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Abstract We present detailed information on the analysis of intermediate spher-
ical harmonic degree data from the Michelson Doppler Imager (MDI). Both
current and historical usage are explained, and the various differences between

the two are investigated to determine their effects on global mode parameters and S <
systematic errors in the analysis. These differences include a number of geometric
corrections made during spherical harmonic decomposition; updated routines . c! A

for generating window functions, detrending timeseries, and filling gaps; and
consideration of physical effects such as line asymmetry, horizontal displacement
at the solar surface, and distortion of eigenfunctions by differential rotation. We
apply these changes one by one to three years of data, and then reanalyze the
entire MDI mission applying all of them, using both the original 72 day timeries
and 360 day timeseries. We find significant changes in mode parameters, both
as a result of the various changes to the processing, as well as between the 72
day and 360 day analyses. We find reduced residuals of inversions for internal
rotation, but artifacts such as the high-latitude rotation rate near the surface
remain. An annual periodicity in the f-mode frequencies is also investigated.

Keywords: Helioseismology, Observations; Oscillations, Solar

1. Introduction F S a—‘a

The Michelson Doppler Imager (MDI) onboard the Solar and Heliospherie Ob- L

servatory (SOHO) took data from December 1995 to April 2011. Equipped with a MD L

1024 x 1024 CCD, it was capable in full disk mode of sending down dopplergrams

with a 2 arcsec per pixel spatial resolution at a cadence of 60 seconds using the Do PP‘U' -~

Ni 6768 spectral line. However, due to telemetry constraints, MDI was operated \
in full disk mode for only a few months total each year. For the rest of the time, el osud sl 53
we have only data that were convolved with a gaussian vector in each direction, !
subsampled by a factor of five, and severely cropped in\order to fit into the

[~ .
available bandwidth. 1t was these vector-weighted dopplergrams that comprised &
the Medium-! Program and were the input to the anal pipeline described m
here.
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i esiduals of ag as a function of frequency for the 72 day period beginning
24 (see Table 1). Results have been binned by a factor of three for clarity.

dFiadl
Dopplergrams are decomposed into their spherjfal harmonic components de-
scribed by their degree [ and azimuthal ord ich are formed into timeseries
and Fourier-transformed. In the ium-/ reginie]peaks in the power spectrum,
corresponding to the oscillation modes, are well-separated from those of differ-
ent degrees. Sets of modes with the same radial order n form ridges; modes
with n = 0 are labelled f-modes, those with n > 0 are p-modes. The Fourier
transforms are fit to yield the mode frequencies (among other parameters) for
multiplets described by | and n, as well as a-coefficients, which parameterize
the variation of the frequency with m (see Section 3.3). The frequencies and
a-coefficients can be inverted to infer the sound speed or angular velocity in the
solar interior as a function of latitude and radius. In this work we have used
the odd a-coefficients to perform regularized least squares (RLS) inversions for
angular velocity, which attempt to balance fitting the data with the smoothness
of the solution. With an internal rotation profile in hand, one can compare the
fit to the data to investigate systematic errors in the mode parameters. Although
the y? values have been reduced in the new analysis, the fact that they are still
quite large indicates that the errors are still dominated by systematics.
One problem with the original analysis can be seen in a plot of the normalized
residuals of az, shown in Figure 1. If the model were a good fit to the data, one
would expect these to be normally distributed around zero with unit variance.
A significant deviation from this expectation is the bump at around 3.4 mHz, - ’}: 7
which can be seen in all the odd a-coefficients and their residuals. Furthermore, .
the the bump depends jidth of the fitting interval used, which
by itself indicates a problem with the fits. Also visible in this plot are deviations
from a continuous function at the ends of ridges. This feature, known as “horns”, - Show oN
is visible in several of the mode parameters and is not reproducible by any
reasonable internal rotation profile (see Section 4.2 and Figure 17). = "5
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Figure 2. Rotation profile for the same period shown in Figure 1. From top to bottom, the Um q
curves correspond to latitudes of 0°, 15°, 30°, 45, 60°, and 75°. .

In parallel to the MDI analysis, the Global Oseillation Network Group (GONG )}
has done an independent medium-l analysis of dopplergrams taken from six Q(F q
ground-based observatories (the GONG network), using the same spectral line #
and cadence as MDI. Although the two analyses are generally in good agreement,
in certain areas the inferences drawn by the two projects differ by more than
their errors. In particular, the above mentioned bump is absent in the GONG
analysis. Likewise, the MDI analysis indicates a polar jet at a latitude of about
75°, shown in Figure 2 which is not seen in the GONG analysis. Even exluding
the modes which contribute to the bump does not remove this high latitude jet.
Although the jet may be a real feature, the fact that it is also not seen in the
full disk analysis of MDI data makes this unlikely. Until such discrepancies can
be resolved, the analysis results must remain in doubt, and the issue has been
studied at length by several investigators with little success (Schou et al., 2002).

Another seeming systematic error seen in the original MDI analysis is a one-
year periodicity in the fractional change in the seismic radius of the Sun (see
Figure 3), which is proportional to the fractional change in f-mode frequency
(Antia et al., 2001). This cannot be studied with the GONG results because they
do not fit enough f-modes, and the full disk data does not help either since it is
only taken for approximately one time interval (long enough for global analysis)
per vear. Although it was presumed that this effect had to do with an annual
variation in leakage between the modes, early investigations revealed that using
a corrected P-angle, B0, and solar radius did not make a substantial difference
(Schou and Bogart, 2002).

It was to address all these issues that a reanalysis of the medium-/ data was
undertaken. The original analysis was in general very successful, but it is based
on certain approximations. Physical effects such as line asymmetry, horizontal
displacement at the solar surface, distortion of eigenfunctions by the differential
rotation, and a potential error in orientation of the Sun’s rotation axis as given
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Figure 3. Fractional difference in seismic radius between observations and a model as a
function of time. Vertical lines show the three years we reanalyzed for each correction (see
Section 2).

by the Carrington elements, were not taken into account. Likewise, instrumen-
tal effects such as cubic distortion, nonzero P-angle, an alleged CCD tilt, and
plate scale errors were ignored. Furthermore, new algorithms for generating the
window functions, detrending the timeseries, and filling the gaps had become
available. We updated the processing to include each of these considerations in
turn to see what effect, if any, they had on the mode parameters and systematic
errors.

2. Data

The velocity data were initially (Schou, 1999) analyzed in 74 timeseries of
length 72 days, beginning 1996.05.01.00:00:00 '. The last data point used was
at 2011.04.12.23:20:00. In late June 1998, however, control of SOHO was lost,
resulting in a gap of more than 108 days. This was followed by a period of about
two months of usable data at the end of 1998, and then another gap of more
than 36 days. Therefore the 12th timeseries is offset from the others by 36 days
and begins 12 * 72 + 36 = 900 days after the first, while the 13th timeseries
begins 14 % 72 = 1008 days after the first, as shown in Table 1 (note the low duty
cycles around day 2116). We have reanalyzed these same 74 time intervals, as
well as used them to make one year (360 day) timeseries. Therefore only three
of the 72 day timeseries were used to make the third year, and the last 72 day
timeseries was unused in the one vear analysis. All timeseries used are available
for download?.

1All dates and times have been converted from international atomic time (TAI).

2All final data products described here can be dowloaded from http://jsoc.stanford.edu/. See
the appendix for details. Although not analyzed by us, a 5472 day timeseries spanning the
entire mission is also available.
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To see the effect of the various corrections, we apply them one by one to the
analysis of 15 timeseries covering a period of three years beginning on 2004.01.08.
This is long enough to see an annual component in the f-mode frequencies,
but short enough to approximate the solar cycle variation as linear during its
declining phase. Beginning with the plate scale correction, we apply, in order,
corrections for cubic distortion from the instrument optics. the P-angle error,
the Carrington inclincation error, and CCD tilt. These are all the corrections we
made during the spherical harmonic decomposition, and we regenerate timeseries
for the entire mission with all of them applied. The next two improvements
applied are to the detrending and then the gapfilling. Again, detrended and
gapfilled timeseries have been regenerated for the entire mission. For the one-year
analysis, the 360 day timeseries were created by concatenating the detrended
and gapfilled 72 day timeseries. The remaining changes to the processing all
take place in the fitting. We first take into account horizontal displacement, and
then distortion of eigenfunctions following the prescription given by Woodard
(1989). Mode parameters for the entire mission have been recomputed with these
applied, and again using asymmetric line profiles in addition.

