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ABSTRACT14

Analysis of the frequencies of solar global oscillations allows the investigation of the internal structure15

of the Sun. An important test of the reliability of the mode frequencies obtained from various fitting16

methodologies is that they are consistent with one another when applied to contemporaneous helio-17

seismic observations. Here we compare f- and p-mode frequencies obtained from the Multiple-Peak,18

Tesseral-Spectrum Method (MPTS, Reiter et al. 2020) with those obtained from the Mean-multiplet19

technique (JS, Schou 1992), the high-degree fitting methodology of Korzennik (SKh, Korzennik et al.20

2004), the medium-degree methodology of Korzennik (SKm, Korzennik 2005, 2008a,b), and the fitting21

methodology of the Birmingham Solar Oscillations Network group (BR, Broomhall et al. 2009). The22

data analyzed in this study are based on 67-, 72-, and 90-day long time series of full-disk doppler-23

grams acquired by the HMI in 2010, and on low-degree Sun-as-a-star observations acquired by the24

ground-based observing stations of the BiSON group. While we find excellent agreement between the25

MPTS, JS, SKm, and BR frequencies, we also find significant differences between both the MPTS and26

JS frequencies and the SKh frequencies. We also demonstrate that the systematic differences between27

theMPTS(67d) and SKh(67d) high-degree frequencies are not due to the use of invalid seed frequencies28

in the MPTS method.29
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1. INTRODUCTION31

Since the advent of helioseismology in the mid-1970s, extensive helioseismic data has been acquired both from earth-32

bound networks of observatories as well as from space-borne missions that has made it possible to gain important33

insights on solar structure, rotation, and their temporal variations (Christensen-Dalsgaard 2002; Kosovichev 2009;34

Basu 2010, 2016). In most cases observations of the Doppler-shifted line-of-sight velocity are carried out, extending35

over months or even years to achieve a high frequency resolution.36

Observing the Sun as a star in disk-integrated light, low-degree modes have been studied in great detail with both the37

BiSON (Birmingham Solar Oscillations Network) (Chaplin et al. 1996; Hale et al. 2016) and the IRIS (International38

Research on the Interior of the Sun) (Fossat 1991) networks as well as with the GOLF (Global Oscillations at Low39
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Frequency) instrument (Gabriel et al. 1997) onboard the SOHO (Solar and Heliospheric Observatory) spacecraft. Since40

late 1995 the six-station Global Oscillation Network Group (GONG) network (Harvey et al. 1996, 1998; Hill et al. 2003)41

has provided nearly continuous data for modes of degrees up to about 150. Modes including even higher degrees were42

extensively studied within the framework of the Solar Oscillations Investigation (SOI) with the Michelson Doppler43

Imager (MDI) instrument (Scherrer et al. 1995) onboard the SOHO spacecraft , but these high-resolution data were44

only available a few months each year. Since May 2010, MDI has been superseded by the Helioseismic and Magnetic45

Imager (HMI) (Schou et al. 2012) of the Solar Dynamics Observatory (SDO) space-borne mission, while the regular46

MDI observations were discontinued in April 2011.47

Broomhall et al. (2009) and Davies et al. (2014) performed detailed analyses of the BiSON low-degree observations,48

while Larson & Schou (2015, 2018) analyzed the MDI and HMI observations for modes of degrees up to 300. High-49

degree MDI and HMI observations were analyzed, in particular, by Rhodes et al. (1997); Korzennik et al. (2004);50

Reiter et al. (2015) and Reiter et al. (2020).51

In contrast to the estimation of low- and intermediate-degree mode parameters, the determination of high-degree52

mode parameters turns out to be difficult, because high-degree modes cannot be observed as sharp, isolated peaks but53

only as ridges of power comprised of overlapping modes. Aggravating the situation, the central frequency of each ridge54

deviates from the frequency of the target mode, because of the asymmetrical distribution of the amplitudes of the55

modes that blend together. Hence, to recover the underlying mode frequency from fitting the ridge, an accurate model56

of the ridge power as a function of frequency is indispensable, as has been pointed out by Korzennik et al. (2004) and57

Reiter et al. (2015). On the other hand, because high-degree modes have their lower turning-point radius quite close58

to the surface, they are extremely interesting for the study of the near-surface layers (see, for example, Di Mauro et al.59

2002; Basu 2016), where thermodynamic effects associated with helium and hydrogen ionization become relevant.60

Using data that were acquired during the 2010 Dynamics Run of the MDI, Reiter et al. (2020) have compared in a pre-61

liminary comparative study both their windowed, multiple peak, averaged-spectrum (WMLTP) method (Reiter et al.62

2015) and multiple-peak, tesseral spectrum (MPTS) method (Reiter et al. 2020) with both the mean-multiplet tech-63

nique of Schou (1992) and the high-degree fitting methodology of Korzennik et al. (2004) in terms of the fitted fre-64

quencies, line widths, and a1 frequency-splitting coefficients. While there was an excellent agreement between the65

MPTS method and the mean-multiplet technique, systematic deviations resulted in particular in the convection zone66

between the MPTS method, the WMLTP method, and the high-degree fitting methodology of Korzennik et al. (2004)67

(see Figures 19 and 20 in Reiter et al. (2020)). In the present paper we will report the results of a detailed comparative68

study between the MPTS method (Reiter et al. 2020), the mean-multiplet technique (Schou 1992), the high-degree69

fitting methodology of Korzennik et al. (2004), the medium-degree fitting methodology of Korzennik (2005, 2008a,b),70

and the fitting methodology of the Birmingham Solar Oscillations Network group (Broomhall et al. 2009) in terms71

of frequencies. In particular, it will be shown that the MPTS method is able, at least for the lower-order ridges, to72

accurately restore the MPTS frequencies, MPTS(67d), obtained in 2010 from a 67-day long observing run of the HMI,73

when starting from the frequencies, SKh(67d), obtained from the high-degree fitting methodology of Korzennik et al.74

(2004).75

For a comparison of p-mode parameters from MDI and GONG we refer to Schou et al. (2002) and Basu et al. (2003),76

and from BiSON and GONG to Howe et al. (2003).77

The present paper is organized as follows. After a brief presentation in Section 2 of the fitting methodologies included78

in our comparative study, we describe in Section 3 the origin of the data used. In Section 4 we present the results from79

our comparitive study. In Section 5 we demonstrate that the differences in the SKh(67d) and MPTS(67d) frequencies80

are not due to the use of invalid seed frequencies in the MPTS method. Our concluding remarks are given in Section 6.81

2. FITTING METHODOLOGIES82

Before we will present the results from our comparative study, we comment briefly on the various methods involved.83

Where resolved data are available, timeseries of spherical harmonic coefficients are used, which result from the spatial84

decomposition of the individual Dopplergrams in an observing run.85

2.1. MPTS method86

The MPTS method of Reiter et al. (2020) is equally well-suited for the estimation of low-, medium-, and high-degree87

f- and p-mode parameters and frequency-splitting coefficients. In the MPTS method a theoretical multiple-peak88

profile, Mn,l,m(ν), based upon the asymmetrical profile of Nigam & Kosovichev (1998) is employed to represent the89
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distribution of power with frequency, ν, of an oscillation peak of n, l, and m. This theoretical profile is composed of90

the profile of the targeted peak (n, l,m), the sum of the profiles of the l- and m-leaks of radial order n, the sum of the91

leaks from multiplets other than (n, l), and a background that is quadratic in frequency. The amplitudes of the l- and92

m-leaks relative to the amplitude of the targeted mode (n, l,m) are assumed to be given by the leakage matrix which93

is corrected for the distortion that is caused by the solar differential rotation, according to the theory of Woodard94

(1989). Because the power in a single frequency bin of a power spectrum obeys an exponential rather than a Gaussian95

distribution, as in the case of an m-averaged spectrum for degrees l ≫ 1, a maximum-likelihood approach is employed96

in the MPTS method for fitting the theoretical multiple-peak profile Mn,l,m(ν) to an observed power spectrum in a97

suitably chosen fitting box around the targeted peak (n, l,m). Since the MPTS method operates directly upon of all98

the 2l + 1 modes in a multiplet (n, l), 2l + 1 sets of modal parameters are obtained simultaneously for that multiplet99

(n, l). By simply averaging all of the 2l + 1 frequency estimates within a multiplet, the average frequency for that100

multiplet is obtained, which is called the “mean-multiplet frequency”. In addition, by fitting an appropriate polynomial101

to the run of the fitted frequencies versus m, the frequency-splitting coefficients for that multiplet are estimated, and102

are used for the correction of the leakage matrix for that multiplet by calculating the expansion coefficients B2 and103

B4 of the solar differential rotation.104

In the following we will use the term “MPTS” when we are referring to the MPTS method.105

2.2. Mean-multiplet technique106

In the mean-multiplet technique of Schou (1992) (see also Schou et al. 2002) Fourier transforms of the spherical107

harmonic timeseries are fit using a maximum likelihood approach, taking into account leakage between the modes108

