9. Theory of solar oscillations



Basic Equations
Basic assumptions:

1. linearity: v/c, <<1

2. adiabaticity: dS/dt =0

3. spherical symmetry of the background

4. magnetic forces and Reynolds stresses are negligible

The basic equations are conservations of mass, momentum, energy and
Newton’s gravity law.

1. Conservation of mass (continuity equation):

The rate of mass change in a fluid element of volume V' 1s equal to the mass
flux through the surface of this element (of area A ):

a% [ pdv=—[ pida=-] V(piav.

Then, \ / '0\_;

aa_p_l_ V(p7) =0, divergence A
f 1%
or
4P, i =0,

dt



2. Momentum equation (conservation of momentum of a fluid

—_

element): Jo, j—v =-VP+ pg,
5

where P 1s pressure, g 1s the gravity acceleration, which can be
expressed in terms of gravitational potential ®: g =V,
v oV .. . ..
Also, L (v -V)v. This 1s the 'material’ derivative.
dt
av v, v,
Bx g dy oz
3. Adiabaticity equation (conservation of energy) for a fluid
element:

for v. component

— | =0, or —=Cc —,
dt

Jold dt dt
where ¢* = ¥P/p is the adiabatic sound speed.

i(Pj 0 dP _ ,dp

4. Poisson equation: V’® =47Gp.
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Plan to solve the solar oscillation

equations

Linearize - consider small-amplitude oscillations.

Neglect the perturbations of the gravitational potential (Cowling
approximation).

Write the linearized equations in the spherical coordinates: 7, 6, .
Consider harmonic (periodic) oscillations
Separate the radial and angular coordinates.

Show that the angular dependence can be represented by spherical
harmonics.

Derive equations for the radial dependence, representing the
eigenvalue problem for the normal modes

Solve the eigenvalue problem in the asymptotic (short wave-
length) JWKB approximation.

Investigate properties of p- and g-modes



1. Linearization
Consider small perturbations of a stationary spherically symmetrical star in
the hydrostatic equilibrium:

v, =0, p=p,(r), P=PF\(r).
If 5 (t) 1s a vector of displacement of a fluid element then velocity of this
element:
d¢ _o&
dt ot
Perturbations of scalar variables p, P,® are two types: Eulerian, at a fixed

V=

position 7 :
p(F.t) = p,(n)+ p'(F,1),

and Lagrangian perturbation in the moving element:

p(F+E)=p,(r)+dp(F.1).

The Eulerian and Lagrangian perturbations are related to each other:

’ Iz ’ 22N d ’ d
p=p +@E-Vp)=p+@E&)Lo=pig o
dr dr
where ¢, 1s a radial unit vector. In our case, the density gradient is radial.




Then, the linearized equations are:

P +V(p,E)=0, the continuity (mass conservation) equation

a‘_/; ’ ’ /
Jop > =—VP —g.e,p + p,VP’, the momentum equation
!

/ dP / d
P'+< d_o = cg (o' +¢ fo ), the adibaticity (energy) equation, or
r r

OP = Cé 5,0 for the Largangian perturbations of pressure and density.

V’® = 47xGp’. the equation for the gravitational potential

2. Cowling approximation: &' =0.



3. Consider the linearized equations in the spherical coordinates
r,0,0: $=Ce,+ 80+ 6,=88,+ ¢,

where £ ,=&,60+&,6, is the horizon ent of displacement.

VE=divé = 12%(;9;)

r

N1 L
_19 . £y % V,E.

r* or

4. Consider periodic perturbations with frequency o:

V=w/27%, where Vv is the cyclic frequency (measured in Hz),

and @ 1s the angular frequency (measure 1n rad/s).



Then, in the Cowling approximation, we get (leaving out subscript 0 for
unperturbed variables):

o+ %ai (r’pé )+ s vV, 5 , =0, the continuity equation
r r r

4

~’ ,Oc_(,: L= —g +g ,0’, the radial component of the momentum equation
—’ ,05 =T \Y% hP’, the horizontal component of the momentum equation
o' = % P+ PN’ &, the adiabatic equation
where N’ =g (Ld_P_ld_pj 1s the Brunt-Vaisala frequency.
yP dr p dr

Boundary conditions:
& (r=0)=0, -displacement at the Sun’s center is zero,
(or a regularity condition for / =1).
OP(r=R)=0, -Lagrangian pressure perturbation at the solar surface is zero.

(this 1s equivalent to absence of external forces).
Also, we assume that the solution is regular at the poles 8 =0, 7.



5. Consider the separation of radial and angular variables in the form:
p'(r,0,¢9)=p'(r)- f(6.9),
P'(r,60,0)=P'(r)- f(6,9),
¢ (r.60.9)=¢.(r)- f(6.9),
E(r,.8,0)=¢,(nNV, f(6.9).

Then, the continuity equation is:
, 14
[p +—2—<r2p§r>}f<9, »+EEV =0,
r°or r
The variables are separated if
Vif=af,

where ¢ 1is a constant.
This equation has non-zero solutions regular at the poles, 8 =0, 7 only when

a=-l(l+1),
where [ is an integer.

