
Astrophys Space Sci (2008) 316: 113–120
DOI 10.1007/s10509-007-9689-z

O R I G I NA L A RT I C L E

ADIPLS—the Aarhus adiabatic oscillation package

Jørgen Christensen-Dalsgaard

Received: 29 August 2007 / Accepted: 2 October 2007 / Published online: 4 January 2008
© Springer Science+Business Media B.V. 2007

Abstract Development of the Aarhus adiabatic pulsation
code started around 1978. Although the main features have
been stable for more than a decade, development of the code
is continuing, concerning numerical properties and output.
The code has been provided as a generally available pack-
age and has seen substantial use at a number of installations.
Further development of the package, including bringing the
documentation closer to being up to date, is planned as part
of the HELAS Coordination Action.

Keywords Stars: oscillations · Numerical methods ·
Asteroseismology

1 Introduction

The goal of the development of the code was to have a sim-
ple and efficient tool for the computation of adiabatic os-
cillation frequencies and eigenfunctions for general stellar
models, emphasizing also the accuracy of the results. Not
surprisingly, given the long development period, the sim-
plicity is now less evident. However, the code offers consid-
erable flexibility in the choice of integration method as well
as ability to determine all frequencies of a given model, in a
given range of degree and frequency.

The choice of variables describing the equilibrium model
and oscillations was to a large extent inspired by Dziem-
bowski (1971). As discussed in Sect. 2.1 the equilibrium
model is defined in terms of a minimal set of dimensionless
variables, as well as by mass and radius of the model.
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Fairly extensive documentation of the code, on which
the present paper in part is based, is provided with the dis-
tribution package.1 Christensen-Dalsgaard and Berthomieu
(1991) provided an extensive review of adiabatic stellar os-
cillations, emphasizing applications to helioseismology, and
discussed many aspects and tests of the Aarhus package,
whereas Christensen-Dalsgaard and Mullan (1994) carried
out careful tests and comparisons of results on polytropic
models; this includes extensive tables of frequencies which
can be used for comparison with other codes.

2 Equations and numerical scheme

2.1 Equilibrium model

The equilibrium model is defined in terms of the following
dimensionless variables:

x ≡ r/R,

A1 ≡ q/x3, where q = m/M,

A2 = Vg ≡ − 1

Γ1

d lnp

d ln r
= Gmρ

Γ1pr
,

(1)
A3 ≡ Γ1,

A4 = A ≡ 1

Γ1

d lnp

d ln r
− d lnρ

d ln r
,

A5 = U ≡ 4πρr3

m
.

1The package is available at
http://astro.phys.au.dk/∼jcd/adipack.n
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Here r is distance to the centre, m is the mass interior to r ,
R is the photospheric radius of the model and M is its mass;
also, G is the gravitational constant, p is pressure, ρ is den-
sity, and Γ1 = (∂ lnp/∂ lnρ)ad, the derivative being at con-
stant specific entropy. In addition, the model file defines M

and R, as well as central pressure and density, in dimen-
sional units, and scaled second derivatives of p and ρ at the
centre (required from the expansions in the central boundary
condition); finally, for models with vanishing surface pres-
sure, assuming a polytropic relation between p and ρ in the
near-surface region, the polytropic index is specified.

The following relations between the variables defined
here and more “physical” variables are often useful:

p = GM2

4πR4

x2A2
1A5

A2A3
,

dp

dr
= − GM2

4πR5
xA2

1A5,

(2)

ρ = M

4πR3
A1A5.

