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The meridional circulation of the Sun, which is observed to be poleward at the surface, should have a return flow at some
depth. Since large-scale flows like the differential rotation and the meridional circulation are driven by turbulent stresses in the
convection zone, these flows are expected to remain confined within this zone. Current observational (based on helioseismology)
and theoretical (based on dynamo theory) evidences point towards an equatorward return flow of the meridional circulation at the
bottom of the convection zone. Assuming the mean values of various quantities averaged over turbulence to be axisymmetric,
we study the large-scale flows in solar-like stars on the basis of a 2D mean field theory. Turbulent stresses in a rotating star can
transport angular momentum, setting up a differential rotation. The meridional circulation arises from a slight imbalance between
two terms which try to drive it in opposite directions: a thermal wind term (arising out of the higher efficiency of convective heat
transport in the polar regions) and a centrifugal term (arising out of the differential rotation). To make these terms comparable,
the poles of the Sun should be slightly hotter than the equator. We discuss the important role played by the meridional circulation
in the flux transport dynamo model. The poloidal field generated by the Babcock-Leighton process at the surface is advected
poleward, whereas the toroidal field produced at the bottom of the convection zone is advected equatorward. The fluctuations
in the meridional circulation (with coherence time of about 30-40 yr) help in explaining many aspects of the irregularities in the
solar cycle. Finally, we discuss how the Lorentz force of the dynamo-generated magnetic field can cause periodic variations in
the large-scale flows with the solar cycle.
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1 Introduction

There is an intriguing fluid flow pattern inside the Sun (and
probably inside other solar-like stars): the meridional circu-
lation. It is known for nearly half a century that matter at
the solar surface moves continuously from the equator to the
poles in both the hemispheres—the maximum speed of this
motion at mid-latitudes being of order 20 m s−1. Since we do
not expect matter to be piled up near the poles, there has to
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be a return flow at some depth underneath the Sun’s surface,
bringing back the matter from the polar regions to the equa-
torial region. Apart from the intrinsic interest we may have
in such a flow from a purely fluid dynamical point of view,
it has been realized in the last few years that this flow plays
a crucial role in the dynamo process producing the 11-year
sunspot cycle. Let us begin with a discussion of the mathe-
matical definition of the meridional circulation.

Any plane passing through the rotation axis of a rotating,
self-gravitating body (such as a star or a planet) is referred to
as a meridional plane. If we introduce spherical coordinates
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with the origin at the centre of the body and with the rota-
tion axis as the polar axis, it is easy to see that a meridional
plane would be an (r, θ) plane over which ϕ is constant. Let
us begin by considering a simple kind of fluid flow which is
axisymmetric (i.e., independent of ϕ). The fluid velocity can
be written as:

v = vr(r, θ, t) er + vθ(r, θ, t) eθ + vϕ(r, θ, t) eϕ. (1)

The part vϕ(r, θ, t) eϕ is called the azimuthal or zonal circula-
tion, whereas the part lying in the meridional plane, i.e.,

vm = vr(r, θ, t) er + vθ(r, θ, t) eθ (2)

is called the meridional circulation. Writing vϕ = r sin θ Ω,
where Ω is the angular velocity, we can put eq. (1) in the
form:

v = vm + r sin θ Ω(r, θ, t) eϕ. (3)

Very often we consider flows which are time-independent in
addition to being axisymmetric. It then easily follows from
the equation of continuity that ∇.(ρvm) = 0, implying that
flows in the meridional plane should be of the nature of cir-
culation with closed streamlines.

We are aware of fluid flows existing in the interiors and
atmospheres of many stars and planets. A state of strict hy-
drostatic equilibrium without any motions is often unstable
or is continuously disturbed by forces driving the flows. The
flows inside stars and planets are sometimes of the nature of
turbulent flows, which means that they are neither axisym-
metric nor time-independent. However, by suitable spatial
and temporal averaging, we can often get a mean flow pat-
tern which may be approximated as axisymmetric and time-
independent—at least over a certain regime of space and
time. Considering such flows is the natural first step in un-
derstanding the complex physics of this subject. In the theo-
retical portions of this basic review, we shall always restrict
our discussion to mean meridional circulations which are ax-
isymmetric, but we shall discuss certain aspects of time vari-
ations.

Before getting into a discussion of the meridional circula-
tion of the Sun, let us consider a simple meridional circula-
tion in the Earth’s atmosphere. Suppose the equatorial region
of the atmosphere is heated by the Sun’s rays. The air there
expands and becomes lighter, causing it to be buoyant and to
rise up. The colder air from higher latitudes would rush to
the equatorial region. The hot air, which rises in the equato-
rial region, will cool as it rises and then will flow to the higher
latitudes through the upper layers of the atmosphere, thereby
setting up a meridional circulation pattern. At first sight, it
may seem that the physics of this problem is straightforward.

After all, it involves only thermodynamics and fluid mechan-
ics. We invite those readers who are familiar with thermo-
dynamics and fluid mechanics, but have not studied the the-
ory of meridional circulation earlier, to set up the mathemat-
ical equations of this problem. As soon as we try to make a
mathematical formulation of this problem, we realize that it
is much more complicated than what we may initially think.

The best way of handling such a fluid flow problem is to
consider the vorticity:

ω = ∇ × v. (4)

It is easy to see that the meridional circulation given by eq.
(2) would produce a ϕ component of vorticity. One can try
to obtain an equation for ωϕ from the basic equations of fluid
mechanics. Usually the equation for ωϕ turns out to have the
form:

∂ωϕ

∂t
= (source terms) + (dissipation term). (5)

As we shall see later, the meridional circulation of the Sun
really satisfies an equation like this. The source terms, which
may involve thermodynamic considerations, drive the merid-
ional circulation, whereas the dissipative term tries to damp
it. If these terms somehow manage to balance each other,
then we may get a time-independent meridional circulation.

At the outset, let us point out an important result of stel-
lar structure modelling that the heat generated by nuclear re-
actions at the centre of the Sun is transported outward by
radiative transfer till about r = 0.7R⊙ (where R⊙ is the so-
lar radius), whereas heat is transported by convection from
r = 0.7R⊙ to r = R⊙ [1, 2]. In other words, we have a turbu-
lent convection zone just below the Sun’s surface. The con-
vection cells at the solar surface known as granules can be
observed through telescopes. As we shall discuss later, the
turbulent stresses in the convection zone play a crucial role
in driving the meridional circulation. So, it is assumed that
the streamlines of the meridional circulation would remain
confined within the convection zone. While developing the
theory of the meridional circulation of the Sun, we shall see
that this theory is intimately connected with the theory of dif-
ferential rotation (a non-constant Ω varying with r and θ is
called differential rotation). It has been known from the mid-
nineteenth century that the angular velocity at the solar sur-
face near the equator is more than that at higher latitudes [3].
As we shall point out later, the new science of helioseismol-
ogy has provided the crucial information of how the angular
velocity Ω(r, θ) varies under the solar surface. Helioseismol-
ogy also provides information about the meridional circula-
tion underneath the solar surface. However, as we shall dis-
cuss, this information becomes less and less reliable as we
go deeper down from the solar surface, and although there is
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now strong observational evidence that the return flow of the
meridional circulation (bringing back matter from the polar
regions to the equatorial region) takes place at the bottom of
the convection zone, there is still not a complete consensus on
this. A poleward flow at the solar surface and an equatorward
flow deeper down give rise to negative ωϕ within the core re-
gion of the meridional circulation in the northern hemisphere.
Hence, when we develop the theory of the solar meridional
circulation, the sum of the source terms in eq. (5) is expected
to be negative in much of the northern hemisphere.

Sunspots are regions of concentrated magnetic field (typ-
ically of order 3000 G) and the 11-year sunspot cycle (also
called the solar cycle) is the magnetic cycle of the Sun. This
cycle is believed to be caused by a magnetohydrodynamical
(MHD) process known as the dynamo process. The early
models of the solar dynamo were developed at a time when
the existence of the meridional circulation was not known and
these early models naturally did not include the meridional
circulation. Over the years, it became clear that these ear-
lier models of the solar dynamo without the meridional cir-
culation had many difficulties. From the 1990s, a new kind
model known as the flux transport dynamo model—in which
the meridional circulation plays a crucial role—has been de-
veloped. This model has been successful in explaining vari-
ous aspects of the solar cycle, leading to an increased interest
in the science of the meridional circulation.

It may be mentioned that, in the last few years, there have
been some impressive numerical simulations of convection
inside rotating stars, showing that the turbulent stresses can
drive the large-scale flow patterns. The discussion of sim-
ulations will be rather limited in this review, the focus be-
ing on the mean field theory obtained by averaging over
turbulence—for the following two reasons. Firstly, the pri-
mary aim of this review is to elucidate the basic physics,
which can be understood better from the mean field theory
rather than from a description of the results of simulations.
Secondly, the author personally is not particularly qualified
to discuss the intricacies and subtleties of numerical simula-
tions. We shall highlight some results of simulations which
throw light on our discussions based on the mean field model,
but we shall not attempt to present any systematic account of
the simulations done by different groups. Interested readers
will find references to some of the key papers on simulations
in sect. 3.4.

We shall summarize the salient features of the observa-
tional data about the meridional circulation of the Sun in the
next sect. 2. Then sect. 3 will be devoted to discussing the
basic theory of the meridional circulation—along with the
basic theory of differential rotation—presenting some mod-
elling efforts. The role of the meridional circulation and its
irregularities in the flux transport dynamo model of the Sun

will be discussed in sect. 4. Then sect. 5 will be devoted to
the back reaction of the dynamo on the large-scale flow pat-
terns of the Sun. Finally, we shall present some concluding
remarks in sect. 6.

2 Relevant observational data

One of the challenges of observing the meridional circulation
at the solar surface is that it involves fluid flows which are
much weaker than other kinds of fluid flows present there.
We have mentioned that the maximum speed of the merid-
ional circulation at the mid-latitudes is about 20 m s−1, which
means that the time to traverse a quadrant of the Sun’s cir-
cumference (from the equator to the pole) would be of the
order of about 1.8 yr. The solar surface has other kinds of
fluid flows which are much faster with shorter time scales.
The convective velocities associated with granules at the so-
lar surface are of order 1-2 km s−1, the typical lifetimes of
granules being of the order of a few minutes. The rotation
period of about 25 d near the solar equator gives rise to an az-
imuthal velocity of about 2 km s−1. Thus, to measure the ve-
locity of the meridional circulation directly, we have to pick
up a signal much weaker than the other signals present.

2.1 Meridional circulation at the solar surface

Although the meridional circulation is much weaker than
other fluid flows at the solar surface, it can be identified by
something special that it does. It carries various surface fea-
tures with it poleward. We may mention that the turbulent
velocities of convection near the solar surface make things
spread out, giving rise to an effective diffusion, which is very
important in the flux transport dynamo model. This diffusion
also can cause a poleward spread of various things. However,
the role of the meridional circulation in the poleward trans-
port of surface features is much more direct and effective (the
spread by diffusion goes as

√
t, whereas the transport by a

flow goes as t). Historically, the meridional circulation was
discovered from observations of such poleward transport.

Sunspots, regions of strong magnetic field on the solar sur-
face, appear around latitudes 30◦-40◦ at the beginning of a so-
lar cycle. As the cycle progresses, sunspots appear at lower
and lower latitudes. The shaded portions in Figure 1 indicate
the regions in a time-latitude plot where sunspots appeared
during the span of a little more than two solar cycles. The
colors in Figure 1 indicate the longitude-averaged values of
the magnetic field outside sunspots in this time-latitude plot.
The magnetic field outside sunspots consists of latitude belts
in which this field is predominantly of a particular sign. In
contrast to the sunspot belts which shift equatorward with the
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Figure 1 (Color online) A time-latitude plot in which the shaded regions
indicate the solar latitudes at which sunspots were seen at different times.
The colors indicate values of the longitude-averaged magnetic field outside
the sunspots.

solar cycle, the field outside sunspots seems to be advected
poleward, suggesting a poleward flow of matter which car-
ries this magnetic field with it. The existence of the merid-
ional circulation was first inferred from the observation that
there were unipolar patches of magnetic field in certain lat-
itude belts [4] and that these patches shifted poleward with
time [5, 6]. The polar field of the Sun, which gets built up
as the magnetic fields from the lower latitudes are brought
to the polar region, reverses its direction around the time of
the sunspot maximum and is clearly tied to the solar cycle.
The early measurements with low-resolution magnetograms
suggested that the polar field is of order 10 G (see the color
code in Figure 1). We know for several decades now that
this magnetic field outside sunspots is actually concentrated
inside highly intermittent flux tubes with magnetic field of
order 1000 G [7] and the values measured by the early low-
resolution magnetograms are merely values averaged over
patches of the solar surface when the flux tubes are not re-
solved. The meridional circulation could be estimated also
from the poleward displacements of small magnetic features
[8].

