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The standard leakage matrix for global mode helioseismology is calculated 
assuming a value of zero for the P-angle, B-angle, and CCD offsets, and 
value of 1 AU for the observer distance.  Since image center is not 
constant we vary this parameter so see what effect is has on the leaks and 
explore the possibility of using a leakage matrix averaged over pixel 
offsets.  Since the B-angle and observer distance vary in a known way with 
time, we recompute the leakage matrix for realistic values of these 
parameters and repeat the fits to find out how the mode parameters are 
affected.  Since previous studies have indicated certain systematic errors 
are associated with the apodization, we also compute leakage matrices for 
different apodizations, repeat the spherical harmonic decomposition with 
those apodizations, and fit these to see the effect on mode parameters.  
Lastly, we compare the leakage matrix computed at Stanford with a 
completely independent calculation in order to both verify our results and 
discover the source of any discrepancy.



  

Overview of Global Pipeline
1. Apodize dopplergrams in image radius.
2. Remap to uniform grid in longitude and sin(latitude).
3. Fourier transform in longitude, take inner product in 
latitude with associated legendre functions.
4. Form timeseries of resulting spherical harmonic 
coefficients, detrend and fill gaps.
5. Fit peaks in the fourier transform of these, taking leaks 
into account.

The leaks are the result of geometry; because we can only 
see somewhat less than half of the Sun, the inner product 
in step 3 cannot perfectly separate the modes.  These 
leaks then appear as additional peaks in the power 
spectrum of the target mode.



  

Problems
MDI provides two types of data commonly used for global helioseismology: full 
disk and vector weighted.  The full disk data is generally of higher quality but 
due to telemetry constraints is only available a few months of each year.  The 
vector weighted data, so called because it is convolved with a gaussian “vector”, 
has a much better duty cycle, but it is also subsampled by a factor of 5 and 
highly apodized.  One might naively hope that the inferences drawn from these 
two datasets might be in agreement with each other.

Unfortunately, and as the plots below show, this is not the case.  The top plots 
show the normalized residuals for one of the a-coefficients.  If the model is a 
good fit to the data, we would expect for these to be normally distributed around 
zero.  The feature seen in the vector weighted data at 3.4 mHz is an 
unexplained deviation from this, but it is almost completely absent in the full disk 
data.  

The bottom plots below show rotation profiles obtained from RLS inversions.  
Again, the vector weighted data show a spurious feature, the polar jet.  And 
again, it is absent in the full disk data.

Our previous investigations have revealed that both of these features depend 
more strongly on the apodization of the data rather than its resolution.  We 
therefore began to suspect that there could be errors in the leakage matrix.



  



  

How to Make a Leakage Matrix
We begin by generating fake spherical harmonic images with a given P-angle, B-angle, 
observer distance, and CCD offsets.  For all of our previous work, a value of 1 AU was used 
for the observer distance and a value of zero was used for the rest.  After projecting onto the 
line of sight, we have the option of convolving the image with a point spread function (PSF).  
If we are calculating the images at high enough resolution, we can also bin them during this 
step.  Because the PSF of MDI is not well known, the full disk images are left as they are.  
For vector weighted images we convolve with a gaussian, but in the past we have not 
subsampled the images.  Rather we have simulated the effect of  the interpolation done in 
the spherical harmonic transform by convolving with the cubic convolution kernel used in the 
interpolation.  The reasons for doing this will be made clearer below.

Once we have the fake images, they are run through a spherical harmonic decomposition 
using exactly the same pipeline as used for real data, the results of which have only to be 
retabulated to yield the leakage matrix. Because of the computational burden, we usually 
only calculate a subset of all the leaks in this manner, and interpolate the rest.

This process must be done separately for the vertical and horizontal components of the 
leakage matrix, and in principle for the real and imaginary part of each one of these.  One 
might think that we would have to calculate how the real parts leak into the imaginary parts 
and vice versa, but these components can often be assumed to be identically zero.  The 
justification for this assumption, as well as where it breaks down, are shown below.



  

The following equations show a mathematical derivation of the leakage matrix.  The 
observed timeseries for a given l,m is given by taking the inner product with the observed 
velocity, expressed as a sum over normal modes, with a suitable mask, which 
incorporates the line of sight projection, the apodization, and the target spherical 
harmonic.



  



  

Here the matrix c gives the leakage from the real part of the leak to the real part of the 
target and the matrix c′ the leakage between the imaginary parts.  The other components 
have been set to zero because for an apodization function that is symmetric around the 
central meridian, the cos(m′φ)sin(mφ) and sin(m′φ)cos(mφ) terms are odd functions and 
therefore integrate to zero.  For the full disk data this assumption is valid, but for 
subsampled data it breaks down at high l, because the subsampling is in general not 
symmetric around the central meridian.