(Larson & Schou 2015). Rather than fitting, however, for the individual 2l + 1 mode frequencies within a multiplet109

(n, l), this technique includes a fitting algorithm that yields the mean-multiplet frequency νn,l and the set of frequency-110

splitting coefficients a
(n,l)
k for each multiplet directly, assuming that the line width of the 2l + 1 modes within the111

multiplet is independent of the azimuthal order m, while the relative variation of the mode amplitudes with m112

is assumed to be given by the leakage matrix which is corrected, according to the theory of Woodard (1989), for113

the distortion that is caused by the solar differential rotation. This correction of the leakage matrix is done for114

each multiplet (n, l) by calculating the expansion coefficients B2 and B4 of the solar differential rotation from the115

frequency-splitting coefficients obtained for that multiplet. Initially, the algorithm fits for a total of 6 frequency-116

splitting coefficients, then for 18 and 36 once the 6-term fits have converged. Leaks from multiplets other than (n, l)117

are calculated from the mode parameters for those modes and the leakage matrix. The leaks are held fixed during the118

fit for the target mode. The asymmetry of the line profiles is taken into account by using an asymmetrical profile that is119

derived by a generalization of the profile of Nigam & Kosovichev (1998). This way undesirable properties of the profile120

of Nigam & Kosovichev (1998) are avoided, viz. its invalidity far from the mode frequency and the non-boundedness121

of its integral over all frequencies (Larson & Schou 2015).122

In the following we will use the term “JS” when we are referring to the mean-multiplet technique.123

2.3. Fitting methodologies of Korzennik124

The high-degree fitting methodology of Korzennik et al. (2004) is applicable to modes with degrees in the range125

from l & 100 (p-modes) to l & 200 (f-modes). Its basic idea consists of correcting for the bias introduced when fitting126

a ridge of power at high degrees. For this purpose, a detailed model of the underlying modes that contribute to127

the distribution of power in a ridge was developed to generate synthetic ridges, which are then fitted using the same128

methodology employed to fit the observations. Hence, the results of fitting these synthetic data allow the user to derive129

a measure of the bias between the ridge properties and those of the underlying targeted mode used in the modeling.130

By means of this measure the results from fitting an observed ridge can be corrected to derive the unbiased properties131

of the underlying targeted mode.132

In the following we will use the term “SKh” when we are referring to the high-degree fitting methodology of133

Korzennik.134

In Korzennik (2005, 2008a,b) a separate medium-degree fitting method has been developed which is applicable to135

modes with degrees in the range 0 ≤ l ≤ 300, and has been optimized for very long helioseismic time series. This136

methodology includes an optimal sine multi-taper spectral estimator, the complete leakage matrix, i.e. horizontal137

as well as vertical components, the asymmetric profile of Nigam & Kosovichev (1998), and the simultaneous fitting138

of individual profiles at all the azimuthal orders m of a given multiplet (n, l). The contamination by nearby modes139
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(n′, l′) within the fitting range is also included. Since simultaneous fitting of these contaminants is impractical, the140

fitting procedure is iterated, i.e. the characteristics of the contaminants used in the fitting correspond to the values141

fitted at the previous iteration. The leakage matrix coefficients are corrected for the distortion caused by the solar142

differential rotation, following the formalism of Woodard (1989). The differential rotation is characterized by the143

expansion coefficients B2 = −0.07712 and B4 = −0.04396nHz (Korzennik 2023).144

In the following we will use the term “SKm” when we are referring to the medium-degree fitting methodology of145

Korzennik.146

2.4. Fitting methodology of the Birmingham Solar Oscillations Network group147

The fitting methodology of the Birmingham Solar Oscillations Network (BiSON) group is applicable to low-degree148

modes with degrees in the range from 0 ≤ l ≤ 3, and is described in detail in Broomhall et al. (2009), Davies et al.149

(2014), and Hale et al. (2016).150

The BiSON network comprises six semi-automated solar observing stations that are dedicated to the collection of151

low-degree (Sun-as-a-star) helioseismic data (Hale et al. 2016). The stations are situated at various sites around the152

world in order to provide as continuous observations as possible. At each of the six stations, a resonance scattering153

spectrometer is used to measure the Doppler velocity shift of the 770-nm D1 potassium absorption line by comparing154

the Doppler shifted potassium absorption line to a reference line in the laboratory frame. These shifts are measured as155

variations in resonant scattered intensity which are calibrated into radial velocities each day for each of the six stations.156

Using these data, a time series is built based on a routine that attempts to maximize the signal-to-noise ratio in the157

low-frequency region (0.8-1.3 mHz). This time series is then converted to the frequency domain using a fast Fourier158

transform to generate the frequency power spectrum. Finally, either a maximum-likelihood (Broomhall et al. 2009) or159

a Markov chain Monte Carlo approach (Davies et al. 2014) is employed to fit an asymmetric Lorentzian profile to the160

peaks in the frequency power spectrum, the parameters being frequency, amplitude, width, rotational splitting and161

fractional asymmetry. Howe et al. (2015) have shown that the two approaches produce similar results.162

In the following we will use the term “BR” when we are referring to the fitting methodology of the BiSON group.163

3. DATA164

The data analyzed in this study are based on time series of full-disk dopplergrams, acquired by the HMI on the one165

hand, and on low-degree Sun-as-a-star observations (i.e., observations where the collected light has been integrated166

over the entire solar surface) acquired by the ground-based observing stations of the BiSON group (Chaplin et al.167

1996), on the other hand.168

Using the MPTS method we fitted a 67-day, a 72-day, and a 90-day HMI observing run obtained in 2010 to get the169

tables MPTS(67d), MPTS(72d), and MPTS(90d), respectively, of fitted mode parameters including frequency, line170

width, line asymmetry, amplitude, and frequency-splitting coefficients a1 through a5.171

With regard to the mean-multiplet technique, the standard pipeline at Stanford was applied to get the tables of172

fitted parameters JS(67d), JS(72d), and JS(90d), respectively.173

With regard to the fitting methodologies of Korzennik, the table of fitted parameters, SKh(67d), was downloaded174

from lweb.cfa.harvard.edu/~sylvain/research/tables/HiL/HMI/2010/. For the details of the generation of175

this table we refer to Korzennik et al. (2013). The table of fitted parameters, SKm(72d), was downloaded from176

lweb.cfa.harvard.edu/~sylvain/research/tables/MediumL/. For the details of the generation of this table we177

refer to Korzennik (2005, 2008a) and Korzennik (2008b). It bears emphasizing that the MPTS, JS, SKh and SKm178

methodologies all use exactly the same input timeseries.179

Broomhall et al. (2009) published one table of raw, best-fitting BiSON frequencies which they computed from an180

8640-day time series that lasted for more than 23 years. They also published two other tables of “corrected” BiSON181

frequencies which they claimed had been corrected to correspond to both “intermediate” and “quiet-Sun” levels of182

activity. The corresponding levels of the 10.7-cm radio flux that they used to make these corrected frequency tables183

were 118 solar flux units (sfu) and 64 sfu, respectively. Here, 1 sfu = 10−22Wm−2Hz−1. In order to obtain a table of184

corrected BiSON frequencies that would correspond to the average level of the 10.7-cm radio flux of 77.207 sfu that,185

according to Table 1, existed during the 90-day time series of HMI observations from which we generated our table186

MPTS(90d), we linearly interpolated between the “intermediate” and “quiet-Sun” tables of Broomhall et al. (2009).187

We will refer to this set of interpolated BiSON frequencies as BR(90d).188

More details of the data used in our comparative study are given in Table 1.189
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Table 1. Data used in comparative study

starting date nd 10.7-cm flux n-range l-range ν-range

MPTS(90d) 2010.04.30 7328 77.207 0− 30 0− 1350 964.83 − 4599.74

MPTS(72d) 2010.04.30 7328 75.471 0− 30 0− 1350 964.81 − 4599.56

MPTS(67d) 2010.05.07 6678 74.988 0− 30 0− 1000 964.78 − 4599.74

JS(90d) 2010.04.30 2043 77.207 0− 27 0− 299 954.33 − 4475.54

JS(72d) 2010.04.30 1983 75.471 0− 29 0− 299 938.39 − 4621.47

JS(67d) 2010.05.07 1984 74.988 0− 28 0− 299 975.17 − 4482.30

SKm(72d) 2010.04.30 2322 75.471 0− 30 0− 300 882.98 − 4527.89

SKh(67d) 2010.05.07 5714 74.988 0− 14 100 − 1000 1421.56 − 5504.08

BR(90d) 2010.04.30 79 77.207 6− 28 0− 3 972.61 − 3984.29

Note— The numbers in parentheses in column 1 refer to the durations of the observing runs in days analyzed with the MPTS,
JS, SKm, SKh, and BR fitting methodologies. The starting date is given in the form yyyy.mm.dd. In the column labeled
nd the number of modes is given that are contained in the corresponding frequency table listed in column 1. The 10.7-cm
flux is measured in solar flux units (sfu), where 1 sfu = 10−22Wm−2Hz−1. As described in the text, the interpolated BiSON
frequency table BR(90d) corresponds to a radio flux of 77.207 sfu. The frequency range in column 7 is measured in µHz.
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4. INTERCOMPARISON OF FITTED FREQUENCIES190

