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Solar Energetic Phenomena 
 

The energy accumulated in solar magnetic fields is often
released in powerful explosive events, such as flares and
coronal mass ejections (CME). Most of the energy is released
in the form of heat, high-speed motions, UV and X-ray
radiation and energetic particles.  
 
The total energy emitted in explosive events in the solar
atmosphere may exceed 3210  erg or 2510 J. Most explosive
events occur in active regions.  
 



Observations of emerging magnetic flux and magnetic energy 
release in EUV from TRACE satellite 



Energy Equation 
 

We use the general MHD equations to obtain an energy
balance equation that contains all the different types of energy,
including kinetic energy due to plasma motions, the internal
energy due to the gas pressure and the magnetic energy.  
 
We will perform the following steps: 

1. Consider the full system of MHD equations 
2. Derive an equation for the kinetic energy 
3. Derive an equation for the sum of the kinetic and

magnetic energy 
4. Consider the magnetic energy balance and discuss the 

Poynting flux 
5. Derive an equation for the total energy density:

internal+kinetic+magnetic. 



MHD equations 
Consider the system of MHD equation:  
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 is the internal energy density; Q  is the heating rate (e.g. Joule heating),  

and L  is the cooling energy rate (e.g. due to radiation). 
 
Example: For a fully ionized hydrogen plasma: pMn  , where M is the proton mass, np =ne =n is 

the number of protons and electrons in a unit volume; =5/3; P=(np+ne)kT;  E=3/2(np+ne)kT/(Mnp) 
We get E=3(k/M)T=3/2RT/; P=RT/; R=k/M is the gas constant; =0.5 is the molecular weight. 



Equation for kinetic energy 
 

First, we multiply the momentum equation:  
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by v  to obtain an equation for the kinetic plasma energy 2 2KE  v : 
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This equation shows that the kinetic energy of a plasma element 
changes due to the work of the pressure force P  and the Lorentz 

force 1
c

v B . 

 



Transformation of the Lorentz force work term 1 ( )
c

v j B
 

Using the triple product relation: ( ) ( )   a b c b a c  and the Ohm’s law: 
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Equation for the sum of kinetic and magnetic energy 
 

Substituting these relations into the kinetic energy equation one gets:  
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is the magnetic energy density
8


B  

          is the Poynting flux
4

c




E B

     
2

is the Joule dissipation



j

 

 
This equation shows that the total kinetic and magnetic energy of plasma at
a given position (Eulerian coordinates!) can change due to the work of
pressure force, P v , and the Joule dissipation, also due to the energy

flux: 
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Example: The  Poynting Flux and Coronal Heating (B.Welsch)
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The magnetic energy balance:

Assume the ideal MHD approximation    
and integrate this equation over a volume 
in the atmosphere with the bottom 
boundary in the photosphere and apply the 
Gauss theorem:
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It was found that the average FP is sufficient to explain coronal heating, with values 
near (5±1)×107 erg cm−2 s−1. The energy flux required for coronal heating ~ 107 erg 
cm−2s−1, for chromospheric heating: 2×107 erg cm−2 s−1 (Welsch, 2015, Publ. Astr.Soc.Jap. 67 
(2), 18). 



Equation for the total energy density 
 

Consider the internal energy equation. Using the mass conservation
equation the energy equation can be written as  
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Finally, by adding this equation to the equation for the kinetic and magnetic
energy we get the equation for the total energy density  
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The total energy is conserved (changed only due to radiative losses) if  
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                      This is the Joule heating formula.  

kinetic energy flux enthalpy flux Poynting flux



Dissipation of magnetic energy 
 
The magnetic energy density is 2 8B ; it dissipates in the form of Joule
heating. Only non-potential field ( 0j ) can dissipate (release energy). 
 
The non-potential portion of magnetic energy is called free energy.  
 
Consider magnetic energy stored in the form of non-potential field of 

100B   G in a volume of 2710 cm 3  (10x10x10 Mm 3 ) - typical coronal 
conditions:  
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This is comparable but less than the energy release in large flares.
Therefore, a stronger field in larger volumes has to dissipate.  
 



Two Types of Magnetic Energy Release 
 

We can distinguish between "non-explosive" and "explosive" energy
release.  
 
Any non-potential field carries electric current and dissipates gradually
due to Joule heating. This is non-explosive release.  

Estimate the non-explosive dissipation time:   
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The factor of 2 difference is insignificant in this estimates.  



Comparison of Joule dissipation and dynamic 
characteristic times 

Introducing the coefficient of magnetic diffusivity  
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In the solar photosphere and chromosphere 710   cm 2 /s, in the corona -
33 10   cm 2 /s.  

