Understanding Solar Eruptions with SDO/HMI Measuring Photospheric Flows, Testing Models, and Steps Towards Forecasting Solar Eruptions Work Supported by: LWS Tools & Methods, LWS TR&T Strategic Capability, and HGI

Peter W. Schuck,¹ Mark Linton,² Karin Muglach,^{1,3} Brian Welsch⁴, and Jacob Hageman¹ Collaborators: Spiro Antiochos,¹ Bill Abbett,⁴ K.D. Leka,⁵ George Fisher⁴, and Todd Hoeksema⁶

¹Space Weather Laboratory, Heliophysics Science Division, NASA/GSFC

²US Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375

³Artep, Inc., 2922 Excelsior Springs Ct., Ellicott City, MD, 21042

⁴Space Sciences Laboratory, University of California, Berkeley

⁵Colorado Research Associates/NorthWest Research Associates Inc

⁶Stanford University

CMEs and Space Weather

Corona Mass Ejection (CME)

CME Energetics

- Mass: 10¹³ 10¹⁷ g of plasma
- Kinetic: $10^{27} 10^{32}$ ergs
- Magnetic: 10²⁷ 10³² ergs
- Solar Energetic Particles (SEPs): 1 – 10% of KE
- Associated Flare (sometimes) similar to KE

CMEs and Space Weather

CMEs impact Earth

www.nasa.gov/mpg/160602main_what_is_a_cme_NASA%20WebV_1.mpg

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Civilian Infrastructure:

- Electrical power grids, oil pipelines, polar aviation routes, satelliteand long-line communication systems, space tracking, navigation systems, and satellite operations
- Direct economic consequences \$200-400 million dollars a year (Horne, 2003)

NASA Operations:

- Space Shuttle, satellite, and International Space Station (ISS) operations
- Dangers and unpredictability of solar eruptions operationally constrain a manned mission to Mars (Foullon et al., 2005)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Widely accepted that energy stored in the <u>coronal</u> magnetic field drives CMEs and flares.
 - Vector measurements of the coronal magnetic field? Rare and uncertain
- State of the photospheric magnetic field provides limited predictive capabilities (Leka & Barnes, 2007)
 - Examined 1200 photospheric vector magnetograms
 - "[W]e conclude that the state of the photospheric magnetic field at any given time has limited bearing on whether that region will be flare productive"
- Dynamics and time-history of the photospheric magnetic field key to understanding the energization and initiation of solar eruptions
 - Plasma flow properties
 - Poynting flux energy budget of the corona

How are Vector Magnetograms Measured?: Adapted from Leka et al. (2009)

- Zeeman effect: magnetic field induces energy level splitting and polarization to magnetically sensitive lines
- Splitting proportional to |B|

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

How are Vector Magnetograms Measured?: Adapted from Leka et al. (2009)

- Zeeman effect: magnetic field induces energy level splitting and polarization to magnetically sensitive lines
- Splitting proportional to |B|

How are Vector Magnetograms Measured?: Adapted from Leka et al. (2009)

Weak field approximations:

- $B_{\parallel} \propto V$
- $B_{\perp} \propto \sqrt{Q^2 + U^2}$
- $\Phi \approx n \pi + \tan^{-1} (U/Q)$ (azimuthal ambiguity)

•
$$\gamma = \tan^{-1} \left(B_{\parallel} / B_{\perp} \right)$$
 (inclination)

• • • • • • • • • • • • •

How are Vector Magnetograms Measured?: Adapted from Leka et al. (2009)

General:

- Spectra fit to a Milne-Eddington atmosphere to determine B_{||} and B_⊥ (Borrero et al., 2007)
- 180° ambiguity in B_⊥ resolved by minimizing currents and ∇ · B via simulated annealing (Metcalf et al., 2006; Leka et al., 2009)

• • • • • • • • • • • •

Solar Dynamics Observatory/Helioseismic Magnetic Imager

- HMI will sample 5-6 points along the Stokes profiles I, Q U, V of the Ni I 6768 absorption line
- Cadence of science quality ambiguity resolved vector magnetograms 10 – 15 minutes (available after 24 hours)
- full disk 4096 × 4096 pixels or 1" resolution

Keller et al., 2008

Solar Magnetic Fields: Magnetograms What is a "Neutral-Line?"