3. Method

Analysis proceeds as follows. An observed oscillation mode is taken as propor-
tional to the real part of a spherical harmonic given by ¥;" (¢, #) = P/ (cos G |
where the P/" are associated Legendre functions with the property that

f_ :EP,’"(sﬂ“dx =1 (1)

and that FT™ = P" = P™. As used here, | and m are integers with | > 0
and —I < m < . However, since modes with positive m and negative m look
identical at any instant in time, we only compute spherical harmonic coefficients
for m > 0. For medium-{ analysis, we use degrees up to [ = 300. Beyond this,
peaks along the f-mode ridge begin to blend into each other. For the p-modes,
this is already happening around [ = 200.

To find the spherical harmonic coefficients, each image is remapped to a uni-
form grid in longitude and sin(latitude) using a cubic convolution interpolation,
and apodized with a cosine curve in fractional image radius from 0.83 to 0.87.
The resulting map is Fourier-transformed in longitude and for each m a dot
product is taken with a set of associated Legendre functions of sin(latitude),
which yields the complex amplitudes of the spherical harmonics as a function of
I and m in the ranges given above. These amplitudes are arranged into timeseries
72 days long, and the timeseries for each [ and m is detrended, gapfilled, and
Fourier-transformed, at which point the negative frequency part of the transform
is identified with negative m and the conjugate of the positive frequency part is
identified with positive m. The peaks in (the magnitude of) the Fourier transform
are fit (a process that has become known as peakbagging), resulting in a peak
frequency, amplitude, linewidth, and background for each | and radial order
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Table 1. Timeseries used. Day numbers are given relative to the MDI epoch o
1993.01.01.00:00:00_TAIL Both these and the dates refer to the first day of the timeseries
Duty cycles are given for the original timeseries (DCO), the new timeseries (DC1) and th
new timeseries after gapfilling (DC2). The difference DCO-DC1 tends to be positive at th
beginning of the mission (at most 0.031) and negative at the end (not less than -0.02).

Day Date DC0 DC1 DC2 Day Date DCo DC1 DC2

1216 1996.05.01 0.895 0.888 0.907 4024 2004.01.08 0.986 0991 1.000
1288  1996.07.12 0964 0949 0966 4096 2004.03.20 0.782 0.770 0.858
1360 1996.09.22 0.964 0954 0.969 4168 2004.05.31 0.897 0.898 0.989
1432 1996.12.03 0.976 0962 0.982 4240 2004.08.11 0.853 0.852 0.941
1504 1997.02.13 0952 0.950 0.964 4312 2004.10.22 0.969 0.968 0.981
1576 1997.04.26 0.981 0.981 1.000 4384 2005.01.02 0991 0991 1.000
1648 1997.07.07 0970 0976 0.986 4456 2005.03.15 0991 0992 0.996
1720 1997.09.17 0973 09656 0976 4528 2005.05.26 0.983 0.989 1.000
1792 1997.11.28 0.979 0.982 1.000 4600 2005.08.06 0.989 0.988 0.996
1864 1998.02.08 0.969 0968 0.976 4672 2005.10.17 0.985 0.985 0.996
1936 1998.04.21 0.884 0.883 0.806 4744 2005.12.28 0.988 0.992 1.000
2116 1998.10.18 0.731 0.726 0.737 4816 2006.03.10 0.990 0.992 1.000
2224 1999.02.03 0.894 0.885 (0.894 4888 2006.05.21 0.962 0971 0.978
2296 1999.04.16 0.982 0.974 0986 4960 2006.08.01 O0.988 0992 1.000
2368 1999.06.27 0.986 0.98T 1.000 5032 2006.10.12 0.990 0.991 1.000
2440 1999.09.07 0930 0917 0941 5104 2006.12.23 0.895 0.900 0.907
2512 1999.11.18 0.870 0.839 0.852 5176 2007.03.05 0.976 0.977 0.986
2584 2000.01.29 0.98 0.983 0.988 5248 2007.05.16 0.985 0.984 0.994
26566 2000.04.10 0994 0.994 1.000 5320 2007.07.27 0.988 0.991 1.000
2728  2000.06.21 0.988 0.988 0.996 5392 2007.10.07 0.9656 0.968 0.980
2800 2000.09.01 0.986 0.984 0995 5464 2007.12.18 0.985 0.987 1.000
2872 2000.11.12 0947 0937 0945 5536 2008.02.28 0996 0996 1.000
2044 2001.01.23 0.985 0.986 1.000 5608 20080510 0.989 0.993 1.000
3016 2001.04.056 0990 0.990 1.000 5680 2008.07.21 0.988 0.991 1.000
3088 2001.06.16 0.964 0.961 0976 5762 2008.10.01 0983 0.986 0.994
3160 2001.08.27 0991 0991 1.000 5824 2008.12.12 0.983 0.989 1.000
3232  2001.11.07 0971 0970 0979 5896 2009.02.22 0996 0996 1.000
3304 2002.01.18 0,859 0.862 0.870 5968 2009.05.05 0.951 0.954 0.960
3376 2002.03.31 0987 0985 1.000 6040 2009.07.16 0709 0729 0.736
3448  2002.06.11 0.978 0984 0996 6112 2009.09.26 0985 0.989 0.996
3520 2002.08.22 0.991 0.990 1.000 6184 2009.12.07 0.989 0993 1.000
3592 2002.11.02 0994 0994 1.000 6256 2010.02.17 0.992 0993 1.000
3664 2003.01.13 0.992 0989 1.000 6328 2010.04.30 0.988 0.995 1.000
3736  2003.03.26 0.982 0.982 0996 6400 2010.07.11 0952 0961 0.971
3808 2003.06.06 0.822 (.826 0.852 6472 2010.09.21 0.879 0.881 0.929
3880 2003.08.17 0981 0981 0996 6544 20101202 0.732 0744 0.753
3952 2003.10.28 0.878 0.878 0952 6616 2011.02.12 0.812 0.812 0.822
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n. The m-dependence of the frequencies is parameterized by the a-coefficients,
which are fit for directly in the peakbagging, with the other mode parameters
assumed to be the same for all m.

Because of leakage between the modes, predominantly caused by our inability
to see most of the Sun, the Fourier transform of the target [ and m contain
peaks from neighboring modes as well. which have to be accounted for in the
peakbagging. This is done through the so-called leakage matrix, which quantifies
the amplitude of each mode as it appears in spectra of neighboring modes. The
leakage matrix is calculated by generating artificial images containing spherical
harmonics and decomposing them in the same way as the the actual data. The
same leakage matrix has been used for all times (see Section 3.3).

3.1. Spherical Harmonic Transform

Spherical harmonic decomposition begins with a remap, which gives us an op-
portunity to apply certain corrections to the data. The most significant of these
is for the plate scale. Although assumed to be a constant in the original ana.l) sis,
changes in the instrument with temperature and over time actually ca
vary. The angular size of the Sun is given by aresin(D/
observer distance and is defined as exactly 696 Mm. This value is divided
by the plate scale to g1 he solar radius in pixels. Hence the original value
used for the solar radius in pixels was in error. In the current analysis the plate
scale is given by a multiplicative factor times the original constant plate acalc of
1.97784 arcsec per pixel. The inverse of this f: hence t.
is given as a function of time f by ag + [a; + a; ) i —th)* where
ag, ay, az, ag, and ty result from a fit to (MAFMI)/(2R,), where M X and MT
are the lengths of the major and minor axes of the solar image returned by the
routine used to fit the solar limb and Ry is the original value used for the solar

<._...---—-..=

ot AL"I

radius in pixels (Keh-Cheng Chu, private communication). The parameters of
the fit change throughout the mission, typically at a focus change. Hence the
radius correction is a piecewise continuous function.

