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ABSTRACT6

We suggest a physically motivated model of the uncorrelated background, which can be used to7

improve the accuracy of helioseismic frequency measurements when the background contributes8

significantly to the formation of spectral lines of acoustic resonances. The basic assumption9

of our model is that the correlation length of the convective motions is small compared with horizontal10

wavelength R⊙/ℓ of the observations, where ℓ is the degree of spherical harmonic Yℓm(θ, φ). When11

applied to solar power spectra at frequencies below acoustic resonances, the model reveals a distinct12

sensitivity to solar rotation: advection of the convective velocity pattern brings spatial correlations13

in the apparent stochastic velocity field (temporal correlations in the co-rotating frame induce spatial14

correlations in the inertial frame). The induced spatiotemporal correlations manifest themselves as15

an antisymmetric component in the dependence of the convective noise power on azimuthal order m,16

which allows us to address the solar differential rotation. With 360d power spectra measured with17

SDO HMI, three components of the rotation rate as a function of latitude can be evaluated in a single18

measurement at ℓ = 300. This result indicates that the model suggests a new way of measuring solar19

subsurface rotation. This approach can complement traditional measurements based on correlation20

tracking.21

Keywords: methods: data analysis — Sun: helioseismology — Sun: oscillations— Sun: rotation—22

Sun: convection23

1. INTRODUCTION24

The most challenging task in contemporary helioseismology is to reduce systematic errors in estimating solar p-mode25

frequencies. This problem stands up when analyzing long measurements, which can only reduce random errors. A26

large amount of data accumulated over the decades in dedicated ground-based and space projects calls for significantly27

improving the data analysis pipeline to exploit their full diagnostic potential. For a recent account of the available28

data and its processing, we refer the reader to Larson & Schou (2015, 2018) and Korzennik (2005, 2023).29

Multiple sources of potential systematic errors come into play when we attempt to measure an oscillation frequency30

with accuracy better than the width of its resonant line in the observed power spectrum. Systematic offset is caused31

by inadequate modeling of the asymmetric line profile, inaccurate treatment of nearby spatial leaks (inaccuracies in32

the leakage matrix, which in turn has to account for possible instrumental and optical distortions and mode-coupling33

effects), incorrect magnitude and/or frequency gradient of the uncorrelated background noise.34

This study is focused on global modeling of the uncorrelated background. It is common practice in the mode-fitting35

procedures to account for the uncorrelated background by simply allowing it as a single free parameter for each (n, ℓ)36

frequency multiplet to ensure numerical stability. When dependence on azimuthal order m is allowed, this dependence37

is evaluated by addressing a small frequency domain in the vicinity of resonances, a domain which is contaminated by38

unaccounted spatial leaks. We are looking for a possibility to describe the background in the entire range of (n, ℓ,m)39

globally by fitting a single slowly-varying function of frequency only.40

It is natural to start with addressing noise power in the frequency range uncontaminated by global oscillation reso-41

nances (below 1mHz, where solar f- and p-modes are buried below the noise level). This study analyzes power spectra42
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Figure 1. Observational noise power as function of azimuthal order m at ℓ = 300 (left) and ℓ = 100 (right) measured at
frequencies around 300µHz, 600µHz and 900µHz.

obtained from a 360 day-long time-series of Dopplergrams measured with Helioseismic and Magnetic Im-43

ager on board the Solar Dynamics Observatory (taken from 2019.03.14 onwards, the one-year period centered44

on solar activity minimum). Figure 1 shows the observed power at degree ℓ = 300 and ℓ = 100 as a function of m at45

frequencies around 300µHz, 600µHz and 900µHz; the measurements were averaged over ±100µHz frequency intervals.46

We can make two interesting observations:47

(i) For each of two values of degree ℓ, the three curves obtained at frequencies that differ by a factor three are48

essentially the same; the only difference is a nearly-uniform vertical shift on the logarithmic scale. This feature49

indicates that the functional dependence of the noise power on the spatial spectral numbers (ℓ,m) and temporal50

frequency ω is separable; and51

(ii) the dependence on m is highly asymmetric. This feature points immediately to the effects of solar rotation, as52

the instrument’s sensitivity does not depend on the sign of m. With our sign convention, harmonics with m positive53

are prograde waves, i.e., waves moving in the direction of rotation. In the co-rotating frame, these waves have a smaller54

frequency; the noise is higher at smaller frequencies.55

Below is our attempt to understand this behavior in detail. In our vision, the noise comes from the turbulent56

convective velocity field in the solar photosphere. In Section 2, we analyze the spectral measures of this noise,57

assuming that the correlation length of the convective motions is small compared with observational wavelength R⊙/ℓ.58

