
10. Principles of helioseismology:

Global helioseismology 



Oscillation power spectrum

• Spherical harmonic 
transform – oscillation 
signal is represented in 
terms of spherical 
harmonics of angular 
degree l.

f-mode

p1

p2

p3

convection modes

p4

Only p-modes have been observed.

Global helioseismology is based on 

inferences of the interior structure and 

rotation from the p-mode frequencies. 

The frequencies are measured by fitting 

the peaks in the power spectrum.



Buoyancy (Brunt-Vaisala) frequency N , and Lamb frequency l
S  for 1 5 20l = , ,  

and 100 vs. fractional radius r R/  for a standard solar model. The horizontal 

lines indicate the trapping regions for a g mode with frequency 100ν µ= Hz, 

and for a p mode of degree 20l =  and 2000ν µ= Hz. 

Propagation diagram of solar oscillations
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Properties of Solar Normal Modes 
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 represents  a dispersion relation of solar waves.  

It relates frequency ω  with radial wavenumber 
r

k  and angular order l .  
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r hk k k= +  is the squared total wavenumber.  
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This is the dispersion relation for acoustic (p) modes;  
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Estimate frequencies of normal modes for p-modes:  

their propagating region: 2 0
r

k >   

the turning points 2
0rk = :  
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For the lower turning point in the interior: 
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The upper turning point: 2( )
c

rω ω≈ .  
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rω  is a steep function of r  near the surface, thus 2r R≈ .  

The resonant condition for p-modes is:    
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Abel integral equation for the sound-speed

profile c(r).
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Duvall’s law (asymptotic p-mode relation)
Consider the p-mode dispersion 

relation:

Dividing left and right-hand sides by ω 
we get:

Radius r1 (or rt) of the lower 
turning point depends only on 
ratio L/ω. Hence, the left-hand 
side is a function of L/ω:  

where ( 1)L l l= + 1.5α ≈

p-mode 

frequencies form 

a single curve in 

these variables.



Asymptotic sound-speed inversion
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To find corrections to the standard solar model we consider small perturbations 

to the sound speed profile and oscillation frequencies, and linearize the 

dispersion relation:  

where

This is a linear integral equation with a singular point at r=rt

This equation has a simple physical interpretation: T is the travel time

of acoustic waves to travel along the p-mode ray path; the right-hand side 

integral is an average of the sound-speed perturbations along this ray path.

1r



Asymptotic sound-speed inversion
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Here c(r) is the sound-speed profile of the standard solar model, and ω(l,n) are 

the p-mode frequencies calculated for the standard solar model. This equation 

can be reduced to the standard Abel integral equation by making a substitution of 

variables. The new variables are:
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Asymptotic sound-speed inversion
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The solution to the Abel integral equation is:
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This is the Abel integral equation.



Helioseismic Inverse Problem 
 

In the asymptotic (high-frequency of short wavelength) approximation the oscillation 

frequencies depend only on the sound-speed profile. This dependence is expressed in terms of 

the Abel integral equation that can be solved analytically.  

In the general case, the relation between the frequencies and internal properties is non-linear, 

and there is no analytical solution. Generally, the frequencies determined from the 

oscillation equation depend on the density, ( )rρ , the pressure, ( )P r , and the adiabatic 

exponent, ( )rγ . However, ρ  and P  are not independent, and related to each other through 

the hydrostatic equation:  
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Therefore, only two thermodynamic (hydrostatic) properties of the Sun are independent, e.g. 

( )ρ γ, , ( )P γ, , or their combinations: ( )P ρ γ/ , , 2( )c γ, , 2( )c ρ,  etc.  

The general inverse problem in helioseismology is formulated in terms of small corrections to 

the standard solar model because the differences between the Sun and the standard model are 

typically 1%  or less. When necessary the corrections can be applied repeatedly, using an 

iterative procedure.  



Variational Principle: Rayleigh’s Quotient 
 

Consider the oscillation equations as a formal operator equation in terms of the vector 

displacement, ξ
�

:    
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where L  in the general case is an integro-differential operator. If we multiply this by 

ξ
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 and integrate over the mass of the Sun we get:  
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where 0ρ  is the model density, V  is the solar volume.  

Then, the oscillation frequencies are:  
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The frequencies are expressed in terms of eigenfunctions ξ
�

 and the solar properties 

represented by coefficients of operator L . Sometimes, this equation is called 

Rayleigh’s Quotient (the original formulation: for an oscillatory system the averaged 

over period kinetic energy is equal the averaged potential energy).  

