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1. Comparison of Results from MPTS Method, and Established Fitting Methodologies

Before we will present the results from our comparative study, we comment briefly on the
various methods involved.

(a) Multiple-Peak, Tesseral-Spectrum method

The Multiple-Peak, Tesseral-Spectrum (MPTS) method of Reiter et al. (2020) is equally
well-suited for the estimation of low-, medium-, and high-degree f- and p-mode parame-
ters and frequency-splitting coefficients. The MPTS method operates directly upon of all
the modes in a multiplet (n, l). As a result, 2l+1 sets of modal parameters are obtained
simultaneously for that multiplet (n, l). By simply averaging all of the 2l + 1 frequency
estimates within a multiplet, the average frequency for that multiplet is obtained, which
is called the “mean-multiplet frequency”. In addition, by fitting an appropriate polyno-
mial to the run of the fitted frequencies versus m, the frequency-splitting coefficients for
that multiplet are estimated. Since the errors in the sectoral, tesseral, and zonal power
spectra are not normally distributed as they are in the case of the m-averaged spectra
(at least for l ≫ 1), a maximum-likelihood fitting approach is employed in the MPTS
method.

The data obtained with the MPTS method which we used in our comparisons, were
obtained from the 90d spectra HMI.100430to0728. The table of fitted mode parameters
includes a total of 7329 modes in the degree range 0 ≤ l ≤ 1350, radial order range
0 ≤ n ≤ 30, and frequency range 964.8 ≤ ν < 4600µHz. In the following we will use the
term “MPTS” when we are referring to the MPTS method.

(b) Mean-multiplet technique

In the mean-multiplet technique of Schou (1992) the Fourier transforms of the gap-
filled time series of the spherical harmonic coefficients, which result from the spatial
decomposition of the individual Dopplergrams in an observing run, are fit using a max-
imum likelihood approach, taking into account leakage between the modes (Larson &
Schou, 2015). Rather than fitting, however, for the individual 2l + 1 mode frequen-
cies within a multiplet (n, l), this technique includes a fitting algorithm that yields the

mean-multiplet frequency νn,l and the set of frequency-splitting coefficients a
(n,l)
k

for each
multiplet directly, assuming that the line width and the amplitude of the 2l + 1 modes
are independent of the azimuthal order m. Initially, the algorithm fits for a total of 6
frequency-splitting coefficients, then for 18 and 36 once the 6-term fits have converged.
Leaks from multiplets other than (n, l) are taken into account. The asymmetry of the
line profiles is taken into account by using an asymmetrical profile that is derived by
a generalization of the profile of Nigam & Kosovichev (1998). This way undesirable
properties of the profile of Nigam & Kosovichev (1998) are avoided, viz. its invalidity
far from the mode frequency and the non-boundedness of its integral over all frequencies
(Larson & Schou, 2015).

The data obtained with the mean-multiplet technique which we used in our compar-
isons, viz. hmi.V sht modes asym.20100430 000000 TAI.0.300.691200.m10qr.6328.36,
were downloaded from jsoc.stanford.edu. For the details of their generation we refer
to Larson & Schou (2015). In the following we will use the term “JS” when we are
referring to the mean-multiplet technique.
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(c) Fitting methodology of Korzennik

The fitting methodology of Korzennik et al. (2004) is applicable to high-degree modes
with degrees in the range from l & 100 (p-modes) to l & 200 (f-modes). Its basic
idea consists of correcting for the bias introduced when fitting a ridge of power at high
degrees. For this purpose, a detailed model of the underlying modes that contribute to
the distribution of power in a ridge was developed to generate synthetic ridges, which
are then fitted using the same methodology employed to fit the observations. Hence,
the results of fitting these synthetic data allow the user to derive a measure of the bias
between the ridge properties and those of the underlying targeted mode used in the
modeling. By means of this measure the results from fitting an observed ridge can be
corrected to derive the unbiased properties of the underlying targeted mode.

The data obtained with the fitting methodology of Korzennik which we used in our com-
parisons, viz. multiplets-hmi-2010.dat, were downloaded from lweb.cfa.harvard.edu

/~sylvain/research/tables/HiL/HMI/2010/. For the details of their generation we re-
fer to Korzennik et al. (2013). In the following we will use the term “SK” when we are
referring to the fitting methodology of Korzennik.

(d) Fitting methodology of the Birmingham Solar Oscillations Network group

The fitting methodology of the Birmingham Solar Oscillations Network (BiSON) group
is applicable to low-degree modes with degrees in the range from 0 ≤ l ≤ 3, and is
described in detail in Broomhall et al., MNRAS 396 (2009), in Davies et al., MNRAS
439 (2014), and in Hale et al., Sol. Phys. 291 (2016).

