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Abstract. We report quantitative analysis of the radial gradient of solar angular velocity at depths
down to about 15 Mm below the solar surface for latitudes up to 75◦ using the Michelson Doppler
Imager (MDI) observations of surface gravity waves (f modes) from the Solar and Heliospheric
Observatory (SOHO). A negative outward gradient of around −400 nHz/R�, equivalent to a loga-
rithmic gradient of the rotation frequency with respect to radius which is very close to −1, is found
to be remarkably constant between the equator and 30◦ latitude. Above 30◦ it decreases in absolute
magnitude to a very small value at around 50◦. At higher latitudes the gradient may reverse its sign:
if so, this reversal takes place in a thin layer extending only 5 Mm beneath the visible surface, as
evidenced by the most superficial modes (with degrees l > 250). The signature of the torsional
oscillations is seen in this layer, but no other significant temporal variations of the gradient and value
of the rotation rate there are found.

1. Introduction

The velocity field of the rotational flow in the Sun’s near-surface layers may play
a significant role in small-scale dynamo action in that region and in the dynamics
of supergranular convection. Surface observations over decades and even centuries
have shown that the latitudinal variation of the surface rotation is rather smooth,
being rather well described by a three-term (i.e., second-order) polynomial in µ2

where µ = cos θ and θ is the colatitude. Recent analyses of high-resolution data,
in particular those utilizing solar f -mode observations by the Michelson Doppler
Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO), have
highlighted important departures from such a description of the rotation of the
near-surface layers. The polar subsurface layers (i.e., θ < 20◦ and depths down to
28 Mm below the surface) have been shown to be approximately 10 nHz slower
than expected from a simple three-term extrapolation from lower latitudes (Birch
and Kosovichev, 1998; Schou et al., 1998; Schou, 1999) and Kosovichev and
Schou (1997) have shown that, at a depth of 2 to 9 Mm beneath the surface,
there exist zonal bands of alternate faster and slower rotation rate of ∼ ±5 m s−1

superimposed on the general trend described by the second order polynomial. This
latter feature, inferred from the first observations of MDI in 1996, was found to
be similar to the surface ‘torsional oscillations’ (Howard and Labonte, 1980) and
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also observed in 1995 in Doppler measurements using the first GONG observations
(Hathaway et al., 1996.) More recently still, analysis of both p and f modes from
the GONG network and MDI instrument have further led to the conclusion that
these banded structures extend at least down to 60 Mm below the surface (Howe
et al., 2000).

The observed f modes, being confined to the outer layers of the Sun, provide a
relatively clean and straightforward measure of conditions there. But those results
above that were obtained just from the f modes assumed at least implicitly that
the angular velocity is not varying significantly with depth within the layer sensed
by those modes. It is, however, well known that another important property of the
subsurface layers is that they present a radial gradient of angular velocity. This
was first suggested by the fact that different indicators such as Doppler shifts of
photospheric Fraunhofer lines, various magnetic field features of different ages and
sizes (sunspots, faculae, network elements, Hα filaments) or the supergranular net-
work, present different rotation rates (see the review of Howard, 1984; Schroeter,
1985; Snodgrass, 1992). This has been interpreted by assuming that the different
magnetic features are anchored at different depths (e.g., Foukal, 1972; Collin et al.
1995), their different rotation rate being therefore interpreted as an indication of
the existence of radial gradients of angular velocity in the subsurface layers. More
specifically, noticing that the supergranular network rotation rate (∼ 473 nHz)
was found to be ∼ 4% faster than the upper photospheric plasma rate obtained
from spectroscopic methods and also ∼ 2% faster than various magnetic indicators
thought to be rooted under the supergranulation layer, Snodgrass and Ulrich (1990)
inferred that a maximum of angular velocity should exist somewhere between
0.95 R� and the surface.