We may also express the characteristic frequencies for adi-
abatic oscillations in terms of these variables. Thus if N is
the buoyancy frequency, Sl is the Lamb frequency at degree
l and ωa is the acoustical cut-off frequency for an isothermal
atmosphere, we have

N2 = GM

R3
N̂2 = GM

R3
A1A4, (3)

S2
l = l(l + 1)c2

r2
= GM

R3
Ŝ2

l = GM

R3

l(l + 1)A1

A2
, (4)

ω2
a = c2

4H 2
p

= GM

R3
ω̂2

a = 1

4

GM

R3
A1A2A

2
3, (5)

where c is the adiabatic sound speed, and Hp = p/(gρ) is
the pressure scale height, g being the gravitational accelera-
tion. Finally it may be noted that the squared sound speed is
given by

c2 = GM

R
ĉ2 = GM

R
x2 A1

A2
. (6)

These equations also define the dimensionless characteristic
frequencies N̂ , Ŝl and ω̂a as well as the dimensionless sound
speed ĉ, which are often useful.

2.2 Formulation of the equations

As is well known the displacement vector of nonradial
(spheroidal) modes can be written in terms of polar coor-
dinates (r, θ,φ) as

δr = Re

{[
ξr (r)Y

m
l (θ,φ)ar + ξh(r)

(
∂Ym

l

∂θ
aθ

+ 1

sin θ

∂Ym
l

∂φ
aφ

)]
exp(−iωt)

}
. (7)

Here Ym
l (θ,φ) = clmP m

l (cos θ) exp(imφ) is a spherical har-
monic of degree l and azimuthal order m, θ being co-latitude
and φ longitude; P m

l (x) is an associated Legendre function,
and clm is a suitable normalization constant. Also, ar , aθ ,
and aφ are unit vectors in the r , θ , and φ directions. Fi-
nally, t is time and ω is the angular frequency of the mode.
Similarly, e.g., the Eulerian perturbation to pressure may be
written2

p′(r, θ,φ, t) = Re
[
p′(r)Ym

l (θ,φ) exp(−iωt)
]
. (8)

As the oscillations are adiabatic (and only conservative
boundary conditions are considered) ω is real, and the am-
plitude functions ξr(r), ξh(r), p′(r), etc., can be chosen to
be real.

The equations of adiabatic stellar oscillations, in the non-
radial case, are expressed in terms of the following vari-
ables3:

y1 = ξr

R
,

y2 = x

(
p′

ρ
+ Φ ′

)
l(l + 1)

ω2r2
= l(l + 1)

R
ξh,

(9)

y3 = −x
Φ ′

gr
,

y4 = x2 d

dx

(
y3

x

)
.

Here Φ ′ is the perturbation to the gravitational potential.
Also, we introduce the dimensionless frequency σ by

ω2 = GM

R3
σ 2, (10)

corresponding to (3–5). These quantities satisfy the follow-
ing equations:

x
dy1

dx
= (Vg − 2)y1 +

(
1 − Vg

η

)
y2 − Vgy3, (11)

x
dy2

dx
= [l(l + 1) − ηA]y1 + (A − 1)y2 + ηAy3, (12)

x
dy3

dx
= y3 + y4, (13)

x
dy4

dx
= −AUy1 − U

Vg

η
y2 + [l(l + 1) + U(A − 2)

+ UVg]y3 + 2(1 − U)y4. (14)

2I do not here distinguish between the full perturbation and the radial
amplitude function.
3The somewhat peculiar choice of y3, y4 results from the earlier use of
an unconventional sign convention for Φ ′; now, as usual, Φ ′ is defined
such that the perturbed Poisson equation has the form ∇2Φ ′ = 4πGρ′,
where ρ′ is the Eulerian density perturbation.
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Here η = l(l +1)g/(ω2r) = l(l +1)A1/σ
2, and the notation

is otherwise as defined in (1). In the Cowling (1941) approx-
imation, where the perturbation to the gravitational potential
is neglected, the terms in y3 are neglected in (11, 12) and
(13, 14) are not used.