To account, for optical distortion in the instrument, we apply a correction
given by a cubic distortion model. The fractional change in coordinates is given
by Cfia(r? — R?), where r is the distance from the center of the CCD, R is
the (ipdated) radius of the solar image, and all quantities are given in terms of
full digk pixels. For f@ we have used 7.06 x 10~%, which was derived from a
ray-trace of the MDI mstrument .

For the P-angle and BO we apply a simple sinusoidal correction. Since the
error from the node position is not significant (Beck and Giles, 2005), if 41 is the
error from the Carrington inclination, 6P is the error on the P-angle resulting
from misalignment of the CCD, B0 is the origiua.l B-angle and P is the original
P-angle, then the new values are given

=B0+4 fnb.s = fre]) i 2] (2)
‘C*C'

¥This differs from the value used in Korzennik, Rabello-Soares, and Schou (2004), which

resulted from a different model. It is unclear how to resolve the discrepancy. It is hoped
that ongoing investigation of the MDI distortion will help.
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and
P=P+éP+ aIRm (tobs — treg) * 27 (3)

where @lﬁ the observation time and is a time when B0 is zero, both
measuretHin years . For the value of §P ave used —0.2°, which agrees with
values obtained both by cross-correlations with GONG and from the Mercury
transit in November 1999 (CIiff Toner, private communication). For the value of
41 we have used —0.1°, a value derived by Beck and Giles (2005).

The ellipticity of the observed solar image is much greater than the actual
ellipticity of the Sun. A possible explanation for this is that the CCD is tilted
with respect to the optical axis of the instrument. To correct for this, we follow
the prescription given in the appendix of Korzennik, Rabello-Soares, and Schon
(2004). The required parameters are /4, the amount to rotate the x-axis to
give the direction around which the CCD is tilted; a, the amount of the tilt:
and fgr7y the effective focal length. We have adopted the values 3 = 56.0°,
&= I:,m{@‘—; 12972.629 pixels, which are consistent with the values found
by Korzennik; Rabello-Soares, and Schou. Although there is some doubt as to
whether the CCD is actually tilted, the model still reproduces the observed
ellipticity reasonably well (Korzennik, Rabello-Soares, and Schou, 2004).

3.2. Detrending and Gapfilling

Once the 72 day timeseries have been assembled, the next step in the processing
is the generation of the window function. In the original analysis, the | = 0
timeseries was examined to ensure that gaps resulting from known spacecraft
and instrument events were accurately reflected in the timeseries generated.
These events included such things as station keeping, momentum management,
problems with the ground antennas, emergency Sun reacquisitions (ESR’s), and
tuning changes due to instrumental drifts. Additionally, any day whose duty
cycle was less than 95% was investigated to ensure that all potentially available
data had gone into the spherical harmonic decomposition. Unfortunately, the
original analysis employed a simple algorithm that performed detrending of the
timeseries on full mission days only, thus requiring any day that contained a dis-
continuity in the data (such as was caused by tuning changes) to have its window
function zeroed to the nearest day boundary. Also, the instrument occasionally
stopped taking images, which caused thermal transients in the instrument until
equilibrium was reestablished. These turn-on transients, and other data deemed
unusable, were also manually identified in the timeseries and set to zero in the
window function. After this, 10 timeseries were examined and thresholds on
acceptable values in them were set by hand in order to reject outliers. These 10
timeseries are the real parts of = 0,m = 0; [ = 1,m = 0; | = 1,m = 1; the
imaginary part of [ = 1,m = 1: and the sum over m of the real part squared
plus the imaginary part squared for [ = 1,2, 5, 10, 20, 50.

In the new analysis, we use the old I = 0 timeseries, since they had already
been examined, to confirm the legitimacy of any data missing in the new | = 0

AFor t..r we have used 2001.06,06_06:57:22_TAL
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timeseries. We then automatically set to zero in the window function any point
where the Image Stabilization System (ISS) was off, as derived from housekeeping
keywords. Next we form 10 timeseries in the same fashion as the original analysis,
but we replace squaring the real and imaginary parts in the sum over m with
taking the absolute value of the real and imaginary parts. We then run these 10
timeseries through a median filter to reject outliers. We do this by subtracting
a 41 point running median, taking the rms of the result excluding the top and
bottom 1% of the data, and rejecting any points that differ from zero by more
than 6 times the rms.

In the new analysis, the discontinuities, which were typically caused by tuning
changes, spacecraft rolls, and any event which powered down the instrument, all
had to be identified by hand. This information has to be available for the me-
dian filtering, and subsequent detrending can now be done on entire continuous
sections of data irrespective of day boundaries. Further, the beginning of every
section is automatically checked for the existence of thermal transients in the
| = 0 timeseries by fitting a sum of two decaying exponentials and a constant”,
The window function is zeroed wherever the fit differs from the constant by

more than the rms of the median-subtracted | = 0 timeseries. Also, by defining

sections, we were able to manually reject any data lying in between the sections,
if such was deemed necessary. In the new analysis, defining the sections of con-
tinuous data was the only operation that required human attention, and had to
be done only once.

Detrending in the original analysis was performed on whole mission days (1440
time points) by fitting a Legendre polynomial of degree given by 2 + @ 300
where Ngpan is the number of minutes spanned by the available data pomfts\and
the division truncates to the next lowest integer. This polynomial was subtracted
prior to gapfilling, which was also independently performed on each mission day.
The routine used would compute a model from the data and use it to fill gaps
up to a maximum size of five, It required six points either before or after each
gap to do so, regardless of the size of the gap.

Detrending in the new analysis is done by fitting a Legendre polynomial of
degree seven to an interval of data spanning 1600 minutes which is advanced
by 1440 minutes for each fit. In other words, the detrending intervals overlap
by 160 points. The polynomials are stitched together in the overlap region by
apodizing each of them with a cos® curve. In the case that the data points in
a detrending interval spanned less than 800 minutes, the Legendre polynomial
was recomputed for the shorter span and the fit was not apodized. The resulting
function is subtracted from the data to give a timeseries with a mean of zero.

In the new analysis, gaps are filled using an autoregressive algorithm based
on the work of Fahlman and Ulrych (1982). This method predicts values for
the missing data based on the spectral content of the data present. Each point
in the known data is expressed as a linear combination of the N preceding and
following points, where N is the order of the autoregressive model, the coefficients

5We do not fit the decay constants as part of this check. Rather, we fit for them only once and
now hold them fixed at values of 15 and 60 minutes. The use of two exponentials comes from
a model of the instrument.
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of which are found by minimizing the prediction error in the least squares sense.
Hence, the order of the model can be no greater than the number of points in
the shortest section of data. If a model of a certain order is desired, it imposes a
lower limit on the length of data sections that can be used to generate it. In our
implementation, we use the maximum order such that at least 90% of the data
will be used to generate the model, up to a maximum order of 360. However, the
coefficients of a model of order N are determined from a model of order N — 1,
so the model order may actually be less than requested if the prediction error
stops decreasing as the model order is increased. Once the model is known, the
gaps are filled by minimizing the prediction error in the least squares sense, this
time with respect to the unknown data values. The innovation over the method
of Falhman and Ulrych is that all gaps shorter than the model order within
each filling interval are filled simultaneously. Gaps at the beginning or end of
the timeseries are not filled. The model order may possibly then be inereased by
using the filled values as known data, and the process is repeated, but using the
original gap structure. That is, the gaps that were filled on the first iteration
will be filled again using the new model. If the model order did not change, or if
all the gaps were already filled in the first iteration, the process stops after two -
iterations. Otherwise a final iteration is run wherein a new model is computed
using the newly filled values, and the gaps are filled one last time (Rasmus
Larsen, private communication).