We consider in detail the effects of differential rotation. Section 3 describes its measurement from the odd (in m)59

component of the noise power in SDO HMI measurements. We also analyze the even (in m) component, governed60

by different sensitivity of the instrument to different spatial harmonics of the velocity field. Extension of the leakage-61

matrix computations to include the instrument’s response to torsional components of the velocity field, which enter the62

analysis, is described in Appendix. Section 4 suggests an initial approximation for the noise power in the frequency63

domain of acoustic resonances, which has to be iteratively improved when fitting solar power spectra in frequency64

measurements. Our results are discussed in Section 5.65

2. SPECTRAL MEASURES OF GRANULATION VELOCITY FIELD IN SPATIAL AND TEMPORAL66

DOMAINS67

We work in a spherical coordinate system (r, θ, φ) aligned with solar rotation axis, and expand the time-dependent68

surface velocity field v(θ, φ, t) in vector spherical harmonics69

v(θ, φ, t) =
∑
ℓ,m

[uℓm(t)r̂Yℓm(θ, φ) + vℓm(t)∇1Yℓm(θ, φ)− wℓm(t)r̂ ×∇1Yℓm(θ, φ)] (1)70
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where ∇1 is angular part of gradient operator, ∇1 = θ̂∂/∂θ + sin−1 θφ̂∂/∂φ, hats designate unit vectors, and make a71

Fourier transform of the time string of some large length T72 ∫ T

0

eiωtv(θ, φ, t)dt =
∑
ℓ,m

[Uℓm(ω)r̂Yℓm(θ, φ) + Vℓm(ω)∇1Yℓm(θ, φ)−Wℓm(ω)r̂ ×∇1Yℓm(θ, φ)] . (2)73

Using orthogonality properties of vector spherical harmonics and, throughout this paper, symbol ϖ to designate74

the solid angle (to avoid confusion with angular velocity),75 ∫
4π

[∇1Y
∗
ℓm(θ, φ)] · [∇1Yℓ′m′(θ, φ)] dϖ =

∫
4π

[−r̂ ×∇1Y
∗
ℓm(θ, φ)] · [−r̂ ×∇1Yℓ′m′(θ, φ)] dϖ = ℓ(ℓ+ 1)δℓ′ℓδm′m, (3)76

where star designates complex conjugate, we have77

Uℓm(ω) =

∫ T

0

eiωtuℓm(t)dt =

∫ T

0

eiωtdt

∫
4π

v(θ, φ, t) · r̂Y ∗
ℓm(θ, φ)dϖ, (4)78

79

ℓ(ℓ+ 1)Vℓm(ω) =

∫ T

0

eiωtvℓm(t)dt =

∫ T

0

eiωtdt

∫
4π

v(θ, φ, t) · ∇1Y
∗
ℓm(θ, φ)dϖ, (5)80

81

ℓ(ℓ+ 1)Wℓm(ω) =

∫ T

0

eiωtwℓm(t)dt =

∫ T

0

eiωtdt

∫
4π

v(θ, φ, t) · [−r̂ ×∇1Y
∗
ℓm(θ, φ)] dϖ, (6)82

these expressions are obtained by taking scalar product of both sides of Equation (1) with r̂Y ∗
ℓ′m′(θ, φ), ∇1Y

∗
ℓ′m′(θ, φ),83

and −r̂ ×∇1Y
∗
ℓ′m′(θ, φ), integrating in angular coordinates and taking the Fourier transform.84

We assume v(θ, φ, t) to be a particular realization of a stationary stochastic process with zero mean. Quantities85

in the left-hand sides of Equations (4-6), represented by stochastic integrals in the right-hand sides, are thus random86

variables with zero mean, E[Uℓm(ω)] = E[Vℓm(ω)] = E[Wℓm(ω)] = 0. We are interested in evaluating their variances87

VarUℓm(ω) = E[Uℓm(ω)∗Uℓm(ω)], VarVℓm(ω) and VarWℓm(ω), together with non-zero covariances, if any.88

We associate v(θ, φ, t) with the turbulent velocity field of convective motions imposed on a stationary large-scale89

background flow produced by differential rotation and meridional circulation. The basic assumption of our model is90

that for an observer moving together with the background flow, the convective velocities do not correlate in space.91

When addressing the granulation velocity field, this assumption can only be relevant in a limited range of spherical92

harmonic degree ℓ, when a typical size of a granule is small compared with horizontal wavelength R⊙/ℓ (we will be93

working with Doppler-velocity power spectra in the degree range 0 ≤ ℓ ≤ 300). In this paper, we limit our analysis94

to the background flow produced by differential rotation only: the effects of meridional circulation require a different95

treatment and will be left for further studies.96

To make derivations more transparent, we consider a model with the effects of rotation discarded before generalizing97

the results to include the effects of solid-body rotation and then differential rotation.98

(i) Non-rotating Sun. Changing the order of integration, we rewrite Equation (4) as99

Uℓm(ω) =

∫
4π

Y ∗
ℓm(θ, φ)ṽr(θ, φ, ω)dϖ, (7)100

where ṽr(θ, φ, ω) stands for the Fourier transform of radial velocity, ṽr(θ, φ, ω) =
∫ T