Synthetic Magnetogram of the Vertical Magnetic Field

- White/Black positive/negative vertical flux
- Green neutral line ($B_z = 0$)
- <u>Sometimes</u> we get vector fields: $\mathbf{B} = \mathbf{B}_h + B_z \hat{z}$

Solar Magnetic Fields: Magnetograms What is a "Neutral-Line?"

Synthetic Magnetogram of the Vertical Magnetic Field

- White/Black positive/negative vertical flux
- Green neutral line $(B_z = 0)$
- <u>Sometimes</u> we get vector fields: $\mathbf{B} = \mathbf{B}_h + B_z \hat{z}$

Solar Magnetic Fields: Magnetograms What is a "Neutral-Line?"

Synthetic Magnetogram of the Vector Magnetic Field

- White/Black positive/negative vertical flux
- Green neutral line $(B_z = 0)$

< 47 ▶

• <u>Sometimes</u> we get vector fields: $\mathbf{B} = \mathbf{B}_h + B_z \hat{z}$

Solar Magnetic Fields: Magnetograms What is a "Neutral-Line?"

Synthetic Magnetogram of the Vector Magnetic Field

Flux Emergence (Hinode/SOT)

э.

Photospheric plasma flows estimated from a sequence of vector magnetograms can be used to:

- Test CME initiation models that require neutral line magnetic footpoint shearing in the photosphere
 - Major open questions in Solar Physics: "How, why, and when do CMEs and flares erupt?"
- Quantify the magnitude and timing of Poynting and helicity fluxes in active regions – free energy and structure in the corona
- Provide boundary conditions for MHD simulations of the corona evolution — first principles predictive space weather models

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Photospheric Flows: Why are They Important?

Understanding and Testing: Flows and CME Initiation Models

(DeVore & Antiochos, 2008)

Breakout Model

- Magnetic topology: Quadrapole: Dipolar active region in the Sun's dipolar magnetic field
- Unsigned Flux: constant (no emergence/submergence/cancelation)
- Flows parallel to the magnetic neutral line (twisting)
- Shears across the neutral line

(Antiochos, 1998; Antiochos et al., 1999)

Photospheric Flows: Why are They Important?

Understanding and Testing: Flows and CME Initiation Models

Flux-Cancellation Model

- Magnetic topology: Dipole or Quadrapole
- Oriving:
 - Phase#1 Energize corona with twisting (like Breakout)
 - Phase#2 Initiation:
 - Unsigned Flux: decreasing (cancellation)
 - Converging flows towards the neutral line

イロト イ団ト イヨト イヨ

(Amari et al., 2003)

Photospheric Flows: Why are They Important? Understanding and Testing: Flows and CME Initiation Models

Flux-Emergence Model

- Magnetic topology: Dipole
- Unsigned Flux: increasing (emergence)
- Diverging flows away from the neutral line

(Manchester, 2001; Manchester et al., 2004)

A D M A A A M M

Photospheric Flows: Why are They Important?

Forecasting: Eruptions from Flows

Coronal Energy Budget

•
$$\frac{d\Delta E}{dt} = \int_{\mathcal{S}_{p}} d^{2}x \left(\boldsymbol{v}_{h} B_{z} - v_{z} \boldsymbol{B}_{h} \right) \cdot \boldsymbol{B}_{h} / (4 \pi)$$

- Compare to minimum energy corona: current free "potential" field $\boldsymbol{B} = -\nabla \Phi$ consistent with *just* the observed photospheric B_z
- CME energy budget $\sim 10^{32}\,ergs$

Welsch et al. (2009) examine a large number of metrics that quantified the line-of-sight magnetograms $B \simeq B_z$ and horizontal plasma velocities in 46 active regions derived from two velocity estimation algorithms: FLCT and DAVE.