6. The non-zero solution of equation V’ f +I/(I+1)f =0 represents the

spherical harmonics:
f(0.9)=Y"(6,4)=CP"(8)e™,

where P"(6) 1s the Legendre function.



7. Derive equations for the radial dependence,
representing the eigenvalue problem for the normal
modes

After the separation of variables the continuity equation for the
radial dependence p’(r) is

1 o
r ar(r ,ij

Compare with the original equation: 0+ V( poé: ) =0,

l(l+1)

p+— PS, =

and with this equation in the spherical coordinates:

, 10 o J—
P +;§(r2p§)+7vh§h =0,

Transform this equation in terms of 2 Variables:é:r and P’
- radial displacement and Eulerian pressure perturbation.



The horizontal component of displacement &, can be determined from the horizontal

component of the momentum equation:

-0 P, (1) == P(1),

1
or =
Sh P or

Substituting this into the continuity equation we get:

df d_p+g§ P ,oN L P =0
dr r rc ro’p ’

P’

r

where we define L” =I(I+1) (note the similarity to quantum mechanics).

Using the hydrostatic equation for the background (unperturbed) state
dP

dr —Ts8p
2 2 ’
finally get: ;Kr +=¢ — é‘ [ l; 2j P - =0,
pc’
2 ’
or —5 =& - e’i (l—S—j i)
pc’
L202
where Sf =—— is the Lamb frequency, L2=l(l+] ), c2(r)=7P/p 1s the squared

r
sound speed, g(r)=Gm( r)/r2 1s the gravity acceleration at radius r.



Similarly, the momentum equation is:

dP’ ,
+ & P H(N? - ) pé =0,
dr c
where N is the Brunt-Vaisala frequency.

The lower boundary condition: fr =0, (or a regularity condition).
V4 dP
The upper boundary condition: OP =P+ d—fr =0,
r

or using the hydrostatic equation: P — g ,Of,, = 0.

From the horizontal component of the momentum equation:

P =w’pré,
Then from the upper boundary condition: S = (g; :
'r

r

that is the ratio of the horizontal and radial components of displacement is inverse
proportional to squared frequency. However, this relation does not hold in
observations, presumably, because of the external force caused by the solar
atmosphere.



7. The derived equations with the boundary conditions
constitute an eigenvalue problem for solar oscillation modes

dg,

Sz P/ & is the radial displacement
Cf =0, P’ is the Eulerian pressure
dr ,OC perturbation
Properties of oscillations
dP’ depend on the signs of
+ g2 P+ (N2 — wz) =0 these coefficients in
dr C brackets.
L’c” . 2
S? = is the Lamb frequency. L° =[(/+1)
2
) 1 dP 1dp is the Brunt-Vaisala frequency.
yP dr p dr

The lower boundary condition: £ =0, (or a regularity condition).

The upper boundary condition: OP=P+ cjl—Pcfr =0,
r



dér _I_%é:r _égr n [1 _ S12 j P/ _ O, & is the radial displacement

dr r : (()2 IOCZ P’ is the Eulerian pressure
) perturbation
a;; + f; P +(N°-w*)pé =0.
)P dP’
dfw(l—sgj —=~0, —+(N*-w&’)pé. =0.
dr @ ) pc dr
dzfr 1 2 2 2 2
dr’ +cza)2 (w =95, )(w —-N)g, =0,

solution is oscillatory if (& — S} )(@’ = N*)>0



Propagation diagram of solar oscillations

5000 —r————v7—v—— ; —
! \\ \\\ \\ 100 "
| SO’ p-modes h
\ \\ ~ o p \\
R T~L_ 20 "
\ \\ 5 \\ \
1000__ \\ =1 \\ \\\ \\-.
;N\ : N \\\ ~ o \\ ‘:
El 500 N i \\\\ S ]
\\ \\ \
N \\ \\ \
\\ \
~ N 1
g-modes TN .L N
100§ —~ Y
I \\\ \
50 | RN
0.0 0.2 0.4 0.6 0.8 1.0

p-modes (acoustic
modes):

w>S, @>N

g-modes (internal
gravity modes):

w<S§, wO<N

2 2
_Lc

the Brunt-Vaisala
frequency.

Buoyancy (Brunt-Vaisala) frequency N , and Lamb frequency S for /=1,5,20

and 100 vs. fractional radius /R for a standard solar model. The horizontal
lines indicate the trapping regions for a g mode with frequency v =100x Hz,
and for a p mode of degree / =20 and v =2000x Hz.



8. JWKB (Jeffreys-Wentzel-Kramers—Brillouin) Solution
(short-wavelength asymptotic approximation —
similar to quantum mechanics)

We assume that only density p(r) varies significantly among the solar properties

in the oscillation equations, and seek for an oscillatory solution in the JWKB
form:

_ —12 ik,r
gr T Ap € >
/ 112 ik,
P =Bp e,

where the radial wavenumber k&, is a slowly varying function of r.

d 1 |
r— Ap V2| ik 4 ezkrr,
Then, dr P " 2H
di — Bpl/z ikr _L eikrr,
dr 2H

-1
dlog p
where H = —( Ir j is the density scale height.