In Table 2 we show the results of our comparison of the JS, SKm, SKh, and BR frequencies with the MPTS191

frequencies, and the SKm, SKh, and BR frequencies with the JS frequencies.192

Table 2. Comparison of the MPTS method with the JS, BR, SKm and SKh methods, and the JS method with the BR,
SKm, and SKh methods in terms of raw and normalized frequency differences

difference raw normalized

nd lmin lmax ave std |t| p ave std |t| p n±3σ

MPTS(90d)−BR(90d) 76 0 3 +0.006 0.389 0.144 0.886 −0.077 1.168 0.575 0.567 1

JS(90d)−BR(90d) 44 0 3 −0.032 0.151 1.425 0.161 −0.112 1.120 0.661 0.512 0

MPTS(90d)−JS(90d) 2042 0 299 +0.013 0.185 3.100 0.002 +0.510 1.347 17.105 ≈ 0 86

MPTS(72d)−JS(72d) 1980 0 299 +0.017 0.101 7.454 ≈ 0 +0.496 1.260 17.515 ≈ 0 61

MPTS(67d)−JS(67d) 1984 0 299 +0.017 0.112 6.805 ≈ 0 +0.461 1.238 16.564 ≈ 0 59

MPTS(72d)−SKm(72d) 2313 0 300 +0.026 0.346 3.683 ≈ 0 +0.555 1.385 19.283 ≈ 0 104

JS(72d)−SKm(72d) 1972 0 299 +0.019 0.089 9.717 ≈ 0 +0.334 0.955 15.536 ≈ 0 16

JS(67d)−SKh(67d) 517 100 299 +0.009 1.690 0.116 0.907 +0.515 4.223 2.775 0.006 150

MPTS(67d)−SKh(67d) 4689 100 1000 +1.248 1.211 70.576 ≈ 0 +8.425 6.618 87.172 ≈ 0 3568

Note— The differences are in the sense as indicated in the first column. The sample sizes are given in the column labeled nd.
In the columns labeled lmin and lmax, respectively, the minimum and maximum degree used in each comparison is listed. For
both the raw and the normalized frequency differences the average and the standard deviation are listed in the columns labeled
ave and std, respectively. The normalizations were carried out by dividing the raw frequency differences ∆ν = ν1 − ν2 by the
formal error σ∆ν =

√

σ2
1 + σ2

2 of each difference, where σ1 and σ2 denote the uncertainty of ν1 and ν2, respectively. Using
Student’s t-Test, each mean raw and each mean normalized frequency difference was tested for a significant deviation from
zero. The absolute magnitude of the t-value and the probability that the sample difference occurred by chance are listed in
the columns labeled |t| and p, respectively. The reason we are showing |t| is because we are employing a two-sidedhypothesis
test (i.e., H0 : ave = 0). Since we are using a two-sided test, it is irrelevant whether ave < 0 or ave > 0. The number of points
for which the frequency difference exceeds 3σ in absolute magnitude for each case is listed in the column labeled n±3σ. The
raw frequency differences are measured in µHz. The horizontal lines separate the low, medium and high degree comparisons.

The first two rows of Table 2 contain the results of the two comparisons that we made that contained only low-degree193

(0 ≤ l ≤ 3) mode frequencies. The first row shows the statistics of the comparison of the MPTS(90d) frequencies194

with the frequencies of BR(90d). Comparison of the average raw frequency differences shown in column 5 of this table195

shows that the raw average frequency difference for this case had the smallest absolute value of the nine cases that are196

shown. Also, the results of Student’s t-test for this case showed that the probability that these frequency differences197

were random events was equal to 0.886. The tiny average size of this set of raw frequency differences is supported198

by the fact that the corresponding normalized average shown in column 9 was the smallest of those averages. The199

randomness of these normalized differences is supported by the large probability of 0.567 in column 12. Additionally,200

only one of the 72 MPTS(90d)−BR(90d) frequency differences exceeded ±3 σ, where σ = σ∆ν =
√

σ2
1 + σ2

2 . Here, σ1201

and σ2 denote the uncertainty of ν1 and ν2, respectively.202

The second row of Table 2 shows the statistics of the comparison of the JS(90d) frequencies with the low-degree203

BR(90d) frequencies. While the average raw frequency difference for this comparison is nearly six times larger in204

absolute magnitude than the average raw difference of the MPTS(90d)−BR(90d) case, the average of the normalized205

differences was the second-smallest of the nine averages in column 9. Additionally, the application of Student’s t-test206
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Table 3. Comparison of the MPTS method with the JS, BR, SKm and
SKh methods, and the JS method with the BR, SKm, and SKh methods
in terms of the scaled relative frequency differences

difference scaled relative

ave std |t| p

MPTS(90d)−BR(90d) 4.29× 10−7 1.01 × 10−4 0.037 0.971

JS(90d)−BR(90d) −7.55× 10−6 4.75 × 10−5 1.056 0.297

MPTS(90d)−JS(90d) 2.37× 10−6 4.55 × 10−5 2.356 0.019

MPTS(72d)−JS(72d) 3.58× 10−6 2.37 × 10−5 6.704 ≈ 0

MPTS(67d)−JS(67d) 3.67× 10−6 2.61 × 10−5 6.261 ≈ 0

MPTS(72d)−SKm(72d) 4.66× 10−6 9.94 × 10−5 2.253 0.024

JS(72d)−SKm(72d) 4.38× 10−6 2.19 × 10−5 8.867 ≈ 0

JS(67d)−SKh(67d) −1.49× 10−5 3.87 × 10−4 0.878 0.380

MPTS(67d)−SKh(67d) 9.16× 10−5 1.52 × 10−4 41.359 ≈ 0

Note— The differences are in the sense as indicated in the first column. The scaling of the relative frequency differences,
∆ν/ν = (ν1 − ν2)/[(ν1 + ν2)/2], was carried out by multiplying each difference with a factor Q, where Q is the ratio of the
corresponding mode inertia to that of a mode of degree zero with the same frequency. For the differences the average and the
standard deviation are listed in the columns labeled ave and std, respectively. The absolute magnitude of the t-value and the
probability that the sample difference occurred by chance are listed in the columns labeled |t| and p, respectively.

to the raw and normalized frequency differences showed that the probabilities they were random events were equal to207

0.161 and 0.512, respectively. Furthermore, none of the JS(90d)−BR(90d) differences exceeded ±3 σ.208

Rows 3 through 8 of Table 2 show the results of the six different comparisons of larger tables that contained different209

combinations of low and medium-degree modes. Rows 3, 4, and 5 show the results of comparisons of the MPTS210

and JS frequencies that were derived from observational time series that had durations equal to 90, 72, and 67 days,211

respectively. In contrast to the results shown in rows 1 and 2, the application of Student’s t-test for these three cases212

showed that all three sets of raw frequency differences and all three sets of normalized differences were systematically213

different from being random events at the level of 0.2% or better. We will return to this point in our discussion of214

Tables 5 and 6. For these same three cases, the average normalized frequency differences were very similar and were215

all less than 0.40 σ, while the numbers of cases that exceeded ±3 σ were all less than 4.5% of the total numbers of216

cases.217

Rows 6 and 7 of Table 2 shows the results of comparing the MPTS(72d) and JS(72d) frequencies with the SKm(72d)218

frequencies. As with the three previous cases, the application of Student’s t-test to the MPTS(72d)−SKm(72d)219

comparison in row 6 shows that none of the raw or normalized frequency differences were random events. The average220

of the normalized frequency differences for this case was equal to 0.40 σ, while the fraction of cases that exceeded ±3 σ221

was equal to 4.49%.222

Row 7 of Table 2 shows the statistics for the JS(72d)−SKm(72d) comparison. Student’s t-test shows that neither the223

raw nor the normalized frequency differences were random events. The average of the normalized frequency differences224

for this case was equal to 0.35 σ, while the fraction of cases that exceeded ±3 σ was equal to 0.81%.225

Row 8 of Table 2 shows the first of two comparisons with the SKh method, namely the statistics of the226

JS(67d)−SKh(67d) comparison. The absolute value of the average of these raw frequency differences was the second-227

smallest of the nine averages in this table. Furthermore, the results of Student’s t-test on these raw differences appear228

to show that those differences were random events; however, as we will describe later when we show the degree depen-229

dence of these differences in Figure 8, the small value of the t-statistic is misleading in this case because of the opposite230

signs of the low- and intermediate-degree frequency differences. Furthermore, the application of Students’s t-test to231

this set of normalized frequency differences shows that they were random events at the level of 0.6% Also, row 8 shows232

that 29.0% of the normalized JS(67d)−SKh(67d) differences exceeded ±3 σ. The comparison of the results in rows 7233

and 8 clearly shows that the SKm method is vastly superior to the SKh method for degrees of 299 and below.234
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Row 9 of Table 2 shows the results of the second of our two comparisons with the SKh method. This row shows235

the statistics of the MPTS(67d)−SKh(67d) comparison. The average value of these raw frequency differences was 39236

times larger in absolute value than the second-largest average that was shown in row 2. Row 9 also shows that both237

the raw and normalized SKh(67d) frequencies differed systematically from the MPTS(67d) frequencies, with the t-test238

showing a probability effectively equal to zero of the raw and normalized differences being random. Furthermore, a239

total of 76.1% of the normalized differences exceeded ±3 σ.240

Basu et al. (2003) compared tables of frequencies which they generated using both the JS method and the GONG241

