
9. Theory of solar oscillations



Basic Equations 
Basic assumptions:  

1. linearity: 1
s

v c/ <<
�

  

2. adiabaticity: 0dS dt/ =   

3. spherical symmetry of the background  

4. magnetic forces and Reynolds stresses are negligible  

The basic equations are conservations of mass, momentum, energy and 

Newton’s gravity law.  

1. Conservation of mass (continuity equation):  

The rate of mass change in a fluid element of volume V  is equal to the mass 

flux through the surface of this element (of area A ):  
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2. Momentum equation (conservation of momentum of a fluid 

element):                  
dv

P g
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ρ ρ= −∇ + ,
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where P  is pressure, g
�

 is the gravity acceleration, which can be 

expressed in terms of gravitational potential Φ :   g = ∇Φ.
�

 

Also,    ( ) . This is the 'material' derivative.
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3. Adiabaticity equation (conservation of energy) for a fluid 

element:  

                    0
d P
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         or         
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where 2
c Pγ ρ= /  is the adiabatic sound speed.  

4. Poisson equation:      2 4 Gπ ρ∇ Φ = .  
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Plan to solve the solar oscillation 

equations
1. Linearize - consider small-amplitude oscillations.

2. Neglect the perturbations of the gravitational potential (Cowling 
approximation).

3. Write the linearized equations in the spherical coordinates: r, θ, φ.
4. Consider harmonic (periodic) oscillations

5. Separate the radial and angular coordinates.

6. Show that the angular dependence can be represented by spherical 
harmonics.

7. Derive equations for the radial dependence, representing the 
eigenvalue problem for the normal modes 

8. Solve the eigenvalue problem in the asymptotic (short wave-
length) JWKB approximation.

9. Investigate properties of p- and g-modes



1. Linearization  
Consider small perturbations of a stationary spherically symmetrical star in 

the hydrostatic equilibrium:  

 0 0 0
0 ( ) ( )v r P P rρ ρ= , = , = .  

If ( )tξ
�

 is a vector of displacement of a fluid element then velocity of this 

element:  

 
d

v
dt t

ξ ξ∂
= ≈ .

∂

�

�

 

Perturbations of scalar variables Pρ, ,Φ  are two types: Eulerian, at a fixed 

position r
�

:  

 0
( ) ( ) ( )r t r r tρ ρ ρ ′, = + , ,
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and Lagrangian perturbation in the moving element:  

 0( ) ( ) ( )r r r tρ ξ ρ δρ+ = + , .
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The Eulerian and Lagrangian perturbations are related to each other:  
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where re
�

 is a radial unit vector. In our case, the density gradient is radial. 



Then, the linearized equations are:  

 

              0( ) 0ρ ρ ξ′ + ∇ = ,
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      the continuity (mass conservation) equation 
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 the momentum equation 
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0 for the Largangian perturbations of pressure and density .P cδ δρ=   

 

                     
2 4 Gπ ρ′ ′∇ Φ = .  the equation for the gravitational potential  

 

2. Cowling approximation:  0′Φ = .  



3. Consider the linearized equations in the spherical coordinates
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where 
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 is the horizontal component of displacement. 
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4. Consider periodic perturbations with frequency ω :  

 

where  is the cyclic frequency (measured in Hz), 

                       and  is the angular frequency (measure in rad/s)
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Then, in the Cowling approximation, we get (leaving out subscript 0 for 

unperturbed variables):  
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where  2 1 1dP d
N g

P dr dr
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 is the Brunt-Vaisala frequency. 

Boundary conditions:  

( 0) 0
r

rξ = = ,   - displacement at the Sun’s center is zero, 

                                       (or a regularity condition for 1l = ).  

( ) 0P r Rδ = = ,   - Lagrangian pressure perturbation at the solar surface is zero.   

                              (this is equivalent to absence of external forces).  

Also, we assume that the solution is regular at the poles 0θ π= , .  



5. Consider the separation of radial and angular variables in the form:  

 ( ) ( ) ( )r r fρ θ φ ρ θ φ′ ′, , = ⋅ , ,  
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Then, the continuity equation is:  
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The variables are separated if  

                                                            
2

h f fα∇ = ,  

where α  is a constant.  