The dependent variables yi in the nonradial case have
been chosen in such a way that for l > 0 they all vary as
xl−1 for x → 0. For large l a considerable (and fundamen-
tally unnecessary) computational effort would be needed to
represent this variation sufficiently accurately with, e.g., a fi-
nite difference technique, if these variables were to be used
in the numerical integration. Instead I introduce a new set of
dependent variables by

ŷi = x−l+1yi, i = 1,2,3,4. (15)

These variables are then O(1) in x near the centre. They
are used in the region where the variation in the yi is dom-
inated by the xl−1 behaviour, for x < xev, say, where xev is
determined on the basis of the asymptotic properties of the
solution. This transformation permits calculating modes of
arbitrarily high degree in a complete model.

For radial oscillations only y1 and y2 are used, where y1

is defined as above, and

y2 = p′

ω2R2ρ
. (16)

Here the equations become

x
dy1

dx
= (Vg − 2)y1 − Vg

σ 2x2

q
y2, (17)

x
dy2

dx
=

[
x − q

σ 2x2
(A − U)

]
y1 + Ay2. (18)

The equations are solved on the interval [x1, xs] in x.
Here, in the most common case involving a complete stel-
lar model x1 = ε, where ε is a suitably small number such
that the series expansion around x = 0 is sufficiently accu-
rate; however, the code can also deal with envelope models
with arbitrary x1, typically imposing ξr = 0 at the bottom of
the envelope. The outermost point is defined by xs = Rs/R

where Rs is the surface radius, including the atmosphere;
thus, typically, xs > 1.

2.3 Boundary conditions

The centre of the star, r = 0, is obviously a singular point of
the equations. As discussed, e.g., by Christensen-Dalsgaard
et al. (1974) boundary conditions at this point are obtained
from a series expansion, in the present code to second sig-
nificant order. In the general case this defines two conditions
at the innermost non-zero point in the model. For radial os-
cillations, or nonradial oscillations in the Cowling approxi-
mation, one condition is obtained. The surface in a realistic

model is typically defined at a suitable point in the stellar at-
mosphere, with non-zero pressure and density. Here the sim-
ple condition of vanishing Lagrangian pressure perturbation
is implemented and sometimes used. However, more com-
monly a condition between pressure perturbation and dis-
placement is established by matching continuously to the so-
lution in an isothermal atmosphere extending continuously
from the uppermost point in the model.4 A very similar con-
dition was presented by Unno et al. (1989). In addition, in
the full nonradial case a condition is obtained from the con-
tinuous match of Φ ′ and its derivative to the vacuum solution
outside the star.

In full polytropic models, or other models with vanish-
ing surface pressure, the surface is also a singular point.
In this case a boundary condition at the outermost non-
singular point is obtained from a series expansion, assum-
ing a near-surface polytropic behaviour (see Christensen-
Dalsgaard and Mullan 1994, for details).

The code also has the option of considering truncated
(e.g., envelope) models although at the moment only in the
Cowling approximation or for radial oscillations. In this case
the innermost boundary condition is typically the vanish-
ing of the radial displacement ξr although other options are
available.

2.4 Numerical scheme

The numerical problem can be formulated generally as that
of solving

dyi

dx
=

I∑
j=1

aij (x)yj (x), for i = 1, . . . , I, (19)

with the boundary conditions

I∑
j=1

bij yj (x1) = 0, for i = 1, . . . , I/2, (20)

I∑
j=1

cij yj (xs) = 0, for i = 1, . . . , I/2. (21)

Here the order I of the system is 4 for the full nonradial
case, and 2 for radial oscillations or nonradial oscillations in
the Cowling approximation. This system only allows non-
trivial solutions for selected values of σ 2 which is thus an
eigenvalue of the problem.

The programme permits solving these equations with two
basically different techniques, each with some variants. The

4Note that since the frequency, and other variables, are taken to be real
this can only be applied for frequencies below the acoustical cut-off
frequency in the isothermal extension.