PEAKFIND fitting method on both GONG and MDI time series. Some details of the GONG pipeline algorithm were242

provided by Anderson et al. (1990). Instead of using ∆ν, these authors used the scaled relative frequency differences,243

Qn,l∆νn,l/νn,l, where Qn,l is the ratio of the mode inertia In,l of a mode with degree l and order n to that of a mode of244

degree zero with the same frequency (Christensen-Dalsgaard & Berthomieu 1991). Even though they found that their245

average relative errors were typically less than 1 × 10−5, which they pointed out was substantially smaller than the246

formal errors in the differences, they also pointed out that some of their frequency differences showed “. . . a systematic247

behavior that might nonetheless influence the inversion results.”248

In order to place the nine different sets of frequency differences that we have shown in Table 2 in the context of249

the different sets of GONG and MDI frequency differences published by Basu et al. (2003), we employed a table of250

Qn,l values that extended up to l = 1350 and converted our nine sets of raw frequency differences into nine sets of251

scaled relative frequency differences. As soon as we had finished generating all nine sets of scaled relative frequency252

differences, we computed the overall averages of them, and we computed the standard deviations about these averages.253

We show all nine average differences in the second column of Table 3, and we show all nine standard deviations in the254

third column of this table. In the fourth column, we show the t-statistic for each of these comparisons, and in the fifth255

column we show the probability that each set of differences was a random occurrence.256

Inspection of column two of Table 3 shows that only for the JS(67d)−SKh(67d) andMPTS(67d)−SKh(67d) cases257

were the average scaled relative frequency differences greater than 10−5. Also, inspection of the probabilities that are258

listed in column 5 shows that, while the probabilities for both the MPTS(90d)−JS(90d) and MPTS(72d)−SKm(72d)259

cases were slightly larger than 0, they were both smaller than 0.025, so both of these sets of scaled relative frequency260

differences were random at the 2.5% confidence level. Lastly, the probability of 0.380 for the JS(67d)−SKh(67d) case261

is intermediate between the probabilities of 0.907 and 0.006 for the raw and normalized differences, respectively.262

Before we discuss the possible systematic frequency differences in all nine comparisons, we next show the percentages263

of the normalized frequency differences that are less than or equal to 1 σ, 2 σ, and 3 σ, respectively in Table 4. Only264

for the MPTS(67d)−SKh(67d) and JS(67d)−SKh(67d) comparisons are there appreciable proportions of differences265

that exceed 3 σ.266

Table 4. Percentage of normalized frequency dif-
ferences that are less than or equal to 1σ, 2σ, and
3σ, respectively.

comparison 1σ 2σ 3σ

MPTS(90d)−BR(90d) 67.11 94.74 98.68

JS(90d)−BR(90d) 65.91 93.18 100.00

MPTS(90d)−JS(90d) 55.53 85.26 95.79

MPTS(72d)−JS(72d) 56.16 86.46 96.92

MPTS(67d)−JS(67d) 58.01 87.20 97.03

MPTS(72d)−SKm(72d) 55.86 84.39 95.50

JS(72d)−SKm(72d) 71.55 94.32 99.19

JS(67d)−SKh(67d) 27.85 54.16 70.99

MPTS(67d)−SKh(67d) 8.15 16.19 23.91
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Table 5. Number of frequency and degree bins, respectively, where the error bar, which is equal
to the standard error of the mean, does cross zero for the comparisons listed in the first column.

comparison # frequency bins where the error # degree bins where the error
bar does cross zero bar does cross zero

MPTS(90d)−BR(90d) 6 of 11 2 of 4

JS(90d)−BR(90d) 6 of 8 2 of 4

MPTS(90d)−JS(90d) 2 of 14 2 of 11

MPTS(72d)−JS(72d) 2 of 14 1 of 11

MPTS(67d)−JS(67d) 3 of 14 1 of 11

MPTS(72d)−SKm(72d) 4 of 16 2 of 11

JS(72d)−SKm(72d) 0 of 14 1 of 11

JS(67d)−SKh(67d) 0 of 10 3 of 12

MPTS(67d)−SKh(67d) 0 of 14 0 of 16

In addition to computing the average values of the raw frequency differences for all nine cases, we also binned the raw267

differences as functions of both frequency and degree. Before we describe the lower-row panels in Figures 1 through 9 in268

which we show these binned values, we first summarize some important statistics about these binned values in Tables 5269

and 6. In each row of the second column of Table 5, we show the number of frequency bins for which the average value270

plus or minus the standard error of the average crosses zero and we also list the total number of frequency bins that271

were generated. In the same rows of the third column we show the same two quantities for the degree bins. The first272

two rows of Table 5 contain the results of the two low-degree comparisons that were shown in the first two rows of273

Table 2. Row 1 shows that over one-half of the binned MPTS(90d)−BR(90d) raw differences as a function of frequency274

and exactly one-half of the average differences in the degree bins were consistent with zero at the one-sigma level.275

These results are consistent with the results of Students t-test in row 1 of Table 2, which showed that the un-binned276

raw frequency differences were statistically random events. As was the case for the MPTS(90d)−BR(90d) comparison,277

the results shown in row 2 of Table 5 show that the JS(90d)−BR(90d) binned differences were also consistent with278

zero at the level of one standard error of the mean.279

In contrast to these two low-degree comparisons, rows 3 through 8 of Table 5, which include the medium-degree280

modes, show that the number of binned values that were different from zero at the one-sigma level was a tiny fraction281

of the total number of either frequency or degree bins. For rows 3 through 7, these results are consistent with the282

results of Student’s t-tests that were shown in Table 2. Only for the JS(67d)−SKh(67d) case shown in row 8 of Table 5283

were the binned results inconsistent with the results of Student’s t-Test, which indicated that these differences had the284

highest probability of occurring randomly. We discuss this issue further below. For the MPTS(67d)−SKh(67d) case285

in row 9 of Table 5, none of the binned values were consistent with zero at the level of one standard error of the mean.286

In columns 2 and 3 of Table 6 we show the minimum and maximum, respectively, of the average values within all287

of the 250µHz wide frequency bins for each of our nine comparisons. In column 4 we show the differences between288

the maximum and minimum average values. These differences illustrate the peak-to-peak differences in the binned289

values as functions of frequency. In columns 5 and 6 we show the minimum and maximum values, respectively, of the290

average values within the bins as functions of degree. In column 7 we show the differences between the maximum and291

minimum average values in the degree bins. By comparing the nine pairs of differences in columns 4 and 7, we can292

quickly see that, with the exception of the JS(67d)−SKh(67d) comparison shown in row 8, the binned values have293

significantly more spread when binned as a function of frequency than as a function of degree. In fact, the ratios294

of the values in column 4 divided by the values in column 7 range between 1.6 for row 2 and 7.5 for row 5. Taken295
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together, the above results suggest that the comparisons that do result in systematic differences are more significant296

when binned as a function of frequency rather than degree.297

Table 6. Minimum, maximum, and maximum minus minimum values of the aver-
ages of the frequency differences, measured in µHz, in the frequency and degree bins,
respectively, for the comparisons listed in the first column.

comparison vs. frequency vs. degree

min max max−min min max max−min

MPTS(90d)−BR(90d) −0.099 0.260 0.359 −0.117 0.061 0.178

JS(90d)−BR(90d) −0.160 0.037 0.197 −0.109 0.018 0.127

MPTS(90d)−JS(90d) −0.177 0.081 0.258 −0.005 0.031 0.036

MPTS(72d)−JS(72d) −0.115 0.036 0.148 +0.004 0.028 0.024

MPTS(67d)−JS(67d) −0.116 0.064 0.180 +0.005 0.029 0.024

MPTS(72d)−SKm(72d) −0.370 0.055 0.425 −0.014 0.082 0.096

JS(72d)−SKm(72d) −0.172 0.061 0.233 −0.010 0.050 0.060

JS(67d)−SKh(67d) −1.907 0.614 2.521 −2.068 0.442 2.510

MPTS(67d)−SKh(67d) −1.904 2.518 4.422 +0.485 2.536 2.051

The second significant fact that can be seen in Table 6 is that the spreads in both columns 4 and 7 are all smaller than298

0.43µHz for all of the comparisons which do not involve the SKh(67d) table, while the spreads for the comparisons299

that do involve those frequencies range between six and 14 times larger than the largest of the other six spreads in300

each of columns 4 and 7; and the comparisons that also involve those frequencies in row 9 range between 10 and 11301

times larger than the largest of the other six spreads in each of columns 4 and 7. These comparisons make it very302

clear that the one table of frequencies which differs the most from the other eight tables is the SKh(67d) table.303