This equation has non-zero solutions regular at the poles, 0θ π= ,  only when  

                                                           ( 1)l lα = − + ,  

where l  is an integer.  

 

6. The non-zero solution of equation 2 ( 1) 0h f l l f∇ + + =  represents the 

spherical harmonics:  
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l lf Y CP e
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lP θ  is the Legendre function.  



After the separation of variables the continuity equation for the 

radial dependence ( )rρ ′  is  
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Compare with the original equation:
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and with this equation in the spherical coordinates:

Transform this equation in terms of 2 variables:        and         

- radial displacement and Eulerian pressure perturbation.
r

ξ P ′

7. Derive equations for the radial dependence, 

representing the eigenvalue problem for the normal 

modes 



The horizontal component of displacement 
h

ξ  can be determined from the horizontal 

component of the momentum equation:  
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Substituting this into the continuity equation we get:  
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where we define 2 ( 1)L l l= +  (note the similarity to quantum mechanics). 

Using the hydrostatic equation for the background (unperturbed) state
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where   
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r
=  is the Lamb frequency, L

2
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2
(r)=γP/ρ is the squared 

sound speed, g(r)=Gm(r)/r
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 is the gravity acceleration at radius r. 



Similarly, the momentum equation is:  
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where N
2
 is the Brunt-Vaisala frequency. 

The lower boundary condition:  0
r

ξ = ,  (or a regularity condition).  

The upper boundary condition:  0
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From the horizontal component of the momentum equation:  
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Then from the upper boundary condition:  
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that is the ratio of the horizontal and radial components of displacement is inverse 

proportional to squared frequency. However, this relation does not hold in 

observations, presumably, because of the external force caused by the solar 

atmosphere.  



7. The derived equations with the boundary conditions 

constitute an eigenvalue problem for solar oscillation modes 
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Properties of oscillations

depend on the signs of 

these coefficients in 

brackets.
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Buoyancy (Brunt-Vaisala) frequency N , and Lamb frequency l
S  for 1 5 20l = , ,  

and 100 vs. fractional radius r R/  for a standard solar model. The horizontal 

lines indicate the trapping regions for a g mode with frequency 100ν µ= Hz, 

and for a p mode of degree 20l =  and 2000ν µ= Hz. 

Propagation diagram of solar oscillations

2 2
2
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=

the Lamb frequency. 
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the Brunt-Vaisala

frequency. 

l=1

p-modes

g-modes

p-modes (acoustic 

modes):

   
l

S Nω ω> >

g-modes (internal

gravity modes):

   lS Nω ω< <



8. JWKB (Jeffreys-Wentzel–Kramers–Brillouin) Solution 

(short-wavelength asymptotic approximation – 

similar to quantum mechanics) 
 

We assume that only density ( )rρ  varies significantly among the solar properties 

in the oscillation equations, and seek for an oscillatory solution in the JWKB 

form:  
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where the radial wavenumber rk  is a slowly varying function of r .  
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From the oscillation equations we get a linear system:  
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The determinant of this system is equal zero when  

 

2 2 2
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ω ω
ω

ω
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 
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−
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where               
2

c

c

H
ω =      is the acoustic cut-off frequency  

(use the relation: 2 2 2
N g H g c= / − / ).  

 

The solar waves propagate in the regions where 2 0rk > .  

If 2 0rk <  , the waves exponentially decay (‘evanescent’).  



Properties of Solar Oscillation Modes 

Equation                      

2 2 2
2 2 2

2 2 2

c l
r

S
k N

c c

ω ω
ω

ω
 
 
 

−
= + −  

 represents  a dispersion relation of solar waves.  

It relates frequency ω  with radial wavenumber rk  and angular order l .  

Consider two simple cases:        

1: the high-frequency case. If 2 2
Nω >> then 

                                           

2 2 2
2

2 2
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S
k
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ω ω−
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      or                      2 2 2 2 2 2

c r hk c k cω ω= + + ,  
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+
= / ≡ ≡ is the horizontal wave number.  
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r hk k k= +  is the squared total wavenumber.  

Finally, 
2 2 2 2 ,  where  is the acoustic cut-off frequency.