From the theoretical point of view, it has been suggested that the angular mo-
mentum per unit mass �r2 sin2 θ could be conserved in the supergranular flow
(Foukal and Jokipii, 1975; Foukal, 1977; Gilmand and Foukal, 1979). From
∂�/� = −2∂r/r, at fixed latitude, this simple argument leads effectively to
a negative gradient below the surface, and the 4% difference in rotation rates
would be explained if the supergranulation network velocity observed at the sur-
face were reflecting the rotation rate at a depth of 2% R� � 15 Mm, which
turns out to correspond to the depth expected for the supergranular convection
(Foukal, 1977; Duvall, 1980) (but see also Beck and Schou, 2000, for a more
recent estimate). In order to reproduce the observed patterns of solar activity such
as the equatorward migration of sunspots, early dynamo models based on a positive
surface α-effect indicated also that the angular velocity must decrease outwards,
i.e., ∂�/∂r < 0 (e.g., Leighton, 1969; Roberts and Stix, 1972). One of the first
goals of helioseismology was therefore to test the assumptions about the negative
gradient of angular velocity below the surface suspected from different surface ob-
servations. This was indeed first attempted by Deubner, Ulrich, and Rhodes (1979):
although they did not resolve individual modes, they were able, from ridge-fitting
separately the eastward- and westward-propagating near-equatorial waves in the
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(k, w) diagram, to detect such a negative gradient close to the surface. Subsequent
helioseismic work using resolved mode frequencies has shifted much theoretical
focus to the base of the convection zone by showing that the radial gradient of
angular velocity in the bulk of the convection zone is weak and that a strong radial
shear, the so-called tachocline, occurs at its base. The gradient ∂�/∂r is positive
in the tachocline at sunspot (i.e., low) latitudes (Brown et al., 1989). This has led
various dynamo theories to locate the dynamo action below the convection zone,
with a negative α-effect operating there (e.g., Gilman, Morrow, and Deluca, 1989;
Parker, 1993) though some recent work has revisited the idea of a positive surface
α-effect but invoking the action of a meridional circulation, equatorward below the
convection zone and poleward at the surface, to produce the observed equatorward
migration of sunspots by advective transport of flux (Dikpati and Charbonneau,
1999; Küker, Rüdiger, and Schultz, 2001). The lack until recently of precise deter-
minations of high-degree mode parameters made it difficult to obtain very localized
inferences about the subsurface layers. But, because all the observed modes have
large amplitude close to the surface, inverters again got hints about the existence of
a radial shear close to the surface (especially using methods such as regularized
least-squares which readily extrapolate into regions where the data provide no
localized information) though without being able to quantify precisely its extent
and amplitude (e.g., Thompson et al., 1996; Corbard et al., 1997).

We show in this work that f -mode observations allow us to make quantitative
inferences about the surface radial shear. These should be taken into account when
modeling near-surface dynamo action or the dynamics of the supergranulation
layer.

2. Observations

The data used here are 23 independent times series of 72 days obtained from the
so-called MDI medium-l program. These cover the period from 1 May 1996 to 4
April 2001 with interruptions during the summer 1998 (23 June to 23 October) and
between 4 December 1998 and 4 February 1999 due to SOHO spacecraft problems.
More details on the production of these time series from the observations can be
found in Schou (1999).

A given f -mode multiplet in the spectra comprises 2l+1 frequencies νlm, where
l and m are the degree and azimuthal order of the spherical harmonic Ym

l (θ, φ)

describing the angular dependence of the modes. The so-called a coefficients for
the multiplet are defined by the polynomial expansion:

νlm = νl0 +
2l∑
j=1

aljP
(l)
j (m) m = ±1,±2 . . . ± l, (1)

where P are orthogonal polynomials normalized such that P (l)
j (l) = l (Schou,

Christensen-Dalsgaard, and Thompson, 1994). All f modes considered here have
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degrees between l = 117 and l = 300 but the total number of multiplets observed
is between 112 and 143, depending on the 72-day interval considered. For each
observed mode, the central frequencies νl0 and the first 36 a coefficients have been
estimated using the method described in Schou (1992). Odd-indexed a coefficients,
which describe the dependence of the frequencies that is an odd function of m, arise
from the north-south symmetric part of the solar rotation. Even-indexed coeffi-
cients arise from latitudinal structural variation, centrifugal distortion and magnetic
fields.

3. Data Analysis

Following Ritzwoller and Lavely (1991), we identify the north-south symmetric
part of the angular velocity �(r, µ) with the odd-degree, zonal part of the toroidal
component of a general stationary and laminar velocity field and write

�(r, µ) =
∞∑
j=0

�2j+1(r)T̄
1

2j (µ) , (2)

where r is fractional radius and T̄ 1
2j≡T 1

2j (µ)/T
1

2j (0) are Gegenbauer polynomials
(see Appendix) normalized such that the equatorial rate is given by the straight sum
of the �2j+1(r).