Some Phenomenological Results:

- Small active regions are the most dynamic, but least likely to flare
- Big active regions that evolve are most likely to flare

Quantitative Results: Most strongly associated with flaring

- Quasi-Poynting flux proxy $S = \int d^2 x |\mathbf{v}_h| B_z^2$ Assumes $\mathbf{v}_h B_z^2 \sim (\mathbf{v}_h B_z - \mathbf{v}_z \mathbf{B}_h) \cdot \mathbf{B}_h, B_z \propto \mathbf{B}_h$
- Unsigned flux near the neutral line $R = \Sigma W_{\rm NL} |B_z|^2$

- Doppler measurements (spectroscopy)
 - Provides line of sight velocity
 - Mixture of flows parallel and perpendicular to the photospheric magnetic field except near the neutral line where *B* = *B_h*
- Optical flow methods (LCT, MEF, DAVE, DAVE4VM), etc, solve inverse problem: given time-history of *B* calculate *v*
 - <u>Assume a motion model</u>: For example the magnetic induction equation with the ideal Ohm's law $\boldsymbol{E} = -\boldsymbol{v} \times \boldsymbol{B}/c$

$$\partial_t B_z = -\boldsymbol{\nabla} \cdot (\boldsymbol{v}_h B_z - \boldsymbol{v}_z \boldsymbol{B}_h)$$

- Ancillary assumption: Additional information about the local flow structure or global flow properties is required to resolve motion ambiguity
- Answer depends on assumed model and ancillary assumptions

REPEAT: <u>All</u> optical flow methods involve a motion model and ancillary assumptions, including local correlation tracking (LCT)!

Schuck et al. (NASA/GSFC, NRL, Artep, and

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \mathbf{v}_h \cdot \nabla_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Correlate location of edge to infer motion from frame to frame

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \mathbf{v}_h \cdot \nabla_h B_z$ (advection)

Two unknowns: \boldsymbol{v}_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Correlate location of edge to infer motion from frame to frame
 - These are the assumptions underlying local correlation tracking (Schuck, 2005, 2006)

Aperture Problem

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \mathbf{v}_h \cdot \nabla_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution of edge to infer motion from frame to frame in a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \mathbf{v}_h \cdot \nabla_h B_z$ (advection)

Two unknowns: \boldsymbol{v}_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution Correlate location of edge to infer motion from frame to frame In a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Schuck et al. (NASA/GSFC, NRL, Artep, and

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution Correlate location of edge to infer motion from frame to frame In a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution of edge to infer motion from frame to frame in a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution Correlate location of edge to infer motion from frame to frame In a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution Correlate location of edge to infer motion from frame to frame In a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution Correlate location of edge to infer motion from frame to frame In a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution Correlate location of edge to infer motion from frame to frame In a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution of edge to infer motion from frame to frame in a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution Correlate location of edge to infer motion from frame to frame In a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \mathbf{v}_h \cdot \nabla_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution Correlate location of edge to infer motion from frame to frame In a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution Correlate location of edge to infer motion from frame to frame In a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \mathbf{v}_h \cdot \nabla_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution of edge to infer motion from frame to frame in a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \mathbf{v}_h \cdot \nabla_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution of edge to infer motion from frame to frame in a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \mathbf{v}_h \cdot \nabla_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution of edge to infer motion from frame to frame in a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \mathbf{v}_h \cdot \nabla_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution Correlate location of edge to infer motion from frame to frame In a small aperture there may not be enough structure to unambiguously determine v_0 , i.e., we only determine $v_0 = v_n \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

Two unknowns: **v**_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- <u>Correlate</u> location of edge to infer motion from frame to frame Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

Two unknowns: **v**_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- <u>Correlate</u> location of edge to infer motion from frame to frame Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

Two unknowns: \boldsymbol{v}_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- <u>Correlate</u> location of edge to infer motion from frame to frame Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

Two unknowns: **v**_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

Two unknowns: **v**_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- <u>Correlate</u> location of edge to infer motion from frame to frame Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

Two unknowns: **v**_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

Two unknowns: **v**_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- <u>Correlate</u> location of edge to infer motion from frame to frame Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

Two unknowns: **v**_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

Two unknowns: **v**_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- <u>Correlate</u> location of edge to infer motion from frame to frame Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

Two unknowns: \boldsymbol{v}_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \mathbf{v}_h \cdot \nabla_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

Two unknowns: **v**_h

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Simple illustration of motion ambiguity

Edge Moving in an Aperture

Assume a motion model:

 $\partial_t B_z = - \boldsymbol{v}_h \cdot \boldsymbol{\nabla}_h B_z$ (advection)

