
Report on the Effects of the Use of a

Non-Zero B-angle and Interpolation

in the Generation of Leakage Matrices on

the Frequency-splitting Coefficients

A) Effects of the Use of a Non-Zero B-angle

In this report, we will compare the odd frequency-splitting coefficients a1, a3, a5 as well as the
sum a1+a3+a5 that were computed from the tables of fitted mode parameters HMI.100430to0710b-
6.354.v0 and HMI.100430to0710.v7, respectively. Both tables were generated with the MPTS
method and are based on the same 72-day observing run of the HMI which began on April 30
of 2010. For the generation of the “v7” table, the reference set of leaks corresponding to a B-angle
of zero were used, while for the generation of the “v0” table leaks corresponding to a B-angle of
−6.354 degrees were used. The leaks for the B-angle of −6.354 degrees were kindly generated by
Dr. Larson. For the remainder of this report, we will refer to this case of using different B-angles
in the generation of the two sets of leakage matrices as the “Bang” case.

In Table 1 we have listed the averages and standard deviations of the raw and normalized
differences of the odd frequency-splitting coefficients a1, a3, a5, respectively, and the sum a1+a3+a5.
In addition to computing the averages and standard deviations of both the raw and normalized
coefficient differences, we also employed Student’s t-Test to determine whether those two averages
were significantly different from zero. The absolute magnitude of the t-value and the probability
that the corresponding sample difference occurred by chance are listed in the columns labeled |t|
and p, respectively. All eight of these probabilities were so close to zero that we can reject the
null hypothesis that each of these averages was equal to zero. All eight of these differences were
computed in the sense HMI.100430to0710.v7 minus HMI.100430to0710b-6.354.v0.

difference raw normalized

mode parameter nd ave std |t| p ave std |t| p

a1 7307 −0.1055 1.7036 5.294 ≈ 0 −0.5534 0.5621 84.154 ≈ 0

a3 7283 +0.1579 1.7099 7.883 ≈ 0 +0.7726 0.9077 72.643 ≈ 0

a5 7001 −0.1866 0.6383 24.455 ≈ 0 −0.8166 0.8041 84.982 ≈ 0

a1 + a3 + a5 7001 −0.1348 2.4012 4.697 ≈ 0 −0.2261 0.4549 41.585 ≈ 0

Table 1: Averages and standard deviations of both the raw and normalized differences of the
odd frequency-splitting coefficients a1, a3, a5, and the sum a1 + a3 + a5, as obtained from
the tables of fitted mode parameters HMI.100430to0710b-6.354.v0 and HMI.100430to0710.v7,
respectively. All types of differences were computed in the sense HMI.100430to0710.v7 minus
HMI.100430to0710b-6.354.v0. The normalizaton was carried out by dividing the raw differ-
ences by the formal error of each difference. Using Student’s t-Test, each mean raw and each
mean normalized frequency difference was tested for a significant deviation from zero. The
absolute magnitude of the t-value and the probability that the sample difference occurred by
chance are listed in the columns labeled |t| and p, respectively. The reason we are showing
|t| is because we are employing a one-sided hypothesis test (i.e., H0 : ave = 0). Since we are
using a one-sided test, it is irrelevant whether ave < 0 or ave > 0. In the column labeled nd

the number of data points are given. The raw differences of the frequency-splitting coefficients
are measured in nHz.

In Figure 1 we show in magenta the odd HMI.100430to0710.v7 frequency-splitting coefficients
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a1, a3, a5, as well as their sum a1 + a3 + a5, for the n = 0 ridge, as function of the spherical
harmonic degree. In black are shown the corresponding HMI.100430to0710b-6.354.v0 frequency-
splitting coefficients. Inspection of Figure 1 shows that the a1, a5, and a1 + a3 + a5 splitting
coefficients that were computed using the non-zero B-angle (the black curves) were higher than the
corresponding coefficients that were computed using the reference leakage matrices (the magenta
curves), while the non-zero B-angle a3 coefficients were smaller than the corresponding reference
coefficients. These shifts in the four sets of coefficients are consistent with the signs of the average
raw differences that are contained in Table 1. This is the case because the sense of all of the
subtractions in this section was HMI.100430to0710.v7 minus HMI.100430to0710b-6.354.v0.