2
c c

c
k c

H
ω ω ω= + =  

This is the dispersion relation for acoustic (p) modes; ωωωωc is the acoustic cutoff 

frequency. Physically, the waves with frequencies below the acoustic cutoff 

frequency cannot propagate. Their wavelength becomes shorter than the density 

scale height. For the Sun / 2 5 .c c mHzν ω π≡ ≈  (c~10 km/s, H~150km). 



2: consider the low-frequency case when        2 2

lSω <<  

        then 

2
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S
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Then,           
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N
k
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r h
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where θ  is the angle between wavevector k  and the horizontal 

direction.  

This is a dispersion relation for internal gravity (g). modes. 

They propagate mostly horizontally.  
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The frequencies of normal modes are determined for the Borh quantization rule 

(resonant condition):      
2

1

( )
r

r
r

k dr nπ α= + ,∫  

where 1r  and 2r  are the radii of the turning points where r
k =0, n  is a radial order 

-integer number, and α  is a phase shift which depends on properties of the 

reflecting boundaries.   2 2 2
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 2 2 2
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 2 ( 1)L l l= +

Normal modes of solar oscillations

is the acoustic cut-off 

frequency; it has very 

sharp increase  at r/R=1

c(r) is the sound speed



1r

P-mode ray paths
Inner turning point

2 2 2
2

2 2

c l
r

S
k

c c

ω ω−
= −

• The waves propagate where 

kr
2>0.  

• The waves are evanescent 

where kr
2<0

• The wave turning points are 

located where kr
2=0.

• Because 

has a sharp peak near the surface 

the upper turning point (r2) is 

where

The lower turning point (r1) is 

where  

/ 2
c

c Hω =

cω ω=

( / )l hS L r c k cω = = =
or where the horizontal phase speed                    is equal to the sound speed.  /

h
k cω =



g-mode ray paths

g-modes propagate only in the radiative zone which 

is convectively stable 
2 0N >



 

Estimate frequencies of normal modes for these 2 cases.  

1. p-modes:  

propagating region: 
2 0rk >   

turning points 2 0
r

k = :  

2 2
2 2

2c

L c

r
ω ω= + .  

For the lower turning point in the interior: cω ω<< .  

Then, 
Lc
r

ω ≈ , or  
1

1

( )c r

r L

ω
=     is the equation for the lower turning point. 

The upper turning point: 2( )c rω ω≈ . Since ( )
c

rω  is a steep function of r

near the surface,  2r R≈ .  

Then, the resonant condition for p-modes is:    
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L
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R

r

ω
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Abel integral equation.

Calculation of normal mode frequencies



For l n<< , 1 0r ≈ , and we get:  

0

( 2 )
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c
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ω
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∫
  

That is the spectrum of low-degree p-modes is approximately equidistant with 

frequency spacing:  

1

0
4

R dr

c
ν

−
 

∆ = . 
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Low-degree p-modes

Maximum amplitude 

is around 3,300 µHz, 

or 3.3 mHz. The 

corresponding 

oscillation period is 

300 seconds or 5 

minutes.  



Asteroseismology

Bedding & 
Kjeldsen 
(2003)



   

Frequencies of g-modes:  
 

The turning points are determined from equation: 

 ( )N r ω= .  

In the propagation region, 0rk > , far from the turning 

points ( N ω>> ):  

                                      
r
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k
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≈ .  

Then, from the resonant condition:   
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N n

r
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ω
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we find:  
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drL N
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n
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+

∫
 



Spectrum of normal modes 

calculated for a standard 

solar model. Note the 

‘avoided crossing effect’ for 

f and g-modes. 

Wavelength in Mm



Surface gravity waves (f-mode)  

These wave propagate at the surface boundary where Lagrangian pressure perturbation 

~ 0Pδ .  

Consider the oscillation equations in terms of Pδ  by making use of the relation between 

Eulerian and Lagrangian variables:  
r

P P gδ ρξ′ = + .  
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2

2 2
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d P L g g f
P

dr r r

δ ρ
δ ξ

ω
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where           
2 2

2

r L g
f

g r

ω

ω
≈ − .  

These equations have a peculiar solution:  0 0P fδ = , = .  

For this solution:          
2

h

Lg
k g

R
ω = =  

-dispersion relation for f-mode.  

The eigenfunction equation:       0r
r

d L

dr r

ξ
ξ− =  

has a solution     
( )

r

k r Rheξ −
∝  exponentially decaying with depth.  

 