0
eiωtvr(θ, φ, t)dt, and consider the101

covariance102

Cov [Uℓm(ω),Uℓ′m′(ω)] = E

[∫
4π

Yℓm(θ, φ)ṽ
∗
r (θ, φ, ω)dϖ ×

∫
4π

Y∗
ℓ′m′(θ, φ)ṽr(θ, φ, ω)dϖ

]
. (8)103

Considering each of the two integrals on the right-hand side as a sum of integrals over small angular areas ∆ϖi, and104

using indexing ∆ϖj to enumerate these areas in the same order in the second integral, we notice that the result is only105

contributed by diagonal elements i = j; expectation value of the cross-terms is zero because ṽr-values do not correlate106

in space. We also know that the variance has an additive property. Therefore, if we replace the entire integration107
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domain 4π in the right-hand side of Equation (8) by a small angular element ∆ϖ, the result will be proportional to108

∆ϖ. We thus have109

Cov [Uℓm(ω), Uℓ′m′(ω)] =

∫
4π

Yℓm(θ, φ)Y ∗
ℓ′m′(θ, φ)σ2

r(ω)dϖ = δℓ′ℓδm′mσ2
r(ω), (9)110

where111

σ2
r(ω) = lim

∆ϖ→0

1

∆ϖ
E

[∫
∆ϖ

ṽ∗r (θ, φ)ṽr(θ, φ)dϖ

]
(10)112

is positive spectral measure of the variance of vertical velocities, which we assume to be uniform over the solar surface.113

We work in a similar manner with contribution of horizontal components of the velocity field vθ(θ, φ, t) and vφ(θ, φ, t)114

which have corresponding Fourier transforms ṽθ(θ, φ, ω) and ṽφ(θ, φ, ω). We assume that horizontal velocities are115

isotropic in azimuthal direction and, therefore, the two orthogonal horizontal components do not correlate with each116

other and117

σ2
θ(ω) = σ2

φ(ω) =
1

2
σ2
h(ω), (11)118

where σ2
h(ω) is spectral measure of absolute values of horizontal velocities. The result is119

Cov [Vℓm(ω), Vℓ′m′(ω)] = Cov [Wℓm(ω),Wℓ′m′(ω)] =
1

2ℓ(ℓ+ 1)
δℓ′ℓδm′mσ2

h(ω) (12)120

(at ℓ = 0, the horizontal components are identically zero).121

We expect no correlation between U , V and W - contributions: the evidence comes from orthogonality of corre-122

sponding velocity components and symmetry considerations. Indeed, let v be velocity vector at a particular point on123

the solar surface, with vr = v · r̂Yℓ,m(θ, φ) and vh = v · ∇1Yℓ′,m′(θ, φ). From geometrical considerations, the joint124

probability density function p(vr, vh) is symmetric in vh, i.e. for any value of vr, two events with vh of the same125

magnitude but of opposite sign have the same probability. The expectation value of their product E(vrvh) = 0, and126

hence there is no correlation between Uℓ,m and Vℓ′,m′ . The same arguments apply to U −W and V −W pairs.127

We now extend the analysis to include the effects of rotation.128

(ii) Solid-body rotation. In this scenario, the Sun rotates with uniform angular velocity Ω in the observational frame.129

We assume that in the co-rotating frame, the observable statistical properties of convective motions are not130

influenced by the rotation (influence of Coriolis forces on the velocity field on the horizontal scale of solar131

granulation is expected to be smeared away by spatial averaging). When the convective velocity field is132

observed in another reference frame, the only change is due to advection: in the spherical-harmonic decomposition,133

a component of azimuthal order m will have its temporal frequency shifted by mΩ. The net result is that σ2
r(ω) in134

Equation (9) has to be replaced with σ2
r(ω −mΩ), and similar with σ2

h(ω) in Equation (12).135

(iii) Differential rotation. We now allow the rotation to change with latitude. When the rotation is uniform, the136

variance of Uℓm(ω) can be written as137

VarUℓm(ω) =
2ℓ+ 1

2

(ℓ−m)!

(ℓ+m)!

1∫
−1

[Pm
ℓ (z)]

2
σ2
r(ω −mΩ) dz, z = cos θ. (13)138

Since contributions to the variance coming from different latitudes simply add up, the same expression will be valid139

when Ω in the right-hand side is allowed to depend on latitude (we can divide the spherical surface into thin140

latitudinal belts and assign individual co-rotating frame to each belt separately). We will assume now that141

the rotation is slow; limiting the analysis by terms linear in Ω,142

σ2
r (ω −mΩ(z)) = σ2

r(ω)−m
dσ2

r

dω
Ω(z), (14)143

and hence144

VarUℓm(ω) = σ2
r

ω −m
2ℓ+ 1

2

(ℓ−m)!

(ℓ+m)!

1∫
−1

[Pm
ℓ (z)]

2
Ω(z) dz

 , (15)145

where Pm
ℓ (z) are associated Legendre polynomials.146
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Following an approach which is standard in solar seismology, we represent Ω(z) by an expansion147

Ω(z) =
∑

s=1,3,5,...

Ωs
dPs(z)

dz
, (16)148

where Ps(z) are Legendre polynomials (note that only even components of Ω(z) enter our result, as [Pm
ℓ (z)]

2
is even149

function of z).150

The required angular integrals are151

m
2ℓ+ 1

2

(ℓ−m)!

(ℓ+m)!

1∫
−1

[Pm
ℓ (z)]

2 dPs(z)

dz
dz=(−1)k+1 (ℓ− 1)!