Assuming slow rotation, we can use a linear perturbation theory to predict
the effect of rotation on the oscillation modes (e.g., Hansen, Cox, and Van-Horn,
1977). Moreover, with the polynomials P and expansion Equation (2) as cho-
sen, there is a one-to-one relation between odd a coefficients and the components
�2j+1(r) (Ritzwoller and Lavely, 1991), thereby reducing the full 2D problem to a
set of 1D integral equations often referred to as the 1.5D problem. In the particular
case of the f modes, we obtain

2πal2j+1 = ul
2j+1

1∫
0

Kl
h(r)�2j+1(r) dr , (3)

where the expression for the kernels Kl
h(r) and ul

2j+1 are derived in the Appendix.
The 36 a coefficients extracted from observation do not provide information

about the terms above j = 17 in the summation in Equation (2) and that corre-
sponds to a limitation in the latitudinal resolution we can reach. Defining

bl2j+1 ≡ 2πal2j+1

ul
2j+1

, (4)

from Equations (2)–(4) we obtain
17∑
j=0

bl2j+1T̄
1

2j (µ0) ≈
∫ 1

0
Kl

h(r)�̄(r, µ0) dr , (5)
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Figure 1. f -modes rotational kernels Kl
h(r) for l = 117, 150, 200, 250, 300 from left to right.

where �̄(r, µ) refers to the part of the rotation profile corresponding to the sum
Equation (2) truncated at j = 17. We can also show (Pijpers, 1997) that the above
linear combination of b coefficients is such that

17∑
j=0

bl2j+1T̄
1

2j (µ0) =
1∫

0

1∫
0

Kl
h(r)κ(µ0, µ)�(r, µ) dr dµ , (6)

where κ(µ0, µ) are the so-called latitudinal averaging kernels which show what
latitudinal average of the true rotation rate is made at each latitude. Figure 2(a)
shows that these kernels have their main peak centered at µ0 but present an oscil-
latory behavior which may lead to systematic errors if some small-scale features
(corresponding to terms with j > 17) exist in the true rotation rate. In order to
avoid this, one may try to find instead the combination of b coefficients that leads
to kernels that are optimally localized around a given latitude. This can be achieved
following for instance the method of Backus and Gilbert (1968), but we notice
here that a similar result can be obtained simply by introducing, in the sum of
Equation (6), a correcting factor e−j (j+3/2)/ l0 where l0 ≡ 117 corresponds to the
lowest degree of the observed f modes (see also Equation (15)). Doing this, the
latitudinal averaging kernels are found better peaked (Figure 2(b)) and the formal
errors associated with the linear combination of the b coefficients is lowered. Fol-
lowing the definition of Corbard et al. (2001), the latitudinal resolution obtained is
about 10◦ at all latitudes.

The kernels Kl
h(r) associated with each f mode have a simple shape with only

one maximum located at slightly different radial positions depending on the degree
l (Figure 1). If we define rl0 ≡ ∫ 1

0 Kl
h(r)r dr , the radial location of the center

of gravity of these kernels, and assume a linear behavior of the rotation rate at
each latitude in the radial domain where the f modes considered have appreciable
amplitude, i.e.,
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Figure 2. Latitudinal averaging kernels at 0, 20, 40, 60, 80◦ of latitude (double-dot-dash, dot-dash,
dash, dot, and full lines, respectively) corresponding to the combination (a) Equation (8), (b) Equa-
tion (9).

�(r, µ0)=α(µ0) − β(µ0)(r − 1) (7)

in r > 0.97, say, we simply obtain

17∑
j=0

bl2j+1T̄
1

2j (µ0) ≈ �̄(rl0, µ0) , (8)

where the meaning of �̄ is the same as in Equation (5). Alternatively, a slightly
modified choice of weights yields

17∑
j=0

bl2j+1T̄
1

2j (µ0)e
−[j (j+3/2)]/117 ≈<�(rl0, µ)>µ0≈ �(rl0, µ̄0) , (9)

where the brackets denote the weighted average around µ0, the weighting function
being the kernels of Figure 2(b). The second approximate equality in Equation (9)
would be exact if the rotation profile were a linear function of µ2 in the domain
covered by the averaging kernels (i.e., ±10◦), with µ̄2

0 ≡ ∫ 1
0 κ(µ0, µ)µ

2 dµ; the
approximation is less good, however, at high solar latitudes.