- Assume local velocity profile: $\boldsymbol{v}_h = \boldsymbol{v}_0 \text{ (rigid motion)}$
- Correlate location of edge to infer motion from frame to frame Solution: Enlarge aperture until enough structure is captured resolve both components of $v_0 = v_n \hat{n}_1 + v_t \hat{z} \times \hat{n}_1$

Local Correlation Tracking (LCT)

Template/Pattern Matching Algorithm

Image 1

(a)

Sub-region Shifts

Image 2

(b)

Cross-Correlation Matrix

Local Correlation Tracking (LCT)

How does LCT work?

• Minimizes the functional:

$$C = \int d^2 x w \left(\boldsymbol{X_0} - \boldsymbol{x} \right) \left[B_n \left(\boldsymbol{x} + \boldsymbol{u_0} \Delta t, t + \Delta t \right) - B_n \left(\boldsymbol{x}, t \right) \right]^2$$

• First order Taylor expansion:

$$C \approx \Delta t^2 \int d^2 x \, \overbrace{w(\mathbf{X}_0 - \mathbf{x})}^{\text{Aperture}} \left[\underbrace{\frac{\text{Advection Equation}}{\partial_t B_n(\mathbf{x}, t) + \mathbf{u}_0 \cdot \nabla B_n(\mathbf{x}, t)}}_{\partial_t B_n(\mathbf{x}, t) + \mathbf{u}_0 \cdot \nabla B_n(\mathbf{x}, t)} \right]^2 \approx 0$$

 LCT attempts to find the velocity *u* that minimizes the advection operator in the apodizing window. — Not Induction Equation! Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \boldsymbol{u}_{\mathrm{F}} = B_{z} \boldsymbol{v}_{h} - v_{z} \boldsymbol{B}_{h}$ $B_{z} \boldsymbol{u}_{\mathrm{F}}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \boldsymbol{v}_{h} - v_{z} \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Implies footpoint velocity $u_{\rm F}$ may be accurately estimated from the line-ofsight magnetic field B_z .

Horizontal Plasma Motion

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - \boldsymbol{v}_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - \boldsymbol{v}_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ mplies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

accurately estimated from the line-ofsight magnetic field B_z . Horizontal Plasma Motion

Geometrical Interpretation of the "Footpoint Velocity" UF $B_{z} \boldsymbol{U}_{\mathrm{F}} = B_{z} \boldsymbol{v}_{h} - v_{z} \boldsymbol{B}_{h}$ corona $B_z \boldsymbol{u}_{\mathrm{F}}$ $\partial_t B_z + \nabla_h \cdot (\overrightarrow{B_z v_h - v_z B_h}) = 0$ $\partial_t B_z + \nabla_h \cdot (B_z \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\rm F}$ may be accurately estimated from the line-ofsight magnetic field B_{7} .

Horizontal Plasma Motion

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \boldsymbol{u}_{\mathrm{F}} = B_{z} \boldsymbol{v}_{h} - v_{z} \boldsymbol{B}_{h}$ $B_{z} \boldsymbol{u}_{\mathrm{F}}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \boldsymbol{v}_{h} - v_{z} \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Geometrical Interpretation of the "Footpoint Velocity" UF $B_{z} \boldsymbol{U}_{\mathrm{F}} = B_{z} \boldsymbol{v}_{h} - v_{z} \boldsymbol{B}_{h}$ $B_z \boldsymbol{u}_{\mathrm{F}}$ $\partial_t B_z + \nabla_h \cdot (\overrightarrow{B_z v_h - v_z B_h}) = 0$ $\partial_t B_z + \nabla_h \cdot (B_z \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\rm F}$ may be accurately estimated from the line-ofsight magnetic field B_{7} .

Vertical Plasma Motion

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ mplies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Implies footpoint velocity u_F may be accurately estimated from the line-ofsight magnetic field B_z .

Vertical Plasma Motion

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ mplies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Implies footpoint velocity u_F may be accurately estimated from the line-ofsight magnetic field B_z .

< 47 ▶

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ mplies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Implies footpoint velocity u_F may be accurately estimated from the line-ofsight magnetic field B_z .