3.3. Peakbagging

Fourier transforms of the gapfilled timeseries are fit using a maximum likeli-
hood technique, taking into account leakage between the modes. Modelling an
oscillation mode as a stochastically excited damped oscillator, both the real and
imaginary parts of the Fourier transform will be normally distributed with a
mean of zero. The variance due to the mode will be given by

2wA?

P A - ) s

v, w, A, v) =
where vy is the frequency of the mode, w is the full width at half maximum,
and A is the amplitude (A? is a measure of the total power in the mode). To
fit an actual observed spectrum, one must also add a background term:; our
treatment of the background is described below. Furthermore, to account for
the redistribution of power caused by gaps in the timeseries, this model will be
convolved with the power spectrum of the window function (Anderson, Duvall,
and Jefferies, 1990). If = is the real part of the observed value of the Fourier
transform, then the probability density for the ith frequency bin in the real part
will by given by

v 1 (v

and likewise for P,y with = replaced by y. the imaginary part. The total
probability density far'the ith bin is then P = P@ P,-,.(,T. In these equations the
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mode parameters, and hence v, are functions of n, [, and m: we have suppressed
their dependence on these for conciseness.

The idea is to maximize the joint probability density of a given mode, which
is given by a product of individual probability densities over a suitable number
of frequency bins (assuming that each frequency bin is independent, which is
not strictly true in the presence of gaps). This is equivalent to minimizing the
negative logarithm of this product, which, except for constants, is given by

a(1)? + y(wi)?
"(Vl} :

For a given value of I, there will be 21+ 1 values of m. Rather than fitting each m
separately, we will maximize the joint probability density of all of them together.
To do so, we assume the width and amplitude are independent of m and estimate
the variation of the background with m from the spectrum far from the peaks.
We redefine vy as the mean multiplet frequency for each n and [, and expand
the frequency dependence on m as

S(.V(}. w, A) = ]n(T’[Vr]}"_

N *
Vatm = vo(n, 1) + Z u.,-(n,I)Pf(m.} (7)

i=1

where the polynomials P are those used in Schou, Christensen-Dalsgaard, and
Thompson (1994), and the coefficients a; are fit for directly. In what follows.
we will label the set of parameters upon which S depends using the vector p.
This will include vy, w, A, N, a-coefficients, a background parameter (described
below), and optionally a parameter to describe the asymmetry (also described
below), for each n and [.

Due to leakage between the modes, the observed timeseries and Fourier trans-
forms are a superposition of the true underlying oscillations. The observed
timeseries for a given | and m will be given by

om(t) = Y el Relanwm (£)] + ich pmedm[anim (1)) (8)

n'l'm’

where a(t) is the complex amplitude of the underlying timeseries, and Re[]
and Im[] denote the real and imaginary parts, respectively. The sensitivity
coefficients ¢f® and ¢/! give the real-to-real leaks and imaginary-to-imaginary
leaks respectively. Approximate expressions for the radial contribution to these
coefficients are given in Schou and Brown (1994). Under the same approxima-
tions, it can be shown that the real-to-imaginary and imaginary-to-real leaks are
identically for geometries that are symmetric around the central meridian.
Althouglf these)are still assumed to be zero for the current work, ¢® and ¢!/
are comp% more accurately, as described below. It can also be shown that

RR _ .RR
S Cmtmt = Cl'me im
¢ ! = il
c’{mljfm' = Cim’im
4 RR AR R
U\a; c.\'\ Cf—m)trm* = Clml'm

Lt o Ty &
o
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G !
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1
Cl{—m)l'm’ = _r‘fril..!'m' (9}

Note that since the spherical harmonic decomposition is not able to separate the
different values of n, we have suppressed the n-dependence of the leaks in these
equations. Later we will consider effects that cause the leaks to vary with n. In
frequency space, the observed Fourier transform can then be expressed as

5!!11(”} = Ihn(”) 4+ iyim(v) = Z Ci'm.l'm’&nflfm'(V} (10}

n't'm'

where €' = (¢f1% 4 ¢!7) /2 (Schou and Brown, 1994). Although in principle the
sum above should be over all modes, for a given [ and m, only modes in a certain
range in {’ and m’ will have signficant leakage. Therefore the sum above need
only be over modes which may have appreciable amplitudes within the fitting
window. For this work we have used Al = [—{" in the range £6 and Am = m—m’'
in the range +15. Si i
the elements of the covariance matrix between the

frequency point will be given by G o ( e T Q‘r '-
E’;’;%;r(u") = CO‘!-‘(I;M{V"), -T!"m’(pi)) =t Cm’(b‘lm(!/s}, yl'm'(ul))
== E Cm 1tm? Cramt f11m# Unrrprrmt [ps ”n;" (1 U

nrltme

The total covariance will be the sum of the covariance between the modes and
the covariance of the noise. Since we fit each [ separately and all m for that [
simultaneously, the covariance matrix nsed in the fitting is

Em‘m'(vi) = E::L&B(Di) ats Em.m"?leb “2J

where E is the measured covariance between m and m' in the frequency range
76389 to 8217.6 uHz, vp is a constant, and b is a free parameter determined in
the fit. Due to our choice of normalization, €” is proportional to the length of
the timeseries. The probability density for a frequency bin then becomes

P(piw) = mE—(;vn mK—%(z(w)TE(p, v () + y() "By ()
)

and the function to minimize becomes

S(p) = ZED [E(p. v))| + 2() " E(p, vi)z(v) + y(») " Elp. v)y(n)|  (14)

i

where | | denotes the determinant, x is a vector of the 2] + 1 real parts of the
transforms, and y is a vector of the 2[ + 1 imaginary parts. Note that p. x,
and y are implicit functions of n and I (the dependence of @ and y on n come
from the frequency range chosen for the fitting window). For the width of the
fitting window we have chosen 5 times the estimated width of the peak, with a
minimum of 2.9 pHz and a maximum of 81.0 yHz. The peakbagging will yield
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Improved Medium-I Analysis

the mode parameters specified by p for each multiplet it is able to fit, as well as
error estimates on these, generically referred to as o. The errors are estimated
from the inverse of the Hessian matrix at the minimum of S.

The minimization scheme used is a variation of the Levenberg-Marquardt
method. For further details, such as approximations made in the calculation of
derivatives, the reader is referred to Schou (1992).

Since we fit for one n and [ at a time while holding the leaks fixed, the peak-
bagging must be iterated to account for the variation of the mode parameters as
the fits proceed. For all iterations except the last, we fit six a-coefficients. In the
original analysis, the initial guess for the first iteration was taken from the final
fits of the previous timeseries. In the new analysis, the same initial guess was
nsed for all time periods, which allows for fitting all of them independently of one
another. We found this made no significant difference. Any modes which cannot
be fit in the first attempt have the initial guess of their background parameter
perturbed by -1 and the fit is reattempted. At this point in the original analysis
he resulting set of fitted modes would be weeded by hand to reject outliers.
In the new analysis this step is simply skipped; again we found it made no

signifcant difference. In both cases the remaining modes are used to make new -

initial guesses for the modes that had not converged (or were rejected). The
second iteration is then done in the same way as the first. At no point do we
ever attempt to fit modes for which there are estimated to be other modes within
42 in [ and within twice the line width. These typically occur at the ends of
ridges and do not converge in any case.

For subsequent iterations, the modes which have not converged to within
0.1 () or for which there exist unconverged modes with the same n and Al = +1
are always fitted (occasionally more modes would be fit in the original analysis).
In the original analysis the convergence of the modes would be examined to
determine the total number of iterations, which would usually be from 9 to 11.
All modes would be fit in at least the last two iterations. In the new analysis,
for the sake of automation, the peakbagging would always be performed for 10
iterations with all modes being fit during the last three. In both cases, the final
fits are repeated with both 18 and 36 a-coefficients.