The parameters α and β can then be estimated at each latitude from a linear
least-squares fit, yielding not only an estimate of the value of the rotation rate at,
e.g., the surface, but also an estimate of the average gradient ∂�/∂r in the region
sampled by the f modes. Finally we note that the dependence of � as a function
of radius in the near-surface layers may sometimes conveniently be described by
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Figure 3. Time average of �̄(rl0, µ0)/2π (Equation (8)) for values of µ0 corresponding to the lati-
tudes indicated in each panel. The result of the linear fits (Equation (7)) are shown by the straight
lines. The error bars are the standard deviation associated with the weighted temporal mean. The
mark on the right of each panel indicate the surface plasma rate obtained by Snodgrass, Howard,
and Webster (1984). Note that the surface spectroscopic value indicated on panel f is essentially an
extrapolation from observations at lower latitudes.

a power of r: we note that this description is immediately derivable from our α

and β, since for small values of 1 − r the right-hand side of Equation (7) is well
approximated by α(µ0)r

−α(µ0)/β(µ0).

4. Results

By combining the frequency splittings within each f -mode multiplet in the manner
given by Equation (8), for different choices of target latitude, we obtain measures
of the near-surface rotation which are reasonably well localized in latitude and
which correspond to different weightings in the depth direction. The latitudinal
sensitivity is illustrated in Figure 2 and the depth sensitivity in Figure 1. Figure 3
shows the results of combining the data using Equation (8), averaged in time over
all the datasets under study. In depth, the points are plotted at the center of gravity
(r = rl0) of the corresponding kernels (cf., Figure 1). It is evident from these results
that, at low latitudes, the weighted rotation increases with depth. If at each latitude
separately we fit these results to a rotation profile that is linear in depth, we obtain
the linear fits overplotted in Figure 3. These provide an average rotational gradient
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Figure 4. (a) Logarithmic derivative of angular velocity as a function of latitude. This corresponds
to the ratio β/α of Equation (7). (b) Radial gradient of angular velocity β as a function of latitude.
(c) Normalized χ2 value of the linear fit. The diamond symbols are for the results obtained using
Equation (8) while the other points are obtained using Equation (9). The horizontal error bars
indicate the angular resolution as deduced from Figure 2(b). The vertical error bars are formal errors
deduced from the linear fit. The dashed horizontal lines correspond to no radial gradient of angular
velocity.

β(µ0) in the outer 15 Mm or so of the solar interior, and an extrapolated surface
rotation rate α(µ0). The gradient, as a function of latitude, is presented in Figure 4,
both in terms of its dimensional value and in terms of the logarithmic derivative
∂ ln�/∂ ln r. It may be seen that for latitudes below 50◦ the gradient of rotation
with depth is negative; at about 50◦ it is close to zero; and for higher latitudes the
average rotational gradient becomes positive. We note that the radial gradient is re-
markably constant at latitudes up to 30◦, and the value of the logarithmic derivative
at these latitudes is close to −1. We return to this in Section 5.

Another way to visualize the changing gradient with latitude is that in Figure 5,
where we show the rotation rate extrapolated both to the surface (r = 1) and to
r = 0.97. The deeper rotation is faster than the surface rotation at low- and mid-
latitudes, but slower at high latitudes. At low- and mid-latitudes the extrapolated
surface rate agrees well with the spectroscopic surface measurements, given the
approximately 1.5% spread in recent such determinations (see the review by Beck,
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Figure 5. The full line gives the photosheric plasma rotation rate inferred by Snodgrass, Howard,
and Webster (1984); the diamond symbols and horizontal bars corresponds to α, the intercept of
the linear fit respectively in the case of Equations (8) and (9) and the dashed line corresponds to an
extrapolation of the rotation rate at 0.97 R� using Equation (7) in the case of Equation (8).

2000). For comparison, we have made a fit to our inferred surface rate below 60◦
latitude and present our fitting coefficients with the spectroscopic coefficients of
Snodgrass, Howard, and Webster (1984) in Table I. Similarly to what has been
found previously, our inferred rotation rate above 70◦ is markedly slower than what
would be expected from a 3-term fit at low- and mid-latitudes: we return to this
issue of the so-called ‘slow pole’ later.