For comparison we also shown in red the 2010 SKh(67d) frequency-splitting coefficients obtained
with the fitting methodology of Korzennik, and in green the 2010 JS(67d) frequency-splitting
coefficients obtained with the mean-multiplet technique of Schou. As we explained in great detail
in our November 2021 Progress Report, a copy of which can be provided upon request, the jumps
around l ≈ 400 in the black and magenta curves which cannot be adequately represented by a
rotational inversion are not caused by any artefacts in the seed coefficients that we employed in
our fitting runs using the MPTS method. The fact that the jumps that are seen in the a1, a3, and
a5 coefficients are barely visible in their sum suggests that the flow gradients that are the cause of
these jumps are a function of latitude and are very weak at the solar equator.

In Figure 2 we show the raw, and in Figure 3 the normalized differences in the odd frequency-
splitting coefficients a1, a3, a5, as well as in their sum a1 + a3 + a5 as a function of the spherical
harmonic degree for the ridges n = 0 (black diamonds) and n = 1 (red triangles). Both Figures
demonstrate that the differences in the coefficients for both the n = 0 and n = 1 ridges are small
but systematically different from zero. Only a few outliers exceed the 3σ level. The left-hand
panels in Figure 2 show that the differences in the a1 and a5 coefficients were mainly negative
for l > 350 for the n = 0 ridge (the black curves) and for l > 250 for the n = 1 ridge (the red
curves). The signs of these higher-degree differences agree with the signs of the corresponding raw
averages in Table 1. The upper-right panel of Figure 2 shows that the signs of the a3 differences
were mainly positive for l > 350 for the n = 0 ridge and for l > 250 for the n = 1 ridge. This sign
is also consistent with the sign of the corresponding raw average in Table 1. The lower-right panel
of Figure 2 shows that the predominant sign of the differences in the a1 + a3 + a5 coefficients was
also negative, in agreement with the sign of the corresponding raw average in Table 1.

In Figure 3 we show the normalized coefficient differences for the Bang comparison. All four
panels of Figure 3 show the same predominant signs for the differences as were shown in the
corresponding panels of Figure 2. The major differences between Figures 2 and 3 are the facts
that the normalization process has introduced some curvature into the a1, a3, and a5 coefficient
differences for the n = 0 ridge (the black curves) and it has reversed the curvature of the n = 1
ridge (the red curves). In contrast, the normalization process has not altered the differences in
a1 + a3 + a5 for either ridge.

We recently extended our analyses to include the odd-order coefficients for all 31 ridges rather
than just the n = 0 and n = 1 ridges that we have discussed above. We examined the differences
in the frequency-splitting coefficients as a function of both degree and frequency. However, it was
readily evident that the differences in the sets of coefficients were much more single-valued when
displayed as a function of degree rather than frequency. Hence, we will only show plots as functions
of degree here.

In Figure 4 we show the raw differences in the odd frequency-splitting coefficients a1, a3, a5, as
well as in their sum a1 + a3 + a5 for all 31 ridges as a function of the spherical harmonic degree for
the Bang comparison. All four panels of Figure 4 look very similar to the corresponding panels of
Figure 2. The n = 0 and n = 1 ridges are distinct at the high-degree side of the two upper panels
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Figure 1: Dependency of the frequency-splitting coefficients a1 (upper-left), a3 (upper-
right), a5 (lower-left), and their sum a1 + a3 + a5 (lower-right) for the n = 0 ridge
on the spherical harmonic degree. In black are shown the frequency-splitting coefficients
HMI.100430to0710b-6.354.v0, while in magenta are shown the frequency-splitting coefficients
HMI.100430to0710.v7. For comparison are shown in red the 2010 SKh(67d) frequency-
splitting coefficients obtained with the fitting methodology of Korzennik, and in green the
2010 JS(67d) frequency-splitting coefficients obtained with the mean-multiplet technique of
Schou.

and the lower-left panel in Figure 4. The high-degree ends of the n = 2, 3, and 4 ridges are also
evident in the same panels, but the coefficient differences for all of the higher order ridges blend
together for l < 500.