After the final iteration, the resulting set of modes is antomatically weeded
one last time. For the fits with six a-coefficients, modes differing by more than
0.250(v) from their input guesses are rejected. Additionally, any mode with a
large error on its frequency given its width is suspect. If there were no background
noise, we would expect a frequency error given by

By 8
@+ 1)) = ;= (15)
where T is the length of the timeseries (Libbrecht, 1992). Any mode with a fre-
quency error greater than 6 times this prediction is rejected. The same theoretical
error estimate is the motivation for identifying modes for which the line width is
smaller than the width of a frequency bin. These modes have the error estimates
on their frequencies and a-coefficients increased by a factor of /1/(wT). This
prevents underestimates of the error caused by low estimates of the widths in
the region where they cannot be reliably estimated. The resulting set of mode
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parameters is then compared to those of a model obtained from an inversion of
fits to a 360 day timeseries at the beginning of the mission. The median difference
between the fit and the model of the odd a-coefficients is taken for the f-mode
to account for their change throughout the solar cycle. The differences for all
the modes are compared to this median; any that differ by more than 100 are
rejected.

To weed the 18 and 36 a-coefficient fits, their error estimates are adjusted as
above. Frequencies and a-coefficients are then compared to the six a-coefficient
case. Any mode for which the error estimates on any of these parameters in-
creased by more than a factor of 2, or for which any of these parameters changed
by more than 20 (estimated from the 18 or 36 a-coefficient fits) is rejected. Any
mode which was rejected in the six a-coeflicient fits is also removed from the 18
a-coefficient fits, and any mode which was rejected in the 18 a-coefficient fits is
also removed from the 36 a-coefficient fits.

3.8.1. Leakage Matriz

For this work, the leakage matrix elements are computed by generating artificial’
images containing components of vector spherical harmonics projected onto the
line of sight for a subset of the modes we wish to fit. A mode on the Sun has a
velocity at the surface with components proportional to the real parts of ©

U = },}ﬂx((p‘a):ﬂm(m}eivnd
_ _rovm VAR ey
Y= T T A sin @
to = mr e LI g ime (16)

“Lsin® 9o " Lsin

where & = cosfl and L = /I(1 4+ 1). A mode with oscillation amplitude Vi,,, will
then have a total velocity of

V=V, +aVin, (17)
where Vi, = Vimue, Vi = Vi (gl + us6), and
15(0,1)
“= Rn) (18)

is the ratio of the mean multiplet frequency of the f-mode squared to the mean
multiplet frequency of the given mode squared at that | (Rhodes et al., 2001).
Therefore ¢g = 1 for the f-mode and ¢; < 1 for the p-modes. However, since
the n's are not separated by the spherical harmonic decomposition, we create a
separate matrix for the vertical and horizontal components; the effective leakage
matrix will be computed during the fitting by combining them according to
Equation (17). We project each component onto the line of sight separately using

3

SThe sign of ue relative to ug and u, ds on the convention for the sign of m.
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projection factors calculated for a finite observer distance! In the approximation (%41 lFU-'Q
of an infinite observer distance this would become —_—
; = Vi P (x)e'™? sin @ cos ¢
R e oy - A
Uhorizontal = —— | —1—sinfcosfcos d+ — P (z)sing | e™® (19)
I dr sin f

where we choose V},,, = 1000 m /s to give us roughly the same order of magnitude
as the observations. As with the real data, these images are only calculated for
m > 0. The resulting leakage matrix will be divided by 1000. ‘\ ﬁ, _A u ’)

These images are first generated as they would appear to MDI, assuming an w ‘9 ;
observer distance of 1 AU, a P-angle and B0 both equal to zero, and that the
image is centered on the CCD. They are then convolved with a gaussian in each
dimension with a width of o = 4/y/2, just as they are onboard, but they are
not subsampled at this point. Rather they are also convolved with a function
that takes into account the interpolation errors made during the subsequent
spherical harmonic decomposition, at which time they will be remapped to
the same resolution in longitude and sin(latitude) as the real data. The higher -
resolution images are used to simulate an average over different pixel offsets;
we have verified the accuracy of this technique by generating lower resolution
images and actually performing the average. After the remap, the artificial data
are processed exactly like the real data. For each image, we take its inner product
with a set of target spherical harmonics in the range Al = +6 given above. The
results are the coefficients ¢/ and ¢/! given in Equation (8). The values for the
modes we did not compute directly are found by interpolation. The values for
negative m given by Equations (9).

In the original analysis, only the vertical component of the leakage matrix was
used, meaning that the horizontal component was assumed to be zero. Although
this is not a bad approximation for high-order p-modes, it becomes worse as one
approaches the f-mode ridge, where the horizontal and vertical components have
equal magnitude. In the new analysis, our first improvement to the peakbagging
is to include both components.

For a spherically symmetric Sun, the horizontal eigenfunctions would be
spherical harmonics. Although the presence of differential rotation breaks this
symmetry, the true eigenfunctions can still be expressed as a sum over spherical
harmonics. In the new analysis, this is accounted for in the peakbagging by
appropriately summing the leakage matrix. We use the prescription given by
Woodard (1989) with the differential rotation expanded as

Q(z) = Bo + Byz? + Bax® (20)

where again r = cosfl = sin(latitude). We first used constants derived from
surface meaurements, with values of By = —75 nHz and By = —50 nHz as given
by Woodard (the value of By is not used). However, this has the drawback of
distorting every maode in the same way, even though they sample different depths
where the differential rotation has a different dependence on latitude. Following
Vorontsov (2007), we use the estimated splitting coefficients to calculate By and
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B for each mode separately. Using only six a-coefficients, in the asymptotic
limit we will have

By = —bas — l4as
Bg = 21(}5 (21}

so that By, and Ba change as the iteration proceeds. Fortunately this did not
disrupt the convergence of the a-coefficients. This change made only a modest
difference in the mode parameters, as discussed below.

3.5.2. Asymmetry

In addition to the symmetric line profiles described by Equation (4), we have
also nsed asymmetric profiles to fit the data. Although it is common to use
the profile derived by Nigam and Kosovichev (1998), their equation has the
undesirable property that its integral over all frequencies is infinite. Also, there

is no clear way to evaluate it between the modes. To derive a more well behaved -

profile, we begin with Equation (3) of Nigam and Kosovichev (199%), which was
derived for a one-dimensional rectangular potential well model, and generalize
it by replacing their #X with an arbitrary function of frequency h(v). Since
is generally very small, we drop the second term in the numerator to arrive at a
variance given by

Pp(v) cos®[h(v) + o(v)

ET = g(v) + sin*[h(v)

(22)
where Pp is the power spectrum of the excitation, 4 is a measure of the asym-
metry, and g is related to the damping. The function h is constrained to be nw
at the mode frequencies, and in the numerator we have changed sin to cos so
that 4 = 0 implies a symmetric profile. Considering a single [ and m, we can

.

expand in terms of profiles given by Equation (4) to get
) oo

1 | 2wA?
Ulm [V) = ('-m?[htm (U) - Jfru[bﬂ E C-Oﬂz[éim(ynlm) T 4(2 = u,.;mjz {23)

where the factor 1/ cos?(dpm(Vnim) has been added so that to lowest order, A
retains its original meaning. To find a function to use for h, we note that from the
Duvall law (Duvall, 1982) we can define ho(v) = vF(v/(l +1/2)) — ma(v) = nx,
where F and a are known functions. These we have tabulated from a fit to
a 360 day timeseries at the beginning of the mission. and interpolate them as
needed during the peakbagging. We then choose h = hg + hy where h; is a
piecewise linear function chosen to make h exactly nm at the mode frequencies
as required. The function § can likewise be interpolated using a piecewise linear
function derived from the input guesses. Above the frequency of the maximum
n and below the frequency of the minimum n, we assign constant values to hy
and 4.
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Equation (23) is valid for all frequencies. Restricting ourselves to/aingie mode,
we can now replace the variance in Equation (11) with

cos?hu (V) + du(V') Qwy A2,
: V) = R i 4
Tnhn{p V) P mg, A 4({} = Vu.‘m}2 (2 }
where v/ = v — vy, + (0. l), Vnim is given by Equation (7). and we have

implicitly assumed that the asymmetry is the same for all m.