From the oscillation equations we get a linear system:

2
ik, +LjA—%A+i2 -2 |B=0,
2H c c @

(ikr —LjB+%B+(N2 —")A=0.
2H C

The determinant of this system is equal zero when

2 2 2
A1) S
e=2 %, S (N
C /),
where @. = ﬁ is the acoustic cut-off frequency

(use the relation: N° = g/H — g°/c?).

The solar waves propagate in the regions where k> >0.

If k* <0 , the waves exponentially decay (‘evanescent’).



Properties of Solar Oscillation Modes

2 2 2
O] S

. 2
Equation k, = —+
C /),
represents a dispersion relation of solar waves.
It relates frequency @ with radial wavenumber k. and angular order [ .

Z[Nz—a)zj

Consider two simple cases:

I: the high-frequency case. If @” >> N”then
2 o' - S
' c’ c’
or 0 = 0 + K2+ K3,
L JIl+]1) . .
where k, =S, /c=—= iG] is the horizontal wave number.
r r

Then, k* =k’ +k, is the squared total wavenumber.

c . :
Finally, @ = @ +k°c’, where @, = By 1s the acoustic cut-off frequency.

This is the dispersion relation for acoustic (p) modes; @ is the acoustic cutoff
frequency. Physically, the waves with frequencies below the acoustic cutoff
frequency cannot propagate. Their wavelength becomes shorter than the density

scale height. For the Sun v. =w. /27 =5 mHz. (¢~10 km/s, H~150km).



2 2 2
W —Q S
kP =———+ le(Nz—afj
C C

2: consider the low-frequency case when W’ << S}

2

then krz = C;S(loz (N° —w”) (remember S, =ck, =cL/r)

272
KAV _ N?cos’ 8, where k> =k>+k;

Then, W = B =

where @ 1s the angle between wavevector £ and the horizontal
direction.

This is a dispersion relation for internal gravity (g). modes.
They propagate mostly horizontally.



Normal modes of solar oscillations
The frequencies of normal modes are determined for the Borh quantization rule

6}
(resonant condition): _‘- kdr=rn(n+ao),
i

where 1, and r, are the radii of the turning points where k. =0, n is a radial order

-integer number, and & i1s a phase shift which depends on properties of the
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P-mode ray paths
0 -w S

2 2
C C

* The waves propagate where
k 2>0.

* The waves are evanescent
where k 2<0

* The wave turning points are
located where k 2=0.

* Because w.=cl2H

has a sharp peak near the surface

the upper turning point (r,) 18

where W= Q.

The lower turning point (r,) 1s

| where =38, =(L/r)c=k,c

-where the horizontal phase speed @/ k , = C 1s equal to the sound speed.

Inner turning point

k? =




g-mode ray paths

g-modes propagate only in the radiative zone which
is convectively stable N> >0



Calculation of normal mode frequencies

Estimate frequencies of normal modes for these 2 cases.

1. p-modes:
propagating region: k. >0
L'c’
turning points k. =0: 0 = + Ea

For the lower turning point in the interior: @, << @

_Lc c() @
Then, & = , Or ==
r rl L

1s the equation for the lower turning point.

The upper turning point: @,.(7,) = @ . Since w.(r) is a steep function of r

near the surface, 7, =R.

R 2 2
. . @ L
Then, the resonant condition for p-modes is: jr . 707” =7r(n+a)
1

Abel integral equation.



Low-degree p-modes
_w(n+ L2+ )
S

0 ¢
That 1s the spectrum of low-degree p-modes 1s approximately equidistant with

For [ <<n, r,=0, and we get:

: RdrY)’
frequency spacing: Av=|4 Nl
c
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Frequencies of g-modes:

The turning points are determined from equation:
N(r)=w.
In the propagation region, k. >0, far from the turning
points (N >> @ ):
LN
k =~——0-.
ra
Then, from the resonant condition:
J"’z L dr

N—=7m(n+a).
n r

L[" N4
we find: o~ — A

Tn+a)
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Surface gravity waves (f-mode)

These wave propagate at the surface boundary where Lagrangian pressure perturbation
oP~0.

Consider the oscillation equations in terms of P by making use of the relation between
Eulerian and Lagrangian variables: P =0P+ gp¢& ..

dé, Lg§ [ chzjé'P:O

dr @’r’ ) pc’

dopP Lg5P gpf§ _0,

dr @'r

2 2
where fzwr—LZg.

g wr
These equations have a peculiar solution: 0P =0, f =0.

Lg
2
For this solution: o = R =k,g
-dispersion relation for f-mode.
| | | dg L
The eigenfunction equation: d cf 0
r

has a solution £ oc R exponentlally decaying with depth.