(ℓ− k)!

(2ℓ+ 1)!!

(2ℓ+ 2k − 1)!!

(2k − 1)!!

(k − 1)!
P(ℓ)
2k−1(m)152

=

(
4π

2s+ 1

)1/2

γm
sℓ , (17)153

where s = 2k − 1, γm
sℓ are odd polynomials of degree s in m defined in (Ritzwoller & Lavely 1991) and P(ℓ)

2k−1(m)154

are polynomials currently used in solar seismology to describe frequency splittings of solar oscillations, following155

normalization defined in (Schou et al. 1994). Equation (17) can be derived by expanding dPs(z)/dz in Pi(z), i < s,156

and evaluating integrals of triple products of Legendre polynomials. Convenient recurrence relations for evaluating157

P(ℓ)
2k−1(m) can be found in (Vorontsov 2007). We thus have158

VarUℓm(ω) = σ2
r

[
ω −

∑
s=1,3,...

(
4π

2s+ 1

)1/2

γm
slΩs

]
. (18)159

Introducing a-coefficients, commonly used in solar seismology, we have160

VarUℓm(ω) = σ2
r

(
ω −

∑
s=1,3,...

2πasP(ℓ)
s (m)

)
. (19)161

The relation between the expansion coefficients Ωs and as is provided by Equation (17); in particular,162

2πa1 = Ω1, 2πa3 = −3(ℓ− 1)

(2ℓ+ 3)
Ω3, 2πa5 =

15(ℓ− 1)(ℓ− 2)

2(2ℓ+ 3)(2ℓ+ 5)
Ω5. (20)163

Variances of Vℓm(ω) and Wℓm(ω) (Equations 5, 6) are transformed by the effects of differential rotation in precisely164

the same way.165

We have an interesting observation: under the effects of differential rotation, each spectral component of velocity166

variances ”split” in its observed frequency in precisely the same way as an undistorted frequency of solar oscillations167

would split under the effects of the same differential rotation if the influence of Coriolis forces can be discarded (leaving168

effects of advection only) and differential rotation does not change with depth.169

We also note that possible inaccuracy, introduced by linearization in the rotation rate (Equations 14, 15) can only170

affect the response to differential components. The response to the dominant Ω1-component is treated correctly171

whatever its magnitude, because (4π/(2s+ 1))1/2γm
sℓ = m for s = 1.172

3. SOLAR CONVECTIVE VELOCITY FIELD AS SEEN IN SDO HMI POWER SPECTRA173

Instrumental response to different velocity field components does not depend on sign of azimuthal order m. Param-174

eters of differential rotation (Equations 19, 20) can thus be addressed by shifting in frequency the power spectra of175

individual m-channels to eliminate the odd (in m) component of the noise power. This procedure was implemented176

iteratively to account for a finite frequency window (±100µHz in our measurement). The result obtained at ℓ = 300 at177

frequencies around 900µHz is a1 = Ω1/(2π) = 390.0± 0.9 nHz (synodic), a3 = 20.0± 1.3 nHz (Ω3/(2π) = −13.4± 0.9178

nHz), and a5 = 2.4 ± 1.7 nHz (Ω5/(2π) = 1.3 ± 0.9 nHz). To evaluate the quality of this fit, we use merit179

function defined as r.m.s. value of the residuals weighted with observational uncertainties, the uncer-180

tainties being evaluated under a standard assumption that observational power in an individual channel181
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at individual frequency has χ2-distribution with two degrees of freedom. Ideally, the value of this merit182

function shall be close to one. In our measurement, it is 1.073, which indicates that the targeted odd (in m)183

component is successfully eliminated in the ”de-rotated” power spectra.184

This result shall be compared with other available measurements. Helioseismic measurements of solar internal185

rotation lose their accuracy in the sub-surface layers, where the rotation varies rapidly with depth, and global modes186

lose their resolving power. However, the measurements reduced to solar activity minimum (Figure 8 of Vorontsov et al.187

2002) indicate the surface values of Ω1/(2π) ≃ 435 nHz (sidereal, or synodic plus 31.6 nHz), Ω3/(2π) ≃ −13 nHz and188

Ω5/(2π) ≃ 1 nHz. The mean rotation rate Ω1 inferred from the convective noise is thus about 13 nHz slower; Ω3 and189

Ω5 appear to be in perfect agreement.190

A classical result of measuring solar differential rotation using correlation tracking (Snodgrass & Ulrich 1990) is191

Ω/(2π) = 0.473− 0.077 cos2 θ − 0.0575 cos4 θ (µHz) (21)192

sidereal, which translates to Ω1/(2π) = 468.0 nHz siderial, Ω3/(2π) = −5.15 nHz and Ω5/(2π) = −1.46 nHz. The193

variance with our measurement is much bigger here. One realistic scenario is that the measurements refer to different194

effective depths below the visible solar surface. The result of Snodgrass & Ulrich (1990), however, is hard to reconcile195

with results of helioseismic measurements (e.g., Vorontsov et al. 2002), where Ω3/(2π) ≃ −14 ± 1nHz is found to196

be nearly constant with depth over the entire convective envelope, and Ω1/(2π) increases with depth, reaching its197

maximum value (at a depth of about 6 percent of solar radius) of about 449 nHz (sidereal) only.198