Apart from the poleward shift of unipolar magnetic
patches, there is another important proxy which gave a lot
of information about the meridional circulation in the early
years of research in this field. There must be a neutral bound-
ary line between the regions of opposite magnetic polarity
on the solar surface. When we observe the Sun using an Hα
filter, we often see dark filaments above the neutral line—
presumably made out of cool gas resting on the magnetic
canopy that must exist above the neutral line. Positions of
the dark filaments in an Hα plate would indicate the neutral
line and one can draw inferences about the meridional circu-

lation from a study of how the neutral line shifts poleward
with time. From an analysis of the Hα plates of the Sun taken
at the Kodaikanal Observatory over several decades, the exis-
tence of the meridional circulation in the early decades of the
twentieth century, when there were no measurements of the
magnetic field outside sunspots, could be established [9, 10].

Some attempts to measure the meridional circulation at the
surface directly through the Doppler shifts of spectral lines
have also been made [11-13].

2.2 Sub-surface results from helioseismology

After the existence of the meridional circulation at the so-
lar surface was established, the important question was
whether we can determine its nature underneath the surface—
especially whether we can find where the return flow from
the poles to the equator occurs. During the last few years, we
have some information about it from helioseismology, which
is the study of solar oscillations first discovered at the so-
lar surface in the 1960s [14]. These surface oscillations are
caused by acoustic waves propagating underneath the solar
surface and buffeting the surface. If there are large-scale fluid
flows underneath the surface, they affect the propagation of
the acoustic waves and it is possible to draw inferences about
these flows from the analysis of the oscillations data. This is
a highly technical subject and the details of how this is done
are beyond the scope of this review. We refer the interested
readers to standard reviews of this subject [15-18] and present
only the results here.

The effect of the meridional circulation on the solar os-
cillations at the surface is a very small effect and it becomes
increasingly difficult to make inferences about the meridional
circulation in deeper layers of the Sun underneath the surface
from this small effect. The first results of helioseismology
were about the nature of the meridional circulation in the lay-
ers immediately underneath the solar surface [19, 20]. Only
within the last few years, there have been serious efforts to
look for the return flow from the poles to the equator. As
we shall point out in our discussion of the flux transport dy-
namo model, we get the best results if we assume that there
is only one cell of the meridional circulation in each hemi-
sphere spanning the entire convection zone, with the return
flow at the bottom of the convection zone. Whether helio-
seismic studies can either confirm or contradict this view has
become a very important question. Some authors claim that
they find evidence for a return flow at the middle of the con-
vection zone rather than at the bottom [21,22], whereas other
authors, analyzing the same data, conclude that a single-cell
meridional circulation spanning the whole of the convection
zone is consistent with the data [23]. Figure 2 shows results
presented by different groups about the nature of the merid-
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Figure 2 (Color online) Hemispherically symmetrized profiles of the meridional circulation component vθ obtained by (a) Zhao et al. [21], (b) Jackiewicz
et al. [24], (c) Rajaguru and Antia [23], (d) Chen and Zhao [25], and (e) Lin and Chou [26]. Poleward flows are positive and equatorward flows are negative.
Figure courtesy of Junwei Zhao.

ional circulation underneath the solar surface [24-26]. As
we can easily see, there are large divergences among the re-
sults of different groups for the meridional circulation in the
deeper layers of the convection zone. A very recent analysis
of data from different sources led Gizon et al. [27] to con-
clude that the meridional circulation consists of a single cell
in each hemisphere, with the return flow at the bottom of the
convection zone.

2.3 The differential rotation of the Sun

As we have pointed out in the Introduction and shall again
see in sect. 3, the theory of the meridional circulation is in-
timately connected with the theory of the other large-scale
flow pattern inside the Sun: the differential rotation given by
a non-constant Ω(r, θ). Hence, a basic knowledge about the
nature of the differential rotation is essential for our discus-
sion. One of the remarkable achievements of helioseismol-
ogy is that it has provided a map of Ω(r, θ) underneath the
solar surface. The early maps obtained in the 1980s even-
tually converged to a robust map by the mid-1990s [28, 29].
Figure 3 is a map of the differential rotation inside the Sun.

We find that the differential rotation is confined within the

convection zone, with indications that the radiative core of
the Sun may be rotating like a solid body. This result is along
theoretically expected lines because we think that the differ-
ential rotation also, like the meridional circulation, is driven
by turbulent stresses in the convection zone, as we shall dis-
cuss in sect. 3.2. Within the convection zone, Ω(r, θ) ap-
pears to be approximately constant on conical surfaces, with
the regions near the equator having higher values of Ω(r, θ)
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Figure 3 (Color online) A profile of the differential rotation inside the Sun
obtained by helioseismology. From Howe et al. [30], as presented in Basu
[18].
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compared to the regions near the pole. Such a distribution of
Ω(r, θ) within the main body of the convection zone results
in a strong radial gradient of Ω(r, θ) at the bottom of the con-
vection zone, which can be seen in Figure 3 [30]. This region
of strong gradient of Ω(r, θ) at the bottom of the convection
zone is called the tachocline.

We may point out that asteroseismology (i.e., the study of
stellar oscillations) has now started giving some results of dif-
ferential rotation in solar-like stars [31].

2.4 Variations of the meridional circulation with time

We now come to the important question whether there are
variations of the meridional circulation with time. On sim-
ple theoretical grounds, we may expect a systematic variation
with the solar cycle. Presumably, the magnetic field in the so-
lar interior is strongest at the time of the sunspot maximum
and the Lorentz force due to this magnetic field also must be
strongest. This Lorentz force may act on the large-scale flows
and may cause a variation with the solar cycle. The vari-
ation of the meridional circulation with the solar cycle has
indeed been found—both from helioseismology [32-36] and
from the tracking of surface tracers [37]. Figure 4 shows how
the meridional circulation at a mid-latitude point on the solar
surface varied with time during a solar cycle, with the sunspot
number plotted along with it. It is clear that the meridional
circulation becomes weaker at the time of the sunspot maxi-
mum. The equatorward meridional circulation at the bottom
of the convection zone is also now found to be weaker at the
time of the solar maximum [27]. We expect the Lorentz force
of the solar magnetic field to act on the differential rotation
also. The variations of the differential rotation with the so-
lar cycle, known as torsional oscillations, have been studied
extensively. Although we shall make a few comments on tor-
sional oscillations in sect. 5, a detailed discussion of torsional
oscillations is outside the scope of this review (see ref. [38]

20

15

10

5

0

V
e
lo

c
it
y
 a

m
p
lit

u
d
e
 (

m
 s

−
1
)

SOHO/MDI

Sunspot number/20

1995 2000 2005

Date

2010

Figure 4 (Color online) The variation with time of the meridional circu-
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and references therein). We point out another intriguing as-
pect of the meridional circulation at the sunspot maximum.
There seems to be an inward flow towards the sunspot belt
superposed on the overall flow pattern [33, 36, 39].

Apart from the systematic variation with the solar cycle,
are there non-systematic random fluctuations in the merid-
ional circulation? Since we have reliable observational data
of the meridional circulation for a period not longer than a
quarter century, we cannot directly conclude from these data
whether there had been fluctuations in the meridional circu-
lation with longer coherence times. However, we can try to
draw some inferences about this from indirect considerations.
As we shall discuss in sect. 4.2, the period of the flux trans-
port dynamo decreases with the amplitude of the meridional
circulation. This means that the solar cycle durations will be
shorter when the meridional circulation is stronger and vice
versa. Figure 5 is a plot of the durations of last 23 solar cy-
cles spanning over more than a couple of centuries. There
have been epochs when successive solar cycles had durations
shorter than the average, suggesting that the meridional cir-
culation was stronger during such epochs. From such indirect
considerations, we can conclude that there have been fluctua-
tions in the meridional circulation in the past with coherence
times of order 30-40 yr [40]. Passos and Lopes [41] recon-
structed the history of the meridional circulation in the past
250 years on the basis of a low order dynamo model and ar-
rived at very similar conclusions.

3 Theory of meridional circulation

The theory of the meridional circulation happens to be a
somewhat complicated subject. While the majority of the re-
search papers on this subject would appear fairly forbidding
and inaccessible to the uninitiated, we are also not aware of
any convenient textbooks or pedagogical reviews from which
a beginner can learn this subject. The two classic monographs
by Tassoul [42] and Rüdiger [43] which discussed large-scale
flows inside stars in some detail are now very much outdated.
Both these monographs give comprehensive historical sum-
maries of early research in this field before reliable observa-
tional data for the meridional circulation and the internal dif-
ferential rotation of the Sun became available and before the
currently held theoretical viewpoint emerged. The present
review mainly focuses on the current theoretical viewpoint
based on observational data, without much discussion of the
earlier efforts. We refer the readers to a couple of excel-
lent short reviews by Kitchatinov [44,45], on which we draw
heavily in our presentation. Since the meridional circulation
now appears to be so important in many solar phenomena, it
is desirable that a solar physicist should have a rough, quali-
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tative idea about the theory of how the meridional circulation
arises. Our aim is to provide that in this section. We assume
that readers are familiar with the basic principles of fluid me-
chanics and MHD (will be needed in the next two sections),
which are discussed in many well-known books.

3.1 Governing equations for large-scale fluid motions

Any discussion of the dynamics of fluid flows should begin
with the Navier-Stokes equation, which we write in the fol-
lowing form:

∂

∂t
(ρ vi) +

∂

∂x j
(ρ viv j) = −

∂p
∂xi
+ ρFi +

∂

∂x j

(
µ
∂vi

∂x j

)
. (6)

See for example, ref. [46], sects. 7, 15; ref. [47], sects. 4.3,
5.1. Here all the symbols have their usual meanings, F be-
ing the body force per unit mass (like gravity). We are also
using the summation convention that an index repeated twice
implies summation over the spatial directions. We shall re-
strict our discussion to unmagnetized fluids in this section,
with discussions about the magnetic field postponed to the
next two sections.

When we deal with turbulent fluid motions (as within the
convection zone of the Sun), we can write the velocity in the
following manner:

vi = vi + v′i , (7)

where vi is the mean value of vi averaged over turbulence and
v′i is the fluctuation around the mean. Let us now write vi

and v j in eq. (6) in this manner and average over turbulence.
Keeping in mind that v′i = 0, we are led to

∂

∂t
(ρ vi) +

∂

∂x j
(ρ vi v j + ρ v′iv

′
j)

= − ∂p
∂xi
+ ρ Fi +

∂

∂x j

(
µ
∂vi

∂x j

)
. (8)

Subtracting the equation of continuity:

∂ρ

∂t
+
∂

∂x j
(ρ v j) = 0,

multiplied by vi from the left side of eq. (8), we get

ρ
∂v
∂t
+ ρ (v.∇)v = −∇p + ρF +K, (9)

where K is a term of which the i-th component given by

Ki =
∂

∂x j

(
− ρ v′iv

′
j + µ

∂vi

∂x j

)
, (10)

involves the turbulent stress tensor ρ v′iv
′
j, which plays a cru-

cial role in the theory of large-scale flows inside the Sun.
Lebedinski [48] appears to be the first person to realize in
1941 that turbulent stresses may drive large-scale flows. “To
remind us of his contributions”, the driving of mean large-
scale flows by turbulent stresses has been christened as the
Λ-effect by Rüdiger (ref. [43], p. 37). This idea was further
developed by Wasiutynski [49] and Biermann [50].

Since we shall be primarily dealing with mean fluid flows,
let us drop the overline sign henceforth and write v as v, keep-
ing in mind that from now onwards v would refer to the mean
flow. We write eq. (9) as follows:

∂v
∂t
+ ∇

(
1
2

v2
)
− v × (∇ × v) = − ∇p

ρ
+ F +

K
ρ
. (11)

This is going to be the central equation in our theoretical dis-
cussions. Since the turbulent stress term ρ v′iv

′
j in eq. (10) is

usually several orders of magnitude larger than the viscous
stress term µ(∂vi/∂x j) inside a stellar convection zone, often
the viscous stress term is neglected in eq. (10). However,
turbulence itself gives rise to an effective viscosity and some-
times the turbulent stress term is taken to be as follows:

ρ v′iv
′
j = −µT

∂vi

∂x j
, (12)

where µT is the turbulent viscosity (Strictly speaking, we
should symmetrize any viscous tensor term to exclude rota-
tion, e.g., ref. [47], p. 79—we are being somewhat hand-
waving here). It follows from eqs. (10) and (12) that

K = µT ∇2v, (13)

where we have neglected the term due to the viscous stress
tensor (arising out of “molecular” viscosity). However, we
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should stress that eqs. (12) and (13) are approximations
which sometimes miss out some of the essential physics con-
nected with the large-scale flows inside the Sun. When we
want to make a realistic model of the large-scale flows inside
the Sun, we have to determine the viscous stress tensor ρ v′iv

′
j

more carefully to look for non-dissipative parts. Still, in our
discussions, we shall sometimes point out as to what happens
if K is given by eq. (13), since this simplification often gives
us quite a bit of insight into the nature of the problem.