< 47 ▶

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ mplies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Implies footpoint velocity $u_{\rm F}$ may be accurately estimated from the line-ofsight magnetic field B_z .

< 47 ▶

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \boldsymbol{v}_{h} - \boldsymbol{v}_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - \boldsymbol{v}_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Implies footpoint velocity u_F may be accurately estimated from the line-of-sight magnetic field B_z .

< 47 ▶

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Implies footpoint velocity u_F may be accurately estimated from the line-of-sight magnetic field B_z .

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Implies footpoint velocity $u_{\rm F}$ may be accurately estimated from the line-ofsight magnetic field B_z .

Geometrical Interpretation of the "Footpoint Velocity" UF $B_{z} \boldsymbol{U}_{\mathrm{F}} = B_{z} \boldsymbol{v}_{h} - v_{z} \boldsymbol{B}_{h}$ $B_z \boldsymbol{u}_{\mathrm{F}}$ $\partial_t B_z + \nabla_h \cdot (\overrightarrow{B_z v_h - v_z B_h}) = 0$ $\partial_t B_z + \nabla_h \cdot (B_z \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\rm F}$ may be accurately estimated from the line-of-

Both Components corona S₂ - photosphere convection zone

sight magnetic field B_{7} .

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

accurately estimated from the line-ofsight magnetic field B_z .

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Implies footpoint velocity $u_{\rm F}$ may be accurately estimated from the line-of-sight magnetic field B_z .

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ mplies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Implies footpoint velocity u_F may be accurately estimated from the line-ofsight magnetic field B_z .

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ modules footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ modules footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ mplies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \nabla_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{\mathbf{CO}} = 0$ $\partial_{t} B_{z} + \nabla_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}) = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ Implies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$ mplies footpoint velocity $\boldsymbol{u}_{\mathrm{F}}$ may be

Implies footpoint velocity u_F may be accurately estimated from the line-ofsight magnetic field B_z .

< 17 ▶

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Implies footpoint velocity $u_{\rm F}$ may be accurately estimated from the line-ofsight magnetic field B_z .

< 47 ▶
How Can We Estimate Photospheric Flows? Démoulin & Berger Conjecture (2003)

Geometrical Interpretation of the "Footpoint Velocity" $\boldsymbol{u}_{\mathrm{F}}$ $B_{z} \, \boldsymbol{u}_{\mathrm{F}} = B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h}$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot \overbrace{(B_{z} \, \boldsymbol{v}_{h} - v_{z} \, \boldsymbol{B}_{h})}^{B_{z} \, \boldsymbol{u}_{\mathrm{F}}} = 0$ $\partial_{t} B_{z} + \boldsymbol{\nabla}_{h} \cdot (B_{z} \, \boldsymbol{u}_{\mathrm{F}}) = 0$

Conjecture can be tested by comparing DAVE4VM and DAVE estimates against "ground truth" from MHD simulations

How Can We Estimate Photospheric Flows? Differential Affine Velocity Estimator (DAVE)

$$C \approx \int dx^2 w \left(\mathbf{x} - \mathbf{X}_0 \right) \left\{ \partial_t B_z \left(\mathbf{x}, t \right) + \nabla_h \cdot \left[B_z \left(\mathbf{x}, t \right) \, \widehat{\boldsymbol{u}}_F \right] \right\}^2$$
$$\widehat{\boldsymbol{u}}_F = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} + \begin{pmatrix} \widehat{u}_x & \widehat{u}_y \\ \widehat{v}_x & \widehat{v}_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \qquad \nabla_h = (\partial_x, \partial_y)$$

- Incorporates only vertical magnetic field component (line-of-sight)
- No explicit vertical flows
- Motivated by Démoulin & Berger's 2003 <u>incorrect</u> conjecture that the *u*_F is the "magnetic footpoint velocity"
- Actually biased estimate of the horizontal plasma velocity u_F=v_h

Schuck (2006)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How Can We Estimate Photospheric Flows?

Application to MDI data AR8210

- 2600 MDI magnetograms (1-minute cadence)
- Velocities estimated for $|B_{LOS}| > 60 \text{ G}$
- Mean *V_x* and *V_y* of the active region
- Thick line Mean synodic differential velocity of the active region computed from Howard et al. (1990) and projected into the image plane.