In Figures 1 through 9, we show the results of our nine different frequency set comparisons in the same order that304

we used in Tables 2 through 6. In these figures we show the frequency dependence of all nine sets of raw frequency305

differences in the upper left-hand panels and we show the frequency dependence of the nine sets of normalized differences306

in the upper-right panels. The upper-left panels are displayed with different y-axis scales in order to include all of307

the outlying cases. In contrast, the upper-right panels are all plotted to a common y-axis scale for easier comparison.308

Also shown in these panels are the ±3 σ values for comparison. Because of the tiny sizes of most of the raw frequency309

differences and the differing results of Student’s t-Test, we have also binned the raw frequency differences as functions310

of both frequency (shown in the lower-left panels) and degree (shown in the lower-right panels) in order to allow us to311

demonstrate the existence of any systematic effects. All nine pairs of the lower-row panels are plotted using a common312

y-axis scale for easier comparison.313

The upper-left and upper-right panels of Figure 1 show the frequency dependence of the raw and normalized314

MPTS(90d)−BR(90d) frequency differences, respectively. The lower-left panel shows the result of binning the raw315

frequency differences as a function of frequency, while the lower-right panel shows the result of binning the raw fre-316

quency differences as a function of the degree, l, instead. In both of these panels the error bars that are shown are317

the standard errors of the mean values. The upper panels in this figure confirm the results that we presented in row 1318

of Table 2. Specifically, the upper-left panel shows that the raw differences were very small for frequencies below319

3700µHz. The same panel also confirms the results that were shown in row 1 of Table 2 where Students t-test showed320

that the raw MPTS(90d)−BR(90d) differences were not systematic but were instead random with a probability of321

88.6%. The upper-right panel confirms that only a single one of the normalized MPTS(90d)−BR(90d) frequency322

differences fell outside the ±3 σ limits. The lower-left panel shows that the only binned value that exceeded ±0.10µHz323

was the bin centered at 3875µHz. This result is consistent with the frequency-dependent increase in the scatter of the324
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raw MPTS(90d)−BR(90d) frequency differences that can be seen in the upper-left panel. The lower-right panel shows325

that there was not any systematic variation in the raw frequency differences as a function of the degree of the modes.326

Figure 1. (Upper-left panel) Raw differences, ∆ν = νMPTS(90d) − νBR(90d), as functions of frequency. For some selected

differences the error bar is shown in magenta. Here, the error bars are the formal errors of the differences, σ∆ν =
√

σ2
1 + σ2

2 ,
where σ1 and σ2 denote the uncertainty of νMPTS(90d) and νBR(90d), respectively. (Upper-right panel) Normalized differences,
∆ν/σ∆ν , of the frequencies, as functions of frequency. The normalizaton was carried out by dividing the raw differences ∆ν
by σ∆ν . The dashed green lines show the ±3σ values. (Lower-left panel) Binned frequency differences versus frequency using
250µHz-wide bins. Here, the error bars are the standard errors of the means. (Lower-right panel) Binned frequency differences
versus degree using 1-degree wide bins. Again, the error bars are the standard errors of the means. In all four panels the dashed
red line is for a difference of zero. The y-axis scales of the upper-right and two lower panels have been chosen to be common to
Figures 1 through 9.
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The four panels of Figure 2 show the JS(90d)−BR(90d) comparison. While the upper-left panel of this figure appears327

to show a frequency-dependent trend in the raw JS(90d)−BR(90d) differences, this apparent trend is not borne out in328

either the upper-right panel where the normalized differences are shown as a function of frequency or in the lower-left329

panel where the binned raw differences are shown. While the lower-right panel of Figure 1 did not show any degree330

dependence in the binned MPTS(90d)−BR(90d) differences, the lower-right panel of Figure 2 appears to show a very331

weak variation with degree of the binned JS(90d)−BR(90d) differences.332

Figure 2. Same as Figure 1, except that the differences, ∆ν = νJS(90d) − νBR(90d), are shown and a different vertical scale is
used in the upper-left panel.
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The upper-left panel of Figure 3 shows clearly that the scatter in the raw MPTS(90d)−JS(90d) frequency differences333

increased with increasing frequency. By contrast, the upper-right panel of this figure shows that the normalized334

frequency differences did not share this tendency and in fact decreased in absolute magnitude at the highest frequencies335

in the panel. The reason for this different behavior is the fact that the formal frequency uncertainties, which are336

employed to normalize the raw frequency differences, also increase with increasing frequency. We note that the overall337

average of these raw differences was shown to be equal to +0.013µHz in row 3 of Table 2, while the overall average of338

the normalized differences was equal to +0.510. Close inspection of both of the upper panels in Figure 3 shows that339

there were more negative than positive differences in both cases.340

Figure 3. Same as Figure 1, except that the differences, ∆ν = νMPTS(90d) − νJS(90d), are shown and a different vertical scale
is used in the upper-left panel. In the lower-right panel 28-degree wide bins were used. The rather large outlier near 4000 µHz
in the upper-left panel is caused by a poor fit of the (l = 4/n = 26) mode by the MPTS method.

In our earlier discussion of the raw MPTS(90d)−JS(90d) differences we noted that the application of Student’s t-Test341

showed that these differences were statistically significant at the 99.8% level. While the y-axis scale used in both of the342

lower-row panels in Figure 3 is too large to separate the binned differences and their standard errors clearly from the343

line showing the zero level, in fact 12 of the 14 binned differences in the lower-left panel were positive, while only two344

of the three highest frequency averages were negative. Similarly, when we binned the raw differences as a function of345

degree as shown in the lower-right panel, we found that nine of the 11 averages were positive. Taken together, all four346

panels of Figure 3 show that the JS(90d) frequencies were systematically smaller than the MPTS(90d) frequencies,347

but only by tiny fractions of a µHz.348
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Figure 4 shows the results of the MPTS(72d)−JS(72d) comparison. The four panels of this Figure are nearly identical349

(after allowing for the different vertical scales in the upper-left panels) to the corresponding panels of Figure 3. This350

similarity was to be expected based upon the similarity of the results we showed in rows 3 and 4 of Tables 2, 5, and 6.351

Figure 4. Same as Figure 1, except that the differences, ∆ν = νMPTS(72d) − νJS(72d), are shown and a different vertical scale
is used in the upper-left panel. In the lower-right panel 28-degree wide bins were used.
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Figure 5 shows the results of the MPTS(67d)−JS(67d) comparison. The four panels of this Figure are nearly identical352

(after allowing for the different vertical scales in the upper-left panels) to the corresponding panels of Figures 3 and353

4. These similarities were also to be expected based upon the similarity of the results we showed in rows 3, 4, and 5354

of Tables 2, 5, and 6.355

Figure 5. Same as Figure 1, except that the differences, ∆ν = νMPTS(67d) − νJS(67d), are shown and a different vertical scale
is used in the upper-left panel. In the lower-right panel 28-degree wide bins were used.
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Figure 6 shows the results of the MPTS(72d)−SKm(72d) comparison. The two upper-row panels of this figure are356

very similar (after allowing for the different vertical scales in the upper-left panels) to the corresponding panels of357

Figures 3, 4, and 5. The major differences between this comparison and the comparisons that were shown in those358

three figures are the larger values of the binned differences that are shown at the right side of the lower-left panel and359

the small positive binned values around l = 175 in the lower-right panel. Both of these differences can also be seen by360

comparing the results shown in columns 4 and 7 of row 6 of Table 6 with the corresponding values shown in rows 3,361

4, and 5 of that table.362

Figure 6. Same as Figure 1, except that the differences, ∆ν = νMPTS(72d) − νSKm(72d), are shown and a different vertical scale
is used in the upper-left panel. In the lower-right panel 28-degree wide bins were used.
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Figure 7 shows the results of the JS(72d)−SKm(72d) comparison. The upper-left panel of this figure is very similar363

(after allowing for the different vertical scales in the upper-left panels) to the corresponding panels of Figures 3 through364

6; however, the upper-right hand panel of this figure shows smaller scatter of the normalized frequency differences than365

was the case in Figure 6. This difference in the two sets of normalized differences can also be seen by comparing the366

values in columns nine through 11 in rows six and seven of Table 2. The other differences between this comparison367

and the (MPTS(72d)−SKm(72d) comparison that we just showed in Figure 6 are the smaller values of the binned368

differences that are shown at the right side of the lower-left panel and the smaller positive binned values around l = 175369

in the lower-right panel. Both of these differences can also be seen by comparing the results shown in columns 4 and370

7 of row 7 of Table 6 with the corresponding values shown in row 6 of that table.371