In a 1963 pioneering paper, Kippenhahn [51] took the tur-
bulent stress term to be of the form (13). However, he as-
sumed the coefficient µT,r for the radial transport of momen-
tum to be different from the coefficient µT,h for the horizontal
transport of momentum. This already gave very interesting
results which we shall discuss in sect. 3.2. Durney and Spruit
[52] were among the first authors to attempt a detailed cal-
culation of the turbulent stress tensor for convection inside
a rotating star. Later, Kitchatinov and Rüdiger [53, 54] cal-
culated this tensor from their model of turbulence and con-
structed detailed models of large-scale flows inside rotating
stars. A look at these papers [52-54] shows the complexity
of the expressions of the turbulent stress tensor which these
authors arrived at. We shall try to discuss some of the basic
physics of the problem without getting into the details of how
to calculate the turbulent stress tensor. In sect. 3.2 we shall
indicate how to compute only one crucial component v′rv

′
ϕ of

the turbulent stress tensor.
Let us now consider the ϕ component of eq. (11) in

spherical coordinates. When we assume axisymmetry (i.e.,
∂/∂ϕ = 0 everywhere), the gradient terms do not have any
component in the ϕ direction and a body force like gravity
would also have no ϕ component. Then we get

∂vϕ
∂t
− [v × (∇ × v)]ϕ =

Kϕ
ρ
. (14)

This is the basic equation governing the dynamics of the dif-
ferential rotation.

As pointed out in the Introduction, we need to find an equa-
tion for ωϕ of the form (5) in order to develop a theory of the
meridional circulation. We need to take the curl of eq. (11)
and consider its ϕ component. This gives

∂ωϕ

∂t
= [∇ × {v × (∇ × v)}]ϕ −

1
ρ2 [∇p × ∇ρ]ϕ +

[
∇ ×

(
K
ρ

)]
ϕ

.

(15)

This is the basic equation governing the dynamics of the
meridional circulation.

As we shall point out in sects. 3.2 and 3.3, the terms
[v × (∇ × v)]ϕ and [∇ × {v × (∇ × v)}]ϕ appearing in eqs. (14)
and (15) involve both the meridional circulation and the dif-
ferential rotation. Because of these terms, eqs. (14) and (15)

get coupled to each other and we cannot solve one of them in
isolation. Both of them have to be solved together, showing
that the theories of the differential rotation and the meridional
circulation are intimately connected to each other. To solve
these equations, we need to know the turbulent stress ρ v′iv

′
j so

that we can calculate K by using eq. (10). So, in order to de-
velop theories of the differential rotation and the meridional
circulation, we need to proceed as follows. We first have to
evaluate the turbulent stresses from some suitable theory of
turbulence. Then we can solve eqs. (14) and (15) together.
Often we may be interested in the steady large-scale flows in
the interior of a star. Then the time evolution terms in eqs.
(14) and (15) can be set to zero. Still, it is an immensely dif-
ficult problem to solve eqs. (14) and (15). We discuss some
basic physics issues connected with this problem in the next
two subsections.

3.2 Driving the differential rotation

Although this is a review primarily devoted to the meridional
circulation, we shall see in sect. 3.3 that we need to know the
profile of the differential rotation to calculate the main driving
term for the meridional circulation. So we begin with a dis-
cussion of the theory of differential rotation. As we already
pointed out, eq. (14) gives the dynamics of the differential
rotation. For an axisymmetric velocity field given by eq. (1),
we can easily work out the expression for [v × (∇ × v)]ϕ so
that eq. (14) leads to

∂vϕ
∂t
+

vr

r
∂

∂r
(r vϕ) +

vθ
r sin θ

∂

∂θ
(sin θ vϕ) =

Kϕ
ρ
. (16)

The second and third terms in this equation correspond to the
meridional circulation carrying the angular momentum with
it and thereby altering the profile of vϕ. We can get an equa-
tion for specific angular momentum (i.e., angular momentum
per unit mass)L = r sin θvϕ by multiplying eq. (16) by r sin θ,
which gives

∂L
∂t
+ vm.∇L = r sin θ

Kϕ
ρ
. (17)

Using the relation vϕ = r sin θ Ω, it is also easy to cast eq.
(16) into the form of an equation of Ω. Readers will find that
sometimes in the literature the equation of azimuthal dynam-
ics is written in terms of Ω rather than vϕ. To solve eq. (16),
we need to evaluate the turbulent stress ρ v′iv

′
j required for ob-

taining K through eq. (10). Since the mathematical theory of
the turbulent stress is extremely complicated, we now discuss
the basic physics of the problem qualitatively without getting
into the details of the mathematical theory.

Within a stellar convection zone, hot blobs of gas move
upward and cold blobs of gas move downward. We may
naively expect these blobs to carry their angular momentum
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with them when they move upward or downward. This sug-
gests that angular momentum may get well mixed within the
convection zone, such that the specific angular momentum is
constant throughout the convection zone. Taking s = r sin θ
as the outward distance from the rotation axis, specific angu-
lar momentum in a region of the convection zone would be
L = s2Ω. If this were to be constant throughout the convec-
tion zone, then Ω would fall off as we go further from the
rotation axis. However, we find the opposite of this in the
Sun, as seen in Figure 3. In order for the equatorial regions
of the Sun to have higher Ω, we need some mechanism to
continuously pump angular momentum away from the rota-
tion axis so that it can get piled up in the equatorial regions,
making those regions to rotate faster. Let us now consider
what kind of turbulent stresses can do this.

If the ϕ-component of momentum ρvϕ has to be advected
in the radial direction, it is easy to argue that ρ vrvϕ would
do the job and would contribute to a radial flux of angular
momentum. The crucial question is whether this will be pos-
itive or negative. To address this question, it is convenient
to look at the system (i.e., the star) from the frame of its av-
erage angular velocity. We had written down our dynamical
equation (11) with respect to an inertial frame. When the
variation of Ω over a star like the Sun is small compared to
the average value of Ω, it is indeed often useful to introduce
a frame rotating with the average Ω. It is well known that,
in such a frame, we shall have an additional Coriolis force
term − 2Ω × v appearing on the right hand side of eq. (11).
Now, look at the left panel of Figure 6, indicating the direc-
tion of motion of a convective blob moving radially (upward
or downward) near the equatorial plane. Assuming that we
are looking down from the rotation axis, it is easy to show
that the Coriolis force would make the bob move as indicated
in the figure. Clearly ρ vrvϕ is negative for such a blob, indi-
cating that radially moving convective blobs would transport
angular momentum downward. Presumably, such transport
would tend to make s2Ω constant within the convection zone.
Now, consider a horizontally moving turbulent blob shown in
the right panel of Figure 6. It is easy to check that the Cori-
olis force would make the blob move as shown in Figure 6,

u
r 
u    < 0ϕ

u
r 
u    > 0ϕ

Figure 6 A sketch illustrating angular momentum transport in the equato-
rial plane by turbulent mixing. The direction of rotation is indicated at the
tops. The left and right panels indicate how radially moving and horizon-
tally moving fluid blobs are deflected by the Coriolis force. From Kitchati-
nov [44]. Note that Kitchatinov [44] has used u for the velocity of the blob,
whereas we are using v.

leading to positive ρ vrvϕ. We conclude that such turbulent
blobs would transport the angular momentum outward. After
considering the signs of ρ vrvϕ for individual blobs like those
indicated in Figure 6, we come to the question of the sign
of ρ vrvϕ averaged over many such blobs. In the solar con-
vection zone, we certainly expect the positive sign of ρ vrvϕ
and an outward pumping of angular momentum if horizontal
turbulent motions are more dominant within the solar convec-
tion zone compared to radial turbulent motions. Can this be
the case under some circumstances?

While we do want to get into a full discussion of the com-
plicated problem of calculating turbulent stress tensors, we
point out how the deflections caused by the Coriolis force, as
indicated in Figure 6, enter into the calculation of vrvϕ for a
weakly rotating star. Note that we shall not use primes in this
small derivation for the sake of simplicity, keeping in mind
that the velocities of the convective blobs actually refer to
the fluctuating velocities due to convective turbulence. Let us
consider a convective blob which would have the velocity

v0 = v0,r er + v0,ϕ eϕ (18)

associated with it in the absence of the Coriolis force. If the
Coriolis force acts on the blob during its coherence time τ,
then the velocity induced by the Coriolis force will be

v1 = − 2Ω × v0 τ, (19)

so that the velocity with the Coriolis deflection becomes

v = v0 + v1.

Using eq. (18) and keeping in mind that Ω = Ω cos θ er −
Ω sin θ eθ at the colatitude θ, from eq. (19) we get

v1 = 2Ω τ v0,ϕ sin θ er + 2Ω τ v0,ϕ cos θ eθ − 2Ω τ v0,r sin θ eϕ.
(20)

The turbulent stress term we are interested in is given by

vrvϕ = (v0,r + v1,r)(v0,ϕ + v1,ϕ)

= v0,rv0,ϕ + v1,rv0,ϕ + v0,rv1,ϕ + v1,rv1,ϕ. (21)

If we make the simplifying assumption in this discussion that
v0,r and v0,ϕ would be uncorrelated in the absence of the Cori-
olis force, then v0,rv0,ϕ = v0,r v0,ϕ = 0. Also, we expect Ω τ
to be small for weak rotation, so that we can neglect v1,rv1,ϕ,
which will be quadratic in Ω τ. Substituting for v1,r and v1,ϕ

from eq. (20) into eq. (21), we get

vrvϕ = 2Ω τ (v2
0,ϕ − v2

0,r) sin θ. (22)

It is clear that vrvϕ is positive when v2
0,ϕ > v2

0,r, leading to out-
ward transport of angular momentum, and is negative when
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v2
0,r > v2

0,ϕ, leading to inward transport of angular momentum,
in conformity with the discussion accompanying Figure 61).

The crucial question now is whether v2
0,ϕ − v2

0,r appearing
in eq. (22) is positive or negative. One standard result in fluid
mechanics is the Taylor-Proudman theorem (see ref. [47], p.
183), according to which fluid phenomena tend to be aligned
parallel to the rotation axis. In accordance with this theorem,
stellar convection tends to take place in banana-shaped con-
vection rolls parallel to the rotation axis if the star rotates suf-
ficiently fast, as found in numerical simulations (see Figure 3
of ref. [55] or Figure 5 of ref. [56]). If the star is rotating
slowly, we expect radial turbulent motions to dominate. This
will lead to negative vrvϕ according to eq. (22) and presum-
ably an inward pumping of angular momentum such that the
equatorial regions may rotate slower. However, when a star
rotates rapidly and banana-shaped convection cells form, hor-
izontal convective motions may become more and more im-
portant making vrvϕ given by eq. (22) positive. This is likely
to cause outward pumping of angular momentum, which may
make the equatorial regions rotate faster. Presumably, some-
thing like this is happening in the Sun, although we should
caution the reader that the statement we just made is an over-
simplification of a complex situation. It is clear from eq. (17)
that the meridional circulation also carries angular momen-
tum with it. The final distribution of angular velocity in-
side the convection zone follows from a complicated inter-
play of various angular momentum transfer terms. Still, it is
interesting to note that numerical simulations show that main-
sequence stars of mass similar to the Sun have anti-solar dif-
ferential rotation when rotating slowly and solar-like differen-
tial rotation when rotating fast [55, 57], in qualitative agree-
ment with the idea that, when stellar convection is affected
more by rotation, there is a higher tendency of angular mo-
mentum getting transferred outward. Whether rotation affects
stellar convection significantly depends on the dimensionless
number Ω τ appearing in eq. (22). This dimensionless num-
ber (or rather 2Ω τ) is often called the Coriolis number and is
essentially the inverse of what is known as the Rossby num-
ber. A full theory of turbulent stresses would involve cal-
culating v2

0,ϕ/v
2
0,r as a function of Ωτ, which will make vrvϕ

given by eq. (22) a more complicated nonlinear function of
Ω τ. We do not go into the details of this complicated subject.

Certainly eq. (22) is not of the form (12). In general, one
should write [53, 54]

v′iv
′
j = QΛi j − Ni jkl

∂vk

∂xl
. (23)

The term QΛi j, which would incorporate expressions like eq.

(22), is the essence of the Λ-effect, as indicated by the su-
perscript Λ. However, we would like to emphasize that, even
by taking the turbulent stress to be of the simple form (12),
Kippenhahn [51] succeeded in driving the differential rota-
tion by assuming the coefficient µT,r for the radial viscous
transport to be different from the coefficient µT,h for the hor-
izontal viscous transport. We naively expect that the viscous
drag may oppose relative motions between fluid layers inside
a star, leading to solid body rotation. This is indeed found
to be the case when µT,r = µT,h. However, when these coeffi-
cients were taken to be unequal, Kippenhahn [51] found the
following intriguing results: a larger µT,r led to lower angu-
lar velocity near the equatorial region, whereas a larger µT,h

led to higher angular velocity there. Presumably, the case
of radially moving fluid blobs discussed above corresponds
to higher µT,r, whereas the case of horizontally moving fluid
blobs corresponds to higher µT,h. Thus, Kippenhahn’s con-
clusions are in agreement with the physics encapsulated in
Figure 6 as we discussed above. Afterwards, Kitchatinov and
Rüdiger [53, 54] calculated the turbulent stress tensor from
their model of turbulence and constructed more detailed mod-
els of stellar rotation. They also found that angular velocity is
higher in the equatorial regions (as we see for the Sun) when
the turbulent stress due to the horizontal motions dominates.
We shall discuss these solutions in sect. 3.4.