How Can We Estimate Photospheric Flows?

Application to MDI data AR8210

How Can We Estimate Photospheric Flows?

How Can We Estimate Photospheric Flows?

How Can We Estimate Photospheric Flows?

How Can We Estimate Photospheric Flows?

X (arcsecs)

Schuck et al. (NASA/GSFC, NRL, Artep, and

X (arcsecs)

Schuck et al. (NASA/GSFC, NRL, Artep, and

Schuck et al. (NASA/GSFC, NRL, Artep, and

Schuck et al. (NASA/GSFC, NRL, Artep, and

Schuck et al. (NASA/GSFC, NRL, Artep, and

Schuck et al. (NASA/GSFC, NRL, Artep, and

Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM)

$$C \approx \int dx^2 w \left(\mathbf{x} - \mathbf{X}_0 \right) \left\{ \partial_t B_z \left(\mathbf{x}, t \right) + \nabla_h \cdot \left[B_z \left(\mathbf{x}, t \right) \, \widehat{\mathbf{v}}_h - \widehat{\mathbf{v}}_z \, \mathbf{B}_h \left(\mathbf{x}, t \right) \right] \right\}^2$$
$$\widehat{\mathbf{v}} = \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix} + \begin{pmatrix} \widehat{u}_x & \widehat{u}_y \\ \widehat{v}_x & \widehat{v}_y \\ \widehat{w}_x & \widehat{w}_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \qquad \nabla_h = (\partial_x, \partial_y)$$

- Incorporates both vertical and horizontal magnetic field components
- 3D photospheric plasma velocities: explicit vertical flows
- Variational principle results in a least squares/total least squares estimator
 - Can incorporate magnetic field covariance matrices (uncertainties)

	Schuck (2008)	< 🗗 >	< E	• •	$\Xi \succ$	3	うくで	r
huck et al. (NASA/GSFC, NRL, Artep, and	NASA HQ		Janu	ary 2	20, 201		24 / 43	

How Can We Estimate Photospheric Flows? Validating DAVE4VM with an ANMHD Simulation

- Analastic Magnetohydrodynamics (ANMHD) (Fan et al., 1999; Abbett et al., 2000)
 CCMC http://ccmc.gsfc.nasa.gov/models/modelinfo. php?model=ANMHD
- Simulation of a twisted flux rope rising through the turbulent convection zone
- Magnetic Reynolds Number: $\it Re_M \equiv 3500$ much more resistive than the photosphere $\it R_M \sim 10^5 10^6$
- Provides ground truth plasma velocities to compare with DAVE4VM and DAVE

-

How Can We Estimate Photospheric Flows? Validating DAVE4VM with an ANMHD Simulation

イロト イヨト イヨト イ

Validating DAVE4VM with an ANMHD Simulation

Validating DAVE4VM with an ANMHD Simulation

Neutral Line

Validating DAVE4VM with an ANMHD Simulation

Neutral Line & Poynting Flux

Validating DAVE4VM with an ANMHD Simulation

Validating DAVE4VM with an ANMHD Simulation

Validating DAVE4VM with an ANMHD Simulation

Flows \parallel & \perp to Neutral Lines

How Can We Estimate Photospheric Flows? Validating DAVE4VM with an ANMHD Simulation

Schuck et al. (NASA/GSFC, NRL, Artep, and

Validating DAVE4VM with an ANMHD Simulation

Challenges!

- Must be able to produce an eruption in 3D spherical geometry
- Must be able to reproduce to properties of a CME
- Must be able to model the photosphere to the corona
- Must be able to assimilate data

Data Driven Modeling of CMEs

ARMS can reproduce eruptions 3D spherical geometry

 ARMS - Adaptively Refined Magnetohydrodynamic Solver

____ ▶

- Flux corrected transport
- Highly Parallelized

Lynch et al. (2008)

Data Driven Modeling of CMEs

ARMS can reproduce a fast CME with a 3 three part structure

ARMS can model the photosphere to the corona

VAL-C Model of the Solar Atmosphere

- Plasma Pressure drops by 10⁸
- Temperature increases by 10³
- Magnetic Pressure drops by 15