Figure 4(c) shows the chi-squared for the least-squares fits at each latitude. The
large chi-squared values at higher latitudes are striking. The difference between
the chi-squared values when using Equations (8) and (9) is also very noticeable:
this arises largely because the error bars on the fitted points are reduced by the
exponential factor in Equation (9), which results in an increased chi-squared. Thus
the interpretation of the absolute value of the chi-squared may be a little uncertain,
but the trend with latitude for the two cases is similar. The larger values of chi-
squared at higher latitudes is consistent with the greater deviation from a linear
fit in the high-latitude panels of Figure 3. The systematic deviation of the near-
surface points contributes most to the chi-squared: these correspond to the high-
degree modes and so motivates taking a closer look at those data. (The scatter of
the deepest points is large but less significant because of the large error bars on
those points.)
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TABLE I

Comparison between the surface plasma rate and our results from f -mode
analysis.

Method �1/2π �3/2π �5/2π

(nHz) (nHz) (nHz)

Snodgrass, Howard, and Webster (1984)1 436.4 21.0 −3.6

f modes (l-averaged)2

(117 ≤ l ≤ 300) 〈rl0〉 = 0.9913 438.8 21.0 −3.9

(160 ≤ l ≤ 250) 〈rl0〉 = 0.991 438.9 21.2 −4.0

f modes (surface extrapolation)4

(117 ≤ l ≤ 300) 435.8 20.2 −3.2

(160 ≤ l ≤ 250) 435.7 20.5 −3.6

1Spectroscopic measurements made at the Mount Wilson 150-foot Tower be-
tween 1967 and 1982.
2Average of the first 3 b coefficients (cf., Equations (4) and (8)).
3Center of gravity of the corresponding l averaged radial kernels.
4Obtained by fitting the intercept α(µ) to the expansion equation (2) for
latitudes below 60◦.

We have therefore repeated our analysis but excluding those modes of degree
l > 250 and l < 160. The resulting gradient and chi-squared are shown in Figure 6.
Compared with the previous result (Figure 4) the gradient is similar for latitudes
lower than 50◦. Now it is evident from Figure 3 that, at high latitudes, excluding
the high-degree modes will tend to make the fitted gradient less positive. Indeed,
we find that the gradient without the l > 250 data remains slightly negative up
to about 75◦. Also, the values of chi-squared have been more than halved at high
latitude, compared with our previous linear fit to all the f -mode data (Figure 6(b)).
The inferred low- and mid-latitude surface rate is barely affected (compare the last
two lines of Table I).

It is interesting also to compare the linear fit to the l < 250 data with a fit of
a constant function to the same data: the constant fit is equivalent averaging the
f -mode splittings over l (see Table I). It is evident from Figure 6(b) (dotted line)
that this provides a very poor fit below about 55◦: the data strongly favor the model
with a linear depth-dependence there. At high latitudes, the linear fit selects only
a very small gradient and so the two chi-squared functions are very similar: the
data for l < 250 indicate that at high latitudes the gradient is small, in the range of
depths spanned by their lower turning points.

If the data for l > 250 are indeed reliable, then the discrepancy between the
results in Figures 4(a) and 6(a) implies that the model of rotation varying linearly
with depth is not appropriate at high latitudes and the extrapolation to the surface at
those latitudes will be unreliable. An alternative approach is to attempt to construct
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Figure 6. Similar to Figure 4 but using only modes 160 ≤ l ≤ 250. The radial gradient of angular
velocity remains negative even at latitudes above 55◦. The dotted line on panel b shows, in the case
of Equation (8), the χ2 values corresponding to a fit by a constant which is equivalent of taking an
average over l.

kernels that are localized in depth using the Optimally Localized Averaging (OLA)
kernel in depth (cf., Christensen-Dalsgaard, Schou, and Thompson, 1990) in the
manner of Backus and Gilbert (1968). Such kernels at two selected depths are
shown in Figure 7: they were constructed using all the available f modes. It should
be noted that the method succeeds in producing kernels which are reasonably lo-
calized and which have their center of gravity outside the range of abscissa values
in Figure 3, that is, the method uses the mode sensitivities to extrapolate to greater
depths and closer to the surface. In particular, in the latter case one expects that the
increasing trend of values for the near-surface points in Figures 3(e) and 3(f) means
that the near-surface Backus–Gilbert inversion at those latitudes will have values
higher than those seen in Figure 3. This is exactly what is found (Figure 7): the
Backus–Gilbert inversion at high latitudes for r = 0.986 interestingly falls below
the 3-term spectroscopic surface rate, but even more strikingly the corresponding
near-surface result at r = 0.997 lies above it by 2–4 standard deviations. This is
another way of demonstrating that the increasing values of the combined splittings
for l > 250, if they are reliable, indicate a strongly positive gradient of rotation
with radius in the rather superficial subsurface layers at high latitudes.