3.3 Driving the meridional circulation

We are now ready to discuss on the basis of eq. (15) how the
meridional circulation inside a star is driven. If K is taken to
be as given in eq. (13), then ∇ × K would equal µT∇2ω and
it is clear that the last term in eq. (15) would be a term giv-
ing dissipation of vorticity. We easily see that eq. (15) is an
equation of the nature of eq. (5), with the first two terms on
the right hand side of eq. (15) as the source terms which drive
the meridional circulation. We now discuss the significance
of these crucial source terms.

The term −∇p×∇ρ/ρ2 is usually referred to as the thermal
wind term in astrophysical literature, while it is known as the
baroclinic vector in geophysical fluid dynamics (ref. [58], p.
31). Within the convection zone of a star like the Sun, the
ascending and descending convective blobs are deflected by
the Coriolis force −2Ω × v. This effect is less on the con-
vective blobs moving near the polar regions, where v would
tend to be in the same direction as Ω. Due to this, convective
heat transport is expected to be more efficient in the polar re-
gions. This is likely to make the polar temperature slightly
higher than the temperature at the equator. It was realized in

1) This expression of vrvϕ was derived by Lebedinski [48] in his paper written in Russian. I am grateful to Leonid Kitchatinov for bringing this derivation
to my attention.
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the 1970s that the effect of rotation on convection may make
the heat transport latitude-dependent and that this may give
rise to large-scale flows [59,60]. A higher temperature (and a
higher pressure) at the poles would drive a meridional circu-
lation which is equatorward near the surface. However, this
is exactly the opposite of what we observe! This means that
the other source term has to overcome this effect to drive the
meridional circulation in the correct direction. Let us point
out that the thermal wind term indeed mathematically leads
to a meridional circulation opposite to what is seen the Sun.
The thermal wind term arises when the contours of constant
ρ and constant p do not coincide. The solar surface can be
taken as a surface of constant ρ. If the polar region is hotter,
then a surface of constant p which intersects the solar sur-
face at mid-latitudes would be above the solar surface near
the poles and would be below the solar surface near the equa-
tor. It is easy to check that −∇p × ∇ρ will be positive in the
northern hemisphere. It then follows from eq. (15) that this
term will tend to drive a meridional circulation with positive
vorticity in the northern hemisphere, opposite to what we find
in the Sun, as pointed out in sect. 1.

Let us now turn our attention to the other source term
[∇× {v× (∇× v)}]ϕ in eq. (15). This term is clearly quadratic
in v. When we substitute the velocity field given by eqs. (2)
and (3) in this, we find that there are some terms which are
quadratic in meridional components vr, vθ and some terms
which are quadratic inΩ. We have already pointed out the ve-
locities associated with the meridional circulation are much
smaller than the velocities associated with the solar rotation
over much of the Sun. We now make the approximation of
keeping only the terms quadratic in Ω. Then, a few lines of
easy algebra give us:

[∇ × {v × (∇ × v)}]ϕ = r sin θ cos θ
∂

∂r
Ω2 − sin2 θ

∂

∂θ
Ω2.

(24)

To understand the significance of this expression, let us con-
sider a straight line APB parallel to the rotation axis OC at a
distance s = r sin θ from it, as shown in Figure 7. If z is mea-
sured upward from the equatorial plane OA, then z = r cos θ.
We can use s and z as our two independent spatial coordinates
in the place of r and θ. This means that(
∂

∂z

)
s
=

(
∂r
∂z

)
s

∂

∂r
+

(
∂θ

∂z

)
s

∂

∂θ
= cos θ

∂

∂r
− sin θ

r
∂

∂θ
. (25)

It then follows from eq. (24) that

[∇ × {v × (∇ × v)}]ϕ = r sin θ
∂

∂z
Ω2. (26)

Substituting this in eq. (15), we get

∂ωϕ

∂t
= r sin θ

∂

∂z
Ω2 − 1

ρ2 [∇p × ∇ρ]ϕ +
[
∇ ×

(
K
ρ

)]
ϕ

, (27)

which is our crucial equation. We may point out that, if we
had not neglected the terms quadratic in the meridional cir-
culation velocities, then there would have been the following
additional term in the left hand side of eq. (27):

+s∇.
(
vm
ωϕ

s

)
, (28)

which corresponds to the meridional circulation carrying the
vorticity with it.

Let us now discuss the physical significance of the first
source term in the right hand side of eq. (27). The appear-
ance of Ω2 suggests that this term may be connected with the
centrifugal force, which turns out to be the case. This term is
naturally called the centrifugal term. Suppose we consider
a straight line parallel to the rotation axis inside the solar
convection zone, like the line APB shown in Figure 7. It
is obvious that the centrifugal force near the equatorial re-
gion is larger than the centrifugal force at higher latitudes,
if the rotation profile inside the solar convection zone is as
shown in Figure 3—with higher Ω near the equatorial region.
If we subtract some mean centrifugal force averaged along
the line APB, then the net force near the equator would be in
the outward direction and the net force at higher latitudes in
the inward direction. This would tend to drive a meridional
circulation which is in the same sense as the meridional cir-
culation of the Sun, as indicated in the left panel of Figure 8.
The right panel of Figure 8 shows the kind of meridional cir-
culation that the thermal wind term would tend to drive. It

O

C

B

P OP=r

OA=s

AP=z

A

θ

Figure 7 A sketch indicating the relation of the (s, z) coordinates with the
(r, θ) coordinates.

Slow

Fast

Hot

Cool

Figure 8 (Color online) A figure indicating the directions in which the
source terms would tend to drive the meridional circulation. The left panel
indicates the centrifugal term and the right panel the thermal wind term.
From Kitchatinov [45].
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may be noted that, if Ω were constant along lines parallel to
the rotation axis like APB, then it is easy to write the centrifu-
gal force as a gradient, showing that it is a conservative force
in this situation. Only when Ω varies with z, the centrifugal
force becomes non-conservative and can drive a circulation.
When we turn to mathematics after understanding the physi-
cal concepts, it is easy to check that ∂Ω2/∂z in the solar con-
vection zone in the northern hemisphere is negative, showing
that the centrifugal term in eq. (27) would tend to produce
a meridional circulation with negative vorticity, which is the
case for the Sun in the northern hemisphere.

We thus conclude that the meridional circulation in the Sun
or similar stars arises out of the interplay between the two
source terms. The thermal wind term would try to drive a
meridional circulation in the sense opposite to what is seen in
the Sun. Presumably, the centrifugal term overcomes this and
drives the meridional circulation in the correct direction. Is it
possible that the entire solar surface is at the same tempera-
ture so that the thermal wind term is zero and the centrifugal
term alone drives the meridional circulation of the Sun in the
right direction? As shown in the Appendix, if we make an or-
der of magnitude estimate for the solar convection zone, the
dissipation term (i.e., the last term) in eq. (27) turns out to be
several orders of magnitude smaller compared to the centrifu-
gal term, when we use typical values of the large-scale flow
velocities in the Sun. If the centrifugal term alone was driving
the meridional circulation, then the centrifugal term arising
out of the solar rotation profile would drive a much stronger
meridional circulation. The only possibility is that the ther-
mal wind term must be nearly comparable to the centrifugal
term and should balance it. The small leftover part of the
centrifugal term must be driving the solar meridional circu-
lation. Kitchatinov and Rüdiger [54] estimated that the solar
pole has to be hotter by about 4 K compared to the equator to
give rise to a thermal wind term comparable to the centrifugal
term. There have been some attempts to measure if there is
any temperature variation on the solar surface from the equa-
tor to the pole [61, 62]. This is a difficult measurement and,
although the results may not be completely conclusive, there
are indications that the poles of the Sun are indeed slightly
hotter. We discuss in the Appendix how an order of magni-
tude estimate of the pole-equator temperature difference can
be made.

It is an intriguing question why the two source terms in eq.
(27) are comparable in magnitude. Presumably, this is not an
accident. Let us consider what would happen if the centrifu-
gal term becomes much larger. Then it would drive a much
stronger meridional circulation. We see in eq. (17) that the
meridional circulation can carry angular momentum with it,
changing the profile of Ω. A stronger meridional circulation
would change the profile of Ω in such a manner that the cen-

trifugal term given by eq. (26) is reduced, thereby decreasing
the meridional circulation. We believe that there is such a
feedback mechanism in the Sun which keeps the two source
terms in eq. (27) comparable in amplitude.

We now show how to cast the thermal wind term in a differ-
ent form involving the specific entropy S per unit mass, since
readers may often encounter the thermal wind term written in
this form in the literature. We have

∇p × ∇ρ =
(
∂p
∂r

er +
1
r
∂p
∂θ

eθ
)
×

(
∂ρ

∂r
er +

1
r
∂ρ

∂θ
eθ

)
=

1
r

(
∂p
∂r
∂ρ

∂θ
− ∂ρ
∂r
∂p
∂θ

)
eϕ. (29)

For a parcel of gas, we have the basic thermodynamic relation

T dS = CV dT + p d
(

1
ρ

)
, (30)

where CV is the specific heat per unit mass. Eliminating T by
using the ideal gas law p = (γ − 1) CVρT , eq. (30) can easily
be put in the form

dρ =
ρ

γ p
dp − ρ

γCV
dS . (31)

Substituting this for the differential of ρ in eq. (29), we arrive
at

∇p × ∇ρ = 1
r
ρ

γCV

(
∂S
∂r
∂p
∂θ
− ∂p
∂r
∂S
∂θ

)
eϕ. (32)

Now, convection tends to equalize entropy in the radial direc-
tion so that we have
∂S
∂r
≈ 0 (33)

within the convection zone. Also, the hydrostatic equilibrium
condition is
∂p
∂r
= −ρ g, (34)

where g is the acceleration due to gravity. Substituting eqs.
(33) and (34) in eq. (32), the dominant term is

∇p × ∇ρ
ρ2 =

g
rCP

∂S
∂θ

eϕ, (35)

where CP = γCV , as usual. Substituting this in eq. (27), we
get

∂ωϕ

∂t
= r sin θ

∂

∂z
Ω2 − g

rCP

∂S
∂θ
+

[
∇ ×

(
K
ρ

)]
ϕ

. (36)

If the poles are hotter, then clearly ∂S/∂θ is negative and the
thermal wind term tends to create positive vorticity in agree-
ment with our earlier discussion.

When the meridional circulation is maintained in a steady
state by a balance between the two large terms in eq. (36), we
have the thermal wind balance equation:

r sin θ
∂

∂z
Ω2 =

g
rCP

∂S
∂θ
. (37)
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Balbus et al. [63] pointed out that one can get a profile of the
differential rotation matching observations remarkably well
by integrating eq. (37) with the assumption that the S is
constant over contours of constant Ω so that we can write
S = f (Ω2). This bypasses the need for evaluating the turbu-
lent stress terms. However, the justifications for the assump-
tion S = f (Ω2) do not appear particularly compelling to us.

3.4 Large-scale fluid flows inside solar-like stars

In the previous sects. 3.1-3.3, we have presented the basic
physical ideas of how we can theoretically calculate large-
scale fluid flows like the differential rotation and the merid-
ional circulation inside stars. We basically need to solve
eqs. (16) and (27) simultaneously, with the time derivative
terms set to zero when we deal with a steady state, and ac-
companied by an equation for convective heat transport to
provide latitudinal variation of temperature that gives rise
to the thermal wind term. To follow this procedure, we
also need to know the turbulent stresses entering the theory
through the expression eq. (10) for K. We often make the
statement that the meridional circulation is driven by the tur-
bulent stresses in the convection zone. We should explain
what precisely we mean by this. We have pointed out that
turbulent stress terms like vrvϕ estimated in eq. (22) drive
the differential rotation. While such turbulent stresses may
not explicitly appear in eq. (27), they are the ultimate causes
of both the centrifugal term (arising out of the differential
rotation) and the thermal wind term, the two drivers of the
meridional circulation. That is why we expect the meridional
circulation to be confined to the convection zone.

The anisotropic viscosity model of Kippenhahn [51] gave
rise to a meridional circulation along with differential rota-
tion due to the centrifugal term, although the thermal wind
term was not included in this model. Köhler [64] presented
detailed computations of the meridional circulation based on
this model. As we already pointed out, Kitchatinov and
Rüdiger [54] calculated both the differential rotation and the
meridional circulation based on their mean field model. Due
to many uncertainties in the parameters of the mean field the-
ory, it is difficult to say conclusively whether the meridional
circulation should consist of a single cell in a hemisphere or
should have a more complicated structure [65]. For example,
Kitchatinov and Rüdiger [54] found two radially stacked cells
of the meridional circulation (see their Figure 1), whereas
slight modifications in the model led Kitchatinov and Olem-
skoy [66] to obtain a single cell. Now we briefly describe
some results presented by Karak et al. [67] based on the
model of Kitchatinov and Olemskoy [66].