The BiSON network comprises six semi-automated solar observing stations that are ded-
icated to the collection of low-degree (Sun-as-a-star) helioseismic data. The stations are
situated at various sites around the world in order to provide as continuous observations
as possible. At each of the six stations, a resonance scattering spectrometer (RSS) is
used to measure the Doppler velocity shift of the 770-nm D1 potassium absorption line
by comparing the Doppler shifted potassium absorption line to a reference line in the
laboratory frame. These shifts are measured as variations in resonant scattered intensity
which are calibrated into radial velocities each day for each of the six stations. Using
these data, a time series is built based on a routine that attempts to maximize the
signal-to-noise ratio in the low-frequency region (0.8-1.3 mHz). This time series is then
converted to the frequency domain using a fast Fourier transform (FFT) to generate
the frequency power spectrum. Finally, a maximum-likelihood approach is employed
to fit an asymmetric Lorentzian profile to the peaks in the frequency power spectrum,
the parameters being frequency, amplitude, width, rotational splitting and fractional
asymmetry.

The data obtained with the fitting methodology of the Birmingham Solar Oscillations
Network group which we used in our comparisons, viz. broomhall2009.txt, were down-
loaded from bison.ph.bham.ac.uk/opendata. In the following we will use the term
“BR” when we are referring to the fitting methodology of the Birmingham Solar Oscil-
lations Network group.

Before we will present the results from our comparative study, we list in Table 1 the starting
date, duration, average of the MgII core-to-wing ratio (also known as the MgII index), and
average of the 10.7-cm flux for the observations analyzed with the MPTS, JS, SK, and BR
fitting methodologies.

It is clear from Table 1 that the individual observing runs have been influenced by the differing
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starting date duration MgII index 10.7-cm flux

MPTS 2010.04.30 90d 0.265905 77.207

JS 2010.04.30 360d 0.266969 80.916

SK 2010.05.07 67d 0.265654 74.988

BR 1985.04.04 8640d 0.265000 64.000

Table 1: Starting date, duration, average of the MgII core-to-wing ratio (also known as the
MgII index), and average of the 10.7-cm flux for the observations analyzed with the MPTS, JS,
SK, and BR fitting methodologies. The starting date is given in the form yyyy.mm.dd. The
duration is measured in days, and the 10.7-cm flux is measured in units of 10−22Wm−2Hz−1.
The BR observations are pertinent to the canonical “quiet-Sun” level of the radio flux, which,
from historical observations of the index, is set at 64× 10−22Wm−2Hz−1.

average levels of solar activity during those runs. Thus, it will be mandatory to correct the JS,
SK, and BR frequencies according to the level of the MPTS observing run before comparing
them with the MPTS frequencies. Similar correction procedures will need to be applied for
the comparisons of both the SK and BR frequencies with the JS frequencies. We explicitly
point out that in this month’s report we have refrained from such corrections. We plan to do
so for our next monthly report.

In Table 2 we show the results of our comparison of the uncorrected JS, SK, and BR fre-
quencies with the MPTS frequencies, and the uncorrected SK and BR frequencies with the
uncorrected JS frequencies.

raw normalized

difference nd ave std t p ave std n±3σ

JS−MPTS 2030 +0.008 0.143 2.487 0.006 +0.270 1.600 148

SK−MPTS 4690 −1.289 1.233 71.621 ≈ 0 −8.752 6.769 3617

BR−MPTS 76 −0.003 0.320 0.838 0.202 −0.176 1.113 1

SK−JS 540 −0.046 1.662 0.639 0.262 −0.641 4.225 168

BR−JS 49 −0.027 0.119 1.588 0.059 −0.807 1.407 4

Table 2: Comparison of the MPTS method with the JS, SK, and BR methods, the SK method
with the JS method, and the BR method with the JS method in terms of raw (uncorrected)
and normalized frequency differences. The differences are in the sense as indicated in the first
column. The normalizaton was carried out by dividing the raw differences by the formal error
of each difference. For both the raw and the normalized frequency differences the average
and the standard deviation are listed in the columns labeled ave and std, respectively. Using
Student’s t-test, each mean raw frequency difference was tested for a significant deviation
from zero. The t-value and the probability that the sample difference occurred by chance
are listed in the columns labeled t and p, respectively. In the column labeled nd the sample
sizes are given, while in the column labeled n±3σ the number of cases are listed for which
the normalized frequency difference exceeds 3σ in absolute magnitude. The raw frequency
differences are measured in µHz.

