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Abstract We study the effect of localized sound-speed perturbations on global
mode frequencies by applying techniques of global helioseismology on numerical
simulations of the solar acoustic wave field. Extending the method of realization
noise subtraction (e.g. Hanasoge, Duvall, and Couvidat, 2007) to global modes and
exploiting the luxury of full spherical coverage, we are able to achieve very highly
resolved frequency differences that are then used to study sensitivities and the
signatures of the thermal asphericities. We find that (1) global modes are almost
twice as sensitive to sound-speed perturbations at the bottom of the convection
zone as in comparison to anomalies well in the radiative interior (r . 0.55R�),
(2) the m-degeneracy is lifted ever so slightly, as seen in the a coefficients, and (3)
modes that propagate in the vicinity of the perturbations show small amplitude
shifts. Through comparisons with error estimates obtained from Michelson Doppler
Imager (MDI; Scherrer et al., 1995) observations, we find that the frequency
differences are detectable with a sufficiently long time series (70-642 days).

Keywords: Helioseismology, Direct Modeling; Interior, Tachocline; Interior, Con-
vective Zone; Waves, Acoustic

1. Introduction

Global helioseismology has proven very successful at inferring large scale properties
of the Sun (for a review, see Christensen-Dalsgaard, 2002; Christensen-Dalsgaard,
2003). Because they are very robust, the extension of these methods to studies of
localized variations in the structure and dynamics of the solar interior has been of
some interest (e.g. Swisdak and Zweibel, 1999). However, the precise sensitivities
of global modes to local perturbations are difficult to estimate through analytical
means, especially in cases where the flows or thermal asphericities of interest
possess complex spatial dependencies.To address questions relating to sensitivities
and with the hope of perhaps discovering hitherto unknown phenomena associated
with global modes, we introduce here a technique to study the effects of arbitrary
perturbations on global mode parameters in the linear limit of small wave ampli-
tudes (also see e.g., Rosenthal et al., 1999; Georgobiani et al., 2004). In addition,
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this method can be employed to study the interactions of waves with arbitrary
magnetic structures. Since this is a first step along these lines, we choose a fairly
simple set of problems to study, ones that are somewhat amenable to analytical
methods as well.

Global modes attain resonant frequencies as a consequence of differentially
sampling the entire region of propagation, making it somewhat more difficult (in
comparison to local helioseismology) to pinpoint local thermal asphericities at
depth. Exactly how difficult is one of the questions we have attempted to answer
in this article. Jets in the tachocline (e.g. Christensen-Dalsgaard et al., 2005) are a
subject of considerable interest since their existence (or lack thereof) could be very
important in understanding the angular momentum balance of the Sun. Studying
the sensitivities and signatures of waves to flows at depth may open up possibilities
for their detection.

Forward modeling as a means of studying wave interactions in a complex
medium like the Sun has become quite favoured (e.g. Hanasoge et al., 2006;
Parchevsky and Kosovichev, 2007; Hanasoge, Duvall, and Couvidat, 2007; Cameron,
Gizon, and Daifallah, 2007). The discovery of interesting phenomena, especially
in the realm of local helioseismology (e.g. Hanasoge et al., 2007; Birch, Braun,
and Hanasoge, 2007), adds motivation to the pursuit of direct calculations. With
the application of noise subtraction (Werne, Birch, and Julien, 2004; Hanasoge,
Duvall, and Couvidat, 2007), we can now study the signatures of a wide range
of perturbations in a realistic multiple source picture. Here, we attempt to place
bounds on the detectability of thermal asphericities at various depths in the Sun.
We introduce and discuss the method of simulation with a description of the types
of perturbations introduced in the model in Section 2. The estimation of mode
parameters can prove somewhat difficult due to restrictions on the temporal length
of the simulation (< 24 hours; owing to the expensive nature of the computation).
The data analysis techniques used to characterize the modes are presented in
Section 3. We then discuss the results from the analyses of the simulated data in
§4 and summarize this work in §5.