116 Astrophys Space Sci (2008) 316: 113–120

first is a shooting method, where solutions satisfying the
boundary conditions are integrated separately from the inner
and outer boundary, and the eigenvalue is found by match-
ing these solutions at a suitable inner fitting point xf. The
second technique is to solve the equations together with a
normalization condition and all boundary conditions using
a relaxation technique; the eigenvalue is then found by re-
quiring continuity of one of the eigenfunctions at an interior
matching point.

For simplicity I do not distinguish between ŷi and yi (cf.
Sect. 2.2) in this section. It is implicitly understood that the
dependent variable (which is denoted yi ) is ŷi for x < xev

and yi for x ≥ xev. The numerical treatment of the transition
between ŷi and yi has required a little care in the coding.

2.5 The shooting method

It is convenient here to distinguish between I = 2 and I = 4.
For I = 2 the differential equations (19) have a unique (apart
from normalization) solution y

(i)
i satisfying the inner bound-

ary conditions (20), and a unique solution y
(o)
i satisfying the

outer boundary conditions (21). These are obtained by nu-
merical integration of the equations. The final solution can
then be represented as yj = C(i)y

(i)
j = C(o)y

(o)
j . The eigen-

value is obtained by requiring that the solutions agree at a
suitable matching point x = xf, say. Thus

C(i)y
(i)
1 (xf) = C(o)y

(o)
1 (xf),

(22)
C(i)y

(i)
2 (xf) = C(o)y

(o)
2 (xf).

These equations clearly have a non-trivial solution
(C(i),C(o)) only when their determinant vanishes, i.e., when

Δ = y
(i)
1 (xf)y

(o)
2 (xf) − y

(i)
2 (xf)y

(o)
1 (xf) = 0. (23)

Equation (23) is therefore the eigenvalue equation.
For I = 4 there are two linearly independent solutions

satisfying the inner boundary conditions, and two linearly
independent solutions satisfying the outer boundary condi-
tions. The former set {y(i,1)

i , y
(i,2)
i } is chosen by setting

y
(i,1)
1 (x1) = 1, y

(i,1)
3 (x1) = 0,

(24)
y

(i,2)
1 (x1) = 1, y

(i,2)
3 (x1) = 1,

and the latter set {y(o,1)
i , y

(o,2)
i } is chosen by setting

y
(o,1)
1 (xs) = 1, y

(o,1)
3 (xs) = 0,

(25)
y

(o,2)
1 (xs) = 1, y

(o,2)
3 (xs) = 1.

The inner and outer boundary conditions are such that, given
y1 and y3, y2 and y4 may be calculated from them; thus
(25) and (26) completely specify the solutions, which are

obtained by integrating from the inner or outer boundary.
The final solution can then be represented as

yj = C(i,1)y
(i,1)
j + C(i,2)y

(i,2)
j = C(o,1)y

(o,1)
j + C(o,2)y

(o,2)
j .

(26)

At the fitting point xf continuity of the solution requires that

C(i,1)y
(i,1)
j (xf) + C(i,2)y

(i,2)
j (xf)

= C(o,1)y
(o,1)
j (xf) + C(o,2)y

(o,2)
j (xf), j = 1,2,3,4.

(27)

This set of equations only has a non-trivial solution if

Δ = det

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y
(i,1)
1,f y

(i,2)
1,f y

(o,1)
1,f y

(o,2)
1,f

y
(i,1)
2,f y

(i,2)
2,f y

(o,1)
2,f y

(o,2)
2,f

y
(i,1)
3,f y

(i,2)
3,f y

(o,1)
3,f y

(o,2)
3,f

y
(i,1)
4,f y

(i,2)
4,f y

(o,1)
4,f y

(o,2)
4,f

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= 0, (28)

where, e.g., y
(i,1)
j,f ≡ y

(i,1)
j (xf). Thus (28) is the eigenvalue

equation in this case.
Clearly Δ as defined in either (23) or (28) is a smooth

function of σ 2, and the eigenfrequencies are found as the
zeros of this function. This is done in the programme using
a standard secant technique. However, the programme also
has the option for scanning through a given interval in σ 2

to look for changes of sign of Δ, possibly iterating for the
eigenfrequency at each change of sign. Thus it is possible to
search a given region of the spectrum completely automati-
cally.