To form the initial guess for the asymmetric fits, we examined the frequencies
and asymmetry parameters resulting from a preliminary fit. We then fit the
frequency shift by fitting a sixth order polynomial in frequency, which we now
add to the initial guess for the frequency. For the asymmetry paramete
a third degree polynomial inéadjusbed] Erequencg Ty Tor the initial gue&s

When we tried the iteration Scheme described above for the 15 periods we
analyzed in detail, we found that for séme of them very few f-modes were
fitted. We therefore added an antomatic rejection of fits with negative asymmetry
parameters in the range v < 2000pH =z between iterations of the peakbagging,.

This solved the problem for these 15 periods, but when we reanalyzed the entire

mission, a small number of periods still had few f-modes fit. We were able to
improve the coverage of those periods by adding a further criterion to reject
modes that had an extremely high asymmetry parameter, but this caused other
periods to lose modes. We therefore reverted to the initial rejection criteria.
Clearly, the asymmetric fits are much less stable than those using symmetric
profiles.

W7 s
Yo "‘503 ed
Fvubuu\ (o' 4 ?
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2
4.1. Mode Parameters /

We applied 11 different analyses to 1 sinning in January 2004
(see Table 2). To quantify the effect of ea.-:-b Tge in the processing on the
mode parameters, for each one of the periods, we found the modes that were
common between each analysis and the preceding one. We then took an average
in time over whatever intervals had each mode successfully fit. In so doing, we are
assuming that the difference in mode parameters resulting from the difference in
the analysis is much more significant than their relative change over time. In the
following figures, we plot the difference in several mode parameters normalized by
their error estimates. For these plots, we calenlated the average error estimates,
rather than the error on the average, and for any given comparison between two
analyses, we use the larger error estimate of the two. Thus the significance we
have plotted is the least that one might expect from a single 72 day fit. The
range of some plots excludes a few outliers; this is always less than 2% of the
data 7. The sense of subtraction is the later analysis minus the earlier one.

"Here we have plotted all parameter differences as a function of frequency. Full listings of all
mode parameters for all periods and all analyses we performed are provided as ASCII tables
in the electronic supplementary material.
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Figure 4. Change in mean multiplet frequency resulting from each change as a function of

frequency, in units of standard deviation.
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Figure 5. Change in amplitude resulting from each change as a function of frequency, in units

of standard deviation,
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Figure 6. Change in width resulting from each change as a function of frequency, in units of

standard deviation.
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Figure 7. Change in background parameter resulting from each change as a function of

frequency, in units of standard deviation.
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Figure 8. Change in a; resulting from each change as a function of frequency, in units of

standard deviation. C‘ﬂ/(,
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As can be seen in Figure 4. the change in frequency was most significant
for the plate scale correction and asymmetric fits. Including the horizontal dis-
placement and correcting for distortion of eigenfunctions made the next most
significant changes, followed by correcting for cubic distortion, in agreement with
our previous work (Larson and Schou, 2008). Differences in detail between these
and our previous results can mostly be attributed to the different method we
have used for computing mode averages; by first taking the common mode set
for each 72 day interval, the calculation of the averages becomes much more
straightforward. For the plate scale correction, some of the difference in magni-
tude of the change in mode frequency can be attributed to the different epoch
we reanalyzed. Previously we studied the two years beginning in January 2003,
whereas in this work we study the three vears beginning in January 2004, and the
plate scale error is the only problem with the original analysis that is known to
become worse over time. For the asymmetric fits, we used an improved iteration
scheme for the asymmetry parameter, whicfl seems to have resulted in a smaller
change in frequency. The p-angle correction made a signficant difference for the
f-mode, but otherwise this, the correction for the Carrington inclincation error,
and improved detrending and gapfilling did not result in much difference to
the mode frequencies. We have also used a different method for caleulating the
Woodard effect, as described above, but we found this made less than a 0.50
difference in all the parameters for a vast majority of modes. Therefore in all
plots we show only the results of using the second method.

We find similar results for the amplitude and width (Figures 5 and 6), al-
though for both of these parameters the detrending and gapfilling made much
more significant differences. This is likely because these two changes in the
processing made the dominant changes to the background parameter (Figure
7), as one might expect. We also point out that the large scatter of all three of
these parameters just above 3.5 mHz indicates an instability of the fits in this
frequency range, which may perhaps relate to the bump as well.

The changes in a; (Figure 8) have relative magnitudes roughly similar to
the changes in frequency, the most notable exception being that correcting for
the Woodard effect caused the dominant changes to this parameter. For the f-
mode, correcting for the plate scale, cubie distortion, and P-angle error resulted
in changes with the same sign as the frequency changes, but for the p-modes, and
all modes when correcting for horizontal displacement and the Woodard effect,
the changes had opposite sign. The changes in a; resulting from the Carrington
inclination correction were more significant than the frequency changes and
show an interes mg frequency dependeuce not seen in ot.he AL

mostly unaffected. However, the set of all improvements up to and including the

correction for the Woodard effect resulted in substantially lower error estimates

for the f-modes, as shown in Figure 10. Unfortunately, using asymmetric line F
J
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Figure 9. Change in frequency, amplitude, width, background parameter, a;, and ag resulting
from all changes as a function of frequency, in units of standard deviation. In these plots all
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profiles resulted in substantially higher error estimates for the mode frequencies
and background parameters, as shown in Figure 11.

One easy check of the robustness of our results is the comparison of the 72 day
and one year analyses. Even without examining any mode parameters, one can
see that the 360 day analysis was more successful in the sense that it was able
to fit more modes, as shown in Figure 12. To compare the mode parameters,
we averaged the results of five 72 day analyses (three for the third vear) for
the modes that were present in all of them. The errors used are the errors on
the average. Then we formed common modesets as described above, this time
taking the average error. The differences in mode parameters using asymmetric
line profiles are shown in Figure 13 and the corresponding error ratios are show
in Figure 14. The results were mostly similar using symmetric line profiles. To
compare the background parameters, we subtracted log(5) from the 360 day fits.
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Figure 10, Ratio of the improved error estimates to the original error estimates as a function
of degree for the parameters shown in Figure 9. The improved estimates do not include fitting
asymmetric profiles. For the background, 2.1% of points do not fall within the range shown on
the plots. For the other parameters, at most 0.5% of points are not shown.

Although the change in frequency seems to show a weak systematic de-
pendence on frequency, the changes are mostly not significant. The change in
frequency was slightly more significant using symmetric line profiles, especially
at low frequencies. The changes in amplitude show ridge structure: although the
majority of modes show reduced amplitude, the mean change is actually positive.
The changes in width show ridges as well, but here the width is almost always
less for the 360 day fits, and more so at lower frequencies, as one might expect,
where the lower width will be better characterized by the increased frequency
resolution. The background parameter shows the most significant changes (an
increase except for the f-mode), but centered on the p-mode band, where the
noise is nearly nonexistant. The changes in a; are the flattest, although a feature
is discernible around 3.5 mHz. The asymmetry parameter was in general greater
for the 360 day fits, with a peak around 1.8 mHz. For the frequency, width, and
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Figure 11. Amplification of errors for frequency and background resulting from the use of
asymmetric profiles, For the background, 2.9% of points are excluded; for the frequency, 0.3%
are excluded.
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Figure 12. Number of modes fitted as a function of time for the five different ways we analyzed
the entire mission. Dotted lines show the set of all changes in the processing up to correcting
for the Woodard effect; dashed lines show the result of also using asymmetric line profiles. In
both cases the higher line is for the 360 day fits, the lower line is for the 72 day fits. The solid
line shows the original analysis.

ay, the estimated errors were much lower for the 360 days fits at low frequen-
cies, again as one might expect. Harder to understand is why the error on the
asymmetry parameter increased in the same frequney range. The background
parameter also had lower errors, but again in the center of the frequency range.