2. Simulations and perturbations

The linearized 3D Euler equations in spherical geometry are solved in the manner
described in Hanasoge et al. (2006). The computational domain is a spherical
shell extending from 0.24R� to 1.002R�, with damping sponges placed adjacent
to the upper and lower radial boundaries to allow the absorption of outgoing
waves. The background stratification is a convectively stabilized form of model
S (Christensen-Dalsgaard et al., 1996; Hanasoge et al., 2006); only the highly
(convectively) unstable near-surface layers (r > 0.98R�) are altered while the
interior is the same as model S. In contrast to the Sun where waves are excited by
the vigorous near-surface convective activity, we utilize a simple phenomenological
linear substitute in our calculations. The waves are stochastically excited over a 200
km thick sub-photospheric spherical envelope, through the application of a dipolar
source function in the vertical (radial) momentum equation (Hanasoge et al.,
2006; Hanasoge and Duvall, 2007). The forcing function is uniformly distributed
in spherical harmonic space (l,m); in frequency, a solar-like power variation is
imposed. Any damping of the wave modes away from the boundaries is entirely of
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Figure 1. Example power spectrum from a simulation with lmax = 95 and the corresponding
frequency fits (symbols). Apart from damping sponges on the upper and lower boundaries,
there is very little numerical damping - this results in very thin linewidths, especially at lower
frequencies. This is from a 24-hour simulation. The fitting algorithm is described in Section 3.
Missing modes indicate that the fit for these did not converge. We do not understand why
this occurs in the center of the power spectrum, but these modes can be made to converge by
perturbing their initial guesses. Modes with l < 20 mostly disappear from the computational
domain because the lower boundary is placed at r = 0.24R�. We also do not excite the highest
l modes because we wish to avoid any issues related to numerical aliasing. A frequency cut
through the spectrum will show frequency dependent asymmetric mode profiles (Hanasoge &
Duvall 2007).

numerical origin. The radial velocities associated with the oscillations are extracted
200 km above the photosphere and used as inputs to the peakbagging analyses.
Data over the entire 360◦ extent of the sphere are utilized in the analyses, thus
avoiding issues related to mode leakage. We show an example power spectrum in
Figure 1 along with the fits.

The technique of realization noise subtraction (e.g. Hanasoge, Duvall, and Cou-
vidat, 2007) is extensively applied in this work. Due to the relatively short time
lengths of the simulations (the shortest time series yet that we have worked with
is 500 minutes long!), the power spectrum is not highly resolved and it would
seem that the resulting uncertainty in the mode parameter fits might constrain
our ability to study small perturbations. To beat this limit, we perform two sim-
ulations with identical realizations of the forcing function: a ‘quiet’ run with no
perturbations, and a ‘perturbed’ run that contains the anomaly of interest. Fits
to the mode parameters in these two datasets are then subtracted, thus removing
nearly all traces of the realization and retaining only effects arising due to mode-
perturbation interactions (see Section 3). As an example, we show in Figure 2
how a localized sound-speed perturbation placed at the bottom of the convection
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zone scatters waves which then proceed to refocus at the antipode (the principle
of farside holography, Lindsey and Braun, 2000). The presence of the sound-speed
perturbation is not seen in panel a, whereas it is clearly seen in the noise-subtracted
images of panels b and c.

In these calculations, we only consider time-stationary perturbations. The sound-
speed perturbations are taken to be solely due to changes in the first adiabatic
index, Γ1; we do not study sound-speed variations arising from changes in the
background pressure or density since altering these variables can create hydrostatic
instabilities. Lastly, the amplitude of all perturbations are taken to be much smaller
than the local sound speed (. 5%).

3. Peakbagging analysis

Our first round of peakbagging is performed on the m-averaged power spectrum
for the quiet simulation. For each l that we attempt to fit, we search for peaks in
the negative second derivative of the power. Unlike the power itself, which has a
background, the second derivative has the advantage of having an approximately
zero baseline. The search is accomplished by finding the frequency at which the
maximum value of the negative second derivative occurs, estimating the mode
parameters using a frequency window of width 100 µHz centered on this peak
frequency, zeroing the negative second derivative in this interval, and iterating.
If the range of power in the frequency window is not above a certain threshold,
we check the peak frequency found; if it is too close to a frequency found on a
previous iteration, that maximum is rejected, the same interval is again zeroed, and
iteration continues. Note that such a simple algorithm is feasible only because the
simulation data contain no leaks. Once we have found as many peaks as possible
with this procedure, we assign a value of n to each one based on a model computed
using ADIPACK (Christensen-Dalsgaard and Berthomieu, 1991; Hanasoge, 2007).

The next step is to perform an actual fit to the power spectrum in the vicinity
of each peak we identified. For the line profile we use a Lorentzian of the form

P =
A

π

w

(ν − ν0)2 + w2
+ B, (1)

where A is the total power, w is the half width at half maximum, ν0 is the peak
frequency, and B is the background power density. The initial guesses for these
parameters are obtained in the first step as follows: B is set to the minimum value
of the power in the frequency window around the peak, A is set to the integral
under the power curve minus B times the width of the window, and w is set
to 1/(πPmax) where Pmax is the maximum value of the power in the frequency
window. The fitting interval extends halfway to the adjacent peaks, or 100 µHz
beyond the peak frequency of the modes at the edge. The fitting itself is done
using the IDL routine curvefit.