As we pointed out in sect. 3.2, the nature of the differential
rotation induced depends on the nature of the turbulent stress.

If the star is weakly rotating (i.e., if the Coriolis number in-
troduced in sect. 3.2 is less than 1), then presumably radial
turbulent motions dominate and Ω near the equator ends up
with a lower value. On the other hand, if the star is rotating
fast (i.e., if the Coriolis number is more than 1), horizontal
turbulent motions may become more dominant and Ω near
the equator ends up with a higher value. Figure 9 shows the-
oretically computed angular velocity patterns inside the con-
vection zone of stars having mass equal to the solar mass,
but rotating with different rotation periods [67]. All the cases
shown in Figure 9 correspond to situations in which the ro-
tation of the star is sufficiently fast and the equatorial region
has the higher Ω (like the Sun). However, within this regime,
we see a clear trend. If the rotation is made faster (i.e., rota-
tion period shorter), then the contours of constant Ω tend to
become cylinders parallel to the rotation axis. On the other
hand, slower rotation tends to give contours constant over
cones, as in the Sun. Presumably, the Sun is rotating fast
enough to make the horizontal turbulent motions important
within the convection zone so that vrvϕ given by eq. (22) is
positive, but not fast enough to make Ω constant over cylin-
ders.

As Ω tends to become constant over cylinders for stars
rotating fast, it is obvious that ∂Ω2/∂z will tend to become
smaller. Since the main driver of the meridional circulation—
the centrifugal term given by eq. (26)—becomes weaker for
faster rotating stars, detailed computations show that the
meridional circulation is weaker in faster rotating stars and
tends to be confined to the edges of the convection zone
where the condition of constancy over cylinders is expected
to be violated in thin boundary layers. Some results [67] are
shown in Figure 10. As we shall discuss later, this result that
the meridional circulation becomes weaker for faster rotating
stars poses some problems in modelling stellar dynamos.
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Figure 9 (Color online) Theoretically computed profiles of angular veloc-
ity Ω(r, θ) in the poloidal planes of solar-mass stars with rotation periods of
30, 15, 5, and 1 d. The rotational frequencies in nHz are indicated by the
different colors. From Karak et al. [67], based on the model of Kitchatinov
and Olemskoy [66].
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Figure 10 (Color online) Theoretically computed component vθ (in m s−1)
of the meridional circulation at 45◦ latitude of solar-mass stars with different
rotation periods. Solid (red), dashed (black), dash-dotted (blue), and dot-
pointed (magenta) lines correspond to stars with rotation periods of 30, 15,
5, and 1 d, respectively. From Karak et al. [67], based on the model of
Kitchatinov and Olemskoy [66].

Although we do not intend to present a full discussion of
numerical simulations in this paper, we describe a few main
results. As already pointed out in sect. 3.2, simulations of
stellar convection showed that slowly rotating stars have anti-
solar differential rotation with the equatorial region having
lower Ω and rapidly rotating stars have solar-like differential
rotation with the equatorial region having higher Ω [55, 57].
However, rapidly rotating stars with accelerated equatorial re-
gions tend to have angular velocity constant over cylinders in
most of the simulations, indicating that the Taylor-Proudman
constraint is quite strong. Getting the angular velocity con-
stant over cones (as found by helioseismology) rather than
over cylinders has proved particularly difficult in numerical
simulations [68, 69]. If Ω is constant over cylinders, then the
centrifugal term given by eq. (26) would be much smaller
than what it is inside the Sun and the meridional circulation
which one gets from such simulations should be interpreted
with caution. Careful simulations of the meridional circula-
tion showed that it is possible to get single cell meridional
circulations for slowly rotating stars with decelerated equato-
rial regions, but rapidly rotating stars with accelerated equa-
torial regions tend to produce multiple cells of the meridional
circulation [56, 57, 70]. A typical result with such multiple
cells is shown in Figure 11. It may be noted that this result
is based on an MHD code including the dynamo action, lead-
ing to a variation of the meridional circulation with the solar
cycle. We shall discuss this problem in detail in sect. 5. Al-
though a single-cell meridional circulation in a hemisphere is
inferred in the most recent observational analysis [27] and is
also preferred in the recent dynamo models as we shall dis-
cuss in sect. 4, we have to confess that we do not have simple,
compelling arguments at the present time to explain why the
meridional circulation should be so.

While discussing the basic mathematical theory of the
differential rotation, we refrained from a discussion of the
boundary conditions at the top and the bottom of the convec-
tion zone which we need to impose while solving eq. (16).
If the observed conical isorotation contours within the con-
vection zone have to match with the solid body rotation in
the radiation zone underneath, then there has to be a bound-
ary layer at the interface. The tachocline is such a boundary
layer. Why the tachocline is so thin remains poorly under-
stood. Whether the meridional circulation or even magnetic
fields play a role in keeping the tachocline confined in a thin
layer is an intriguing question [71, 72]. Rempel [73] devel-
oped a model of large-scale flows by assuming simple forms
of the turbulent stress tensors and argued that the tachocline
may play an important role in breaking the Taylor-Proudman
constraint even within the convection zone. A careful look
at Figure 3 shows a boundary layer of strong shear even at
the solar surface. There have been attempts to model this
shear layer through simulations of the upper convection zone
[69,74]. While preparing this review, a novel idea for explain-
ing this shear layer occurred to the author and is presented in
a recent paper [75].

4 The role of meridional circulation in solar
dynamo models

After discussing the relevant observations and basic theoreti-
cal ideas connected with the meridional circulation, we now
turn our attention to the solar dynamo problem and the role
of the meridional circulation in it. Because of the paucity of
good pedagogical introductions to the theory of the merid-
ional circulation, we have discussed the basic theoretical
ideas about the meridional circulation in a pedagogical man-
ner in sect. 3. There are, however, convenient pedagogical
introductions to dynamo theory (ref. [47], Chapter 16; ref.
[76]; ref. [77], Chapter 8; ref. [78]) and also comprehensive
reviews [79-81]. In view of this, our discussion of the ba-
sics of dynamo theory will be very brief, assuming that the
readers are familiar with the fundamentals of MHD.

4.1 Basics of solar dynamo theory

Just as an axisymmetric velocity field can be written in the
form (1)-(3), an axisymmetric magnetic field can be written
as:

B = Bϕ(r, θ, t) eϕ + ∇ × [A(r, θ, t) eϕ], (38)

where Bϕ(r, θ) is called the azimuthal magnetic field and

Bp = ∇ × [A(r, θ, t) eϕ] (39)



A. R. Choudhuri Sci. China-Phys. Mech. Astron. March (2021) Vol. 64 No. 3 239601-15

(a) (c)(b)

m/s Meridional circulation cellsu  (r,  )θθ

1.0

−1.0

0.0

Figure 11 (Color online) The mean meridional circulation (averaged over turbulence) as found by Passos et al. [70] from their numerical simulation of the
solar convection. (a) shows how the θ component of the meridional circulation varies over the meridional plane. This can be compared with the observational
Figure 2. (b) and (c) give streamlines of the meridional circulation at the times of the solar minimum and the solar maximum. The dashed and solid lines
respectively indicate regions of negative and positive vorticity.

is called the poloidal magnetic field. The basic idea of dy-
namo theory is that the toroidal and the poloidal fields sustain
each other through a feedback loop. As we shall discuss be-
low, it is easy to see that the differential rotation can stretch
the poloidal field lines to create the toroidal field. How the
poloidal field can be generated back from the toroidal field is
more complicated. A crucial idea was due to Parker [82], who
suggested that turbulent helical motions can twist the toroidal
field to produce the poloidal field. Since the Coriolis force
due to the Sun’s rotation would cause the convective blobs in
the Sun’s convection zone to rotate, we clearly have helical
turbulence there which could conceivably twist the toroidal
field to produce the poloidal field.

The basic evolution equation of the magnetic field in MHD
is the well-known induction equation:

∂B
∂t
= ∇ × (v × B) − ∇ × (η∇ × B), (40)

where

η =
1
µ0σ

(41)

is often referred to as the magnetic diffusivity, σ being the
electrical conductivity. To study the behavior of the magnetic
field inside a turbulent fluid, we have to split both B and v into
a mean part and a fluctuating part as we did for the velocity
field in eq. (7). We write

B = B + B′, v = v + v′. (42)

Substituting into eq. (40) and averaging, we get

∂B
∂t
= ∇ × (v × B) + ∇ × E − ∇ × (η∇ × B), (43)

where

E = v′ × B′ (44)

is known as the mean EMF. Just as the turbulent stress ρ v′iv
′
j

appearing in eq. (10) is crucial in the theory of large-scale
flows, this mean EMF is crucial in dynamo theory. Steen-
beck et al. [83] developed the systematic mean field theory
of MHD in a turbulent situation, from which E can be calcu-
lated. If the turbulence is isotropic, then E can be written in
the form

E = αB − ηT ∇ × B, (45)

where

α = − 1
3

v′.(∇ × v′) τ, ηT =
1
3

v′.v′ τ, (46)

where τ is the correlation time (see ref. [47], sect. 16.5 for
a derivation). It is obvious from the expression of α in eq.
(46) that α is a measure of the helical turbulence in the fluid.
Substituting eq. (45) in eq. (43), we arrive at

∂B
∂t
= ∇ × (v × B) + ∇ × (αB) − ∇ × [(η + ηT)∇ × B]. (47)

Clearly ηT is of the nature of a diffusion coefficient, and eq.
(46) makes it clear that it arises out of turbulence. This tur-
bulent diffusion coefficient ηT is usually much larger than η,
which can be neglected compared to ηT. Also, as we shall be
dealing only with mean fields now onwards, we simplify the
notation by dropping the overline to indicate the mean, as we
did from eq. (11) onwards in sect. 3. Then we write eq. (47)
as:

∂B
∂t
= ∇ × (v × B) + ∇ × (αB) + ηT ∇2B, (48)

if we make the further simplifying assumption that ηT is spa-
tially constant. This is the fundamental equation of the tur-
bulent dynamo. If the spatial variation of ηT is important in a
problem, then an extra term has to be kept in this equation.

We shall assume that both the mean velocity field and the
mean magnetic field are axisymmetric. Then we can substi-
tute eqs. (3) and (38) for v and B in eq. (48). A few steps of
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easy algebra give us the following evolution equations of the
toroidal and the poloidal fields:

∂Bϕ
∂t
+

1
r

[
∂

∂r
(r vrBϕ) +

∂

∂θ
(vθBϕ)

]
= ηT

(
∇2 − 1

s2

)
Bϕ + s (Bp.∇)Ω, (49)

∂A
∂t
+

1
s

(vm.∇)(sA) = ηT

(
∇2 − 1

s2

)
A + α Bϕ, (50)

where s = r sin θ. We see in eq. (49) that the source term
for the toroidal field is s(Bp.∇)Ω which corresponds to the
stretching of the poloidal field by the differential rotation to
produce the toroidal field. The source term for the poloidal
field in eq. (50) is αBϕ which, in conjunction with the ex-
pression of α given in eq. (46), encapsulates Parker’s idea
of helical turbulence twisting the toroidal field to produce the
poloidal field [82].

When the first solar dynamo models were constructed in
the 1960s and 1970s, the existence of the meridional circu-
lation was not yet established and the dynamo modellers of
that era did not realize that such a flow may have important
consequences for the solar dynamo. Also, the helioseismol-
ogy results of Ω were not available at that time. Dynamo
modellers of that era would assume a “reasonable” profile of
Ω and then solve eqs. (49) and (50) after setting vm (and its
components vr, vθ) to zero. Such dynamo models are often
referred to as αΩ dynamos. It was found that one can ob-
tain a dynamo wave propagating towards the equator if the
condition

α
∂Ω

∂r
< 0 (51)

known as the Parker-Yoshimura sign rule is satisfied in the
northern hemisphere [82, 84]. It has been mentioned in
sect. 2.1 that sunspots appear at increasingly lower latitudes
with the progress of the solar cycle, leading to the butterfly
diagram of sunspots shown by the shaded areas in Figure 1.
The equatorward propagation of the dynamo wave was be-
lieved to provide the theoretical explanation for this drift of
sunspots with the solar cycle, and the solar dynamo models
of that era could give nice butterfly diagrams. We are aware
of only one paper of that era [85] which studied some effects
of the meridional circulation on the solar dynamo and pointed
out that the meridional circulation could change the appear-
ance of the butterfly diagram.

While these older models of the solar dynamo seemed rea-
sonably successful at that time, certain new developments in
solar physics made their inadequacies clear, paving the way
to the formulation of the flux transport dynamo model, in
which the meridional circulation plays a crucial role. We turn
to these developments now.