While we were preparing this report, Dr. Jesper Schou sent us a reference to Schou et al. (2002)
in which he and his co-authors studied the effects upon rotational inversions of the use of 12 different
sets of splitting coefficients that they computed using both the GONG and MDI observations at
three different levels of solar activity. Specifically, these authors generated four different tables at
each of the different levels of activity. One of these four splitting coefficient tables came from the
application of the GONG data processing pipeline, which they referred to as the “AZ” pipeline, to
a time series of GONG observations. The second frequency table came from the application of the
AZ pipeline to a simultaneous set of MDI observations. The third table came from the application
of the Stanford pipeline, which these authors referred to as the “CA” pipeline to the set of MDI
observations, while the fourth table came from the application of the CA pipeline to the set of
GONG observations. Since these authors included their Figure 4 in which they showed all four sets
of splitting coefficients for their low activity observing run as functions of frequency and they also
presented comparisons of the results of rotational inversions using these four tables, we compared
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Figure 2: (Upper-left panel) Raw differences ∆a1 = a1HMI.100430to0710.v7
−a1HMI.100430to0710b−6.354.v0

of the frequency-splitting coefficients a1 as functions of the spherical harmonic degree for the
ridges n = 0 (black diamonds) and n = 1 (red triangles). The dashed magenta line is for
a difference of zero. (Upper-right panel) Same as upper-left panel, but for the frequency-
splitting coefficients a3. (Bottom-left panel) Same as upper-left panel, but for the frequency-
splitting coefficients a5. (Bottom-right panel) Same as bottom-left panel, but for the sum of
the odd frequency-splitting coefficients a1 + a3 + a5.

our Bang coefficient differences with the differences presented in their Figure 4.
This comparison showed that the largest differences in the a1 coefficient that were shown in

Figure 4 of Schou et al. (2002) were about five times larger than most of the differences shown in
the upper-left hand panel of our Figure 4, while the largest differences in their a3 coefficients were
about ten times larger than the majority of the differences shown in the upper-right hand panel of
our Figure 4, and the largest differences in their a5 coefficients were about ten times larger than
the majority of the differences that are shown in the lower-left hand panel of our Figure 4.

Based upon the differences in the resulting rotational inversions that Schou et al. (2002) pre-
sented in their Figure 6, we would expect to see some small but systematic differences in the
rotational inversions that would result from our two tables of MPTS splitting coefficients.
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Figure 3: Same as Figure 2, but for the normalized differences ∆a1 = a1HMI.100430to0710.v7
−

a1HMI.100430to0710b−6.354.v0
The normalization was carried out by dividing the raw differences,

∆a1, as shown in the upper left-hand panel of Figure 2, by the formal error, σ∆a1
, of each

difference.
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Figure 4: (Upper-left panel) Raw differences ∆a1 = a1HMI.100430to0710.v7
−a1HMI.100430to0710b−6.354.v0

of the frequency-splitting coefficients a1 as functions of the spherical harmonic degree for the
ridges n = 0 through n = 30. The dashed red line is for a difference of zero. (Upper-right
panel) Same as upper-left panel, but for the frequency-splitting coefficients a3. (Bottom-left
panel) Same as upper-left panel, but for the frequency-splitting coefficients a5. (Bottom-right
panel) Same as bottom-left panel, but for the sum of the odd frequency-splitting coefficients
a1 + a3 + a5.
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In Figure 5, we show the normalized differences in the same splitting coefficients. The two
upper-row panels and the lower-left panel show systematic differences in all three of the coefficients
which are as large as between 2 and 3σ in magnitude. The lower-right panel shows systematic,
but smaller differences in the sum of the three coefficients. We present some statistics related to
the raw splitting coefficient differences in Table 2. In the first two rows of this table, we show that
between 25 and 45 percent of the differences exceeded 1σ in size, while nearly five percent of the
a3 and a5 coefficient differences exceeded 2σ. The last column of Table 2 shows that negligible
numbers of these coefficient differences exceed 3σ. The last row of this table shows that nearly
96 percent of differences in the sums of all three coefficients were less than 1σ in size. This point
means that the systematic differences in the three coefficients will mainly result in differences in
rotational inversions away from the solar equatorial plane.