4.2. Systematic Errors

In this section we begin to refer to the changes in processing by the order in
which they were applied. This is summarized in Table 2.
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Figure 13. Difference in frequency, amplitude, width, background parameter, a;, and asym-
metry parameter between 360 day fits and an average of 72 day fits as a function of frequency,
in units of standard deviation from the 360 day fits. The sense of subtraction is 360 day minus
72 day. At most 0.8% of points have been excluded.

To see the effect of the varions changes on our systematic errors, we begin by
performing simple one-dimensional regularized least squares inversions of the a,
coefficient only. An RLS inversion seeks to minimize the the sum of normalized
residuals squared plus a penalty term that serves to constrain rapid variations
in the solution. In particular, we have chosen to minimize

2 {m (fnlKn!(?')ﬁ{r)dr—a.l(n,n)} +u-/01 (g):ﬁ- (25)

nl
where € is the inferred rotation rate, the K, are (known) kernels calculated
from the mode eigenfunctions that relate the rotation rate to ay, @ is the standard
error on ay, r is fractional radins, and p is the tradeoff parameter that controls
the relative importance of the two terms. A low value of g will fit the data better,

2
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Figure 14. Ratio of the errors estimated from 360d fits to the errors estimated from an
average of 72 day fits as a function of frequency for the parameters shown in Figure 13. At
most 1.8% of points have been excluded.

but the solution may oscillate wildly as a function of radius. A higher value of
p will remove this feature (the solution will be more regularized) at the cost
of increased residuals (Schou, Christensen-Dalsgaard, and Thompson, 1994). To
choose a value of g we have examined tradeoff curves, which are constructed
by varying p and plotting the rms of the residuals against the magnitude of
the penalty term. The changes in a; that underlie the difference in the tradeoff
curves for the different analyses were shown in Figure 8 The tradeoff curves
themselves (shown in Figure 15) were computed using a modeset constructed
by finding the modes common to all eleven analyses for each time period and
taking the average in time over whatever modes were present; in this case the
errors used are the errors on the average. ;

As one can see, the plate scale correction made a substantial difference to the
tradeoff curve. The curve for cubie distortion is nearly indistinguishable. The
P-angle correction made another significant reduction in the residuals, but the
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Table 2. Sequence of changes made to the analysis;
each analysis includes the changes made in all previous

ones.
1] original analysis
1 plate scale
2 cubic distortion
3 P-angle error
4 Carrington inclination error
5 CCD tilt
6 window functions and detrending
T gapfilling
8 horizontal displacemnt
9 distortion of eigenfunctions (Woodard effect)

=)

asymmetric line profiles

4

curves for the next four changes to the analysis all lie between the previous two.
Accounting for the horizontal displacement caused a substantial increase in the .
residuals, but accounting for the Woodard effect resulted in the lowest curve
shown. The use of asymmetric profiles made no change to the tradeoff curve.
This is basically in line with what one might expect from Figure 8. To choose a
value of u, one typically looks for the “elbow” in the tradeoff curve: the place
where the residuals stop decreasing sharply, so that further decreases of p will
be of little benefit. Unfortunately, this “elbow” is not very pronounced in the
curves shown in Figure 15. For the initial and final analyses, we have marked

3.0

rms of residuals

2.0t

. o "

: .I.u_m Ak
penalty term

Figure 15. Tradeoff
curves for several
analyses. Dotted curve
is for original analysis.
Dash-dot curve shows
first correction.
Short-dashed curve
shows first three
corrections.
Long-dashed curve
shows first eight
corrections (note this
curve is above the one
for only the first
correction). Solid line is
for all corrections.
Symbols, from left to
right, indicate tradeoff
parameters of p = 1074,
p=10"%, and

p= 10-9.
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the point corresponding to the highest reasonable value of @ (1077), the lowest
value one might possibly use (107%), and a value that is typically used in RLS
inversions (10%),

In Figure 16 we show the normalized residuals of the inversions for the original
and final analyses and for the smallest and largest values of y given above. As
one can see, the bump was mostly unaffected by all the changes in the analysis.
A smaller value of i decreases the size of the bump, but as Figure 17 shows, the
resulting rotation profile is difficult to believe. The fact that the bump is only
marginally present in the residuals for g = 107" suggests that this systematic
error is responsible for the “knee” in the tradeoff curves. Notably, even this
small value of p was not able to fit the “horns” in the original analysis, which
are greatly reduced in the final analysis. This is likely the cause of the overall
reduction in y?.

10}

normalized r

I 2 ] ] 1 2 1 1
v (mHz) v (mHz)

Figure 16. Normalized residuals as a function of frequency. Top panels show original analysis,
bottom panels show analysis with all changes applied. Left panels show p = 10%, right panels
show p=10"%

To investigate the annual periodicity in the f-mode frequency variations, we
used the common modesgts used for performing one-dimensional inversions to fit
a function of the form A ﬁ t{wyrt) + Bps(dyrt)+Ct+ D to the average fractional
f-mode frequency shift relative to its average over time, where w,, = 27/365.25
and # is measured in days. We did separate averaging and fits for four different
ranges in degree I: 101 to 150, 151 to 200, 201 to 250, and 251 to 300. In each
case, for each | we took the average over whatever periods it was fit in. Then, for
each period, we took the difference between each [ and the time average, divided
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Figure 17. Internal
T rotation as a function of
! radius for the final
analysis; curves for

4601 pol original analysis are
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by the time average, and then averaged over the range in |. We performed a
weighted least squares fit to this data, which yielded values for the parameters
A, B, C. and D and their corresponding errors.

The images produced by MDI, however, are taken at equal intervals of time
on the spacecraft, whereas they should be taken at equal intervals of time on the
Sun. To correct for this effect, we applied the relativistic Doppler shift due to
the motion of the spacecraft. That is, we multiplied each frequency and its error
by /(e +v)/(ec —v) where ¢ is the speed of light and v is the average velocity
of the spacecraft away from the Sun, as derived from the OBS_.VR keyword of
the input dopplergrams for each 72 day period. The resulting fits are shown in
Figure 18, as well as the shift caused by the Doppler correction.

The amplitude of the annual component has a large variation between the
different analyses, but in general it is always greater for the higher ranges in [.
The point in the plot for [=251-300 of the original analysis contradicts that trend,
but it must be noted that the fit represented by that point was an extremely poor
one, which is likely due to the horns in the original analysis. For the lower two
ranges in [, the amplitude was only marginally significant. Although not shown
here, we note that the slope C' was zero for the lowest range in [, and become
steadily more negative as | increased, in agreement with previous findings (Antia
et al.. 2001).

Finally, to explore the high-latitude jet, we used the 36 a-coefficient fits
to perform two-dimensional RLS inversions for internal rotation. We formed
common mode sets and averaged them using the same method described above
for inversions, and used tradeoff parameters of g, = 107% and pg = 1072 for
the radial and latitudinal regularization terms respectively. Using a relatively
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Figure 18. Phase plot for three analyses after Doppler correction: triangles show erigi
analysis, dismonds show final analysis, and squares show the correction for cubic g
which vielded the largest amplitude of the annual component. Solid lines conneet
different ranges in [, beginning with the lowest range on the lower right. The 2
shift resulting from the Doppler correction. The errors on A and B were similar Terall analyses;
the errar bars show an average value. All values have been multiplied by 10° to match the

units in Figure 3. S‘v" g - A Sial ) 4_ 'I} &J]( )

high value for j1g should dampen variations in latitude. The results are shown in
Figure 19; the jet is more pronounced in this plot than in Figure 2, which can
be attributed both to the different mode set and to the smaller errors. Although
every change actually increased the magnitude of the polar jet, the gapfilling
resulted in a reduced rotation rate in the lower convection zone, which brings
our result closer to agreement with inferences drawn by the GONG analysis
(Schou et al., 2002).

5. Discussion and Future Prospects

We have found that the various changes we made to the processing of medium-{
data from MDI resulted in significant changes in mode parameters. In summary,
changes in width were overall the least significant, followed by the changes in a;,
which mostly resulted from applying the Woodard effect. The background was
largely unaffected by most changes except the improved detrending and gapfill-
ing. The plate scale correction made the dominant changes to the amplitudes
and frequencies. For the latter, large changes also resulted from accounting for
asymmetry, horizontal displacement, the Woodard effect, and cubic distortion,
in decreasing order of significance.