  

To investigate the effect of our various assumptions, we generated many new 
medium-l leakage matrices (resolution 204x204).  For the sake of brevity, all the 
results shown below are for the real part of the vertical component only.  
Furthermore, we show only the values for Δl=Δm=0, in other words the sensitivity to 
the target mode.  The leaks were not interpolated.

Shown first is the default leakage matrix used for medium-l fitting, calculated as 
described above.  Next shown is the effect of using images with the same resolution 
as the data, as well as the effect of nonzero pixel offsets.  As l increases, we violate 
the Nyquist theorem worse and worse, especially near the limb.  The effect is that 
the leaks calculated have an increased sensitivity to how the pixels line up with the 
fake spherical harmonics.  But we know that the pixel coordinates of image center 
varies from image to image, so at the outset it would seem impossible to calculate 
meaningful leaks at high l.  The best one might hope for would be to calculate the 
average over the possible values of x0 and y0.  As it turns out, the variation of the 
leakage matrix with pixel offset seems to vary sinusoidally with a period of 1 pixel.  
Therefore the average of the sinusoid can be found by averaging the values at 0 
pixel and 0.5 pixel offsets, as shown below.  In the future, we hope to use a leakage 
matrix averaged in this fashion.

This is why in the past the vector weighted leakage matrix has been made using full 
resolution images, because with subsampled images the Nyquist theorem is violated 
at much lower values of l.  On the other hand, we can in principal improve the high l 
leaks by calculating the fake images at higher resolution.

The next plot shows the magnitude of the real to imaginary leaks when using the 
medium-l resolution and the same subsampling grid used by MDI.



  

original leakage matrix, m=l



  

original, medium-l resolution with 0 pixel offset, and 
medium-l resolution with 0.5 pixel offset in x direction, m=l



  

real to imaginary component, m=l



  

The next two plots show the effect on the leaks of observer distance, which varies from 
0.83 to 1.17 AU, and B-angle, which varies in absolute value from 0 to 7 degrees.  The B-
angle seems to be the only variation that affects the leaks at low l.  To check how these 
differences in the leakage matrix would affect the mode parameters, we found periods 
with extreme values of observer distance and B-angle, and fitted them with a leakage 
matrix calculated for those values and one calculated with default parameters.  For the 
observer distance, this had little effect on the mode frequencies, but mode amplitudes 
were affected by several sigma.  For the B-angle, however, the a-coefficients and the 
inversions based on them showed suggestive differences, as the following two plots 
show.  First shown is the effect of the change in leakage matrix on a

3
.  In the next plot, the 

solid line is the inversion corresponding to the default leakage matrix, while the dashed 
line is for a leakage matrix calculated with an appropriate value for the B-angle.  Although 
the bulk of the polar jet has disappeared, there is still the anomalous upturn near the 
surface.



  

max (bottom) and min (top) observer distance, m=l



  

B-angle = 0 (solid) and B-angle = 7 (dashed), m=0



  

effect of B-angle



  

internal rotation at 75 deg



  

What’s Next?

● Use combination of leaks from different pixel offsets in 
fitting

● Account for cross terms

● Convolve with point spread functions

● Try different apodizations to get more clues

– different apodization radii and width

– elliptical apodization

– apodize in latitude/longitude rather than image radius



  

In an attempt to quantify how our fitted mode parameters might be affected by the fact 
that the leakage matrix actually varies minute to minute, we computed a 72 day long 
timeseries of fake spherical harmonic images for several modes with the same image 
parameters as the actual data beginning on  2007.10.07.  We then calculated the leaks 
as a function of time and took the power spectrum of them.  We created an artificial  
power spectrum based on the fits to the actual data, convolved it with the power spectrum 
of the leaks, and then fit a lorentzian to the result to find out how much the new fitted 
frequency differed from the input frequency.

The first plot below shows CRPIX1 (top line) and CRPIX2 (bottom line) as a function of 
time.  Over the same interval the B-angle decreased monotonically from 6.4 to -1.2 
degrees and the observer distance decreased monotonically from 0.99 to 0.975 AU.

The next plot shows the real (bottom lines) and imaginary (top lines) parts of the 
sensitivity for l=m=300 as a function of time.  Next shown is the power spectrum of the 
sensitivity.  This we convolve with a lorentzian with peak frequency 1741.71 μHz  and 
width 1.031 μHz.  In this case the frequency shift is negligible, but for other leaks it can be 
larger.  For instance, the leak to l=300,m=298 shifted by 3.6 sigma and the width shifted 
by 3.4 sigma, as illustrated in the last plot.  This may ultimately be insignificant as well, 
since these errors should be scaled by sqrt(2*l + 1) to give the error on an individual 
mode.



  



  



  



  

solid line: input lorentzian, dash-dot: convolved