Plasma β indicates dominate forces

$$\beta \equiv \frac{4 \pi P}{B^2}$$

 β ≫ 1 plasma pressure dominant

• $\beta \ll$ 1 magnetic forces dominant

< 🗇 🕨

(Vernazza et al., 1981)

ARMS can model the photosphere to the corona

VAL-C Model of the Solar Atmosphere

- Plasma Pressure drops by 10⁸
- Temperature increases by 10³
- Magnetic Pressure drops by 15
- Plasma β indicates dominate forces

$$\beta \equiv \frac{4 \pi P}{B^2}$$

- β ≫ 1 plasma pressure dominant
- $\beta \ll 1$ magnetic forces dominant

ARMS can model the photosphere to the corona

VAL-C Model of the Solar Atmosphere

Plasma β

Schuck et al. (NASA/GSFC, NRL, Artep, and

ARMS can model the photosphere to the corona

VAL-C Model of the Solar Atmosphere

Plasma β

Schuck et al. (NASA/GSFC, NRL, Artep, and

ARMS can model the photosphere to the corona

VAL-C Model of the Solar Atmosphere

ARMS Model of the Solar Atmosphere

Schuck et al. (NASA/GSFC, NRL, Artep, and

January 20, 2010 32 / 43

ARMS simulation of flux emergence in a stratified atmosphere

.... And here we have a simulation using the ARMS model of the solar atmosphere!

- Magnetic flux rope emerging from the low β convection zone into the high β corona
- During emergence the flux rope expands and shear motions occur in the photosphere

(Magara et al., 2005)

A >

Assimilating data into ARMS: Challenges!

- Putting in all together: The pieces all work (3D eruption, CME properties, highly stratified solar atmosphere, DAVE4VM)
- Initializing the 3D simulation domain consistent with the vector magnetograms at the lower boundary (photosphere)
- Evolving the boundary consistent with the ideal magnetic induction equation and/or the numerical algorithms
- Merging observed magnetic fields and flows with quiet Sun and farside Sun

Despite the challenges, significant progress has been made!

- CME initiation theories have matured to the point that the first tests of these theories may be made with photospheric data.
- Optical flow techniques have matured to incorporate MHD.
 - DAVE4VM accurately estimates plasma velocities and Poynting flux from ANMHD synthetic vector magnetograms
- CME simulations have matured:
 - Produce fast CMEs with realistic properties.
 - Model the photosphere $\beta > 1$ to the corona $\beta \ll 1$.

Poised for progress LWS forecasting goals:

The next step beyond phenomenological prediction of eruptions will require assimilation of SDO/HMI or BBSO observations into the latest MHD simulations!

э

HMI Science Analysis Plan – Magnetic Topics

Courtesy of the HMI Team

э.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

- IDL Codes: DAVE/DAVE4VM released with ancillary routines and turnkey code to produce examples/figures from article (Schuck, *ApJ*, 683, 1134-1152, 2008)
 - Oldest: Archived with ApJ

www.iop.org/EJ/abstract/0004-637X/683/2/1134

More recent archived at:

NRL wwwppd.nrl.navy.mil/whatsnew/dave/index.html
CCMC http://ccmc.gsfc.nasa.gov/lwsrepository

- Latest: contact me at NASA/GSFC peter.schuck@nasa.gov
- HMI Pipeline Codes: in production (Jacob Hageman GSFC/582), Intel Fortran with C-wrappers, and linked with Intel MKL math libraries with drop-in open source replacements (deliver final versions mid-February).

- Incorporate Doppler velocities to constrain vertical flows
- Incorporate HMI covariance matrices
- More verification tests on other MHD codes
- Consider spherical geometry
- SDO/HMI first light!