Figure 5: Same as Figure 4, but for the normalized differences (a1HMI.100430to0710.v7
−

a1HMI.100430to0710b−6.354.v0
)/σ∆a1

The normalization was carried out by dividing the raw dif-
ferences, ∆a1, as shown in the upper left-hand panel of Figure 4, by the formal error, σ∆a1

,
of each difference. The dashed green lines show the ±3σ levels.

difference # % > 1σ % > 2σ % > 3σ

a1 7307 25.43 0.37 0.03

a3 7283 42.22 4.90 0.59

a5 7001 44.34 4.80 0.34

a1 + a3 + a5 7001 4.59 0.59 0.30

Table 2: Statistics of the differences in the odd frequency-splitting coefficients as well as in
their sum. In the 2nd column the number of commom cases is listed. The remaining columns
give the percentages of cases for which the differences exceed the 1σ, 2σ, and 3σ level,
respectively.

7



In Figure 6 we show the binned raw differences in the splitting coefficients as functions of
degree. The error bars are the standard errors of the means in each of the 100-degree wide bins.
All four panels of this figure show that in most of the cases the average differences were many
standard errors away from zero. All four of these panels also show that the binned raw differences
were relatively constant for degrees greater than 200. In Figure 7 we show the binned normalized
coefficient differences as functions of degree. The upper-right and lower-left panels show that the
normalized coefficient differences were as large as 1.5σ. Furthermore, all four panels show that, with
the exception of the two lowest bins, all of the other normalized differences are multiple standard
errors away from zero. In contrast to the results shown in Figure 6, the four panels of this figure
show that the binned normalized coefficient differences varied strongly with increasing degree up
to l = 800 before leveling off until l = 1300 and dropping slightly for the n = 0 ridge for degrees
between 1301 and 1350.

Figure 6: (Upper-left panel) Binned raw differences ∆a1 = a1HMI.100430to0710.v7
−

a1HMI.100430to0710b−6.354.v0
of the frequency-splitting coefficients a1 as functions of the spheri-

cal harmonic degree using 100-degree wide bins for the ridges n = 0 through n = 30. The
dashed red line is for a difference of zero. (Upper-right panel) Same as upper-left panel, but
for the frequency-splitting coefficients a3. (Bottom-left panel) Same as upper-left panel, but
for the frequency-splitting coefficients a5. (Bottom-right panel) Same as bottom-left panel,
but for the sum of the odd frequency-splitting coefficients a1 + a3 + a5.
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Figure 7: Same as Figure 6, but for the normalized differences (a1HMI.100430to0710.v7
−

a1HMI.100430to0710b−6.354.v0
)/σ∆a1

The normalization was carried out by dividing the raw dif-
ferences, ∆a1, as shown in the upper left-hand panel of Figure 4, by the formal error, σ∆a1

,
of each difference.
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B) Effects of Interpolation in the Generation of the Leakage Matrices on the
Frequency-splitting Coefficients

In this section, we compare the the odd frequency-splitting coefficients a1, a3, a5 as well as the
sum a1 + a3 + a5 for the n = 0 ridge that came from the same HMI.100430to0710.v7 table that
was employed in Section A) above with the corresponding parameters that came from a third table
of mode parameters that we named HMI.100430to0710.i.v0, respectively. While for the generation
of the “v7” table the complete set of reference leaks which corresponded to the B-angle of zero
were used, for the generation of the “i.v0” table an interpolated version of the same reference set
of leaks was used instead. The interpolated table of the reference set of leaks was kindly generated
by Dr. Tim Larson. For the remainder of this report, we will refer the case of interpolated leakage
matrices as the “iplkm” case.