Figure 7. Same as Figure 1, except that the differences, ∆ν = νJS(72d) − νSKm(72d), are shown and a different vertical scale is
used in the upper-left panel. In the lower-right panel 28-degree wide bins were used.
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The four panels of Figure 8 show the JS(67d)−SKh(67d) comparison. While the raw frequency differences are the372

largest seen yet, they are still smaller than the MPTS(67d)−SKh(67d) differences that we will show in Figure 9.373

This difference in size of the frequency differences is related to the restricted degree range of the JS(67d)−SKh(67d)374

comparisons. On the other hand, the frequency dependence of this set of binned frequency differences is qualitatively375

similar to the pattern shown in the lower-left panel of Figure 9. The lower-right hand panel of Figure 8 shows the376

difficulty of applying Student’s t-Test to two sets of frequencies that have quite different dependence on the degree377

of the modes. Row 8 of Table 2 claims that there is a probability of 90.7% that these two tables of frequencies378

differ randomly. On the other hand, the lower-right panel of Figure 8 shows that this is clearly not the case. The379

JS(67d)−SKh(67d) frequency differences were all positive for degrees less than 200, while these same differences were380

all negative for degrees between 200 and 300. These two groups of differences averaged out to yield a very small381

t-statistic, while in reality these two frequency tables did differ systematically as a function of degree.382

Figure 8. Same as Figure 1, except that the differences, ∆ν = νJS(67d) − νSKh(67d), are shown and a different vertical scale is
used in the upper-left panel. In the lower-right panel 18-degree wide bins were used.
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The four panels of Figure 9 show the results of the MPTS(67d)−SKh(67d) comparison. In contrast to the tiny383

differences that were just shown in Figures 1 through 8, all four panels of Figure 9 contain very large differences. In384

fact, it was the large size of the MPTS(67d)−SKh(67d) frequency differences that led us to adopt a common y-axis385

scale for the upper-right panels and a different y-axis scale for both lower-row panels in Figures 1 through 9. The two386

left-hand panels of Figure 9 show a pronounced increase in both the raw and binned MPTS(67d)−SKh(67d) frequency387

differences as a function of frequency. The upper-right panel shows a slightly different pattern for the normalized388

MPTS(67d)−SKh(67d) differences. In this panel the differences also grow with increasing frequency but only up to389

3800µHz. Above that frequency, the normalized differences decrease slightly in absolute magnitude. The two lower-390

row panels show that the only differences in the two different sets of binned frequencies occur at the left side of these391

panels. The low-frequency differences were negative, while the low-degree differences were positive. Otherwise, both392

sets of binned differences were all strongly positive. The comparison of Figure 9 with Figure 8 shows that, while there393

are only two methods which fit high-degree power spectra, it is the SKh method which disagrees with both the MPTS394

method at high degrees and with the JS method at intermediate degrees.395

Figure 9. Same as Figure 1, except that the differences, ∆ν = νMPTS(67d) − νSKh(67d), are shown and a different vertical scale
is used in the upper-left panel. In the lower-right panel 59-degree wide bins were used.

5. DEMONSTRATION THAT DIFFERENCES IN THE SKH(67D) AND MPTS(67D) FREQUENCIES ARE NOT396

DUE TO THE USE OF INVALID SEED FREQUENCIES IN THE MPTS METHOD397

In our comparative study, two methods are included which allow the determination of the high-degree mode pa-398

rameters, viz. the SKh and the MPTS method. Unfortunately, the multiplet frequencies computed by these two399

methods disagree clearly, as is shown here in Table 2 and Figure 9, respectively. We wondered if it might be possible to400

demonstrate that the high-degree frequencies would converge to the MPTS(67d) frequencies if we were to employ the401

SKh(67d) frequencies in place of our existing seed frequencies as input to the MPTS method. To answer this question402
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we selected the ridges n = 0 through n = 2 as test examples. For these ridges it happened that the SKh(67d) and403

MPTS(67d) a1 frequency-splitting coefficients differ by not too much for l > 400, as is shown here in the left-hand404

panels of Figures 10, and that the MPTS(67d)−SKh(67d) frequency differences are close to zero around l ≈ 300,405

as is shown here in the right-hand panels of Figures 10. While the a1 frequency-splitting coefficients are crucial for406

determining the multiplet frequencies, the small frequency differences MPTS(67d)−SKh(67d) around l ≈ 300 offered407

us the chance of generating a table of adjusted seed frequencies for the ridges n = 0 through n = 2 that we could then408

use in place of our existing seed table for these ridges. In this table of adjusted seed frequencies, νseed,adj, we have409

retained our current seed frequencies for l ≤ 300 for the n = 0 ridge, for l ≤ 260 for the n = 1 ridge, and for l ≤ 200410

for the n = 2 ridge, while we have replaced the higher-degree seeds with a set of SKh(67d) frequencies smoothed411

using high-order Chebyshev polynomials. These thresholds were chosen to make the transition from the original to412

the adjusted seed frequencies as smooth as possible. Such smooth transitions would not be achievable for ridges of413

radial order n > 2.414

Figure 10. (Left panels) Comparison of the MPTS(67d) (black), JS(67d) (green), and SKh(67d) a1 frequency-splitting
coefficients for, from top to bottom, the ridges n = 0 through n = 2. (Right panels) Frequency differences ∆ν = νMPTS(67d) −
νSKh(67d) as functions of the spherical harmonic degree for, from top to bottom, the ridges n = 0 through n = 2. For some
selected differences the error bar is shown in magenta. The error bars are the square root of the sum of the squares of the
uncertainties of the two sets of frequencies. The dashed red line is for a difference of zero. Because of the enormous scatter of
both the SKh(67d) a1 frequency-splitting coefficients and the SKh(67d) frequencies for degrees l < 300, not all cases are shown
at the y-axis scales of the panels.
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To ultimately answer the question of whether the high-degree frequencies converge to the MPTS(67d) frequencies415

by starting with the smoothed SKh(67d) frequencies as the new seed frequencies as input to the MPTS method, we416

conducted the following multi-iteration scheme, which is known as drawing a homotopy in mathematics. We started417

the first iteration by fitting the ridges n = 0 through n = 2 with the MPTS method using the table of adjusted418

seed frequencies, νseed,adj, for these ridges, and left the seeds for the remaining mode parameters (frequency-splitting419

coefficients, line width, line asymmetry, amplitude) unchanged. The fitted frequencies, νfit,iter1, obtained in this way420

were used as input to the MPTS method in the next iteration, and so on, while the seeds of the remaining mode421

parameters were left unchanged. In total, we performed 5 such iterations to get the results summarized in the Tables 7422

through 9.423

In the Tables 7 through 9 we have listed the following four quantities for seven selected modes along, respectively,424

the ridges n = 0 through n = 2: 1) the SKh(67d) frequency, νSKh, 2) the adjusted seed frequency, νseed,adj, as derived425

from νSKh, 3) the fitted frequency, νfit,iter#, that the MPTS method provided in iteration # when νseed,adj was used as426

the seed frequency, and 4) the original MPTS(67d) frequency, νMPTS. As can be seen, the fitted frequencies approach427

the original MPTS(67d) frequencies very quickly. This amazingly fast convergence stands in contrast to an experiment428

conducted by Reiter et al. (2022, in preparation) in which a set of adjusted splitting coefficients were employed that429

did not contain the large jumps that the MPTS code had converged to for the n = 0 ridge when the genuine table of430

seed coefficients was used as input. In that experiment, Reiter et al. (2022, in preparation) ended up with a set of431

splitting coefficients that were very close to the original set, but it took a total of 38 iterations.432

Table 7. SKh(67d) frequency, νSKh, adjusted seed frequency, νseed,adj, fitted frequency, νfit,iter#,
as obtained from the MPTS method in iteration #, MPTS(67d) frequency, νMPTS, and MPTS(67d)
frequency uncertainty, σνMPTS

, for seven selected modes (l, n) in the degree range from l = 400 to
l = 1000, for the n = 0 ridge.

mode (l, n)

(400,0) (500,0) (600,0) (700,0) (800,0) (900,0) (1000,0)

νSKh 2007.9407 2242.1596 2453.6809 2647.7413 2827.6472 2994.9767 3152.5939

νseed,adj 2007.86 2242.11 2453.71 2647.72 2827.57 2995.06 3152.70

νfit,iter1 2007.9544 2242.3473 2454.1204 2648.3658 2828.3535 2996.5884 3155.1195

νfit,iter2 2007.9391 2242.3417 2454.1249 2648.3460 2828.3786 2996.4222 3154.8927

νfit,iter3 2007.9373 2242.3514 2454.1220 2648.3900 2828.3485 2996.4214 3154.9244

νfit,iter4 2007.9404 2242.3438 2454.1303 2648.4123 2828.3110 2996.6266 3154.9792

νfit,iter5 2007.9420 2242.3472 2454.1196 2648.4144 2828.2926 2996.5119 3154.9377

νMPTS 2007.9402 2242.3497 2454.1274 2648.3965 2828.3849 2996.5227 3155.0457

σνMPTS
0.0171 0.0165 0.0187 0.0222 0.0246 0.0295 0.0377

The results presented in Tables 7 through 9 are shown graphically in Figure 11. In the upper-left panel, the433

frequency changes, ∆ν, of the frequencies, νfit,iter#, fitted in iteration # are plotted versus the number of iterations434

for the 7 modes listed in the Tables 7 through 9 for the n = 0 ridge. In order to be able to make the tiny frequency435

differences visible at all, we have subtracted the SKh(67d) frequency of the mode (l, n) = (400, 0) from all of the436

five (400, 0) iterated frequencies, and have multiplied the differences by the factor of 100. The remaining six modes437