 



Variational Principle 

 
For small perturbations of the solar parameters the frequency change will 

depend on these perturbations and the corresponding perturbations of the 

eigenfunctions, e.g.  

2 [ ]δω δρ δγ δξ= Ψ , , .
�

 

 

The variational principle states that the perturbation of the eigenfunctions 

δξ
�

 constitutes second-order corrections, that are in the first-order 

approximation:  

2 [ ]δω δρ δγ≈ Ψ , .  

 

This allows us to neglect the perturbation of the eigenfunctions in the first-order 

perturbation theory.  



 

Sensitivity kernels 

 

Using explicit formulations for operator 1L  the variational principle can be 

reduced to a system of integral equations for a chosen pair of independent 

variables, e.g. for ( )ρ γ,   
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where 
( ) ( )n lK rρ γ

,
,  and 

( ) ( )n l
K rγ ρ

,
,  are sensitivity (or ‘seismic’) kernels. These are 

calculated using the initial solar model parameters, 0ρ , 0P , γ , and the 

oscillation eigenfunctions for these model, ξ
�

.  



A sample of the sensitivity kernels

/u P ρ=



 

Solution of the Inverse Problem 
 

We have a system integral equations  
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 for a set of observed mode frequencies. If the number of observed frequencies is 

N  (typically 2000), then we have a problem of determining two functions from 

this finite set. In general, it is impossible to determine these functions precisely. 

We can always find some rapidly oscillating functions, ( )f r , that being added 

to the unknowns, δρ ρ/  and δγ γ/ , do not change the values of the integrals, e.g. 

 
( )

0
( ) ( ) 0

R
n lK r f r drρ γ

,
, = .∫  

Such problems without an unique solution are called "ill-posed". The general 

approach is to find a smooth solution that satisfies the integral equations by 

applying some smoothness constraints to the unknown functions. This is called a 

"regularization procedure".  

There are two basic methods for the helioseismic inverse problem:  

1. Optimally Localized Averages (OLA) method - (Backus-Gilbert 

method)  

2. Regularized Least-Squares (RLS) method - (Tikhonov method)  



 

Optimally Localized Averages (OLA) method - 

(Backus-Gilbert method) 
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,
 - the relative difference between the observed and modeled frequencies 

is known from observations for a set of modes (n,l). The frequencies are 

measured from the power spectrum. 

 

Consider a linear combination of these equations with some unknown 

coefficients ( )n l
a
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Optimally Localized Averages Method 
 

The idea of the OLA method is to find a linear combination of data such as the 

corresponding linear combination of the sensitivity kernels for one unknown 

will have an isolated peak at a given radial point, 0r , (resemble a δ -function), 

and the combination for the other unknown will be close to zero. Then this linear 

combination provides an estimate for the first unknown at 0r .  
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is an estimate of the density perturbation at 0r r= .  

The coefficients, ( )n l
a

, , are different for different target radii 0
r . 



 

Averaging Kernels 
 

The functions,  
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are called "averaging kernels".  

The coefficients, i
a , are determined my minimizing a quadratic form (here, we use index 

i  instead of double index ( )n l, ):  
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where 
2
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E  is a covariance matrix of observational errors, α  and 

β  are the regularization parameters. The first integral in this equation represents the 

Backus-Gilbert criterion of δ -ness for 
0( )A r r, ; the second term minimizes the 

contribution from 0( )B r r, , thus, effectively eliminating the second unknown function, 

(δγ γ/  in this case); and the last term minimizes the errors.  



Example of optimally localized 

averaging kernels

u=P/ρ,   Y – helium 

abundance



Test inversions: between two different 
solar models

Crosses show the inversion results (horizontal bars – width of the 

averaging kernels).

Solid curves show the exact difference between the models.



Inversion results for the observed 

solar frequencies



Standard solar model



Standard solar model



Improvements:

•Non-LTE analysis

•3D atmosphere models

Consistent abundance determinations for a variety of 

indicators

Revision of solar surface abundances

Asplund et al. (2004; A&A 417, 751):
Pijpers, Houdek et al.

Model S

Z = 0.015

Z = 0.02



Helioseismic constraints on solar-

cycle models

• Measurements of

– Solar differential rotation 

– Torsional oscillations

– Meridional circulation

– Tachocline



Inversion of MDI data by two different techniques