Accurate measurement of rotation of solar granulation pattern is quite demanding to data quality.199

It benefits from going to higher degree ℓ (allowing bigger and wider grid of azimuthal orders m),200

from observations with better spatial resolution (spatial leaks are not accounted for in the rotation201

measurement), and from observations of longer duration (better signal-to-noise ratio). When using202

360d SDO HMI data, measurement of relatively small differential components of the rotation rate203

looses stability at degree ℓ less than about 200, leaving the possibility of evaluating mean rotation204

only. Power spectra of SOHO MDI ”structure” program are not suitable for measurements at degree ℓ205

higher than 200 due to contamination by spatial leaks resulted from insufficient spatial resolution. For206

the same reason of limited spatial resolution, productive measurements of differential rotation would207

hardly be possible with currently available GONG data.208

We have attempted a measurement identical to that described above at ℓ = 300 but with SDO HMI209

360d power spectra replaced by those of 63d run of SOHO MDI ”dynamics” program (start date210

1996.05.23). The result is a1 = 374.3 ± 2.2 nHz, a3 = 20.1 ± 3.1 nHz (a5 is unstable due to the shorter211

observation). While the a3 coefficient is in agreement with HMI measurement, the a1 coefficient212

appears to be about 16 nHz smaller. In our vision, the difference comes from contamination of the213

MDI power spectra with bigger spatial leaks due to a smaller spatial resolution of the instrument. This214

explanation is confirmed by analyzing SDO HMI measurements performed with artificially degraded215

spatial resolution (Larson & Schou 2018). The difference can also be contributed by different depth216

of formation of spectral lines used by the two instruments: SOHO MDI was observing the Sun slightly217

higher in the atmosphere (Fleck et al. 2011).218

With the odd (in m) component successfully eliminated in the properly ”de-rotated” observational power spectra, we219

now analyze the remaining even component. For the same measurement at ℓ = 300 and frequencies 900±100µHz, this220

component is shown by a thin line in Figure 2, where the remaining even component of the observed power221

B2
ℓm(ω) = B2

l (m)B
2
(ω) (22)222

is represented by the dimensionless variable B2
l (m) in units of B

2
(ω), which is m-averaged value of B2

ℓm(ω).223

Contribution of the convective velocity field to the observational power spectra comes through multiple Uℓm, Vℓm224

and Wℓm-components (Equations 4-6). As signals coming through these components do not correlate with each other,225

we have, for the ”de-rotated” power spectra,226

B2
ℓm(ω) = σ2

r(ω)
∑
ℓ′m′

∣∣∣Rm′m
ℓ′ℓ

∣∣∣2 + σ2
h(ω)

2ℓ(ℓ+ 1)

[∑
ℓ′m′

∣∣∣Hm′m
ℓ′ℓ

∣∣∣2 +∑
ℓ′m′

∣∣∣Tm′m
ℓ′ℓ

∣∣∣2] , (23)227

where we introduce the notation R,H, and T to designate separate leakage matrices which specify sensitivity coefficients228

of the instrument to radial components of the velocity field, horizontal components of the poloidal vector fields, and229
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Figure 2. Even component in the observational noise power as function of azimuthal order m at l = 300 measured at
frequencies around 900µHz (thin line). Thick gray line shows its approximation obtained by fitting synthetic power.

components of the toroidal fields (Equation 1), respectively. To make sure that sufficient amount of spectral leaks are230

accounted for, the leakage matrices were computed with ℓ′ in the range ℓ± 30 and m′ = m± 30. Computation of the231

leakage matrices followed a semi-analytic approach described in (Vorontsov & Jefferies 2005), which was generalized232

to include the instrument’s response to toroidal velocity fields; the details can be found in Appendix. To account for233

a finite resolution of the instrument in the CCD plane, the leakage-matrix analysis involves convolution of the images234

with a 2D Gaussian point-spread function (PSF); when working with high-resolution HMI data in the intermediate-235

degree range ℓ ≤ 300, the width of the PSF was set to zero (infinite resolution, PSF described by 2D Dirac δ-function).236

Solar B-angle was set to 5.11 deg, the r.m.s. value of its annual variation (for a small B-angle, its effect is quadratic237

in its magnitude).238

The observed power B2
ℓm(ω) considered as a function of m at ℓ = 300 is fitted by a linear combination of the two239

terms in the right-hand side of Equation (23) with unknown coefficients σ2
r and σ2

h. The result is shown in Figure 2 by240

a thick gray line. Visual inspection of the fit quality and the value of the corresponding merit function indicate that241

the approximation of the measured function of m by a linear combination of two functions coming exclusively from242

leakage-matrix analysis is perfectly adequate. The inferred ratio σ2
h/σ

2
r = 9.6± 0.1 indicates that horizontal velocities243

in the turbulent flow are about 3 times bigger than vertical velocities. The fit quality remains adequate when the same244

analysis is applied to data at a smaller degree ℓ. An interesting observation is that the measured ratio σ2
h/σ