In Table 3 we list the averages and standard deviations of both the raw and normalized differ-
ences of the odd frequency-splitting coefficients a1, a3, a5, respectively, and the sum a1 + a3 + a5.
Each difference was computed in the sense HMI.100430to0710.i.v0 minus HMI.100430to0710.v7.
Keeping in mind the fact that this sense of subtractions is opposite to that employed in Section
A), we see that if we flip the signs of all eight of the averages that are shown in Table 3, seven
of them will agree with the corresponding signs of the averages in Table 1. Only the flipped sign
of the a1 + a3 + a5 differences would be different from the corresponding sign in Table 1, and this
average happens to be the smallest of all eight of the raw averages.

difference raw normalized

mode parameter nd ave std |t| p ave std |t| p

a1 7307 +0.0179 1.4623 1.045 0.296 +0.3137 0.6662 40.252 ≈ 0

a3 7282 −0.0569 1.6796 2.892 0.004 −0.3577 0.8951 34.103 ≈ 0

a5 7013 +0.0354 0.5851 5.069 ≈ 0 +0.2758 0.6682 34.568 ≈ 0

a1 + a3 + a5 7013 −0.0055 2.1863 0.212 0.832 +0.0808 0.3837 17.628 ≈ 0

Table 3: Averages and standard deviations of both the raw and normalized differences of
the odd frequency-splitting coefficients a1, a3, a5, and the sum a1 + a3 + a5, as obtained
from the tables of fitted mode parameters HMI.100430to0710.i.v0 and HMI.100430to0710.v7,
respectively. All types of differences were computed in the sense HMI.100430to0710.i.v0 minus
HMI.100430to0710.v7. The normalizaton was carried out by dividing the raw differences by
the formal error of each difference. Using Student’s t-Test, each mean raw and each mean
normalized frequency difference was tested for a significant deviation from zero. The absolute
magnitude of the t-value and the probability that the sample difference occurred by chance
are listed in the columns labeled |t| and p, respectively. The reason we are showing |t| is
because we are employing a one-sided hypothesis test (i.e., H0 : ave = 0). Since we are using
a one-sided test, it is irrelevant whether ave < 0 or ave > 0. In the column labeled nd the
number of data points are given. The raw differences of the frequency-splitting coefficients
are measured in nHz.

The absolute magnitude of the t-value and the probability that the corresponding sample dif-
ference occurred by chance are listed in the columns labeled |t| and p, respectively, in Table 3. In
contrast to the Bang case, for which all eight of the probabilities were very close to zero, the prob-
abilities for the raw a1 and the raw a1 + a3 + a5 iplkm coefficient differences are both so large that
we can accept the null hypothesis for those two groups of raw differences. On the other hand, using
the 1% significance level, we can reject the null hypothesis for the raw iplkm a3 and a5 differences
and for all four of the normalized iplkm differences.
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In Figure 8 we show in magenta the odd HMI.100430to0710.v7 frequency-splitting coefficients
a1, a3, a5, as well as their sum a1 + a3 + a5, for the n = 0 ridge, as function of the spherical
harmonic degree. In black are shown the corresponding HMI.100430to0710.i.v0 frequency-splitting
coefficients. For comparison are also shown in red the 2010 SKh(67d) frequency-splitting coefficients
obtained with the fitting methodology of Korzennik, and in green the 2010 JS(67d) frequency-
splitting coefficients obtained with the mean-multiplet technique of Schou.

Figure 8: Dependency of the frequency-splitting coefficients a1 (upper-left), a3 (upper-right),
a5 (lower-left), and their sum a1+a3+a5 (lower-right) for the n = 0 ridge on the spherical har-
monic degree. In black are shown the frequency-splitting coefficients HMI.100430to0710.i.v0,
while in magenta are shown the frequency-splitting coefficients HMI.100430to0710.v7. For
comparison are shown in red the 2010 SKh(67d) frequency-splitting coefficients obtained with
the fitting methodology of Korzennik, and in green the 2010 JS(67d) frequency-splitting co-
efficients obtained with the mean-multiplet technique of Schou.