4.2 The flux transport dynamo model

Large sunspots often appear on the solar surface in pairs, with
the two members of the pair having opposite magnetic polar-
ities [86]. The appearance of such bipolar sunspot pairs is ex-
plained by Parker’s famous idea of magnetic buoyancy [87].
The line joining the two sunspots in a pair is usually approxi-
mately parallel to the solar equator, but with a tilt which tends
to increase with latitude in spite of a large statistical scatter
[86,88]. This dependence of the tilt on latitude is called Joy’s
law. This tilt is produced by the action of the Coriolis force
on the rising magnetic flux tubes [89].

As seen in Figure 3, the differential rotation is concentrated
in the tachocline at the bottom of the solar convection zone.
We believe that this is the region where strong toroidal field is
produced due to the action of the differential rotation on the
poloidal field. Presumably, this toroidal field can be stored
in a stable layer there and parts of it break out in the form of
magnetic flux tubes which rise through the convection zone
to produce sunspots at the solar surface. Using the thin flux
tube equation [90, 91], simulations have been carried out to
study the buoyant rise of flux tubes through the convection
zone to produce sunspots [89, 92-95]. These simulations fit
observational data well only if the magnetic field inside the
flux tubes at the bottom of the convection zone is taken to be
of order 105 G. However, helical turbulence will be unable to
twist such strong magnetic fields and the traditional α-effect
arising out of the α-coefficient given by eq. (46) cannot be
operational. The poloidal field has to be generated in some
other manner.

Recent solar dynamo models usually invoke an idea due
to Babcock [96] and Leighton [97] for the generation of
the poloidal field. They pointed out that, when tilted bipo-
lar sunspots decay and the magnetic field in them spreads
around, the magnetic field from the sunspot at the higher lat-
itude contributes more in building up the overall magnetic
field at higher latitudes. Like the traditional α-effect, the
Babcock-Leighton process also can be described by an α-
coefficient which is concentrated near the solar surface and
which appears in eq. (50) in exactly the same manner. Sur-
face observations of sunspot pair tilts suggest that α due to the
Babcock-Leighton process is positive in the northern hemi-
sphere. When combined with profile of Ω determined by he-
lioseismology, it was found that the Parker-Yoshimura sign
rule (51) is not satisfied at the low latitudes where sunspots
are seen. This suggests that the dynamo wave should propa-
gate poleward, in contradiction to the observations. We need
something to turn around the dynamo wave. Choudhuri et al.
[98] showed that the meridional circulation can do the job.

From the late 1980s, there were studies of how the pole-
ward meridional circulation near the solar surface advects so-
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lar magnetic fields [6, 99-101], and Wang et al. [102] con-
structed a 1D dynamo model incorporating the meridional
circulation. However, proper 2D models of the dynamo with
the meridional circulation were first constructed in 1995 by
Choudhuri et al. [98] and Durney [103], and developed fur-
ther in many subsequent papers [104-109]. If the toroidal
field is generated by the differential rotation in the tachocline
and there is equatorward meridional circulation there, then
the toroidal field can be advected equatorward, in spite of
the Parker-Yoshimura sign rule being violated, as shown by
Choudhuri et al. [98]. This would cause sunspots to form
at increasingly lower latitudes with the progress of the so-
lar cycle, whereas the poloidal field near the solar surface
is advected poleward by the poleward meridional circulation
there—in agreement with the observational data discussed
in sect. 2.1. Figure 12 taken from Chatterjee et al. [109]
presents a theoretical butterfly diagram obtained from a dy-
namo model, along with contours of constant Br at the solar
surface in a time-latitude plot. This theoretical figure can be
compared favourably with the observational Figure 1. Such a
remarkable agreement with observational data would be im-
possible without incorporating the meridional circulation in
this kind of dynamo model, known as the flux transport dy-
namo model. While different authors sometimes use this term
to mean slightly different things, we would refer to a dynamo
model as a flux transport dynamo model if the poloidal field
generation takes place by the Babcock-Leighton process and
the meridional circulation plays a crucial role in advecting
the toroidal field at the bottom of the convection zone and
the poloidal field at the surface. The meridional circulation
even decides the period of the dynamo cycle. The dynamo
period turns out to be essentially equal to the time taken by a
fluid element to travel from higher latitudes to lower latitudes
at the bottom of the convection zone. If the meridional cir-
culation is made stronger in the model, the period becomes
shorter [105].

It may be pointed out that most of the dynamo models
were worked out by assuming a single-cell meridional cir-
culation encompassing one full hemisphere, with the equa-
torward flow at the bottom of the convection zone. We men-
tioned in sect. 2.2 that the nature of the meridional circula-
tion deeper down inside the convection zone remains uncer-
tain. Hazra et al. [110] addressed the important question
of whether the flux transport dynamo model can match ob-
servational data if the meridional circulation is more compli-
cated. They solved the equations of the flux transport dynamo
for some arbitrarily complicated meridional circulations, two
of which are shown in Figure 13. They concluded that the
flux transport dynamo can work as long as there is a layer of
equatorward flow at low latitudes at the bottom of the con-
vection zone. Jouve and Brun [111] also presented solutions

of the flux transport dynamo with multi-cell meridional cir-
culation. If there is sufficiently strong downward pumping
as suggested in some convection simulations, that also can
give rise to an appropriate dynamo wave at the bottom of the
convection zone even if the return flow of the meridional cir-
culation occurs well above the bottom [112].

The flux transport dynamo models work best if the merid-
ional circulation is assumed to penetrate a little bit below the
bottom of the convection zone where the toroidal flux can be
stored in a stable layer [108, 113]. How much penetration is
possible remains controversial—some authors argued that the
meridional circulation cannot penetrate much into the stable
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Figure 12 Theoretical butterfly diagram from a flux transport dynamo sim-
ulation by Chatterjee et al. [109]. The latitudes where sunspots are seen at
a certain time are shaded, shown along with contours of constant Br in the
time-latitude plot.
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layer [114], whereas others have argued in favour of a con-
siderable penetration [115]. It has also been suggested that
the meridional circulation may play an important role in stor-
ing the strong toroidal field in the stable layer underneath the
bottom of the convection zone [116].

With indications that many other stars have cycles like the
Sun, one important question is whether flux transport dy-
namos work in other solar-like stars [117]. We have discussed
in sect. 3 how the large-scale flow patterns like the differential
rotation and the meridional circulation can be theoretically
calculated for stars rotating with different rotation periods.
Using such theoretically computed flow patterns, Karak et al.
[67] constructed flux transport dynamo models of solar-mass
stars rotating with different rotational velocities. They could
explain such observational features as the enhanced activity
for faster rotating stars. However, these models have some
difficulty in explaining the observational data that faster ro-
tating stars have shorter activity cycles. As we pointed out
in sect. 3.4, theoretical considerations suggest that faster ro-
tating stars have weaker meridional circulation, which would
lead to longer cycle periods [67, 118]. Hazra et al. [119]
have suggested that the inclusion of the downward turbulent
pumping may help in closing the gap between observations
and theory.

Although the 2D models of the flux transport dynamo have
been reasonably successful in modelling many aspects of the
solar cycle, one limitation of such models is that magnetic
buoyancy and the Babcock-Leighton process are inherently
3D processes. They are treated in 2D models with rather
drastic approximations [106, 120, 121]. Of late, there have
been attempts of developing 3D kinematic models of the
flux transport dynamo, in which the large-scale flows are as-
sumed to be given and the magnetic field is treated in a 3D
manner [122-125]. Another approach of treating the non-
axisymmetric nature of the Babcock-Leighton process is to
study the evolution of Br on the solar surface, under the ac-
tion of diffusion and the meridional circulation. See Jiang
et al. [126] for a survey of such surface flux transport mod-
els. While these models can handle the Babcock-Leighton
process at the solar surface quite satisfactorily, they cannot
treat the evolution of the magnetic fields in the polar regions
realistically by not including the submergence of the merid-
ional circulation underneath the surface near the polar regions
[124]. There have also been efforts of combining 2D flux
transport dynamo model (in r and θ) with the 2D surface flux
transport model (in θ and ϕ) [127].

4.3 Modelling irregularities in the solar cycle

We now turn to the important question of how the various ir-
regularities in the solar cycle arise (reviewed in ref. [128])

and shall see that the meridional circulation plays quite an
important role in this problem also. We first point out how
several time scales in the flux transport dynamo are related,
since an understanding of this will be necessary for our dis-
cussions.

If l is the thickness of the tachocline within which the mag-
netic diffusivity is ηtach, then the diffusion time within the
tachocline is l2/ηtach. In order for magnetic fields to be ad-
vected within the tachocline by the meridional flow velocity
of order v, the time scale R⊙/v of the meridional circulation
has to be shorter than this. Since the magnetic diffusivity ηT

inside the convection zone is expected to be several orders of
magnitude larger than that in the tachocline, we expect the
diffusion time scale L2/ηT within the convection zone (L is
the thickness of the convection zone) to be much shorter than
that within the tachocline. We basically have two possible
ordering of these various time scales

L2/ηT < R⊙/v < l2/ηtach, (52)

or

R⊙/v < L2/ηT < l2/ηtach. (53)

Dynamo models have been constructed both satisfying (52)
[109, 129, 130] and (53) [105, 131]. As long as we are inter-
ested only in modelling periodic features of the solar cycle,
both types of models had reasonable success. However, when
we introduce fluctuations in the dynamo model for modelling
the irregularities of the cycle, models satisfying (52) and (53)
behave very differently [130, 132], as we shall discuss be-
low. When (52) is satisfied, the poloidal field produced at
the surface by the Babcock-Leighton mechanism reaches the
tachocline (where it is stretched to produce the toroidal field)
by diffusion rather than by advection due to the meridional
circulation. However, as the meridional circulation is much
faster at the surface, it may be possible even in this case to
have a poleward transport of the poloidal field at the surface
(the polar convergence of the flow from different longitudes
also strengthens the polar field against diffusion).

Since magnetic stresses can quench the flows driving the
dynamo (treated in kinematic models by introducing some
heuristic quenching terms), the dynamo problem is essen-
tially nonlinear. It was initially thought that the nonlineari-
ties cause the irregularities in the dynamo cycles [133]. After
it was realized that the most obvious types of nonlinearities
cannot produce sustained irregularities, the attention in the
last few years has been turned to stochastic fluctuations in
the dynamo [134]. However, the nonlinearities are proba-
bly responsible for certain kinds of irregularities. For exam-
ple, the Gnevyshev-Ohl rule that the odd cycle tends to be
stronger than the preceding even cycle is likely be a mani-
festation of period doubling in a nonlinear system [135,136].
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It may pointed out that some dynamo models with nonlinear
magnetic back-reaction on the differential rotation produced
modulations of the cycle amplitude with time scales larger
than the cycle period, including grand minima, if the mag-
netic Prandtl number was taken to be much smaller than 1
[137-139].

Let us now turn to the possible sources of stochastic fluc-
tuations in the solar dynamo. One finds a scatter in the tilt
angles of sunspot pairs around the mean tilt satisfying Joy’s
law [88]. While the mean tilt results from the action of the
Coriolis force on rising flux tubes [89], the scatter is pre-
sumably caused by the buffeting due to turbulence when the
flux tubes rise through the convection zone [140]. This im-
plies that the Babcock-Leighton process for generating the
poloidal field from tilted bipolar sunspots should involve fluc-
tuations [129]. If such fluctuations are introduced in theoret-
ical dynamo models satisfying (52), then their effects spread
through the convection zone in a few years. On the other
hand, fluctuations introduced in models satisfying (53) do not
diffuse much, but get carried with the meridional circulation.
The strength of the cycle 24 predicted by Dikpati and Gilman
[131] based on a dynamo model satisfying (53) completely
failed to match observations, whereas the strength predicted
by Choudhuri et al. [129] based on a dynamo model satis-
fying (52) turned out to be the first successful dynamo-based
prediction of a solar cycle before its onset. The higher tur-
bulent diffusivity of the convection zone corresponding to the
condition (52) also helps in explaining the preferred dipo-
lar parity of the Sun [109, 141] and the lack of significant
hemispheric asymmetry [142, 143]. It appears that the solar
situation corresponds to the condition (52) rather than (53).
Dynamo models with stochastic fluctuations in the Babcock-
Leighton process can also produce grand minima like the
Maunder minimum [144].