Compare this with a typical dynamic time:  d
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is the magnetic Reynolds number for a dynamic process with scale L  and
characteristic time Dt .  



Characteristic time of non-explosive dissipation 
 
If 1MR   then J Dt t , and magnetic dissipation is not significant for
the dynamic process.  
Consider a dynamic process with Alfven speed (e.g. waves, shock, 

high-speed flows)     810 cm s
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 A At L c   is the Alfven wave crossing time.  
Therefore, the characteristic time of non-explosive dissipation for 
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Characteristic time of explosive dissipation 
A

L
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  is the Lundquist number, 

 A At L c   is the Alfven wave crossing time.  

 L
J
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  is the Joule dissipation time. 

For the coronal conditions in solar flares: 
 910L   cm, 810Ac   cm/s, 33 10   cm 2 /s: 17 3 1410 10 10LN   , 
the crossing time 10AL c   sec.      Then, 1510Jt   sec.  
 
For a mechanism of rapid dissipation (Sweet-Parker) we’ll see that the 

Lundquist number has a power 1/2:      
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For flare conditions 810Rt   sec, this is still too long.  

For Petchek’s mechanism of explosive dissipation:  ln L
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that is about 300 sec. This is close to flare times.  



Magnetic dissipation in current sheets 
 
Dissipation of magnetic fields occurs mostly in very thin layers
carrying electric current ("current sheets"). These are formed by
plasma motions. Photospheric turbulence continuously deforms
magnetic fields and increases free energy. Strong local
deformations B  produce current sheets.  
 
Rapid dissipation occurs only where the topology of magnetic
field provide Maxwell stresses in a form to drive the current
sheets towards vanishing thickness.  
 
It was realized that explosive dissipation must occur around
singular places in magnetic field (such as neutral points 0B 
where dissipation can occur despite the small resistivity.  
 



A sketch of the arbitrary winding of the field lines 
due to photospheric motions. 

Example: formation of thin current sheets due to 
winding of magnetic field lines by photospheric 
motions (Parker)





Rapid Dissipation: Sweet-Parker Mechanism 
 

Sweet (1956) considered two antiparallel fields pressed together over
length l . The fluid is squeezed out between two parallel fields, causing the
field gradient steepen until the resistive dissipation creates a steady state. 

A schematic drawing of the field lines undergoing rapid reconnection 
across the dashed center line. 



Mass balance:    UL C   
where U     - diffusion time, AC c  - characteristic outflow speed.

then,  
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where L AN c L   . This is the reconnection speed.  
Therefore, the characteristic reconnection time:  
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Calculation of the characteristic reconnection time (Parker, 1957)



Petschek’s Mechanism 
 

Petschek (1964) suggested that two opposite fields B  of scale l  may, as a 
consequence of the dynamics of the inflow and outflow, come into contact across a
narrow width h  which is much smaller than the full width l .  
Sonnerup (1970) argued that the rate of reconnection can be as small as desired by
pushing the opposite fields firmly together.  

A schematic drawing of the field lines undergoing rapid reconnection in 
Petschek’s model. 



Petschek’s model, in which the 
central shaded region is the 

diffusion region and the other two
shaded regions represent plasma 
that is heated and accelerated by 

the shocks.  
 
In Petschek’s model a slow
magnetoacoustic shock provides
another way (in addition to a
diffusion region) of converting
magnetic energy into heat and
kinetic energy.  



Physical Interpretation of Petschek's Solution

Petschek (quasi-steady 
Reconnection regime):

(Semenov)

temporarily enhanced “anomalous” resistivity

Anomalous resistivity 
may occur as a result of 
plasma instabilities in 
regions of high electric 
current density when the 
speed of electrons 
reaches the speed of 
plasma waves, or  due 
to small-scale 
turbulence.

Anomalous resistivity 
may significantly 
decrease the dissipation 
time.



Numerical Models of Magnetic Reconnection 
 

Takaaki Yokoyama and Kazunari Shibata, 2001, Magnetohydrodynamic
Simulation of a Solar Flare with Chromospheric Evaporation Effect Based on the
Magnetic Reconnection Model, The Astrophysical Journal, 549:1160-1174, 
2001.  

 Schematic illustration of the reconnection 
model of a solar flare based on the simulation 
results. Thick solid lines show magnetic field. 
Magnetic energy is released at slow-mode 
MHD shocks emanating from the neutral X-
point, which is formed as a result of the 
magnetic reconnection. The ejected 
reconnection jet collides with the reconnected 
loops and forms a fast-mode MHD shock. 
The released heat at the reconnection site 
conducts along the field lines down to the 
chromosphere. Because of the heat input into 
the dense chromospheric plasma, the plasma 
there evaporates and flows back toward the 
corona. 



Initial condition of the 
simulation.  