11



In Figure 9 we show the raw, and in Figure 10 the normalized differences in the odd frequency-
splitting coefficients a1, a3, a5, as well as in their sum a1 + a3 + a5 as a function of the spherical
harmonic degree for the ridges n = 0 (black diamonds) and n = 1 (red triangles). Both Figures
demonstrate that the use of interpolateded leakage matrices did result in systematic differences
in those coefficients. For the n = 1 ridge, the normalized differences exceed the 3σ level for the
highest degrees.

Figure 9: (Upper-left panel) Differences ∆a1 = a1HMI.100430to0710.i.v0
− a1HMI.100430to0710.v7

of the
frequency-splitting coefficients a1 as functions of the spherical harmonic degree for the ridges
n = 0 (black diamonds) and n = 1 (red triangles). The dashed magenta line is for a differ-
ence of zero. (Upper-right panel) Same as upper-left panel, but for the frequency-splitting
coefficients a3. (Bottom-left panel) Same as upper-left panel, but for the frequency-splitting
coefficients a5. (Bottom-right panel) Same as bottom-left panel, but for the sum of the odd
frequency-splitting coefficients a1 + a3 + a5.
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Figure 10: (Upper-left panel) Normalized differences ∆a1 = a1HMI.100430to0710.i.v0
−

a1HMI.100430to0710.v7
of the frequency-splitting coefficients a1 as functions of the spherical har-

monic degree for the ridges n = 0 (black diamonds) and n = 1 (red triangles). The normal-
ization was carried out by dividing the raw differences, ∆a1, as shown in the upper left-hand
panel of Figure 9, by the formal error, σ∆a1

, of each difference. The dashed green line shows
the +3σ value. The dashed magenta line is for a difference of zero. (Upper-right panel) Same
as upper-left panel, but for the frequency-splitting coefficients a3. (Bottom-left panel) Same
as upper-left panel, but for the frequency-splitting coefficients a5. (Bottom-right panel) Same
as bottom-left panel, but for the sum of the odd frequency-splitting coefficients a1+a3+a5.
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We show the raw differences in the three splitting coefficients and in their sum that resulted
from our iplkm comparison in Figure 11. All four of these panels show that the differences scatter
randomly for degrees below about 75 before dropping in size up to a degree of 500. For the degrees
above l = 500, all four panels show a smooth upper limit of the differences that increases with
increasing degree, while spread in the sizes of the differences increasing with increasing degree as
well. Excluding the large, random differences shown in both Figures 2 and 11 for degrees below 75,
the largest differences shown in Figure 11 are slightly larger than the largest differences shown in
Figure 4.

Figure 11: (Upper-left panel) Raw differences ∆a1 = a1HMI.100430to0710.i.v0
− a1HMI.100430to0710.v7

of the frequency-splitting coefficients a1 as functions of the spherical harmonic degree for the
ridges n = 0 through n = 30. The dashed red line is for a difference of zero. (Upper-right
panel) Same as upper-left panel, but for the frequency-splitting coefficients a3. (Bottom-left
panel) Same as upper-left panel, but for the frequency-splitting coefficients a5. (Bottom-right
panel) Same as bottom-left panel, but for the sum of the odd frequency-splitting coefficients
a1 + a3 + a5.
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The normalized splitting coefficient differences for the iplkm case are shown as functions of
degree in Figure 12. All four panels in this figure look very similar to the corresponding panels
in Figure 11. The two main differences in the two sets of differences are the fact that the iplkm
coefficient differences are smaller than the corresponding Bang differences for degrees below about
750, while the iplkm differences are larger than the Bang differences at the higher degrees. These
impressions can be confirmed by comparing the statistics in Table 4 with those in Table 3. The
third column of Table 4 shows that the percentages of iplkm differences that exceeded 1σ were
considerably smaller than the percentages of the Bang differences that also exceeded 1σ. On the
other hand, a comparison of the fourth columns of the two tables shows that the number of iplkm
a1 coefficients that exceeded 2σ was nearly 11 times larger than the corresponding number of Bang
a1 coefficients, and the comparison of the two fifth columns shows that the percentage of iplkm a1
coefficient differences that exceeded 3σ was 23 time larger than the corresponding percent of Bang
a1 coefficients.

