frequency:

Buoyancy (Brunt-Vaisala) frequency N , and Lamb frequency S for /=1,5,20

and 100 vs. fractional radius /R for a standard solar model. The horizontal
lines indicate the trapping regions for a g mode with frequency v =100x Hz,

and for a p mode of degree / =20 and v =2000x Hz.



Properties of Solar Normal Modes

o -w S}
c’ c’w’

represents a dispersion relation of solar waves.
It relates frequency @ with radial wavenumber k. and angular order /.

Equation k> = (N - j

If @* >> N*then

2 2 2
, W -w S
k, = 2 12
c C
or & = @ + 1 113,
S L I+, .
where k, =—=—= ¢+ is the horizontal wave number.
c r r
Then, k> =k’ +k; is the squared total wavenumber.
Finally, =@ +k’c’.

This 1s the dispersion relation for acoustic (p) modes;

@), = %is the acoustic cutoff frequency; v. =@, /27 =5 mHz



Estimate frequencies of normal modes for p- modes
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For the lower turning point in the interior: @, << @.
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ch) _o is the equation for the lower turning point.

h

The upper turning point: @.(r,) = .

@.(r) 1s a steep function of r near the surface, thus r, =

I ,/ﬁ—idr—ft(rwa)

Abel integral equation for the sound-speed
profile c(r).

The resonant condition for p-modes is:




Duvall’'s law (asymptotic p-mode relation)

Consider the p-mode dispersion

relation: R
j k.dr=7x(n+ o)
K

. ) L2 1/2
j ((02 — zj dr=7T(n+ )

C r

Dividing left and right-hand sides by ®
we get:
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Radius r, (or r,) of the lower
turning point depends only on
ratio L/w. Hence, the left-hand
side is a function of L/w:
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Asymptotic sound-speed inversion

To find corrections to the standard solar model we consider small perturbations
to the sound speed profile and oscillation frequencies, and linearize the
dispersion relation:

H(m Aw? I r

(c+Ac)” 1’

Aa)jR dr j

w r L2C2 1/2
cl1— —
r-a

Ao :TAC

0, e
f cl 1—

This equation has a simple physical interpretation: T is the travel time
of acoustic waves to travel along the p-mode ray path; the right-hand side
integral is an average of the sound-speed perturbations along this ray path.

This is a linear integral equation with a singular point at r=r,

1




Asymptotic sound-speed inversion
Aw 1TAc  dr

T /2 °
@ T’}C [2c2
cl 11— —
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Here c(r) is the sound-speed profile of the standard solar model, and @(/,n) are
the p-mode frequencies calculated for the standard solar model. This equation
can be reduced to the standard Abel integral equation by making a substitution of
variables. The new variables are:

2 2
X = % and y= % , where x 1s a measured quantity, y 1s unknown function
x can be considered as a continuous function according to the Duvall’s law
T%:IJ?AC x"dr I — dy _r dy
W 5 c c(x—y)l/z’ dyldr ydlogy

dlogr
dlogy _2(dlogc _lj

logy=2logc—2logr,
=Y . . dlogr dlogr



Asymptotic sound-speed inversion

A0 1 ]C Ac I dy
12 172 0
@ X C 2y3/2 1_dlogc (x—y)
dlogr 5 ,
=2 and y = l
Vg = c(R) - the surface value at r =R, y, =0 r re
F(x)= jox f(y)dy, This is the Abel integral equation.
VXY
where F(x)= T%L f(y)= Ac : :
C() \/; C 3/2 legC
2y7 1=
dlogr
The solution to the Abel integral equation is: f(y) - F(x)dx

It gives Ac/c(r).



Helioseismic Inverse Problem

In the asymptotic (high-frequency of short wavelength) approximation the oscillation
frequencies depend only on the sound-speed profile. This dependence is expressed in terms of
the Abel integral equation that can be solved analytically.

In the general case, the relation between the frequencies and internal properties is non-linear,
and there i1s no analytical solution. Generally, the frequencies determined from the
oscillation equation depend on the density, po(r), the pressure, P(r), and the adiabatic

exponent, 7(r). However, p and P are not independent, and related to each other through
the hydrostatic equation:

ar __ P
dr 8
where
g = G—T, m= 4ﬂ'J'Or or’*dr’.

r
Therefore, only two thermodynamic (hydrostatic) properties of the Sun are independent, e.g.

(p,7), (P,7), or their combinations: (P/p,y), (¢*,¥), (c*, p) etc.
The general inverse problem in helioseismology is formulated in terms of small corrections to
the standard solar model because the differences between the Sun and the standard model are

typically 1% or less. When necessary the corrections can be applied repeatedly, using an
iterative procedure.



Variational Principle: Rayleigh’s Quotient

Consider the oscillation equations as a formal operator equation in terms of the vector

—

displacement, & :

. _
wé =L(<E),
where L in the general case is an integro-differential operator. If we multiply this by

— %

& and integrate over the mass of the Sun we get:

) —x 2 — % P4
0, jv p&E -cdV :jv(f - LEpdV
where p, is the model density, V is the solar volume.
Then, the oscillation frequencies are:

., & Lpav
| pEEav

—

The frequencies are expressed in terms of eigenfunctions Cf and the solar properties

represented by coefficients of operator L . Sometimes, this equation is called
Rayleigh’s Quotient (the original formulation: for an oscillatory system the averaged
over period kinetic energy is equal the averaged potential energy).