As we pointed out in sect. 2.4, there is evidence of random
fluctuations in the meridional circulation of the Sun having
correlation time of order 30-40 yr. This is a second impor-
tant source of fluctuations which is expected to affect the
dynamo. Let us try to figure out as to what will happen if
the meridional circulation becomes weaker during an epoch
due to these fluctuations. As discussed in sect. 4.2, a slower
meridional circulation will make the period of the dynamo
longer. This will give rise to two competing effects. The dif-
fusion will have a longer time to act, thereby trying to make
the magnetic fields weaker. The differential rotation also will
have a longer time to produce a stronger toroidal magnetic
field. Which of these two effects dominates will depend on
whether the condition (52) or the condition (53) is satisfied. If
the condition (52) holds, then diffusion will be dominant and
longer cycles will be weaker. On the other hand, if the condi-
tion (53) holds, then the differential rotation generating more

toroidal field will be the dominant process, making longer
cycles stronger. Observational data indicate that it is the first
possibility—longer cycles are weaker—which holds for the
Sun, again suggesting that the condition (52) is the appro-
priate condition for the Sun. One observational fact known
as the Waldmeier effect—that shorter cycles rise faster—is a
consequence of this. If shorter cycles are stronger, they are
certainly expected to rise faster. Only by considering fluctu-
ations in the meridional circulation causing the durations of
different cycles unequal, it has been possible to provide a the-
oretical explanation of the Waldmeier effect in the flux trans-
port dynamo model [40]. It is curious to note that an early
work on an αΩ dynamo model with fluctuations (without the
meridional circulation) gave correlations like the Waldmeier
effect [145].

Taking the fluctuations in the meridional circulation to
be the only fluctuations in the solar dynamo process, Karak
[146] succeeded in modelling the irregularities of the solar
cycle to some extent. Since fluctuations in the Babcock-
Leighton process are also present, a full theory should be
based on the combined effect of both of these types of fluctu-
ations. Choudhuri et al. [129] made their prediction for cycle
24 at a time when the importance of fluctuations in the merid-
ional circulation was not realized and these fluctuations were
not taken into account. Presumably, this prediction turned out
to be so successful because there was no big random change
in the meridional circulation between the time of the predic-
tion and the peak of the next cycle. A prediction of a fu-
ture cycle should take into account both fluctuations in the
Babcock-Leighton process and fluctuations in the meridional
circulation. Observational data suggest that changes in the
meridional circulation may take a few years to have an ef-
fect on the strength of the solar cycle [147]. This delay in
the effect of the meridional circulation enables us to use the
value of the meridional circulation at the end of a cycle (from
the rate of decline of the cycle at that time) which is appro-
priate for determining the strength of the next cycle. Also,
the poloidal field at the end of the cycle provides information
about the fluctuations in the Babcock-Leighton process that
is needed for predicting the next cycle. Hazra and Choudhuri
[148] have developed a formula for predicting the next cycle
by using the decline rate and the poloidal field at the end of
the previous cycle.

At last, we come to the question of explaining the most ex-
treme events in the irregularities of the solar cycle—the grand
minima when sunspots may disappear for several decades.
From the analysis of 14C concentration in tree rings, it has
been possible to infer that there had been about 27 grand
minima in the last 11000 years [149]. If the fluctuations
in the Babcock-Leighton process make the poloidal field at
the end of a cycle too weak, or if the fluctuations in the
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meridional circulation make it too slow (keep in mind that
a slower meridional circulation leads to a longer cycle of
weaker strength), then that may drive the dynamo into a grand
minimum. Dynamo simulations suggest that it is possible
to produce grand minima by considering fluctuations in the
Babcock-Leighton process alone [144] or in the meridional
circulation alone [146], if the fluctuations are assumed to be
sufficiently large. Considering both kinds of fluctuations si-
multaneously and choosing the statistical parameters of these
fluctuations on the basis of past observations, Choudhuri and
Karak [150] succeeded in explaining the statistical proper-
ties of grand minima reasonably well. Presumably, the grand
minima are produced by the combined effect of fluctuations
in both the Babcock-Leighton process and the meridional cir-
culation [150, 151].

5 Back reaction of the dynamo on the merid-
ional circulation

We presented our discussion of large-scale fluid motions in
sect. 3 by assuming that there is no magnetic field present.
If a magnetic field is present in the fluid, then it gives rise
to the Lorentz force, which has to be included in the basic
dynamical equation (11) such that it becomes

∂v
∂t
+∇

(
1
2

v2
)
−v × (∇ × v) = − ∇p

ρ
+F+

K
ρ
+

(∇ × B) × B
µ0 ρ

.

(54)

The Lorentz force term can be written as:

FL =
(∇ × B) × B
µ0ρ

= − 1
ρ
∇

(
B2

2µ0

)
+

(B.∇)B
µ0 ρ

. (55)

The first term on the right hand side indicates that the mag-
netic field has a pressure B2/2µ0 associated with it. The other
term is of the nature of magnetic tension. If magnetic field
lines are straight and parallel in a region, it is easy to see that
(B.∇)B will be zero in that region. This term arises when the
magnetic field lines are bent and tries to straighten the field
lines. Another effect of the magnetic tension is that it tries to
shorten the lengths of magnetic field lines.

The magnetic field generated in the Sun by the dynamo
action will certainly have a Lorentz force associated with
it. This Lorentz force, appearing in eq. (54) as shown
above, would affect both the turbulent motions and the mean
motions. The analytical theory of how turbulent motions
are affected by the Lorentz force is extremely complicated
[152, 153]. Here we focus our attention on the action of the
Lorentz force on the large-scale mean motions. In sect. 2.4
we mentioned torsional oscillations and variations of the
meridional circulation with the solar cycle. Before getting

into the mathematical theory of these, let us present the main
physical ideas qualitatively. One important ingredient of the
dynamo process is that the poloidal field lines get stretched by
the differential rotation to create the toroidal field. We expect
a field line to look as shown in Figure 14(a). Note that this
is a two-dimensional representation of a three-dimensional
field line, of which the middle part is dragged in the forward
azimuthal direction. Such a field line would have a tension
force in the direction of the thick arrow, inducing motions in
the opposite azimuthal direction. We believe that this is how
torsional oscillations are driven. To figure out the effect of the
magnetic field on the meridional circulation, we keep in mind
that the toroidal magnetic field in the tachocline at the bottom
of the convection zone, as shown in Figure 14(b), would be
the dominant component of the magnetic field at the time of
the solar maximum. Due to magnetic tension, the toroidal
field lines will try to shorten their lengths. Motions in the
radial direction would be inhibited if the layer of tachocline
where the toroidal field is stored is stable. The easiest way
for the toroidal field lines to shorten their lengths is to slip
in the poleward direction, which means that we would have
a force as indicated by the thick arrow in Figure 14(b). This
force would clearly oppose the equatorward meridional cir-
culation at the bottom of the convection zone, causing a de-
crease in the meridional circulation speed there at the time of
the solar maximum. If we can show that this decrease in the
meridional circulation at the bottom of the convection zone
will lead to an overall decrease of the meridional circulation
throughout the convection zone, then we shall have an expla-
nation of the observational data shown in Figure 4. We now
turn to a discussion of the mathematical formulation of these
qualitative ideas.

To calculate the back reaction of the dynamo-generated
magnetic fields on the large-scale flows crucial for driving

(a) (b)

Figure 14 Sketches of (a) a typical magnetic field line inside the Sun and
(b) a band of strong toroidal field at the bottom of the solar convection zone.
The thick arrows indicate the parts of the Lorentz force which drive (a) tor-
sional oscillations and (b) variations in the meridional circulation with solar
cycle.
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the dynamo, we need to solve eq. (54) along with the dynamo
equations (49) and (50), which give the magnetic fields re-
quired to evaluate the Lorentz force term in eq. (54). Rempel
[154] followed such a procedure and showed that the back
reaction gives rise to torsional oscillations and variations in
the meridional circulation. Here we shall discuss the action
of the Lorentz force on azimuthal motions and meridional
motions separately, since that makes the basic physics of the
problem clearer. One simple way of incorporating the fact
that the meridional circulation becomes weaker when there
are strong magnetic fields is to include a quenching due to
magnetic fields in the expression of the meridional circulation
[155]. Such a quenching has a tendency of making dynamos
satisfying condition (53) unstable, adding additional support
to our contention that the condition (52) is the appropriate
condition for the solar dynamo.

Let us first consider the azimuthal motions which may be
driven by the Lorentz force. We have to consider the ϕ com-
ponent of eq. (54). This is nothing but eq. (16) with an ad-
ditional term corresponding to the ϕ component of FL given
by eq. (55). If we calculate (∇ × B) × B by using the expres-
sion (38) of the magnetic field, this additional term is found
to have an elegant form:

(FL)ϕ =
1

µ0 ρ s3 J
(

sBϕ, sA
r, θ

)
(56)

involving a Jacobian which essentially is a product of terms
having toroidal and poloidal components. This is in agree-
ment with Figure 14(a) which suggests that the Lorentz force
driving azimuthal motions should involve both the toroidal
and the poloidal components. Chakraborty et al. [38] solved
the dynamo equations (49) and (50) along with eq. (16) with
the additional term given by eq. (56). They were able to de-
velop a model of torsional oscillations which agreed reason-
ably well with observational data. Earlier theoretical efforts
are cited in this paper.

We now turn to the problem which is of central interest
to us: how variations in the meridional circulation with the
solar cycle are produced by the Lorentz force. For this pur-
pose, we have to take the curl of eq. (54) and consider its ϕ
component. This leads to eq. (27) with the additional term
(∇×FL)ϕ. Taking the magnetic field as given by eq. (38) and
using the expression (55) for FL, we find that the dominant
terms in the expression of this additional term are

(∇ × FL)ϕ =
1
µ0 ρ

[
1
r2

∂

∂θ
(B2
ϕ) −

cot θ
r
∂

∂r
(B2
ϕ)

]
. (57)

We note that the dominant terms in the part of the Lorentz
force that causes variations in the meridional circulation
arise from the toroidal component, in accordance with Fig-
ure 14(b). To find out how the meridional circulation varies

with the solar cycle, we need to solve the dynamo equations
(49) and (50) along with eq. (27) with the additional term
given by eq. (57). Hazra and Choudhuri [156] solved this
problem by following a perturbative approach, in which vm

and its vorticity ωϕ were divided into a time-independent av-
erage part denoted by subscript 0 and a part varying with the
solar cycle denoted by subscript 1, i.e.,

vm = v0 + v1, ωϕ = ω0 + ω1. (58)

Substituting this in eq. (27) with the additional term given
eq. (57) and subtracting from it the equation for ω0, we end
up with the equation for the perturbed part

∂ω1

∂t
+ s∇.

(
v0
ω1

s

)
+ s∇.

(
v1
ω0

s

)
=

1
µ0 ρ

[
1
r2

∂

∂θ
(B2
ϕ) −

cot θ
r
∂

∂r
(B2
ϕ)

]
+

[
∇ ×

(
K1

ρ

)]
ϕ

. (59)

Note that we have included the small term given by eq. (28),
since we are dealing with the equation of a small perturbed
quantity. We have also assumed that the turbulent stress term
K can be written in a form linear in the mean velocity as in
eq. (13) and write the part of K associated with v1 as K1. It is
clear from eq. (59) that a part of the Lorentz force associated
with the toroidal magnetic field causes the variations in the
meridional circulation with the solar cycle. Solving the full
equation (27) with the additional term (57) would be a partic-
ularly challenging problem, since it would involve evaluating
the thermal wind term which requires thermodynamics in ad-
dition to fluid mechanics. When we subtract the equation
for ω0 from the full equation, the thermal wind term drops
out and it becomes a much more tractable problem. Hazra
and Choudhuri [156] solved eq. (59) with the dynamo equa-
tions (49) and (50) to develop a theory of the variations of the
meridional circulation with the solar cycle.

Let us now point out one puzzle, which still remains unre-
solved. It is clear from eq. (56) that the part of the Lorentz
force driving torsional oscillations is quadratic in toroidal
and poloidal components, whereas eq. (57) indicates that the
part driving variations in the meridional circulation involves
a simple square of the toroidal component. Since the toroidal
component is much stronger than the poloidal component in
the Sun, we conclude that the driver of the variations in the
meridional circulation is much stronger than the driver of the
torsional oscillations. We then expect the variations in the
meridional circulation to have a much larger amplitude than
that of the torsional oscillations. Observationally, however,
both these amplitudes are found to be comparable—of order
5 m s−1 in the top layers of the convection zone. Even sim-
ple order of magnitude estimates suggest that the variations
in the meridional circulation with the solar cycle should be
much larger than what they are [156]. We still do not have
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a resolution of this puzzle. If the Lorentz force appearing in
eq. (59) is divided by a suitable factor, then our theoretical
model gives variations in the meridional circulation agreeing
with observational data reasonably well.

Since ω0 for the meridional circulation in the northern
hemisphere is negative, we want ω1 to be positive at least
in some regions of the northern hemisphere at the time of the
solar maximum so that the meridional circulation becomes
weaker at that time. Figure 15 taken from Hazra and Choud-
huri [156] shows how Bϕ, (∇×FL)ϕ andω1 vary during the so-
lar cycle, the second column corresponding to the solar max-

imum. It can be seen that the relevant part (∇ × FL)ϕ of the
Lorentz force andω1 driven by it are both predominantly pos-
itive in the northern hemisphere at that time. We expect this
to weaken the meridional circulation at the time of the solar
maximum. Figure 16 shows how the meridional circulation
at the mid-latitude at the surface varies with time, along with
the sunspot number calculated from the theoretical dynamo
model. This figure compares favourably with Figure 4.