Once we have fit these mode parameters for the m-averaged spectrum, we use
them as the initial guesses for fitting the individual m spectra. Then for each l and
n we can fit a set of a-coefficients to the frequencies as functions of m/l. The a
coefficients are measures of the degree of departure from spherical symmetry and
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Figure 2. Noise subtraction at work. Panel a is the time averaged RMS of the radial veloci-
ties of the perturbed simulation; the sound-speed perturbation (located along the equator at
r = 0.7R� and 180◦ longitude) is invisible. In panel b, the time averaged RMS of the differ-
ence between the quiet and perturbed simulations and shown in panel c is the instantaneous
difference. The scattering of waves and their refocusing at the antipode is clearly seen in b.

are are described by:

ωnlm = ωnl +

jmax
∑

j=1

aj(n, l)P
(l)
j (m), (2)
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where P
(l)
j (m) are polynomials of degree j (Schou et al., 1994). Although for the

quiet sun we would expect for all the a-coefficients to be zero, this calculation is
still necessary in order to perform the noise subtraction.

We also use the mode parameters from the m-averaged spectrum of the quiet
simulation as initial guesses for fitting the (unshifted) m-averaged spectrum of
the perturbed simulation. Although the perturbations may lift the degeneracy in
m, we expect the splitting to be very small, so that the peaks in the m-averaged
spectrum can still be well represented by a Lorentzian. We also use those same
initial guesses for fitting the individual m spectra of the perturbed simulation, and
recalculate the a-coefficients.

An empirical estimate of the error in frequency differences for the sound-speed
perturbation at r = 0.7R� (see Section 4.1) is computed in the following manner.
We look at the difference in mode parameters only for those modes that do not
penetrate to the depth of the perturbation (all modes with ν/(l + 1/2) < 60).
We then make a histogram of these differences with a bin size of 0.001 µHz and
fit a Gaussian to the resulting distribution. With this method we find a standard
deviation of 0.000474 µHz or 0.47 nHz. This result is confirmed by also computing
the standard deviation of 95% of the closest points to the mean.

4. Results and discussion

4.1. Sound-speed anomalies

We place three equatorially centered perturbations of horizontal size 8◦ × 8◦ (in
longitude and latitude) with a full width at half maximum in radius of 2%R�

(13.9 Mm) at depths of r = 0.55,0.7,1.0R�, each with an amplitude α of +5% of
the local sound speed. Because of the fixed angular size, the perturbations grow
progressively smaller in physical size with depth; our intention was to keep the per-
turbation as localized and non-spherically symmetric as possible. Despite the fact
that the perturbation is highly sub-wavelength (the wavelength at r = 0.7R� is 76
Mm or 11%R�), we notice that for these (relatively) small amplitude anomalies,
the global mode frequency shifts are predominantly a function of the spherically
symmetric component of the spatial structure of the perturbation. In other words,
what matters most is the contribution from the l = 0 coefficient in the spherical
harmonic expansion of the horizontal spatial structure of the perturbation. We
verify this by computing the frequency shifts associated with a spherically sym-
metric area-averaged version of the localized perturbation (with an amplitude
of 0.05Alocal/(4π), where Alocal is the solid angle subtended by the localized
perturbation, 0.05 referring to the 5% increase in sound speed). We were careful
to ensure that the radial dependence of the magnitude of the perturbation was
unchanged. The frequency shifts associated with the spherically symmetric per-
turbations were calculated independently through simulation and the oscillation
frequency package, ADIPACK (Christensen-Dalsgaard and Berthomieu, 1991) and
seen to match accurately, as shown in Figure 3.

Because of the non-spherically symmetric nature of the perturbation, we ex-
pect to see shifts in the a coefficients. Similarly, it is likely that the reduction in
the acoustic cavity size will reduce the mode mass, thereby resulting in a slight
increase in the amplitudes of modes that propagate in regions close to and below
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Figure 3. Frequency shifts (∆ν) plotted against phase speed (ν/[l+1/2]) for the sound-speed
perturbations of Section 4.1. Solid lines indicate the phase speed of waves that have r = 0.7R�

as inner turning points. Panel a shows the shifts due to a localized hot spot (sound-speed
increase) at the bottom of the convection zone. The perturbation reduces the size of the
acoustic cavity - consequently, modes whose inner turning points are just below the bottom
of the convection zone are the ones maximally sensitive to the perturbation. Panel b shows
the frequency shifts obtained from ADIPACK for the spherically symmetric component of this
perturbation. In panel c, all modes feel the presence of the relatively large near-surface hot
spot and in d, the shifts predicted by ADIPACK for the spherically symmetric analog for
this near-surface anomaly are shown. Noise subtraction does not remove the realization noise
associated with the scattering process itself; therefore the spread in the frequency shifts of the
simulated data is greater than ADIPACK ones.

the locations of the perturbation. We display these effects for the case with the
perturbation located at r = 0.7R� in Figure 4. The change in a1 is extremely small
and possibly well below detection thresholds. In addition, solar rotation creates
far more significant changes in a1, of the order of 400 µHz or so, making it all but
impossible to study thermal asphericities using the a coefficients.