Lines with arrows are magnetic 
field lines. The hatched circle is 
the region where initial 
resistivity perturbation is 
imposed. The hatched region 
near z = 0 is the chromosphere.



Evolution of two-dimensional plot of 
the y-component of the current density 
near the X-point. The X-point is located 
at (x,z) = (0, 20). The units of length, 
time, and current density are 3000 km, 
18 s, and 34 10  cgs, respectively. 

Electric current density



Evolution of plasma temperature and density



Gallagher et al., Solar Phys. 2002

Observational evidence for magnetic reconnection –
plasma heating  at the top of magnetic loops



X-ray sources during the 2002/08/24 X3.1 flare 

43MK

34MK

Thermal emission

12-18 keV

Solar limb

12  - 25 keV 25 - 40 keV



Observations of Magnetic Reconnection 
 

Aschwanden et al, 1999, Quadrupolar Magnetic Reconnection in Solar
Flares. I. Three-dimensional Geometry Inferred from Yohkoh
Observations, The Astrophysical Journal, 526:1026-1045.  

 
They analyzed the three-dimensional geometry of solar flares that show
so-called interacting flare loops in soft X-ray. The two flare loops that 
appear brightest after the flare are assumed to represent the outcome of
a quadrupolar magnetic reconnection process, during which the
connectivity of magnetic polarities is exchanged between the four loop
footpoints. The authors parameterized the three-dimensional geometry 
of the four involved magnetic field lines with circular segments,
additionally constrained by the geometric condition that the two 
pre-reconnection field lines have to intersect each other at the onset of
the reconnection process, leading to a 10 parameter model. They fit this
10 parameter model to Yohkoh Soft and Hard X-Ray Telescopes (SXT 
and HXT) data of 10 solar flares and determine in this way the loop 
sizes and relative orientation of interacting field lines before and after
reconnection.  



The three-dimensional geometry of the four involved magnetic field lines with circular 
segments, additionally constrained by the geometric condition that the two pre-reconnection 
field lines have to intersect each other at the onset of the reconnection process, leading to a 10 
parameter model. They fit this 10 parameter model to Yohkoh Soft and Hard X-Ray Telescopes 
(SXT and HXT) data of 10 solar flares and determine in this way the loop sizes and relative 
orientation of interacting field lines before and after reconnection. 

Geometrical model of magnetic loops



Top row in each set: Soft X-ray image (logarithmic gray
scale and thin contours) from Yohkoh/SXT and hard X-ray
image (thick contours) from Yohkoh/HXT. The thin circular
segments represent the geometric solutions of the pre-
reconnection field lines, and the thick circular segments
show the corresponding post-reconnection field lines, which
coincide with the flare loops.  
 
Second row: Simulated SXR and HXR maps constrained by
the three-dimensional quadrupolar model, represented with
identical gray scales and contour levels as the original data
(top row).  
 
Third row: Geometric solution of the three-dimensional
quadrupolar model rotated so that the vertical z-axis
coincides with the line of sight. Ten field lines are
interpolated between the pre- and post-reconnection state,
visualizing the relaxation process of field lines after
reconnection.  
 
Bottom row: Same three-dimensional model rotated so that
either the x-axis (viewed from west) or the y-axis (viewed
from south) coincides with the line of sight. The spacing of
the heliographic grid is 1 degree (corresponding to 12,150
km) in all frames.  
 

Fitting the model to X-ray 
images of magnetic loops 



The findings and conclusions are the following: 
 

1. The pre-reconnection field lines always show a strong
asymmetry in size, consistent with the scenario of newly
emerging small-scale loops that reconnect with preexisting
large-scale loops.  
2. The relative angle between reconnecting field lines is
nearly collinear in half of the cases, and nearly perpendicular in
the other half, contrary to the antiparallel configuration that is
considered to be most efficient for magnetic reconnection.  
3. The angle between interacting field lines is reduced by
10-50 deg after quadrupolar reconnection.  
4. The small-scale flare loop experiences a shrinkage by a
factor of 1 31 0 44   , which is consistent with the scaling law
found from previous electron time-of-flight measurements, 
suggesting that electron acceleration occurs near the cusp of
quadrupolar configurations.  



Recent development – models and observations of “slipping” 
reconnection: the footpoints of reconnecting magnetic lines “slip” along 
the flare ribbons of a “J-shape” that is formed by a overlying flux rope 
(Javier, et al, 2014, ApJ, 788:60, 1)



Reconnection experiments -
MRX

• Magnetic 
Reconnection 
eXperiment 
(Princeton) Te 
50,000 - 300,000 K, 
ne  0.1 - 1.5 1020

m-3, B  0.5 kG
Yamada et 
al, 1997, Ji 
et al, 
2001)...