Figure 12: Same as Figure 11, but for the normalized differences (a1HMI.100430to0710.i.v0
−

a1HMI.100430to0710.v7
)/σ∆a1

The normalization was carried out by dividing the raw differences,
∆a1, as shown in the upper left-hand panel of Figure 11, by the formal error, σ∆a1

, of each
difference. The dashed green lines show the ±3σ levels.

difference # % > 1σ % > 2σ % > 3σ

a1 7307 13.27 3.97 0.68

a3 7283 15.72 5.99 1.94

a5 7013 12.95 2.67 0.40

a1 + a3 + a5 7013 2.97 0.61 0.23

Table 4: Statistics of the differences in the odd frequency-splitting coefficients as well as in
their sum. In the 2nd column the number of commom cases is listed. The remaining columns
give the percentages of cases for which the differences exceed the 1σ, 2σ, and 3σ level,
respectively.
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We show the binned raw coefficient differences as functions of degree in Figure 13. All four
panels of this figure show that the differences in the iplkm coefficients were negligible for degrees
below 500, while they increased systematically until reaching maximum values for degrees between
1200 and 1300. We show the binned normalized iplkm coefficient differences as functions of degree
in Figure 14. The behavior of all four sets of normalized differences looks to be identical to the
variation of the raw iplkm coefficients differences that were just shown in Figure 13. The overall
maximum normalized iplkm coefficient difference is the one for the a3 coefficient, which is nearly
equal to 3σ.

Figure 13: (Upper-left panel) Binned raw differences ∆a1 = a1HMI.100430to0710.i.v0
−

a1HMI.100430to0710.v7
of the frequency-splitting coefficients a1 as functions of the spherical har-

monic degree using 100-degree wide bins for the ridges n = 0 through n = 30. The dashed
red line is for a difference of zero. (Upper-right panel) Same as upper-left panel, but for the
frequency-splitting coefficients a3. (Bottom-left panel) Same as upper-left panel, but for the
frequency-splitting coefficients a5. (Bottom-right panel) Same as bottom-left panel, but for
the sum of the odd frequency-splitting coefficients a1 + a3 + a5.
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Figure 14: Same as Figure 13, but for the normalized differences (a1HMI.100430to0710.i.v0
−

a1HMI.100430to0710.v7
)/σ∆a1

The normalization was carried out by dividing the raw differences,
∆a1, as shown in the upper left-hand panel of Figure 13, by the formal error, σ∆a1

, of each
difference.
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C) 72-Day averages of HMI B-angles for Future and Existing Tables of MPTS
Frequency-splitting Coefficients.

The fact that the magenta and black sets of odd Bang frequency-splitting coefficients in Figure 1
have been demonstrated to be statistically different from each other suggests that leakage matrices
need to be computed for additional values of the B-angle. Once we have been able to generate
and employ additional leakage matrices in future MPTS fitting runs, we will be able to determine
whether the differences in the splitting coefficients depend linearly upon the differences in the B-
angle and we will also be able to determine whether the effects of these leakage matrices depend
upon the sign of the B angle that is used to compute them.