The programme allows the use of two different tech-
niques for solving the differential equations. One is the stan-
dard second-order centred difference technique, where the
differential equations are replaced by the difference equa-
tions

yn+1
i − yn

i

xn+1 − xn
= 1

2

I∑
j=1

[
an
ij y

n
j + an+1

ij yn+1
j

]
, i = 1, . . . , I.

(29)

Here I have introduced a mesh x1 = x1 < x2 < · · · < xN =
xs in x, where N is the total number of mesh points; yn

i ≡
yi(x

n), and an
ij ≡ aij (x

n). These equations allow the so-

lution at x = xn+1 to be determined from the solution at
x = xn.

The second technique was proposed by Gabriel and
Noels (1976); here on each mesh interval (xn, xn+1) we con-
sider the equations

dy
(n)
i

dx
=

I∑
j=1

ān
ij y

(n)
j (x), for i = 1, . . . , I, (30)
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with constant coefficients, where ān
ij = 1/2(an

ij + an+1
ij ).

These equations may be solved analytically on the mesh in-
tervals, and the complete solution is obtained by continu-
ous matching at the mesh points. This technique clearly per-
mits the computation of solutions varying arbitrarily rapidly,
i.e., the calculation of modes of arbitrarily high order. On
the other hand solving (30) involves finding the eigenvalues
and eigenvectors of the coefficient matrix, and therefore be-
comes very complex and time consuming for higher-order
systems. Thus in practice it has only been implemented for
systems of order 2, i.e., radial oscillations or nonradial os-
cillations in the Cowling approximation.

2.6 The relaxation technique

If one of the boundary conditions is dropped, the difference
equations, with the remaining boundary condition and a nor-
malization condition, constitute a set of linear equations for
the {yn

j } which can be solved for any value of σ ; this set may
be solved efficiently by forward elimination and backsubsti-
tution (e.g. Baker et al. 1971), with a procedure very similar
to the so-called Henyey technique (e.g., Henyey et al. 1959;
see also Christensen-Dalsgaard 2007) used in stellar mod-
elling. The eigenvalue is then found by requiring that the re-
maining boundary condition, which effectively takes the role
of Δ(σ), be satisfied. However, as both boundaries, at least
in a complete model, are either singular or very nearly sin-
gular, the removal of one of the boundary conditions tends
to produce solutions that are somewhat ill-behaved, in par-
ticular for modes of high degree. This in turn is reflected in
the behaviour of Δ as a function of σ .

This problem is avoided in a variant of the relaxation
technique where the difference equations are solved sepa-
rately for x ≤ xf and x ≥ xf, by introducing a double point
x−

f = xnf = xnf+1 = x+
f in the mesh. The solution is further-

more required to satisfy the boundary conditions (20) and
(21), a suitable normalization condition (e.g. y1(xs) = 1),
and continuity of all but one of the variables at x = xf, e.g.,

y1(x
−
f ) = y1(x

+
f ),

y3(x
−
f ) = y3(x

+
f ), (31)

y4(x
−
f ) = y4(x

+
f ),

(when I = 2 clearly only the first continuity condition is
used). We then set

Δ = y2(x
−
f ) − y2(x

+
f ), (32)

and the eigenvalues are found as the zeros of Δ, regarded as
a function of σ 2. With this definition, Δ may have singular-
ities with discontinuous sign changes that are not associated
with an eigenvalue, and hence a little care is required in the
search for eigenvalues. However, close to an eigenvalue Δ

is generally well-behaved, and the secant iteration may be
used without problems.