Variational Principle

For small perturbations of the solar parameters the frequency change will
depend on these perturbations and the corresponding perturbations of the
eigenfunctions, e.g.

Sw* =¥ [8p, 6y, & .

The variational principle states that the perturbation of the eigenfunctions
O constitutes second-order corrections, that are in the first-order
approximation:

ow’ =¥[dp, oY)

This allows us to neglect the perturbation of the eigenfunctions in the first-order
perturbation theory.



Sensitivity kernels

Using explicit formulations for operator L, the variational principle can be

reduced to a system of integral equations for a chosen pair of independent
variables, e.g. for (p,7)

(n.l)
a?nl) _I K(nl) é;odr_'_-“ K(nl) 57/dr
/4

N
where Kgfy)(i’ ) and K (n. )(I”) are sensitivity (or ‘seismic’) kernels. These are

calculated using the 1n1t1a1 solar model parameters, p,, F,, 7, and the

oscillation eigenfunctions for these model, f :



A sample of the sensitivity kernels
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Solution of the Inverse Problem

We have a system integral equations

oo™ _ = [ kg P+ [ K .
o p y

for a set of observed mode frequencies. If the number of observed frequencies is

N (typically 2000), then we have a problem of determining two functions from

this finite set. In general, it is impossible to determine these functions precisely.

We can always find some rapidly oscillating functions, f(r), that being added

to the unknowns, dp/p and 0¥y, do not change the values of the integrals, e.g.

jo KD (r) f(r)dr =0.

Such problems without an unique solution are called "ill-posed". The general
approach 1s to find a smooth solution that satisfies the integral equations by
applying some smoothness constraints to the unknown functions. This is called a
"regularization procedure".
There are two basic methods for the helioseismic inverse problem:
I. Optimally Localized Averages (OLA) method - (Backus-Gilbert
method)
2. Regularized Least-Squares (RLS) method - (Tikhonov method)




Optimally Localized Averages (OLA) method -
(Backus-Gilbert method)

(nl)

(n 1)

o) %)
—j K(”l) 'Odr-l—_“ K(”l) 7/dr
/4
o™
- the relative difference between the observed and modeled frequencies

a)(n,l)

1s known from observations for a set of modes (n,/). The frequencies are
measured from the power spectrum.

Consider a linear combination of these equations with some unknown

coefficients a™" over the whole set of the observed modes:

(n l)

== j KD P gy 1Y | a0k 2 gy
Py 0 0 Y.0 y .

Change the order of summation and integration:
(n 1)

Y a0 02" =], 2 <"J>z<;;;>%/’dr+ J.ORZa(””)K;’i;”a—;/dr.



Optimally Localized Averages Method

The idea of the OLA method is to find a linear combination of data such as the
corresponding linear combination of the sensitivity kernels for one unknown

will have an isolated peak at a given radial point, r,, (resemble a J -function),

and the combination for the other unknown will be close to zero. Then this linear
combination provides an estimate for the first unknown at 7, .

Za(n 1) 50)(” ) _J- Za(n l)K;n?,/l) 5_,0dr+"‘R Za(n,l)K;/nl;l) &d?‘
Top o 7y

If Za<””l<<"”(r) S(r—r,), and Za(””K(””(r) 0,

then (_,0 = Za ,
o

0

1s an estimate of the density perturbation at r =r,

(n.0)

The coefficients, a"’, are different for different target radi1 r, .



Averaging Kernels

The functions,

2.a" K" (r) = A, r),

2.a" K" (r) = B, 1),

are called "averaging kernels''.

The coefficients, a', are determined my minimizing a quadratic form (here, we use index
i instead of double index (n,/) ):

My A By = T () AG )| 'dr+
+,B.[OR [B(ro, r)]zdr + &’Z Eijaiaj,

where J (1, r) =12(r — 1”0)2, E,.j is a covariance matrix of observational errors, & and
B are the regularization parameters. The first integral in this equation represents the
Backus-Gilbert criterion of ¢ -ness for A(r,r) ; the second term minimizes the
contribution from B(r,,r), thus, effectively eliminating the second unknown function,

(0 y in this case); and the last term minimizes the errors.



Example of optimally localized
averaging kernels
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Test Inversions: between two different
solar models
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Crosses show the inversion results (horizontal bars — width of the
averaging kernels).
Solid curves show the exact difference between the models.



Inversion results for the observed
solar frequencies
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Standard solar model

Temperature
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A*

Standard solar model

Parameter of convective stability
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evision of solar surface abundances
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Helioseismic constraints on solar-
cycle models

* Measurements of
— Solar differential rotation
— Torsional oscillations
— Meridional circulation
— Tachocline



Inversion of MDI data by two different techniques
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A Mean Rotation: 2010 — 2018
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