2
r increases245

monotonically to 18.2± 0.5 at ℓ = 100 and 20.5± 2.9 at ℓ = 5 (at degree ℓ < 5, this measurement loses stability due to246

an insufficient number of the available m-states). This finding may indicate that bigger convective cells have a bigger247

average ratio of horizontal to vertical velocities.248

Another finding is that the observed m-averaged value B
2
(ω) stays nearly constant in the entire degree range: it249

drops monotonically when going from ℓ = 0 to ℓ = 300, but only by about 15 percent (for comparison, in medium-ℓ250

SOHO MDI measurements of much smaller spatial resolution, this variation amounts to two orders of magnitude).251

This behavior indicates that in the degree range of up to ℓ = 300, the spatial resolution of the HMI instrument is indeed252

almost perfect. To clarify this point, our analysis can be made independent of the leakage-matrix computations—253

assuming, of course, that the spatial resolution of the instrument is perfect.254
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In addition to the coordinate system (θ, φ) with z-axis aligned with the solar rotation axis, we introduce another255

coordinate system (θ′, φ′) with z′-axis (from which θ′ is counted) directed from the Sun towards the observer. Con-256

sidering the projection of the turbulent velocity field v(θ, φ, t) (Equation 1) on the CCD plane directly, without its257

decomposition in vector spherical harmonics, we have258

B2
ℓm(ω) = E

∣∣∣∣∫
4π

Y ∗
ℓm(θ, φ)Π(sin θ′)ẑ′ · ṽ(θ, φ, ω) dϖ

∣∣∣∣2 , (24)259

where ṽ(θ, φ, ω) is Fourier transform of v(θ, φ, t) at frequency shifted by advection effects, and Π(sin θ′) is apodization260

function, sin θ′ being radial coordinate in the image plane in units of the apparent solar radius. Evaluating the measure261

of the stochastic signal in the way described in Section 2 gives immediately262

B2
ℓm(ω) =

∫
4π

Y ∗
ℓm(θ, φ)Yℓm(θ, φ)Π2(sin θ′)

[
cos2 θ′σ2

r(ω) +
1

2
sin2 θ′σ2

h(ω)

]
dϖ, (25)263

where cos2 θ′ and sin2 θ′/2 account for the line-of-sight projection effects. Using addition theorem for spherical har-264

monics, the m-averaged value is265

B
2
(ω) =

1

2ℓ+ 1

ℓ∑
m=−ℓ

B2
ℓm(ω) =

1

4π

∫
4π

Π2(sin θ′)

[
cos2 θ′σ2

r(ω) +
1

2
sin2 θ′σ2

h(ω)

]
dϖ, (26)266

the result which does not depend on the target degree ℓ.267

By expanding cos2 θ′Π2(sin θ′) and sin2 θ′Π2(sin θ′) in Equation (25) in spherical harmonics and transforming the268

result to (θ, φ)-coordinates, it is also possible to evaluate the right-hand side at individual m-values. We skip the269

details of this analysis, as its principal motivation was to check the accuracy of our leakage-matrix computations. The270

numerical results of the two approaches turned out to be the same.271

The slight variation of the apparent values of B
2
(ω) with degree ℓ indicates that the leakage matrices can be improved272

by setting the PSF width to a small but non-zero value. We conclude that the measurements of the solar noise can be273

used to calibrate the effective PSF of the instrument. This option may be particularly interesting for analyzing data274

obtained with SOHO MDI instrument.275

4. TEMPORAL DOMAIN276

The m-average of the de-rotated (frequency-shifted according to the result of differential-rotation measurement)277

power spectra in the entire frequency domain of SDO HMI data at ℓ = 300 is shown in Figure 3.278

At frequencies less than about 200µHz, variation of the observed power with ℓ and m can not be279

explained by our model, which loses its ability to fit the data with any reasonable accuracy. In this spa-280

tiotemporal domain, our assumption of negligibly small correlation length is violated by supergranular-281

scale convective motions: Doppler-velocity power as function of m and ω is shown on a gray scale in282

Figure 4. The well-defined ridge at m > 0 (prograde waves) is produced by the rotation of solar su-283

pergranulation pattern. A small but noticeable curvature of the ridge is due to faster rotation of the284

equatorial regions. At frequencies less the about 50µHz, the observed power drops rapidly because of285

the de-trending implemented to the time-series of solar Dopplergrams.286

In this study, the data analysis was limited by frequencies below the oscillation resonances. We can hope that287

the dependence of the noise power on ℓ and m (the B2
ℓ (m)) measured in this frequency range will stay the same288

at higher frequencies; this assumption, of course, remains to be verified by addressing residuals of spectral fitting289

procedures. We note that at frequencies from about 3 mHz and higher, the measurement of the background component290

is difficult because the signal-to-noise ratio of acoustic resonances becomes very high. At these frequencies, it is now291

the uncorrelated background which gets buried below the resonant power.292

We suggest a simple model for the frequency dependence of the background noise B
2
(ω) to be used as an initial293

guess in the mode-fitting procedures. Imagine a convective eddy emerging on the solar surface from below at time294

t = 0. Let the observed velocity increases linearly with time and then drop exponentially,295

v =

{
0, t < 0

t
τ2 e−

t
τ , t ≥ 0.