As implemented here the shooting technique is consid-
erably faster than the relaxation technique, and so should
be used whenever possible (notice that both techniques may
use the difference equations (29) and so they are numeri-
cally equivalent, in regions of the spectrum where they both
work). For second-order systems the shooting technique can
probably always be used; the integrations of the inner and
outer solutions should cause no problems, and the matching
determinant in (23) is well-behaved. For fourth-order sys-
tems, however, this needs not be the case. For modes where
the perturbation to the gravitational potential has little effect
on the solution, the two solutions y

(i,1)
j and y

(i,2)
j , and sim-

ilarly the two solutions y
(o,1)
j and y

(o,2)
j , are almost linearly

dependent, and so the matching determinant nearly vanishes
for any value of σ 2. This is therefore the situation where the
relaxation technique may be used with advantage. This ap-
plies, in particular, to the calculation of modes of moderate
and high degree which are essential to helioseismology.

2.7 Improving the frequency precision

To make full use of the increasingly accurate observed fre-
quencies the computed frequencies should clearly at the very
least match the observational accuracy, for a given model.
Only in this way do the frequencies provide a faithful rep-
resentation of the properties of the model, in comparisons
with the observations. However, since the numerical errors
in the computed frequencies are typically highly systematic,
they may affect the asteroseismic inferences even if they
are smaller than the random errors in the observations, and
hence more stringent requirements should be imposed on the
computations. Also, the fact that solar-like oscillations, and
several other types of asteroseismically interesting modes,
tend to be of high radial order complicates reaching the re-
quired precision.

The numerical techniques discussed so far are generally
of second order. This yields insufficient precision in the eval-
uation of the eigenfrequencies, unless a very dense mesh is
used in the computation (see also Moya et al. 2007). The
code may apply two techniques to improve the precision.

One technique (cf. Christensen-Dalsgaard 1982) uses the
fact that the frequency approximately satisfies a variational
principle (Chandrasekhar 1964).5 The variational expres-
sion may formally be written as

σ 2 = σ 2
var ≡ Σ(ξ)2 = K(ξ)

I(ξ)
, (33)

5The variational principle is exact, formally, when the surface La-
grangian pressure perturbation is set to zero, but not when the match to
an isothermal atmosphere is used.
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where K and I are integrals over the equilibrium model
depending on the eigenfunction, here represented by ξ .
The variational property implies that any error δξ in ξ in-
duces an error in Σ2 that is O(|δξ |2). Thus by substitut-
ing the computed eigenfunction into the variational expres-
sion a more precise determination of σ 2 should result. This
has indeed been confirmed (Christensen-Dalsgaard 1982;
Christensen-Dalsgaard and Berthomieu 1991; Christensen-
Dalsgaard and Mullan 1994).

The second technique uses explicitly that the difference
scheme (29), which is used by one version of the shooting
technique, and the relaxation technique, is of second order.
Consequently the truncation errors in the eigenfrequency
and eigenfunction scale as N−2. If σ(N/2) and σ(N) are
the eigenfrequencies obtained from solutions with N/2 and
N meshpoints, the leading-order error term therefore can-
cels in

σRi = 1

3

[
4σ(N) − σ

(
1

2
N

)]
. (34)

This procedure, known as Richardson extrapolation, was
used by Shibahashi and Osaki (1981). It provides an esti-
mate of the eigenfrequency that is substantially more accu-
rate than σ(N), although of course at some added computa-
tional expense. Indeed, since the error in the representation
(29) depends only on even powers of N−1, the leading term
of the error in σRi is O(N−4).

Even with these techniques the precision of the com-
puted frequencies may be inadequate if the mesh used in
stellar-evolution calculations is used also for the computa-
tion of the oscillations. The number of meshpoints is typi-
cally relatively modest and the distribution may not reflect
the requirement to resolve properly the eigenfunctions of
the modes. Christensen-Dalsgaard and Berthomieu (1991)
discussed techniques to redistribute the mesh in a way that
takes into account the asymptotic behaviour of the eigen-
functions; a code to do so, based on four-point Lagrangian
interpolation, is included in the ADIPLS distribution pack-
age. On the other hand, for computing low-order modes (as
are typically relevant for, say, δ Scuti or β Cephei stars), the
original mesh of the evolution calculation may be adequate.