Not, only is one led to believe these changes represent an improvement as a
matter of principle, but some of the systematic errors in the analysis have been
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Figure 19. Internal rotation as a function of radius at 75° latitude for three analyses. Solid
lines show the original analysis and its error bars; errors on the other analyses are similar. The
dotted curve is the analysis that includes the improved gapfilling, and the dashed curve is the
final analysis.

reduced as well. In particular, the “horns” have been greatly reduced, resulting
in overall lower residuals from rotation inversions. A more stubborn systematic
error is the “bump” in the odd a-coefficients, which seems to be reflected in
the anomalous shape of the tradeoff curve. This remained almost completely
unchanged in all analyses. Nor did any change to the analysis make a reduction in
the high-latitude jet just below the solar surface, although there is an indication
of improvement in the lower convection zone,

Regarding the annual periodicity in the f-mode frequencies, we found that
the first change we applied. the plate scale correction, resulted in a drastically
increased magnitude of the annual component for the higher two ranges in [.
The correction for cubic distortion resulted in an even higher amplitude. After
correcting for the P-angle error, however, the amplitude was reduced and did not
vary much for later changes. We conjecture that the original fits were so poor at
high ! (the “horns” ) that the one-year period was not discernible there. The first
correction was the most significant one for the frequencies, and hence uncovered
the one-year period. Then the first correction that itself has a one-year period
greatly reduced it.

Of concern to us is the discrepancy between the 360 day analysis, which
in principle should be more accurate, and the 72 day analysis. Most notably,
it indicates a problem with our model of the background. Interestingly, the
asymmetry was the only parameter for which the error was greater for the
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360 day fits, and adding the asymmetry also made significant changes to the
background.

In spite of these shortcomings, the analysis of the MDI data in its entirety
allows us to determine mode parameters with extraordinary precision. This is
illustrated in Figure 20, where we show mode coverage in the [- plane along
with the estimated uncertainty on the frequencies.

(nequency (mHi

PR B e, BT " kit i L "
(1] 50 100 150 200 250 300
degree

Figure 20. An l-v diagram with magnified errors. Dots represent a mode that was fitted in
at least 12 of the 15 years we analyzed using symmetric profiles, Solid lines show the errors:
for the f-mode, these have been multiplied by 100000, For n = 1,2,3 the errors have been
multiplied by 30000. The next eight ridges (n=4-11) have errors multiplied by 10000. The
remaining ridges have errors multiplied by 1000,

Although our analysis has in general been very successful, the core peak-
bagging routines were written at a time when computational capabilities were
far less than now. A number of approximations which were necessary 20 years
ago could now be lifted. The current work is an attempt to remove some of
these limitations. Over the years, other workers in the field have also made
contributions to the problem of inferring physical properties of the Sun from
medium-I MDI data, among them XXX.

A potential drawback facing these efforts is that they utilize the leakage ma-
trix calculated by us. In general, the use of a leakage matrix should increase
the stability of fits, but the results will then depend upon the assumptions
that went into its calculation. In particular, one might consider using leakage
matrices calculated for different observer distances and values of BO. This has
been attempted by XXX. The assumption that the real-to-imaginary and the
imaginary-to-real leaks are zero could be lifted, but at the cost of considerable
more complexity in the fitting codes. XXX have proposed doing so.
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For us, there are a number of ways to move forward. The most obvious is the
extension of this work to other datasets. First and foremost of these must be the
MDI full disk data, which will allow us to determine how systematic errors and
mode parameters might depend on the smoothing of the medium-! data and its
apodization. Because of its duty cycle the full disk data cannot be used to study
the annual periodicity in our results, but now the Helioseismic and Ma.guet.l
Imager (HMI) onboard the Solar Dynamics Observatory (SDO) has taken a lung
enough span of data for it to be suitable for this purpose. It has been suggested
that the one year period may be related to the variable (in solar coordinates)
width of the gaussian used for smoothing the medium-I data; an analysis of the
MDI medium-/ proxy from HMI should elucidate the issue. Finally, a repetition
of the comparison with GONG results is long overdue. The original comparisons
all used GONG classic data; now that GONG+ has been in place for over 13
years and software pipelines in both projects have been updated, the time has
come to renew an investigation of the systefhatic differences between the two.

There also still remain possibilities for progress with the MDI medium-[ data
itself. One that is suggested by the results of this paper is to correct the timeseries

for the relative motions of SOHO and the Sun. Although we can correct the -

frequencies after the fitting by Doppler shifting them, there is no obvious way to
correct the other mode parameters. Another change in the analysis that suggests
itself is to the width of the fitting window, since this is one of the things most no-
tably different in the GONG analysis and is also known to affect the shape of the
bump in the a-coefficients. During the remapping performed prior to spherical
harmonic decomposition, we could implement an interpolation algorithm that
takes into account the correlation between points introduced by the gaussian
smoothing. We have also considered the common practice of zero-padding our
timeseries before performing Fourier transforms. Lastly, the parameter space of
the detrending and gapfilling remains almost entirely unexplored.
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Appendix
Data Access

Detailed information on how to access MDI data from the global helioseismol-
ogy pipeline can be found at http: //jsoc.stanford.edu/MDI/MDI_Global. html. This
page contains documentation describing how the datasets used in this paper were
made and how they can be remade. In this appendix we describe how to access
the relevant archived data. In what follows we must assume some familiarity
with the Data Record Management System (DRMS), detailed documentation
for which is linked from the above website.
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Mode parameter files for every analysis discussed in this paper are available
in the electronic supplementary material. For the original analysis, they (and
a helpful Readme file) can also be found at http://sun.stanford.edu/~schou /
anavw72z/. For all other analyses, they can also be retrieved from JSOC. The
fields of a mode parameter file are the following: I, n. w. A, w. b, x, {0},
o(w), a(A), alw), a®), a(z), {a(8)}, a1, az, ... an, ofar), alaz), ... olan).
The parameter § and its error will not be present for fits done with symmetric
profiles. The value of N is either 6, 18, or 36. Any parameter with zero error has
not been fit for. The parameter x is not fit for in these analyses and is retained
for historical reasons.

The data for the different “corrections™ are labelled by the strings “corrl” to
“corr9” corresponding to the numbering scheme in Table 2. The final correction
in this set refers to the first way of applying the Woodard effect (holding B,
and By constant). These data have all beenygenerated in the first author’s name
space, with mode parameters found in su_tplarson.corr _vw_V_sht_modes. The
primekeys are T.START, LMIN, LMAX, NDT, and TAG, where T_.START is
the beginning of the corresponding fimeseries, most easily specified by the MDI
day number suffixed by “d” (see Table 1). For all records in this series, LMIN=0,
LMAX=300. and NDT=103680, so these primekeys need never be specified. The
TAG keyword is the label string. so TAG and T_START uniquely specify every
record.

The second way of applying the Woodard effect, as well as the asymmetric
fits, are both represented in the official MDI name space (mdi). For the former,
mode parameters can be found in mdi.vw_V_sht_modes and for the latter in
mdi.vw_V_sht_modes_asym. The primekeys are the same as given above, with the
exception that these series do not have the TAG keyword and that NDT=518400
for the 360 day fits. In addition, the results used in this paper have the VERSION
keyword (not a primekey) in these series set to “version2”. If these data are
reprocessed in the future, VERSION will get a new value.

The dataseries containing timeseries and window functions in the mdi name
space have also been archived and can be retrieved; details on these data prod-
ucts are given on the aboye website. The corresponding data in the su_tplarson
name space have not been archived, but can be recreated if needed. Again, the
procedure for doing so can be found on the website. The original timeseries
and window functions have been archived in the dsds namespace, but have not
vet been ported to the standard DRMS format for global helioseismology data
products. They can, however, still be retrieved by request.
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