To look for possible temporal variations of the subsurface shear, we have ana-
lyzed each one of the 23 72-day datasets individually in exactly the same manner as
we analyzed the time-averaged set (e.g., Figure 3), and derived an intercept value
α(µ0; t) (corresponding to the surface rate at that location and epoch) and slope
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Figure 7. Rotation profiles as a function of latitude corresponding to depth averaged shown in the sub
panel. The dashed and full lines correspond, respectively, to the shallower and deeper kernels which
have respectively 0.986 R� and 0.997 R� as center of gravity. The dot-dashed line corresponds to
the Snodgrass, Howard, and Webster (1984) plasma rotation rate. These results are obtained by using
all modes from l = 117 to l = 300.

β(µ0; t) from a linear fit to the combined splittings for each latitudinal location
µ0 and time t . The resulting estimated surface rates and slopes at three latitudes
(equator, 30◦, 60◦) are shown in Figure 8. The large-scale variations in the surface
rate correspond very well to the migrating banded zonal flows (torsional oscilla-
tions) measured by Schou (1999) and by Howe et al. (2000): the equatorial surface
rate starts high because of the tail-end of one migrating band of faster flow, then
drops down and rises again towards solar maximum as another band of faster flow
reaches the equator: the latter was at 30◦ at the beginning of the cycle, hence the
rate at that location starts high and drops as the band migrates closer to the equator.
The 60◦ rate rises as the high-latitude banded flow reported by, e.g., Schou (1999)
strengthens towards solar maximum. The slope shows no significant corresponding
variations, implying that the torsional oscillations raise and lower the rotation rate
across the whole depth of the layer without changing the shear gradient. There are
indications of annual variations in the inferred values of the slope (most strikingly
at 30◦), which are almost certainly an artifact: such artifacts can conceivably arise
from annual variations in SOHO’s orbit. Other evidence for one-year artifacts in the
f -mode data is presented by Antia et al. (2001). These should not affect the time-
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Figure 8. Intercept (left column) and slope (right column) of the linear fit Equation (7) at the equator,
30◦ and 60◦ of latitude (from top to bottom).

averaged values, however. There is no noticeable annual variation in our inferred
values of the surface rotation rate.

5. Discussion

We have used the depth and latitude variation in the sensitivities of the solar f

modes to deduce the rotation profile in the subsurface shear layer of the Sun in
the outer 15 Mm of the solar interior. Our work differs from earlier seismic in-
vestigations. These were either based on the f modes but implicitly assumed a
depth-independent model of the rotation (e.g., Schou, 1999), or used global inver-
sions of p- and f -mode splittings and consequently may suffer from any systematic
difference between the p- and f -mode data (e.g., Schou et al., 1998), or used
local helioseismic ring analysis (e.g., Basu, Antia, and Tripathy, 1999; Haber et al.,
2000), which promises to be a powerful diagnostic of near-surface flows and strat-
ification but the sensitivity and systematics of which are still under investigation
(Hindman et al., 2001, in preparation). By using just the splittings of the f modes,
which are arguably the most straightforward helioseismic modes to interpret, we
believe we are able to obtain not only a simple but also a clean measure of the
near-surface shear. As with all inferences about rotation from global splittings, we
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note that only that component of rotation which is symmetric about the equator is
recovered.

The most robust results concern the low-latitude shear. The average gradient
∂ ln �/∂ ln r (at constant latitude) in the outer 15 Mm is close to −1 and remark-
ably constant from the equator to 30◦ latitude. Between 30◦ and 55◦ latitude, the
gradient is still negative but makes a steady transition to a small (absolute) value.
All our analyses show this. The variation of rotation at these latitudes appears to
be well described by a linear function of depth, within the outer 15 Mm.

