

Horizontal to Vertical Displacement of Solar Oscillations

Jesper Schou

Max Planck Institute for

Solar System Research

schou@mps.mpg.de

tim larson

tplarson@sun.stanford.edu

Some Inconvenient Problems in Helioseismology

- Various systematic errors
- Surface effect Model and observed frequencies disagree
- Mode visibilities are sometimes a bit off
- Observable (e.g. velocity and intensity) dependent center to limb effect
- The latter ones are related to what is known as mode physics
 - Interactions between the modes and the convection near the surface play an important role!
- Better theory and/or simulations needed
 - Theory is extremely complicated
- More direct observations
 - Several attempts have been made to measure horizontal to vertical ratio
 - Schou+Bogart (1998), Rhodes+ (2001), Korzennik+ (2004), Woodard+ (2013), ...
 - These indirect measurements have been difficult due to other physical effects and instrumental issues
 - So what to do?
 - Observe the same area from two directions Directly gives two component of vector velocities
 - Key global helioseismology objective of PHI
 - Observing from two directions may also help with other issues

MPS

MAX PLANCK INS

HMI vs. PHI

• Very similar instruments

- Same Fel 6173 line with roughly the same sampling of the line
- PHI resolution is the same in arcsec for HRT, much less for FDT
- Makes for almost identical observation heights and comparable data

• 8 hours of observations were taken on March 23, 2021

- Nominal 60 second cadence but a bit uneven
- FDT continuum and 5 wavelengths in linear polarization all downlinked
- First 20 taken off-tuned for calibration 7.5 hours of useful data

Distance was 0.70AU

- Solar radius 386 pixels
- Part of limb missing to accommodate long time series in available telemetry
- PHI Carrington at disk center: (180.8°,+1.4°)
- HMI Carrington at disk center: (288.7°,-6.9°)
- Angle between spacecraft, as seen from the Sun, is about 108°
 - So a substantial difference!
 - And a rather small overlap

Theory for H/V ratio – Plane Parallel

- What do we expect?
- Velocity from a simple wave is something like
 - $V = Re(\xi(\mathbf{r})\exp(\mathbf{i}\mathbf{k}\mathbf{x} \mathbf{i}\omega\mathbf{t} + \mathbf{i}\phi_0))$
 - V is total velocity, ξ is eigenfunction, r is radial position, k is horizonal wavenumber, x is horizontal position, ω is frequency, t is time, ϕ_0 is initial phase
- If we look at a single point and assume a unit amplitude we get:
 - Radial velocity $V_r = \cos(kx \cdot \omega t + \phi_0)$
 - Horizontal velocity $V_h = c_t \sin(kx \omega t + \phi_0 + \phi_h)$
 - $-\phi_h$ is the phase relative to that from a simple theory. Ignored below.
 - c_t=gk/ ω^2 from an assumption of adiabatic and free surface
 - In principle ct could have a different magnitude or be complex, but will only consider real here
 - $V_{obs} = A \cos(kx \omega t + \phi_0 + \phi')$
 - tan φ' = c_t cos Δθ tan α
 - Different for different observers, which is what will be exploited here.
 - Taking difference between different observers, ϕ_0 cancels out
 - $-\alpha$ is observing angle from vertical and $\Delta\theta$ the horizontal angle between wave and observer
 - At the moment only ϕ' is used. Amplitude appears unusable due to PSF issues.

Deep Water Wave

wave phase : t / T = 0.000

From Wikipedia

Data Analysis

Calculate Dopplergrams

- Use MDI-like algorithm on the 5 filtergrams across the line
- Calibrate based on RT on MURaM cube
- Undistort

Get image geometry from intensity filtergram

- Undistort and limb find to get center and radius. Correct center time.
- Tweak P-angle (0.36°) based on what appears to fit
- Correct Carrington longitude (for light travel time, as current keywords are wrong)
- Ingest into DRMS at MPS

• Track 15° PHI and HMI cubes with mtrack at various locations – with bug fixed

- Interpolate PHI times to HMI times taking into account light travel time difference
- Circularly apodize, 3D FFT and remap to (k, θ, ω) (ring analysis)
- Compute cross spectrum, interpolate to ridges and from that the phase shift
- Fit phase to obtain c_t, orthogonal term and phase (time) error along ridges
 - Unfortunately c_t and the orthogonal term are near degenerate with image offsets
 - Which leads to complications

Observing Height

Tracking Locations

Viewing Geometry for Center Position

Measured Effect With Various Shifts

Various Viewing Angles

- We now know that the simple model is wrong
- Does changing to the better model make a difference?
- So we peakbagged a 72 day HMI time series with both models
 - And ran a 2D inversion

Effect on Inversions - Original

Effect on Inversions - New

Effect on Inversions - Original

Conclusion

FOR SOLAR SYSTEM RES

- The horizontal to vertical ratio can be measured
- Results agree quite well with theory
 - But not with simple theory
 - So don't use it!
 - Phase appears close to zero (ratio is real)
 - Likely part of center to limb effect
- Effect on global mode seismology appears to be modest
- To do:
 - Understand origin of systematics and adjustments
 - New dataset has been taken, but angle is quite small
 - Could be interesting as here may me a height depemndence
- Study of waves in granulation
 - <u>https://ui.adsabs.harvard.edu/abs/2015A%26A...580L..11S/abstract</u>
 - Dataset of quiet Sun with better resolution of HMI taken
- Lots of fun ahead!