4.2. Scattering extent

We introduce a non-dimensional measure, κ, to characterize the degree of scatter-
ing exhibited by the anomaly:

κ = 10−3 4πR3
�

3

1

αV

√

√

√

√

1

N

∑

n,l

(

δν

σ

)2

, (3)

where α = δc/c, the amplitude of the sound-speed perturbation expressed in
fractions of the local sound speed, σ = σn,l(ν) is the formal observational frequency
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Figure 4. Changes in mode amplitudes (panel a) and the a1 coefficients (panel b) due to the
sound-speed perturbation located at r = 0.7R� shown as functions of the phase speed of the
waves. In panel a, it seen that only modes which have turning points close to and below the
location of the perturbation show changes in the amplitude (on the order of 0.5% or so). Due to
spatially localized nature of the sound-speed perturbation, the m degeneracy is lifted, creating
the slight bump in the a1 coefficient. Although not shown here, we observe that several a
coefficients, even and odd, show the presence of the perturbation.

Figure 5. Formal errors in the fits to the frequencies (panel a) and amplitudes (panel b)
of global modes from an analysis of an MDI 72-day medium-l dataset. By sheer coincidence,
the ranges on the two plots are identical. We only display modes that are approximately
common to both the simulation and observations. From comparisons between the results of
Figures 3(a) and 4(a) and the formal errors in panel a of this figure, it appears that these deep
perturbations are marginally detectable. Of course, a longer time series would yield lower errors
(∝ T−1/2, where T is the time length) and the frequency differences due to the anomalies at
r = 0.55, 0.7R� may become visible.

fit error, V the volume of the perturbation, and N the number of modes in the
summation term. Essentially, this parameter tells us how strongly perturbations
couple with the wave field, with larger κ implying a greater degree of scatter
and vice versa. Because it is independent of perturbation size or magnitude, κ
can be extended to study flow perturbations as well. This measure is meaningful
only in the regime where the frequency shifts are presumably linear functions
of the perturbation magnitude. Also, it is expected that κ will retain a strong
dependence on the radial location of the perturbation since different parts of the
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Table 1. The scattering extents κ, of vari-
ous perturbations. The Root Mean Square
(RMS) variation in δν/σ(ν) is shown as
well. Treq is the time length of observations
required to cross the detectability threshold.

Depth RMS κ Treq

(r/R�) δν/σ(ν) days

0.55 0.7676 3.4061 642

0.70 2.6252 7.1916 144

1.00 4.0348 10.3645 70

spectrum see different regions of the Sun. For example, placing an anomaly at the
surface will likely affect the entire spectrum of global modes, as seen in Figure 3.
By using values of σ derived from observations (72-day series, MDI medium-l data,
Figure 5; Schou, 1999) we are able to directly estimate the degree of detectability
of comparable perturbations in the Sun. Results for κ shown in Table 1 contain
no surprises; for a given size and magnitude of the perturbation, the effect on
the global frequencies increases strongly with its location in radius. The signature
of a perturbation at the bottom of the convection zone on the global modes is
twice as strong as an anomaly in the radiative interior (r = 0.55R�). The surface
perturbation is a little more difficult to compare with the others because contrary
to the two deeper perturbations, it is locally far larger than the wavelengths of the
modes. The result however is in line with expectation; the near-surface scatterer is
far more potent than the other two anomalies. Since the fit errors scale inversely
with the square root of the length of the time series, we also place an estimate on
the observational time-length Treq required to detect these perturbations.

5. Conclusion

We have introduced a method to systematically study the effects of various local
perturbations on global mode frequencies. Techniques of mode finding and pa-
rameter fitting are applied to artificial data obtained from simulations of wave
propagation in a solar-like stratified spherical shell. We are able to beat the issue
of poor frequency resolution by extending the method of realization noise sub-
traction (Hanasoge, Duvall, and Couvidat, 2007) to global mode analysis. These
methods can prove very useful in the study of shifts due to perturbations of mag-
nitudes beyond the scope of first order perturbation theory; moreover, extending
this approach to investigate systematic frequency shifts in other stars may prove
exciting.

In relation to the perturbations studied here, we find that (1) global modes are
sensitive to the spherically symmetric component of localized thermal aspherici-
ties, (2) the time length of observations required to detect anomalies in the Sun
comparable to those studied here is anywhere between 70 - 700 days, and (3) the
asphericity registers albeit weakly in the a coefficients. Note that the estimates of
Table 1 could be scaled to evaluate the strength of the signatures of other such
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local thermal perturbations. We are currently studying the impact of complex flows
like convection and localized jets on the global frequencies. Preliminary results
seem to indicate that flows are stronger scatterers (larger κ) than sound-speed
perturbations although more work needs to be done to confirm and characterize
these effects.
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