As discussed in the Introduction, if moving parcels of fluid were to conserve
their specific angular momentum as they moved towards or away from the ro-
tation axis, one would find that the rotation rate varied as the inverse square of
the distance from the axis of rotation, so at low latitudes one would have that
∂ ln �/∂ ln r ≈ −2. In reality other effects such as diffusion will cause exchange
of angular momentum between parcels, so we may expect a logarithmic gradient
somewhat smaller in magnitude than −2. A precise measurement of this value in
the Sun provides information about the relative effectiveness of competing mech-
anisms transporting angular momentum. Our finding is that at latitudes below 30◦
the value of the logarithmic gradient is much closer to −1 than to −2. In fact,
this seems in reasonable agreement with the equatorial value found by DeRosa
in numerical simulations of rotating compressible convective fluid in a thin shell
representing the Sun between about 0.94R and 0.98R (DeRosa, 2001; DeRosa,
Gilman, and Toomre, 2001). Also these simulations show a tendency for the gra-
dient to decrease in magnitude as one moves from equator to mid-latitudes, albeit
at lower latitudes than we find for the Sun. Although these simulations exclude
for numerical reasons the near-surface layers that we are probing, the qualitative
agreement is nonetheless encouraging.

At latitudes above ∼ 55◦, the depth-averaged gradient over the layer appears
to change sign with respect to the low-latitude shear, though this is largely a con-
sequence of the behavior in the very near-surface layers (outer 5 Mm) which in
turn is deduced from the splittings of the highest-degree f modes. The gradient in
the range of depths 5–15 Mm is small at these high latitudes; and such significant
gradient ∂�/∂r as does exist at high latitude (if any) is in the outer 5 Mm and
predominantly positive. We note that, using a ring-analysis technique, Basu, Antia,
and Tripathy (1999) deduced a similar behavior at high latitudes, finding a reversal
of gradient in a zone above 0.994 R�.

Concerning the surface rotation rate itself, below 55◦ our extrapolation of the
rotation rate to the surface is in satisfactory agreement with the directly measured
spectroscopic surface rotation rate (cf., Table I). Our inferred surface rate should
be more accurate than one simply inferred from the averaged f -mode splittings,
because we take out the linear gradient with depth which undoubtedly exists at
these latitudes: this can make a difference of ∼ 5 nHz, even over the fairly small
range of depths sampled by the observed f modes.
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The seismically inferred surface rate at high latitudes is considerably less se-
cure. It has previously been reported from helioseismic investigations that the
high-latitude surface rate is lower what one would expect from a simple three-term
extrapolation from lower latitudes (Schou, Christensen-Dalsgaard, and Thompson,
1998; Schou, 1999). Indeed it can be seen from Figure 3(f) that many of the points
fall below the extrapolated spectroscopic rate for that latitude, implying that the
rotation rate at some depth is lower than the spectroscopic surface rate one would
infer from the values in Table I. The rather flat plateau of values in those panels
strongly suggests that the rotation rate at about 10–15 Mm depth is slower than the
extrapolated spectroscopic rate, which is confirmed by our OLA inversion result at
those depths. However, the combined splittings at high degree are increasing with
l and if taken at face value, as is done in our OLA inversion result for r = 0.997R,
this behavior implies that the very near-surface rotation rate is actually higher
than the spectroscopic rate. Thus the matter is still open. Since the quoted spec-
troscopic rate is principally an extrapolation of surface observations at low- and
mid-latitudes, the true rotation rate that would be determined by spectroscopy at
high latitudes is uncertain. Direct spectroscopic determinations at high latitude
would resolve the question. The very high-degree splittings could contain some
systematic errors, and if these affect the low-m data the most (some evidence for
such an effect for p modes at lower degrees is offered by the comparison of GONG
and MDI splittings by Schou et al. (2001)), then the near-surface, high-latitude
rotation rates inferred here could be erroneously high. We hope that this possibility
will shortly be addressed by independent determinations of these splittings by the
GONG experiment using the new higher-resolution GONG+ observations.

6. Conclusion

Finally, to return again to our principal focus which is the shear gradient of the
near-surface rotation, we find that at low and mid-latitudes the gradient ∂�/∂r in
the outer 15 Mm or so is close to −1 and is quite independent of latitude below 30◦;
between 30◦ and ∼ 50◦ latitude, it is still negative but makes a transition to small
absolute value. At higher latitudes, the gradient in the bulk of the outer 15 Mm is
probably small, but if the highest-degree (l > 250) data are to be believed there is
a region of positive gradient in the outer 5 Mm at high latitudes, similar to what
(Basu, Antia, and Tripathy (1999) found from ring analysis. We find no evidence
for the gradient to vary with time: the torsional oscillation seems to pass through
without changing the shear gradient in the outer 15 Mm.