In order to assist with the determination of the additional B-angles that should be employed in
the generation of additional sets of leakage matrices, we have employed a file that Dr. Tim Larson
kindly generated for us which gives the value of the FITS keyword CRLT OBS at noon of each
day of the HMI mission through March 16, 2023. This keyword gives the value of the Carrington
Latitude, or B-angle, of the center of the solar disk as viewed by the HMI instrument. In Figure 15
we show the CRLT OBS values as a function of MDI Day Number. In Figure 16 we show the
absolute value of CRLT OBS as a function of MDI Day Number. In Figure 17 we show the 72-day
averages of CRLT OBS for HMI Runs 1 through 65 (and the 24-day average of CRLT OBS for
Run 66) as a function of the MDI Day Number. In Figure 18 we show both the 72-day averages of
CRLT OBS and the 72-day averages of the absolute value of CRLT OBS as a function of the MDI
Day Number for the 16 HMI runs for which a table of MPTS splitting coefficients has already been
generated.

Figure 15: Value of CRLT OBS as a function of the MDI Day Number. The dashed red line
is for a value of CRLT OBS = 0.

Figure 16: Absolute value of CRLT OBS as a function of the MDI Day Number.
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Figure 17: 72-day averages of CRLT OBS for HMI Runs 1 through 65, and the 24-day average
of CRLT OBS for Run 66 as a function of the MDI Day Number. The error bars are the
standard errors of the 72-day averages.

Figure 18: 72-day averages of CRLT OBS (black) and 72-day averages of the absolute value
of CRLT OBS (red) as a function of the MDI Day Number for 16 HMI runs. The error bars
are the standard errors of the 72-day averages.

Figure 18 shows that even if we determine that the absolute value of the B-angle is the relevant
quantity rather than CRLT OBS itself, five of these 16 runs for which the average of CRLT OBS
and the average of the absolute value of CRLT OBS are identical, so some of these average values
should be used to generate additional leakage matrices for testing. Figure 18 also shows that very
few of these 16 runs corresponded to average values of B that were less than one degree. Rather,
Table 5 shows that Dr. Larson’s use of −6.354 degrees for the Bang test was definitely not too
large in absolute value. In fact, regardless of whether the raw B values or the absolute values of
B were averaged, four of the 16 cases had an average B value between 6.25 and 6.80 degrees in
absolute value. Also, the first row of Table 5 shows that 12 of the 16 runs corresponded to average
values of B that were greater than 2.5 degrees. The second row of Table 5 shows that when |B|
was averaged, 13 of the 16 runs corresponded to average values of |B| that exceeded 2.5 degrees.

D) Conclusions

We believe that the statistics included Tables 1 and 2 and the information contained in Figures 1
through 7 indicate that the use of a non-zero B-angle in the generation of the leakage matrices
that are employed in the MPTS method results in changes to the odd-order frequency-splitting
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Qantity # of Runs Between # of Runs Between # of Runs Between

Averaged 0 and 2.5 degrees 2.5 and 5.0 degrees 5.0 and 6.8 degrees

B 4 6 6

|B| 3 6 7

Table 5: Distributions of the absolute magnitude of the average values of either B (row 1) or
|B| (row 2) for the 16 72-day HMI runs for which tables of fitted MPTS splitting coefficients
and modal parameters now exist.

coefficients that will likely result in small, but systematic differences in the resulting rotational
inversions. Furthermore, the average values of the B-angle and of the absolute values of B for the
16 HMI 72-day runs for which tables of fitted MPTS splitting coefficients already exist that are
shown in Figure 18, and the statistics contained in Table 5, indicate that 75% or more of those
16 HMI runs correspond to average B-angles that exceed 2.5 degrees in magnitude. These facts
suggest that it will be important to compute additional leakage matrices for a range of additional
non-zero values of the B-angle. That will correspond to other average values of the B-angle that
were present during those 16 HMI 72-day time intervals. Once we have been able to generate and
employ additional leakage matrices, we will be able to determine whether the differences in the
splitting coefficients depend linearly upon the differences in the B-angle. We also think it will be
important to employ another B-angle equal to +6.354 degrees so that we can investigate the effects
that the positive B-angles will have on the splitting coefficients. We also believe that the statistics
contained in Tables 3 and 4 and the panels contained in Figures 8 through 14 indicate that the use
of interpolation in the generation of the leakage matrices will also result in small, but systematic
differences in the splitting coefficients. Hence, we feel that we should not use interpolated leakage
matrices in the future.
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