It is difficult to provide general recommendations con-
cerning the required number of points or the need for redis-
tribution, since this depends strongly on the types of modes
and the properties of the stellar model. It is recommended to
carry out experiments varying the number and distribution
of points to obtain estimates of the intrinsic precision of the
computation (e.g., Christensen-Dalsgaard and Berthomieu
1991; Christensen-Dalsgaard and Mullan 1994). In the lat-
ter case, considering simple polytropic models, it was found
that 4801 points yielded a relative precision substantially
better than 10−6 for high-order p-modes, when Richardson
extrapolation was used.

In the discussion of the frequency calculation it is im-
portant to distinguish between precision and accuracy, the
latter obviously referring to the extent to which the com-
puted frequencies represent what might be considered the
‘true’ frequencies of the model. In particular, the manipu-
lations required to derive (33) and to demonstrate its varia-
tional property depend on the equation of hydrostatic sup-
port being satisfied. If this is not the case, as might well
happen in an insufficiently careful stellar model calculation,
the value determined from the variational principle may be
quite precise, in the sense of numerically stable, but still un-
acceptably far from the correct value. Indeed, a comparison
between σvar and σRi provides some measure of the reliabil-
ity of the computed frequencies (e.g. Christensen-Dalsgaard
and Berthomieu 1991).

3 Computed quantities

The programme finds the order of the mode according to the
definition developed by Scuflaire (1974) and Osaki (1975),
based on earlier work by Eckart (1960). Specifically, the or-
der is defined by

n = −
∑

xz1>0

sign

(
y2

dy1

dx

)
+ n0. (35)

Here the sum is over the zeros {xz1} in y1 (excluding the
centre), and sign is the sign function, sign (z) = 1 if z > 0
and sign (z) = −1 if z < 0. For a complete model that in-
cludes the centre n0 = 1 for radial oscillations and n0 = 0
for nonradial oscillations. Thus the lowest-order radial os-
cillation has order n = 1. Although this is contrary to the
commonly used convention of assigning order 0 to the fun-
damental radial oscillation, the convention used here is in
fact the more reasonable, in the sense that it ensures that n is
invariant under a continuous variation of l from 0 to 1. With
this definition n > 0 for p modes, n = 0 for f modes, and
n < 0 for g modes, at least in simple models.

It has been found that this procedure has serious prob-
lems for dipolar modes in centrally condensed models (e.g.,
Lee 1985; Guenther 1991; Christensen-Dalsgaard and Mul-
lan 1994). The eigenfunctions y1 are shifted such that nodes
disappear or otherwise provide spurious results when (35)
is used to determine the mode order. A procedure that does
not suffer from this difficulty has recently been developed
by Takata (2006b); I discuss it further in Sect. 4.

A powerful measure of the characteristics of a mode is
provided by the normalized inertia. The code calculates this
as

Ê =
∫ Rs
r1

[ξ2
r + l(l + 1)ξ2

h ]ρr2dr

M[ξr (Rphot)2 + l(l + 1)ξh(Rphot)2]
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=
∫ xs
x1

[
y2

1 + y2
2/l(l + 1)

]
qUdx/x

4π[y1(xphot)2 + y2(xphot)2/l(l + 1)] . (36)

(For radial modes the terms in y2 are not included.) Here
r1 = Rx1 and Rs = Rxs are the distance of the innermost
mesh point from the centre and the surface radius, respec-
tively, and xphot = Rphot/R = 1 is the fractional photo-
spheric radius. The normalization at the photosphere is to
some extent arbitrary, of course, but reflects the fact that
many radial-velocity observations use lines formed rela-
tively deep in the atmosphere. A more common definition
of the inertia is