Six Publications:

P.W. Schuck, Tracking Vector Magnetograms with the Magnetic Induction Equation, *ApJ*, **683**, 1134-1152, 2008 doi: 10.1086/589434

B. T. Welsch, *et al.*, What is the Relationship Between Photospheric Flow Fields and Solar Flares?, *ApJ*, **705**, 821-843, 2009, doi: 10.1088/0004-637X/705/1/821

B. T. Welsch *et al.*, Tests and Comparisons of Velocity-Inversion Techniques, *ApJ*, **670**, 1434-1452, 2007, doi: 10.1086/522422

P. W. Schuck, Tracking Magnetic Footpoints with the Magnetic Induction Equation, *ApJ*, **646**, 1358-1391, 2006, doi: 10.1086/505015

P. W. Schuck, Local Correlation Tracking and the Magnetic Induction Equation, *ApJ*, **632**, L53-L56, 2005, doi: 10.1086/497633

Foreign and Domestic Patents

Filed: January 25, 2010. (United States Provisional Patent Application No. 61/146,808 filed on January 23, 2009)

- Abbett, W. P., Fisher, G. H., & Fan, Y. 2000, ApJ, 540, 548
- Amari, T., Luciani, J. F., Aly, J. J., Mikić, Z., & Linker, J. 2003, ApJ, 585, 1073
- Antiochos, S. K. 1998, ApJ, 502, L181+
- Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, ApJ, 510, 485
- Borrero, J. M., Tomczyk, S., Norton, A., Darnell, T., Schou, J.,
- Scherrer, P., Bush, R., & Liu, Y. 2007, Sol. Phys., 240, 177
- Démoulin, P., & Berger, M. A. 2003, Sol. Phys., 215, 203
- DeVore, C. R., & Antiochos, S. K. 2008, ApJ, 680, 740
- Fan, Y., Zweibel, E. G., Linton, M. G., & Fisher, G. H. 1999, ApJ, 521, 460
- Foullon, C., Crosby, N., & Heynderickx, D. 2005, Space Weather, 3, 7004

3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Horne, R. B. 2003, in Space Weather Workshop: Looking Towards a European Space Weather Programme, European Space Agency, ESTEC (Nordwijk, The Netherlands: European Space Agency), 139–144
- Howard, R. F., Harvey, J. W., & Forgach, S. 1990, Sol. Phys., 130, 295
- Keller, C. U., Harvey, J. W., & Henney, C. J. 2008, in Astronomical Society of the Pacific Conference Series, Vol. 384, 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed. G. van Belle, 166–+
- Kusano, K., Maeshiro, T., Yokoyama, T., & Sakurai, T. 2002, ApJ, 577, 501
- Leka, K. D., & Barnes, G. 2007, ApJ, 656, 1173
- Leka, K. D., Barnes, G., Crouch, A. D., Metcalf, T. R., Gary, G. A., Jing, J., & Liu, Y. 2009, Sol. Phys., 260, 83

3

References III

- Lynch, B. J., Antiochos, S. K., DeVore, C. R., Luhmann, J. G., & Zurbuchen, T. H. 2008, ApJ, 683, 1192
- Lynch, B. J., Antiochos, S. K., MacNeice, P. J., Zurbuchen, T. H., & Fisk, L. A. 2004, ApJ, 617, 589
- Magara, T., Antiochos, S. K., Devore, C. R., & Linton, M. G. 2005, in ESA Special Publication, Vol. 596, Chromospheric and Coronal Magnetic Fields, ed. D. E. Innes, A. Lagg, & S. A. Solanki
- Manchester, IV, W., Gombosi, T., DeZeeuw, D., & Fan, Y. 2004, ApJ, 610, 588
- Manchester, W. I. 2001, ApJ, 547, 503
- Metcalf, T. R., Leka, K. D., Barnes, G., Lites, B. W., Georgoulis, M. K., Pevtsov, A. A., Balasubramaniam, K. S., Gary, G. A., Jing, J., Li, J., Liu, Y., Wang, H. N., Abramenko, V., Yurchyshyn, V., & Moon, Y. 2006, Sol. Phys., 237, 267

э.

Norton, A. A., Graham, J. P., Ulrich, R. K., Schou, J., Tomczyk, S., Liu, Y., Lites, B. W., López Ariste, A., Bush, R. I., Socas-Navarro, H., & Scherrer, P. H. 2006, Sol. Phys., 239, 69

Schuck, P. W. 2005, ApJ, 632, 53

—. 2006, ApJ, 646, 1358

-. 2008, ApJ, 683, 1134, http://arxiv.org/abs/0803.3472

Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, ApJS, 45, 635

Welsch, B. T., Li, Y., Schuck, P. W., & Fisher, G. H. 2009, ApJ, 705, 821

∃ ► < ∃ ►</p>