Interestingly, the most recent circulation-dominated dynamo models (Dikpati
and Charbonneau, 1999; Küker, Rüdiger, and Schultz, 2001) are able to reproduce
to some extent the equatorward migration patterns without invoking any radial
gradient of angular velocity at the surface. Such negative gradient at low latitude
should however probably be taken into account because if it is associated with
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a positive surface α-effect, it will compete against the surface poleward circula-
tion and contribute to producing the equatorward migration of magnetic patterns
observed at the surface of the Sun.
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Appendix. Derivation of f -Mode 1.5D Kernels

The polynomial P used to describe the frequency splittings can be expressed in
terms of the Clebsh-Gordan coefficients Cjm

j1m1j2m2
(e.g., Edmonds, 1960) by

P (l)
j (m) = βl

j C
lm
lmj0, βl

j ≡ l
√
(2l − j)!(2l + j + 1)!

(2l)!√2l + 1
. (10)

The Gegenbauer polynomials used in Equation (2) are defined by (e.g., Morse and
Feshbach, 1953)

T 1
2j (µ) =

√
4π

4j + 3

∂Y 0
2j+1(θ, φ)

∂µ
. (11)

From Ritzwoller and Lavely (1991) we can deduce that

2πal2j+1 = vl2j+1

T 1
2j (0)

∫ 1

0
Kl

j (r)�2j+1(r) dr , (12)

where vl2j+1 ≡ L2Cl1
l1(2j+1)0/β

l
2j+1, L2 ≡ l(l + 1) and

Kl
j (r) =

(
ξ 2
l + (L2 − 1 − j (2j + 3))η2

l − 2ξlηl
)
ρr2∫ 1

0

(
ξ 2
l + L2η2

l

)
ρr2 dr

, (13)

ξl and ηl being respectively the radial and horizontal displacement eigenfunctions
which are determined by solving the differential equations describing the motion
of a self-graviting fluid body in a standard solar model (e.g., Unno et al., 1989)
and ρ is the density profile given by the model, all these being functions of the
fractional solar radius r.

Other expressions of practical interest can be found for vl2j+1 that are recalled
here for completeness. Pijpers (1997) established the recurrence relation
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vl2j+1 = (j − l)(2j + 1)

j (2l + 2j + 1)
vl2j−1 (14)

and Schou (1999) noticed that to a very good approximation

vl2j+1/T
1

2j (0) ≈ e−j (j+3/2)/ l. (15)

The f modes are horizontally propagating surface gravity waves for which
the displacement eigenfunctions satisfy the following surface boundary condition
under the Cowling approximation (e.g., Berthomieu and Christensen-Dalsgaard,
1991):

ηl(r) ≈ gs

R�w2
l

ξl(r), (16)

where gs = GM�/R2� is the surface gravitational acceleration. Moreover, the an-
gular frequencies wl = 2πνl0 of the f modes follow asymptotically (for l → ∞)
the dispersion relation w2

l ≈ gsL/R�. Therefore we have ξl ≈ Lηl and, from
Equation (13), the rotational kernels associated with the f modes can be written as
a function of the horizontal displacement only:

Kl
j (r) ≈ kljK

l
h(r)




Kl
h(r) ≡ ηl(r)

2ρ(r) r2∫ 1
0 ηl(r)2ρ(r) r2dr

klj ≡ 1 − 1

L
− 1

2L2
(1 + j (2j + 3))

. (17)

Finally, Equation (3) is obtained by taking

ul
2j+1 ≈ klj e

−j (j+3/2)/ l. (18)

We note that Equation (5) is obtained by using the fact that, in the approximation
Equation (17) valid for f modes, the rotational kernels depend on j only by a
multiplicative factor. Taking instead Kl

j ≈ Kl
0 for all j as usually done for high

degree modes would also allow us to write Equation (5) but the integrated differ-
ence

∫
(Kl

j − Kl
0) dr would reach 2.2% for l = 117, j = 17 whereas it remains

negligible for all l and j in the case of the approximation used here.
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