(500, 0), (600, 0) . . . (1000, 0) we treated in the same way. As a result, by definition ∆ν = 0 for the zeroth iteration438

for all seven modes. This applies to the ridges n = 1 (upper-right panel) and n = 2 (bottom panel) as well, because439

they were processed in exactly the same way. The three panels of Figure 11 clearly show, that the convergence is very440

fast for all three ridges n = 0 through n = 2. For all 7 modes considered, after just two to three iterations of the441

multi-iteration scheme the corresponding original MPTS(67d) frequency has been reached within ±3 σ.442

The convergence behavior of the multi-iteration scheme is analyzed in more detail in Table 10 in terms of the raw443

frequency differences ∆ν = νMPTS(67d) − νfit of the original and the fitted frequencies. Initially, we used the sum444
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Table 8. Same as Table 7, but for the n = 1 ridge.

mode (l, n)

(400,1) (500,1) (600,1) (700,1) (800,1) (900,1) (1000,1)

νSKh 2555.2422 2800.2943 3030.2041 3249.9327 3462.7476 3670.8995 3875.3840

νseed,adj 2555.51 2800.28 3030.11 3249.97 3462.80 3670.68 3875.49

νfit,iter1 2555.7776 2801.1451 3031.3602 3251.6104 3464.9073 3673.2826 3878.2637

νfit,iter2 2555.7627 2801.2458 3031.4955 3251.6069 3464.8964 3673.5560 3878.5364

νfit,iter3 2555.7723 2801.2178 3031.4357 3251.6674 3464.9382 3673.5456 3878.5314

νfit,iter4 2555.7699 2801.2288 3031.4477 3251.6653 3464.9225 3673.5643 3878.5483

νfit,iter5 2555.7732 2801.2230 3031.4682 3251.6815 3464.9270 3673.5251 3878.5701

νMPTS 2555.7733 2801.2127 3031.4605 3251.6785 3464.9314 3673.4078 3878.4998

σνMPTS
0.0177 0.0192 0.0226 0.0222 0.0476 0.0289 0.0346

Table 9. Same as Table 7, but for the n = 2 ridge. Since with the MPTS method only modes
with a frequency up to 4600µHz can be fitted, for this ridge the highest degree is l = 997.

mode (l, n)

(400,2) (500,2) (600,2) (700,2) (800,2) (900,2) (997,2)

νSKh 3087.3513 3365.7091 3628.7186 3881.8083 4128.5151 4369.1676 4597.6383

νseed,adj 3087.31 3365.59 3628.73 3882.11 4128.47 4369.24 4597.72

νfit,iter1 3088.1366 3366.8821 3630.5947 3884.4756 4131.0349 4371.8980 4599.0511

νfit,iter2 3088.1392 3366.9045 3630.6265 3884.5033 4131.2427 4372.0325 4599.4037

νfit,iter3 3088.1401 3366.9008 3630.6332 3884.5386 4131.2936 4371.9688 4599.4084

νfit,iter4 3088.1383 3366.9070 3630.6186 3884.5227 4131.3365 4371.8771 4599.4159

νfit,iter5 3088.1372 3366.9013 3630.6226 3884.5324 4131.3668 4371.8577 4599.4070

νMPTS 3088.1405 3366.9077 3630.6259 3884.5195 4131.3332 4372.0899 4599.5630

σνMPTS
0.0246 0.0281 0.0431 0.0295 0.0407 0.0480 0.0678

of squares (SSQ) of the differences, ∆ν, as a convergence criterion. However, it is an intrinsic feature of the MPTS445

method that, for a given mode, the iterated frequencies in the multi-iteration scheme scatter on the order of the446

uncertainty of the fitted mode frequency. As we will demonstrate in the upper-left panels of Figures 12 through 14,447

the frequency uncertainty increases with increasing full-width at half-maximum (FWHM) line width. Because for448

high-degree modes the FWHM increases with increasing degree, it is quite clear that in the multi-iteration scheme the449

scatter of the iterated frequencies increases with increasing degree. As a consequence, the sum of squares turned out450

to be an unsuitable convergence criterion. Therefore, we switched over to a two-sided Student’s t-test, and calculated451

the probability, p, that the sample differences, ∆ν, occurred by chance. As can be seen in Table 10, for both ridges452

n = 0 and n = 1 this probability, p, exceeds 0.85 already after two to three iterations. However, in terms of p the453

convergence seems to be much slower for the n = 2 ridge.454

As mentioned above, in the upper-left panels of Figures 12 through 14 the frequency uncertainties, σν , of the455

MPTS(67d) frequencies are shown, for the ridges n = 0 through n = 2, as functions of the MPTS(67d) full-width at456

half-maximum (FWHM) line widths. In the upper-right panels of these Figures the raw differences, ∆ν = νMPTS(67d)−457

νSKh(67d), of the MPTS(67d) and SKh(67d) frequencies are shown as functions of the MPTS(67d) line widths. Close458

inspection of the lower two panels in Figure 12 shows that for the first iteration of the frequencies of the n = 0 ridge,459

the scatter increases above a line width of 15µHz, whereas for the fifth iteration of this ridge the transition point is460
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Figure 11. (Upper-left panel) Frequency changes, ∆ν, of the fitted frequencies, νfit,iter#, in iteration # for the 7 modes listed
in Table 7, versus the number of iterations for the n = 0 ridge. To be able to adequately represent the tiny frequency differences,
the SKh(67d) frequency of the mode (l, n) = (400, 0) was subtracted from all of the five (400, 0) iterated frequencies, and the
differences were multiplied by the factor 100. The remaining six modes (500, 0), (600, 0) . . . (1000, 0) were treated in the same
way. As a result, by definition ∆ν = 0 for iteration #0 for all seven modes. The color style is as follows: (400/0) black, (500/0)
red, (600/0) green, (700/0) blue, (800/0) yellow, (900/0) magenta, and (1000/0) turquoise. The colored, dashed horizontal lines
with the ±3σ error bars represent the original MPTS(67d) frequencies. The error bars are drawn near the left edge of the panel
as well as for the x-values 1.5 through 4.5 in steps of 1.0. (Upper-right panel) Same as upper-left panel, but for the n = 1 ridge.
(Bottom panel) Same as upper-right panel, but for the n = 2 ridge. For this ridge, however, turquoise represents the (997/2)
mode.

raised to a width of 30µHz. Similarly, in Figure 13 for the n = 1 ridge for the first iteration the transition point461

occurs for a width of 20µHz, while for the fifth iteration the transition point has been increased to a width of 46µHz.462

In Figure 14 for the n = 2 ridge, there is no such transition point for the first iteration since the raw frequency463

differences deviate from an average of zero immediately. For the same ridge for the fifth iteration the transition point464

is located at a width of 50µHz. All three of these changes are clear evidence for the improvements made by the465

iterative process. The upper-right panels of Figure 12 through 14 show that with the exception of the lowest-degree466

modes the raw, uniterated frequency differences, ∆ν = νMPTS(67d) − νSKh(67d), show tight, systematic variations with467

increasing linewidth for all three ridges. These tight relationships suggest that one of the two fitting methods becomes468

less accurate as the line width increases.469
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Table 10. Convergence of the MPTS method to the origi-
nal νMPTS(67d) frequencies when the adjusted seed frequencies,
νseed,adj, were used as input to the MPTS method, for the ridges
n = 0 through n = 2.