(27)296
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Figure 3. De-rotated and m-averaged SDO HMI power spectrum at l = 300 (thin line). Dashed lines show two simple models
(see text); their sum is shown by the thick gray line.

Figure 4. Velocity power at ℓ = 300 and frequencies below 170 µHz.
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Taking the Fourier transform, the observed power is (1 + ω2τ2)−2. The Fourier power is a cosine Fourier transform of297

the autocorrelation function, which is298

ACF =
1

4τ

(
1 +

∣∣∣∣ tτ
∣∣∣∣) e−|

t
τ |. (28)299

We adjust a linear combination of these ”seismic events” with two different values of τ to approximate the expected300

variation of the uncorrelated background in the entire frequency range; the result is shown in Figure 3 by two dashed301

lines for the two separate components and by thick gray line for their sum. The fitted values of τ , about 6 mins and302

1 min, are of the order of the lifetimes of solar granules and shorter. A relative excess of observational power at the303

highest frequencies may be due to an aliasing signal coming from frequencies higher than Nyquist frequency.304

5. DISCUSSION305

Implementation of our model in frequency measurements is relatively straightforward. At each degree, ℓ, the even306

functions B2
ℓ (m) are measured from the de-rotated power spectra around some frequency below all the detectable307

resonances. The initial approximation for the frequency dependence of the uncorrelated background B
2
(ω) is then308

improved by fitting individual multiplets in the power spectra. When the instrument’s resolution is imperfect (HMI309

measurements at higher degree ℓ or SOHO MDI measurements), the more minor sensitivity to modes of higher degree310

ℓ will be captured in B2
ℓ (m).311

The suggested measurement of differential rotation from power spectra at frequencies below the acoustic resonances312

will benefit from employing more data of smaller and higher degree ℓ analyzed in different frequency intervals. It is313

interesting to extend these measurements to datasets obtained at different times to explore temporal variations of the314

subsurface differential rotation (”torsional oscillations”).315

In our limited exercise with observational data, we have another finding which deserves more extensive data analysis.316

The inferred ratio of magnitudes of horizontal and vertical components of convective velocities σ2
h/σ

2
r clearly tends to317

get bigger when ℓ gets smaller; it indicates that in bigger convective cells, horizontal velocities become more dominant.318

Our model becomes inconsistent with observations at frequencies from about 200µHz and below, since our basic as-319

sumption of small correlation length breaks down when observations start to feel signals from supergranular convective320

cells. Here, we enter the spatiotemporal domain targeted by Beck & Schou (2000) in their encouraging measurements321

of differential rotation of solar supergranulation pattern from Dopplergrams provided by SOHO MDI instrument. An322

approach which is more sophisticated than ours is needed to deal with turbulent-velocity correlations simultaneously323

in both space and time.324

We thank Jesper Schou and anonymous referee for multiple useful comments and suggestions. HMI is an instrument

on board the Solar Dynamic Observatory (SDO), and the data used for this work are courtesy of the NASA/ SDO

and the HMI science team.
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327

APPENDIX328

The leakage matrices used in this study were calculated using the semi-analytic approach described in329

(Vorontsov & Jefferies 2005). This approach was extended in (Vorontsov & Jefferies 2013) to account explicitly330

for non-zero solar B-angle (which is heliographic latitude of the central point of the solar disk). In this331

study, we need to develop the analysis further to include the instrument’s response to components of the velocity field332

described by toroidal vector spherical harmonics. We have also noticed an inaccuracy in the earlier treatment of the333

B-angle effect (line-of-sight projection was done in the direction orthogonal to the solar rotation axis, thus missing the334

observer). Therefore, we outline the overall algorithm briefly, adding proper extensions.335

We implement three separate leakage matrices—Rm′m
ℓ′ℓ , Hm′m

ℓ′ℓ and Tm′m
ℓ′ℓ , with response coefficients to the vertical336

component of poloidal vector fields, to their horizontal component, and to the toroidal vector fields, respectively. We337

discard here all possible instrumental and optical distortions.338

We choose the coordinate system (r, θ, φ) such that its z-axis is aligned with solar rotation, axis y is orthogonal to339

the line of sight, and axis x (from which φ is counted) is directed towards the observer when solar B-angle is zero.340

We choose another axis z′, which points toward the observer. Angle β counted from z to z′ is 90 degrees minus solar341
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B-angle. We start with a line-of-sight projection of the vector velocity fields: it will allow further analysis to work342

with scalar fields. The projection of vector v to the line of sight is343

ẑ′ · v = sin β x̂ · v + cosβ ẑ · v. (1)344

For poloidal vector fields, we need an expansion in spherical harmonics of x̂ · r̂Yℓm(θ, φ), ẑ · r̂Yℓm(θ, φ), x̂ ·∇1Yℓm(θ, φ),345

and ẑ · ∇1Yℓm(θ, φ). These decompositions are (Vorontsov & Jefferies 2005):346

x̂ · r̂Yℓm(θ, φ)=−1

2

[
(ℓ+m− 1)(ℓ+m)