In Figure 1 we show the differences of the uncorrected JS frequencies and the MPTS frequen-
cies as functions of frequency. Since the average level of activity during the 360-day JS time
series was higher than the 90-day average level, we would expect that the average difference
νJS − νMPTS is positive, and according to Table 2 it is.
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Figure 1: (Left panel) Raw (uncorrected) differences, ∆ν = νJS − νMPTS, as functions of
frequency. For every 5th difference the error bar is shown in magenta, and the dashed red
line is for a difference of zero. The error bars are the square root of the sum of the squares
of the uncertainties of the two sets of frequencies. (Right panel) Normalized differences,
∆ν/σ∆ν , of the frequencies, as function of frequency. The normalizaton was carried out by
dividing the raw differences by the formal error of each difference. The dashed red line is for
a difference of zero, while the dashed green lines show the ±3σ values.

In Figure 2 we show the differences of the uncorrected SK frequencies and the MPTS frequen-
cies as functions of frequency. Since the average level of activity during the 67-day SK time
series was lower than the 90-day average level, we would expect that the average difference
νSK − νMPTS is negative, and according to Table 2 it is. Also, a clear downward trend with
frequency is to be seen.

Figure 2: (Left panel) Raw (uncorrected) differences, ∆ν = νSK − νMPTS, as functions of
frequency. For every 10th difference the error bar is shown in magenta, and the dashed red
line is for a difference of zero. The error bars are the square root of the sum of the squares
of the uncertainties of the two sets of frequencies. (Right panel) Normalized differences,
∆ν/σ∆ν , of the frequencies, as function of frequency. The normalizaton was carried out by
dividing the raw differences by the formal error of each difference. The dashed red line is for
a difference of zero, while the dashed green lines show the ±3σ values.

In Figure 3 we show the differences between the uncorrected BR frequencies and the MPTS
frequencies as functions of frequency. Since the average level of activity during the 8640-day
BR time series was lower than the 90-day average level, we would expect that the average
difference νBR − νMPTS is negative, and according to Table 2 it is but only a tiny amount of
3 nHz. Also, there seems to be no systematic trend of the differences with frequency.
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Figure 3: (Left panel) Raw (uncorrected) differences, ∆ν = νBR − νMPTS, as functions of
frequency. For every difference the error bar is shown in magenta, and the dashed red line is
for a difference of zero. The error bars are the square root of the sum of the squares of the
uncertainties of the two sets of frequencies. (Right panel) Normalized differences, ∆ν/σ∆ν , of
the frequencies, as function of frequency. The normalizaton was carried out by dividing the
raw differences by the formal error of each difference. The dashed red line is for a difference
of zero, while the dashed green lines show the ±3σ values.

In Figure 4 we show the differences of the uncorrected SK and JS frequencies as functions of
frequency. Since the average level of activity during the 67-day SK time series was lower than
the 360-day average level of the JS time series, we would expect that the average difference
νSK − νJS is negative, and according to Table 2 it is. Also, a slight downward trend of the
differences with frequency can be seen.

Figure 4: (Left panel) Raw (uncorrected) differences, ∆ν = νSK − νJS, as functions of fre-
quency. For every 5th difference the error bar is shown in magenta, and the dashed red line
is for a difference of zero. The error bars are the square root of the sum of the squares of the
uncertainties of the two sets of frequencies. (Right panel) Normalized differences, ∆ν/σ∆ν , of
the frequencies, as function of frequency. The normalizaton was carried out by dividing the
raw differences by the formal error of each difference. The dashed red line is for a difference
of zero, while the dashed green lines show the ±3σ values.

Finally, in Figure 5 we show the differences of the uncorrected BR and JS frequencies as
functions of frequency. Since the average level of activity during the 8640-day BR time series
was lower than the 360-day average level of the JS time series, we would expect that the
average difference νBR − νJS is negative, and according to Table 2 it is. Also, there seems to
be no systematic trend of the differences with frequency.
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Figure 5: (Left panel) Raw (uncorrected) differences, ∆ν = νBR − νJS, as functions of fre-
quency. For every difference the error bar is shown in magenta, and the dashed red line is
for a difference of zero. The error bars are the square root of the sum of the squares of the
uncertainties of the two sets of frequencies. (Right panel) Normalized differences, ∆ν/σ∆ν , of
the frequencies, as function of frequency. The normalizaton was carried out by dividing the
raw differences by the formal error of each difference. The dashed red line is for a difference
of zero, while the dashed green lines show the ±3σ values.
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