iteration ave std t p nd

n = 0 0 0.48836 1.26027 10.967 ≈ 0 801

1 0.00613 0.06738 2.745 0.006 911

2 −0.00023 0.04933 0.140 0.888 911

3 −0.00026 0.06177 0.126 0.900 911

4 0.00026 0.07546 0.104 0.917 911

5 0.00014 0.09464 0.044 0.965 911

n = 1 0 1.15403 1.32612 25.888 ≈ 0 885

1 0.03597 0.06851 16.237 ≈ 0 956

2 0.00216 0.03783 1.766 0.078 956

3 0.00001 0.03736 0.007 0.994 956

4 0.00021 0.03873 0.170 0.865 956

5 0.00011 0.04243 0.080 0.936 956

n = 2 0 1.53742 1.09960 41.898 ≈ 0 898

1 0.08059 0.12965 19.390 ≈ 0 973

2 0.00952 0.04793 6.195 ≈ 0 973

3 0.00407 0.04389 2.893 0.004 973

4 0.00287 0.04634 1.932 0.054 973

5 0.00287 0.05021 1.785 0.075 973

Note— After each iteration, as listed in column 2, the average and standard deviation, listed in column 3 and 4, respectively,
of the raw differences ∆ν = νMPTS(67d) − νfit of the original and the fitted frequencies were calculated. Using the two-sided
Student’s t-test, these frequency differences were tested for a significant deviation from zero. The t-value and the probability p
that the sample difference occurred by chance are listed in the columns labeled t and p, respectively. In the column labeled nd

the sample sizes are given. The results given for the zeroth iteration correspond to the results of the raw MPTS(67d)−SKh(67d)
frequency differences.
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Figure 12. Frequency uncertainties, σν , of the MPTS(67d) frequencies (upper-left panel), raw differences, ∆ν = νMPTS(67d) −
νSKh(67d), of the MPTS(67d) and SKh(67d) frequencies (upper-right panel), raw differences, ∆ν = νfit,iter1 − νMPTS(67d), of
the νfit,iter1 frequencies, as obtained in the 1st iteration and the original νMPTS(67d) frequencies (bottom-left panel), and raw
differences, ∆ν = νfit,iter5 − νMPTS(67d), of the νfit,iter5 frequencies, as obtained in the 5th iteration and the original νMPTS(67d)

frequencies, as functions of the MPTS(67d) FWHM line width for the n = 0 ridge. The full red line in the upper-left panel is
for a linear fit for FWHM ≥ 2.5µHz corresponding to the degree l = 388. The horizontal dashed red line in the upper-right and
the lower panels is for a difference ∆ν = 0.
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Figure 13. Same as Figure 12, but for the n = 1 ridge. The full red line in the upper-left panel is for a parabolic fit for
FWHM ≥ 2.5µHz corresponding to the degree l = 216.
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Figure 14. Same as Figure 12, but for the n = 2 ridge. The full red line in the upper-left panel is for a parabolic fit for
FWHM ≥ 4.0µHz corresponding to the degree l = 206.
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In the left-hand panel of Figure 15 we show, for the ridges n = 0 through n = 2, the SKh(67d) full-width at470

half-maximum (FWHM) line widths, FWHMSKh, plotted as functions of the MPTS(67d) FWHM, FWHMMPTS. It471

is interesting to note that, for FWHM values above 25µHz, the slopes of these curves increase as the radial order, n,472

increases from 0 to 2. In the right-hand panel of Figure 15 we demonstrate how similar the variation of σν/FWHMMPTS473

versus FWHMMPTS is for all three ridges.474

Figure 15. (Left panel) SKh(67d) full-width at half-maximum (FWHM) line widths, FWHMSKh, plotted as functions of the
MPTS(67d) FWHM, FWHMMPTS. The black diamonds are for the n = 0 ridge, the red triangles are for the n = 1 ridge, and the
green plus signs are for the n = 2 ridge. The dashed magenta line indicates the location for FWHMSKh = FWHMMPTS. (Right
panel) Ratio, σν/FWHMMPTS, of the frequency uncertainties, σν , of the MPTS(67d) frequencies, and FWHMMPTS plotted as
functions of FWHMMPTS. The symbol and color style is the same as in the left-hand panel.

In addition to the frequencies that are produced by a fitting methodology, the formal uncertainties in those fre-475

quencies are also of great importance in the generation of structural inversions of the solar interior. Since we have476

already mentioned that only the MPTS and the SKh methods produce frequencies for the high-degree modes, we477

have also investigated the frequency uncertainties that are produced by both of these methods. In the three right-478

panels of Figure 16 we present the logarithms of the ratios of the SKh(67d) frequency uncertainties, σν,SKh(67d), to479

the corresponding MPTS frequency uncertainties, σν,MPTS(67d), as functions of degree, l, for the ridges n = 0 through480

n = 2. An overview of these three right-hand panels shows that they share a similar appearance, with the largest481

ratios clustering at the left side of each panel, and a smaller set of ratios extending from the middle portions to the482

right sides of the panels. Because of the similarity of the shapes of these three sets of ratios, we chose to divide each483

set of ratios into two segments, and we then computed the average value of each segment. For the n = 0 ridge, the484

dividing point was located at l = 375. The average uncertainty ratio for the modes with lower degrees was 38.7,485

while the average ratio of the higher-degree cases was 3.9. For both the n = 1 and n = 2 ridges, the dividing point486

was located at l = 275. For the n = 1 ridge, the average of the lower-degree ratios was 19.0, and the average of the487

higher-degree ratios was 3.8. For the n = 2 ridge, the average of the lower-degree ratios was 11.2, and the average of488

the higher-degree ratios was also equal to 3.8. These statistics make it very clear that the MPTS method produces489

considerably smaller frequency uncertainties than the SKh method. For the sake of completeness, we show in the three490

left-hand panels of Figure 16 the logarithms of the ratios of the SKm(72d) frequency uncertainties, σν,SKh(72d), to the491

corresponding MPTS frequency uncertainties, σν,MPTS(72d), as functions of degree, l, for the ridges n = 0 through492

n = 2. Comparison of the pairs of panels in each row of Figure 16 show that the SKm and SKh frequency uncertainties493

are not self-consistent within each of the three different ranges of overlapping degrees, as the SKm uncertainties are494

all increasing functions of the spherical harmonic degree, while the SKh uncertainties are all decreasing functions of495

the spherical harmonic degree. Furthermore, for the n = 0 ridge, both the SKm and SKh frequency uncertainties are496

all larger than the corresponding MPTS uncertainties. Only for the n = 1 ridge are some of the SKm uncertainties497

substantially smaller than the corresponding MPTS uncertainties for degrees below 125. For the n = 2 ridge, only498

about ten of the SKm uncertainties are smaller than the MPTS uncertainties for degrees between 50 and 80.499
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Figure 16. (Left-panels) Logarithm of the ratios of the SKm(72d) frequency uncertainties, σν,SKm(72d), to the corresponding
MPTS(72d) frequency uncertainties, σν,MPTS(72d), as functions of the spherical harmonic degree for the n = 0 ridge (top),
n = 1 ridge (middle), and n = 2 ridge (bottom). The horizontal dashed red line is for a ratio of unity. (Right panels) Same as
left panels, but for the ratios of the SKh(67d) frequency uncertainties, σν,SKh(67d), to the corresponding MPTS(67d) frequency
uncertainties, σν,MPTS(67d).
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6. CONCLUSIONS500

The success of helioseismology is essentially based on the possibility of performing numerical inversions of different501

properties of the solar oscillations. In terms of global helioseismology, one such type of inversion is the “structural502

inversion” in which tables of the frequencies of f- and p-mode oscillations and their associated uncertainties are employed503

to infer the structure of the solar interior. An important test of the reliability of the mode frequencies obtained from504

various fitting methodologies is that they are consistent with one another when applied to contemporaneous helioseismic505

observations. Here we have compared f- and p-mode frequencies obtained from the MPTS method (Reiter et al.506

2020) with those obtained from the mean-multiplet technique (Schou 1992; Schou et al. 2002), the high-degree fitting507

methodology of Korzennik et al. (2004), the medium-degree fitting methodology of Korzennik (2005, 2008a,b), and the508

fitting methodology of the Birmingham Solar Oscillations Network group (Broomhall et al. 2009; Davies et al. 2014;509

Hale et al. 2016) using data based on 67-, 72-, and 90-day long time series of full-disk dopplergrams acquired by the510

HMI in 2010, and on low-degree Sun-as-a-star observations acquired by the ground-based observing stations of the511

BiSON group. While we have found excellent agreement between the MPTS, JS, SKm, and BR frequencies in the512

range of low and intermediate degrees, there are significant differences between the MPTS, JS and SKh frequencies in513

the range of intermediate and high degrees. We were able to demonstrate that the differences in the SKh(67d) and514

MPTS(67d) frequencies are not due to the use of invalid seed frequencies in the MPTS method. Rather, we could show515

that the MPTS method is able to accurately restore the MPTS(67d) frequencies when starting from the SKh(67d)516

frequencies for the lower-order ridges. Overall, we have shown that the MPTS fitting method provides frequencies that517

are in excellent agreement with other state-of-the-art fitting methods for degrees up to l = 300 and which are superior518

to the SKh method for degrees between l = 301 and 1350. The inclusion of large numbers of MPTS frequencies in this519

range of degrees should provide more precise estimates of solar internal structure in the range of depths incorporated520

in the Near-Surface Shear Layer.521

In this work, we utilized data from the Helioseismic and Magnetic Imager (HMI) instrument, and we have made
extensive use of NASA’s Astrophysics Data System. HMI data are courtesy of NASA/SDO and the HMI science

team. The SDO/HMI project is supported by NASA Contract NAS5-02139 with Stanford University. Resources

supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced

Supercomputing (NAS) Division at Ames Research Center. The portion of the research that was conducted at the
University of Southern California was supportd by Subaward 62401046-26967 from Stanford University. The work was

partially supported by NASA grant 80NSSC20K1320. J.R. is greatly indebted to B. Vexler and D. Meidner of the

Technische Universität München for their generous support and hospitality, and to C. Baldner for the generation of

the 90-day 2010 HMI spectra.
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