MHD simulations of stellar convection zone dynamics
give rise to dynamo cycles and the meridional circulation
varying with these cycles. This is clearly seen in Figure 11.

Figure 15 (Color online) The evolution within the solar convection zone of the toroidal magnetic component Bϕ (top row), the part (∇ × FL)ϕ of the Lorentz
force driving the variations in the meridional circulation (middle row) and the perturbed vorticity ω1 associated with the meridional circulation variations
(bottom row). The successive columns correspond to the profiles at intervals of T/8 (T is the dynamo period), the second column corresponding to the solar
maximum and the fourth column to the solar minimum. In the bottom row, the red color corresponds to clockwise vorticity, which will oppose ω0 in the
northern hemisphere (the blue color corresponding to anti-clockwise vorticity will do the same in the southern hemisphere). From Hazra and Choudhuri [156].
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The variation of the meridional circulation with the dynamo
cycle was studied very carefully and thoroughly by Passos et
al. [157]. Apart from directly exerting a Lorentz force on the
large-scale flows like the differential rotation and the merid-
ional circulation, the dynamo-generated magnetic fields can
also modify the turbulent stresses which drive the large-scale
flows. This second effect, which is usually not included in
the mean field models, is automatically taken into account
in the MHD simulations. However, these simulations so far
have certain other limitations. These MHD simulations have
demonstrated that dynamo action indeed takes place in stellar
convection zones and it is possible to get periodic solutions.
However, so far these simulations have not yielded solutions
which can be regarded as realistic representations of the flux
transport dynamo. These simulations are still far from match-
ing actual solar cycle data, which a mean field model can do
with a suitable specification of parameters, as seen in Fig-
ure 12. The meridional circulation obtained in these simu-
lations also has a multi-cell structure as shown in Figure 11.
Simulations can study the variations in such a meridional cir-
culation with the dynamo cycle, even though either the dy-
namo cycle or the mean meridional circulation may not look
very solar-like. The advantage of the mean field approach
outlined in this section is that one can choose the various pa-
rameters appropriately to have solar-like cycles and solar-like
v0, from which the time-varying part v1 can be calculated.
Thus, both the mean field approach and the simulations ap-
proach have their relative advantages and limitations while
modelling the variations of the large-scale flows in the Sun.
Both these complementary approaches should be pursued to
gain a deeper insight into this complex problem.

Figure 16 (Color online) The variation of the meridional circulation just
below the solar surface at latitude 25◦ (black dashed line), as computed from
a theoretical model. The theoretical sunspot number (red solid line) is also
shown. From Hazra and Choudhuri [156].

There have been efforts of explaining the variations of the
meridional circulation with the solar cycle on the basis of in-
ward flows towards active region belts—presumably driven
by the fall in gas pressure in such belts [39]. Now that such
cycle variations of the meridional circulation have been con-
firmed observationally even at the bottom of the convection
zone [27], such an explanation based on a local surface phe-
nomenon does not appear convincing to us.

6 Conclusions

This review focuses on the meridional circulation of the
Sun—driven presumably by turbulent stresses in the solar
convection zone. Well before the current era of research
in this field, Eddington [158] and Sweet [159] pointed out
the possibility of meridional circulations inside rotating stars.
Due to the polar flattening in a rotating star, the temperature
gradient tends to be steeper in the polar region. It may not
be possible to reconcile this with the nuclear energy gener-
ation process without incorporating a meridional circulation
in the star, even in the radiatively stable regions. Since the
rotational flattening of the Sun is very small, the Eddington-
Sweet circulation inside the Sun would be very slow with a
time scale of order 1012 yr—much larger than the age of the
Universe (ref. [160], sect. 42.5). The meridional circulation
that we observe in the Sun is certainly a very different thing.

The meridional circulation, which was first observed at the
solar surface, is expected to be confined within the convec-
tion zone. This circulation is now realized to be an important
component of the solar dynamo process which generates the
solar magnetic field and its cycle. We believe that such a
circulation exists in other solar-like stars as well, in which
the dynamo cycles are probably generated in the same man-
ner [117]. Even for compact stars like neutron stars accret-
ing matter from a companion, flows in the meridional plane
play a crucial role in the evolution of their magnetic fields
[161, 162]. While helioseismology has thrown considerable
light on the nature of the meridional circulation underneath
the solar surface, its nature in lower regions of the convection
zone still remains uncertain, although recent results support
the view that the equatorward flow exists at the bottom of the
convection zone [27]. Theoretical dynamo models work best
if the meridional circulation is assumed to have a single cell
spanning the whole of the convection zone in a hemisphere,
although more complicated circulations satisfying certain cri-
teria can also be accommodated [110].

The theoretical discussions in this review are primarily
based on 2D mean field models, since such models make
the physics of the problem clear. The theory of the merid-
ional circulation is intimately connected with the theory of



A. R. Choudhuri Sci. China-Phys. Mech. Astron. March (2021) Vol. 64 No. 3 239601-24

the other large-scale fluid flow pattern inside the Sun: the
differential rotation. The Coriolis force due to the Sun’s rota-
tion induces horizontal motions within the convection cells,
which may give rise to a transport of angular momentum
away from the rotation axis—leading presumably to a faster
rotating equatorial region. Such a pattern of differential rota-
tion gives rise to a centrifugal term driving the meridional cir-
culation in the direction consistent with observations. How-
ever, this term is opposed by a thermal wind term arising out
of the fact that the Sun’s poles are probably slightly hotter
(about 4 K according to ref. [54]) due to the more efficient
convection in the polar regions. It seems that these two terms
are comparable in magnitude and a slight imbalance between
them drives the meridional circulation.

Solar dynamo models initially started being developed at
a time when even the existence of the meridional circulation
was not known. The early models without the meridional cir-
culation had various difficulties which led to the formulation
in the 1990s of the flux transport dynamo model, in which
the meridional circulation plays a central role and even deter-
mines the period of the dynamo cycle. Irregular fluctuations
in the meridional circulation (which seem to have a coherence
time of about 30-40 yr [40]) are important in explaining many
aspects of the irregularities in the solar cycle, in making com-
prehensive models of grand minima [150] and in predicting
future cycles [148]. The Lorentz force of the magnetic fields
generated by the dynamo can react back on the large-scale
flows like the differential rotation and the meridional circula-
tion causing their periodic variations with the solar cycle.

Since the meridional circulation, the differential rotation
and the dynamo action are all related to each other, a full
2D mean field model should require simultaneous solution of
eqs. (16), (27), (49) and (50) with the additional terms (56)
and (57) added to eqs. (16) and (27) respectively. Since a cal-
culation of the thermal wind term in eq. (27) needs a realistic
model of convective heat transport in which the effect of the
Coriolis force on convection cells is included, an equation of
heat transport also has to be solved along with the equations
listed above. Additionally, we need a theoretical model to
calculate the turbulent stresses appearing in eq. (10), which
would enter eqs. (16) and (27). Solving all these together is a
formidable problem. Much of our theoretical understanding
of this field has come from solutions of parts of this full prob-
lem. This review focuses on such studies of parts of the full
problem, which elucidate many aspects of basic physics. In
spite of the major advances in the last few years, many issues
remain poorly understood. We hope that in the near future
observations, mean field models and numerical simulations
will go hand in hand to solve many of the remaining puzzles.

This review is dedicated to the memory of late Bernard Durney, who kindled

my first interest in the theory of the meridional circulation many years ago
and whose seminal contributions in this field are often not sufficiently recog-
nized. Peng-Fei Chen urged me to write this review. I thank Gopal Hazra,
Bidya Karak and Leonid Kitchatinov for valuable inputs and suggestions on
a preliminary version of the manuscript. Suggestions from three anonymous
referees helped greatly in improving the review.
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107 M. Küker, G. Rüdiger, and M. Schultz, Astron. Astrophys. 374, 301

(2001).
108 D. Nandy, and A. R. Choudhuri, Science 296, 1671 (2002).
109 P. Chatterjee, D. Nandy, and A. R. Choudhuri, Astron. Astrophys.

427, 1019 (2004).
110 G. Hazra, B. B. Karak, and A. R. Choudhuri, Astrophys. J. 782, 93

(2014), arXiv: 1309.2838.
111 L. Jouve, and A. S. Brun, Astron. Astrophys. 474, 239 (2007).
112 G. Guerrero, and E. M. de Gouveia Dal Pino, Astron. Astrophys. 485,

267 (2008).
113 A. R. Choudhuri, D. Nandy, and P. Chatterjee, Astron. Astrophys.

437, 703 (2005).
114 P. A. Gilman, and M. S. Miesch, Astrophys. J. 611, 568 (2004).
115 P. Garaud, and J. D. Garaud, Mon. Not. R. Astron. Soc. 391, 1239

(2008), arXiv: 0806.2551.
116 A. A. van Ballegooijen, and A. R. Choudhuri, Astrophys. J. 333, 965

(1988).



A. R. Choudhuri Sci. China-Phys. Mech. Astron. March (2021) Vol. 64 No. 3 239601-26

117 A. R. Choudhuri, Sci. China-Phys. Mech. Astron. 60, 019601
(2017), arXiv: 1612.02544.

118 L. Jouve, B. P. Brown, and A. S. Brun, Astron. Astrophys. 509, A32
(2010), arXiv: 0911.1947.

119 G. Hazra, J. Jiang, B. B. Karak, and L. Kitchatinov, Astrophys. J.
884, 35 (2019), arXiv: 1909.01286.
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Appendix Order of magnitude estimates of
various terms in the equation driving the merid-
ional circulation

We pointed out in sect. 3.3 that there should be a pole-equator
temperature difference to give rise to a thermal wind term
comparable to the centrifugal term and that the dissipation
term should be negligible compared to these source terms.
Now we present some order of magnitude estimates of these
terms.

Let us first proceed with the assumption that the dissipa-
tion term is negligible and the thermal wind balance condition
(37) holds within the convection zone. It is easy to argue that
the left hand side of eq. (37) is approximately equal to

r sin θ
∂

∂z
Ω2 ≈ −[Ω2

eq −Ω2
mid], (a1)

where Ωeq and Ωmid are the surface values of Ω at the equator
and at the mid-latitude respectively. The respective values of
frequency at these points are 440 and 400 nHz (see Figure 3),
from which the values of Ω can be obtained by a multiplica-
tion with 2π. We thus have

r sin θ
∂

∂z
Ω2 ≈ −[(440)2 − (400)2] × (2π10−9)2 s−2

≈ −1.3 × 10−12 s−2. (a2)

To make an estimate of the right hand side of eq. (37), we
note that the specific entropy of an ideal gas is given by

S = CV ln T − (γ − 1) CV ln ρ + K,

where K is a constant. The entropy difference between the
equator and the pole at the solar surface (which is a surface
of constant ρ) is

∆S = CV ln
(

Teq

Tpole

)
.
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Taking ∆T to be the temperature excess of the pole with re-
spect to equator, we have

∆S ≈ −CV
∆T
TS
, (a3)

where TS is the temperature of the solar surface and we have
made use of the approximation ln(1+x) ≈ x for |x| ≪ 1. Since
this entropy difference takes place over an angular separation
π/2, we have

∂S
∂θ
≈ −2CV

∆T
πTS
. (a4)

Substituting this in the right hand side of eq. (37), we get

g
rCP

∂S
∂θ
≈ − 2

πγ

GM⊙
(0.85R⊙)3

∆T
TS
, (a5)

where we have taken r to be given by 0.85R⊙ corresponding
to the middle of the convection zone and have also used this
to calculate g. If we now use the standard values of solar
mass and radius, then we get (taking γ = 1.4)

g
rCP

∂S
∂θ
≈ −2.9 × 10−7∆T

TS
s−2. (a6)

Finally, if we equate eq. (a2) and (a6) as required by the
thermal wind balance condition (37), we arrive at

∆T
TS
≈ 4.5 × 10−6. (a7)

If we take TS equal to the temperature 5800 K at the pho-
tospheric surface, then we get a rather low value ∆T ≈
2.6 × 10−2 K. But, should we use the photospheric temper-
ature for TS in eq. (a7)? Choudhuri [75] has argued that we
should use a temperature deeper in the convection zone for TS

and pointed out that these order of magnitude estimates pro-
vide a clue for understanding the origin of the near-surface
shear layer seen in Figure 3.

We now make an order of magnitude estimate of the last
term in eq. (27) of the meridional circulation, the dissipation
term, to show that it would be negligible compared to the cen-
trifugal term. If K is given by eq. (13), then the last term in
eq. (27) is of order

µT|vm|
ρL3 ,

where we can take the length scale L to be equal to the
thickness 2 × 1010 cm of the convection zone. The quantity
µT/ρ, called the kinematic viscosity, is estimated to be about
1012 cm2 s−1 within the convection zone [130]. Taking
|vm| ≈ 103 cm s−1, the value of the last term in eq. (27)
comes out to be of order 1.3 × 10−16 s−2. Comparing with
eq. (a2), we point out that this term clearly cannot balance
the centrifugal term, which has to be balanced by the thermal
wind term, as can be seen in eq. (27).
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