(2ℓ− 1)(2ℓ+ 1)

] 1
2

Yℓ−1,m−1(θ, φ) +
1

2

[
(ℓ−m− 1)(ℓ−m)

(2ℓ− 1)(2ℓ+ 1)

] 1
2

Yℓ−1,m+1(θ, φ)347

+
1

2

[
(ℓ−m+ 1)(ℓ−m+ 2)

(2ℓ+ 1)(2ℓ+ 3)

] 1
2

Yℓ+1,m−1(θ, φ)−
1

2

[
(ℓ+m+ 1)(ℓ+m+ 2)

(2ℓ+ 1)(2ℓ+ 3)

] 1
2

Yℓ+1,m+1(θ, φ), (2)348

349

ẑ · r̂Yℓm(θ, φ) =

[
(ℓ+m)(ℓ−m)

(2ℓ− 1)(2ℓ+ 1)

] 1
2

Yℓ−1,m(θ, φ) +

[
(ℓ+m+ 1)(ℓ−m+ 1)

(2ℓ+ 1)(2ℓ+ 3)

] 1
2

Yℓ+1,m(θ, φ), (3)350

351

x̂ · ∇1Yℓm(θ, φ)=−ℓ+ 1

2

[
(ℓ+m− 1)(ℓ+m)

(2ℓ− 1)(2ℓ+ 1)

] 1
2

Yℓ−1,m−1(θ, φ) +
ℓ+ 1

2

[
(ℓ−m− 1)(ℓ−m)

(2ℓ− 1)(2ℓ+ 1)

] 1
2

Yℓ−1,m+1(θ, φ)352

− ℓ

2

[
(ℓ−m+ 1)(ℓ−m+ 2)

(2ℓ+ 1)(2ℓ+ 3)

] 1
2

Yℓ+1,m−1(θ, φ) +
ℓ

2

[
(ℓ+m+ 1)(ℓ+m+ 2)

(2ℓ+ 1)(2ℓ+ 3)

] 1
2

Yℓ+1,m+1(θ, φ), (4)353

354

ẑ · ∇1Yℓm(θ, φ) = (ℓ+ 1)

[
(ℓ+m)(ℓ−m)

(2ℓ− 1)(2ℓ+ 1)

] 1
2

Yℓ−1,m(θ, φ)− ℓ

[
(ℓ+m+ 1)(ℓ−m+ 1)

(2ℓ+ 1)(2ℓ+ 3)

] 1
2

Yℓ+1,m(θ, φ). (5)355

Corresponding expressions for toroidal vector spherical harmonics are derived in the same way; the result is356

x̂ · [−r̂ ×∇1Yℓm(θ, φ)] = − i

2
[(ℓ+m)(ℓ−m+ 1)]

1
2 Yℓ,m−1(θ, φ)−

i

2
[(ℓ−m)(ℓ+m+ 1)]

1
2 Yℓ,m+1(θ, φ), (6)357

358

ẑ · [−r̂ ×∇1Yℓm(θ, φ)] = −imYℓ,m(θ, φ). (7)359

The rest of the analysis is the same as in (Vorontsov & Jefferies 2005, 2013): we rotate the coordinate system by360

angle β to direct axis z towards the observer, convolve the image with PSF in the apodization domain, and rotate the361

coordinate system back to its original orientation. Symmetry relations for the resulted leakage matrices are362

R−m′,−m
ℓ′ℓ (β)= (−1)m

′+mRm′m
ℓ′ℓ (β), H−m′,−m

ℓ′ℓ (β) = (−1)m
′+mHm′m

ℓ′ℓ (β),363

T−m′,−m
ℓ′ℓ (β)= (−1)m

′+m+1Tm′m
ℓ′ℓ (β), (8)364

365

Rm′,m
ℓ′ℓ (π − β)= (−1)ℓ

′+ℓ+m′+mRm′m
ℓ′ℓ (β), Hm′,m

ℓ′ℓ (π − β) = (−1)ℓ
′+ℓ+m′+mHm′m

ℓ′ℓ (β),366

Tm′,m
ℓ′ℓ (π − β)= (−1)ℓ

′+ℓ+m′+m+1Tm′m
ℓ′ℓ (β), (9)367

Matrices R and H, whch specify instrumental response to poloidal vector fields, are real; matrix T is imaginary. Equa-368

tion (9) shows that for poloidal fields (which describe undistorted eigenfunctions of solar oscillations) the amplitudes369

of the response coefficients of the instrument are identically zero when solar B-angle is zero and ℓ′+ ℓ+m′+m is odd;370

we refer to these leaks as ”prohibited” leaks. For toroidal fields, situation is reverse: prohibited leaks are those with371

ℓ′ + ℓ +m′ +m even. For prohibited leaks, the leak amplitude is an odd function of solar B-angle; for unprohibited372

leaks, it is even function of B. In power spectra, the magnitude of spatial leaks (absolute value of leak amplitude373

squared) is always an even function of solar B-angle, i.e. does not depend on its sign.374
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