E = 4πÊ = Mmode

M
, (37)

where Mmode is the so-called mode mass.
The code has the option to output the eigenfunctions, in

the form of {yj (x
n)}. In addition (or instead) the displace-

ment eigenfunctions can be output in a form indicating the
region where the mode predominantly resides, in an ener-
getical sense, as

z1(x) =
(

4πr3ρ

M

)1/2

y1(x) =
(

4πr3ρ

M

)1/2
ξr (r)

R
,

z2(x) = 1√
l(l + 1)

(
4πr3ρ

M

)1/2

y2(x) (38)

= √
l(l + 1)

(
4πr3ρ

M

)1/2
ξh(r)

R

(for radial modes only z1 is found). These are defined in
such a way that

Ê =
∫ xs
x1

[z2
1 + z2

2]dx/x

4π[y1(xphot)2 + y2(xphot)2/l(l + 1)] . (39)

The form provided by the zi is also convenient, e.g., for
computing rotational splittings δωnlm = ωnlm − ωnl0 (e.g.,
Gough 1981), where ωnlm is the frequency of a mode of ra-
dial order n, degree l and azimuthal order m. For slow rota-
tion the splittings are obtained from first-order perturbation
analysis as

δωnlm = m

∫ Rs

0

∫ π

0
Knlm(r, θ)Ω(r, θ)rdrdθ, (40)

characterized by kernels Knlm, where in general the angular
velocity Ω depends on both r and θ . The code has built in
the option to compute kernels for first-order rotational split-
ting in the special case where Ω depends only on r .

4 Further developments

Several revisions of the code have been implemented in pre-
liminary form or are under development. A substantial im-

provement in the numerical solution of the oscillation equa-
tions, particularly for high-order modes, is the installation of
a fourth-order integration scheme, based on the algorithm of
Cash and Moore (1980). This is essentially operational but
has so far not been carefully tested. Comparisons with the
results of the variational expression and the use of Richard-
son extrapolation, of the same formal order, will be particu-
larly interesting.

As discussed by Moya et al. (2007) the use of p′ (or, as
here, ξh) as one of the integration variables has the disad-
vantage that the quantity A enters into the oscillation equa-
tions. In models with a density discontinuity, such as results
if the model has a growing convective core and diffusion
is neglected, A has a delta-function singularity at the point
of the discontinuity. In the ADIPLS calculations this is dealt
with by replacing the discontinuity by a very steep and well-
resolved slope. However, it would obviously be an advan-
tage to avoid this problem altogether. This can be achieved
by using instead the Lagrangian pressure perturbation δp as
one of the variables. Implementing this option would be a
relatively straightforward modification to the code and is un-
der consideration.

The proper classification of dipolar modes of low order in
centrally condensed models has been a long-standing prob-
lem in the theory of stellar pulsations, as discussed in Sect. 3.
Such a scheme must provide a unique order for each mode,
such that the order is invariant under continuous changes
of the equilibrium model, e.g., as a result of stellar evolu-
tion. As a major breakthrough, Takata in a series of papers
has elucidated important properties of these modes and de-
fined a new classification scheme satisfying this requirement
(Takata 2005, 2006a, 2006b). A preliminary version of this
scheme has been implemented and tested; however, the lat-
est and most convenient form of the Takata classification
still needs to be installed.

A version of the code has been established which com-
putes the first-order rotational splitting for a given rota-
tion profile Ω(r), in addition to setting up the correspond-
ing kernels. This is being extended by K. Burke, Sheffield,
to cover also second-order effects of rotation, based on
the formalism of Gough and Thompson (1990). An im-
portant motivation for this is the integration, discussed by
Christensen-Dalsgaard (2007), of the pulsation calculation
with the ASTEC evolution code to allow full calculation of
oscillation frequencies for a model of specified parameters
(mass, age, initial rotation rate, etc.) as the result of a single
subroutine call.
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