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1. INTRODUCTION

From the time of the first telescopic observations of the
sun the surface rotation as marked by sunspots has been
evident and has been well studied. The perhaps first
indication of the variation of rotation rate with latitude, the
so-called differential rotation, was obtained in this manner
by Christoph Scheiner in 1630. This property of differential
rotation, wherein the equatorial regions rotate more rapidly
than the polar regions, plays a central role in the solar
cycle of magnetic activity. The recognition and accurate
representation of the rotation law was a major contribution
by Carrington (1863). Carrington’s definition of heliographic
coordinates, including longitude based on his rotation law,
is still the standard measure of positions of sunspots and
other features. Carrington published the synoptic charts for
Carrington Rotations 1 to 99 and modern charts of the solar
surface are a continuation of his series.

Sunspots and other magnetic features have continued to
be the markers for solar rotation. A widely used resource
based on sunspot drawings is the work by Newton & Nunn
(1951), which gave results for cycle 17 and summaries of
earlier cycles. They were interested in finding variability in
the rotation rates but found none. A major step in the study of
solar rotation came with the publication of Howard & Harvey
(1970), with the detailed method of using the Doppler shift
to determine the latitude-dependent rotation rate. Related
observations at Stanford (Scherrer et al. 1980) when corrected
for scattered light showed little evidence for variation. The
early report by Howard (1976) did find evidence of rotation
rate variability but, as pointed out by Scherrer et al. (1980),
scattered light and other instrumental effects are large enough
to produce the changes found in this early paper. The
question of variability in the solar rotation rate has been
discussed frequently since that time with summaries being
given by Howard (1984); Schröter (1985); Stenflo (1989);
Beck (2000).

One important property of the solar rotation is the pattern
of Torsional Oscillations,1 which was discovered in the
Mt. Wilson Observatory Doppler rotation signal (Howard &
Labonte 1980; Labonte & Howard 1981, 1982a,b; Howard
1983). The noisy nature of the MWO observations
necessitated extensive processing to allow the pattern to be
seen. As discussed below, helioseismology has provided
detailed information on its properties.

Already an early analysis of helioseismic data on high-
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1 often, particularly in the context of helioseismology, known as zonal

flows

degree modes by Deubner et al. (1979) showed the presence
of a increase in the angular velocity with depth in the sub-
photospheric layers. Analysis of sectoral modes by Duvall
et al. (1984) demonstrated that the interior of the Sun rotates
approximately as a solid body, whereas early data sensitive
to the latitude variation of rotation showed the presence of
a sharp gradient, the so-called tachocline, at the base of
the convection zone (e.g., Christensen-Dalsgaard & Schou
1988; Brown et al. 1989; Dziembowski et al. 1989). In an
analysis of initial results from the SOI/MDI instrument on the
SoHO spacecraft Kosovichev & Schou (1997) found the first
helioseismic evidence for subsurface zonal flows. A detailed
analysis of early results from SOI/MDI was carried out by
Schou et al. (1998), including tests of inversion techniques
based so-called ‘hare and hounds’ exercises;2 this provided
extensive detail on solar internal rotation. Also, Eff-Darwich
& Korzennik (2013) carried out a general analysis of rotation
in the solar radiative interior.

Other investigations have focused on specific aspects of
solar rotation. Charbonneau et al. (1999) and Antia & Basu
(2011), amongst others, investigated the detailed properties
of the tachocline. Zonal flows, and their relation to the solar
magnetic activity cycle, have seen extensive investigations
(e.g., Antia & Basu 2010; Vorontsov et al. 2002; Howe et al.
2000, 2009, 2018). Corbard & Thompson (2002) and Barekat
et al. (2014) investigated the details of the near-surface shear
in rotation.

Finally, the rotation of the deep radiative region and the
solar inner core is still under debate. In several efforts in the
late 1990s and the early years of the 2000s, (e.g., Jimenez
et al. 1994; Elsworth et al. 1995; Chaplin et al. 1999, 2001;
Garcı́a et al. 2004, 2007), an increasing or decreasing rate of
the core rotation was found depending on the dataset used
and the methodology followed. In fact, it now seems likely
that a proper constraint of the rotation rate below ∼ 0.2R�
is impossible using only p modes (e.g., Chaplin et al. 2004;
Garcı́a et al. 2008) and only when the splitting of a few
g modes would be available, the necessary precision in the
inversions would be achieved (e.g., Mathur et al. 2008).

Reviews of helioseismic investigations of solar internal
rotation have been provided by, for example, Thompson et al.
(1996, 2003) and Howe (2009).

Before the first helioseismic results it was generally
assumed, based on simple arguments and early numerical
simulations (e.g. Gilman 1976), that the solar convection
zone showed ‘rotation on cylinders’, i.e., an angular velocity

2 Here one participant, the hare, sets up artificial data based on given model
rotation profiles, and the other participants, the hounds, attempt to recover the
input models through analysis of the data.

mailto:jcd@phys.au.dk
Roger
Sticky Note
, now recognized to be the result of supergranulation (Ulrich etal 2023),
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The above paper demonstrated that sufficient temporal averaging reduces the supergranular noise to acceptable levels.
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Direct Doppler measurements of the surface velocities have shown that the Zonal flow pattern extends to near polar latitudes and that there is an accompanying sectoral flow pattern (Ulrich et al 2023).
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depending only on the distance to the rotation axis. The
first analysis of the angular dependence of rotation within
the convection zone showed this to be wrong, with rotation
showing largely the same angular dependence as on the
surface. This behaviour can to some extent be recovered
by more complex hydrodynamical simulations of rotation
and convection (e.g., Miesch et al. 2006). Given the
likely rapid rotation of the Sun in the early phases of its
evolution, angular momentum must have been lost, probably
through a magnetically coupled solar wind (e.g., Kawaler
1988), directly affecting the convection zone. Thus the
nearly uniform rotation in the radiative interior, and the
formation of the narrow transition in the tachocline, requires
efficient mechanisms for angular-momentum transport. This
may involve magnetic fields (e.g., Gough & McIntyre
1998; Eggenberger et al. 2019) or wave transport (Talon &
Charbonnel 2005), although the details are still far from clear.

[Brief overview (perhaps to be extended below) of
facilities and data that are available (Jesper, Rachel, Rafa,
Sylvain, ...?).]

[Here probably include reference to comprehensive
analyses of MDI and HMI data by Larson & Schou
(2018).]

Apart from the investigations, mentioned above, of the
variation of solar rotation with the activity cycle, the extensive
data accumulated by these facilities over the past two decades
have seen relatively little use. Thus it is clearly time to make a
comprehensive analysis to investigate the detailed properties
of solar internal rotation and its possible variations with time,
including an update of the available analysis techniques. With
this in mind, Michael J. Thompson in 2017 established a
wide-ranging collaboration to re-analyse and compare the
available data, and carry out a full analysis of the resulting
data. After Thompson’s tragic early death in October 2018
the work has been carried out by the present group. [I do find
the previous two sentences appropriate, although we need
to consider a possible conflict with making Michael first
author of the paper.]

Owing to the scope of the present investigation, we have
divided it into, at least initially, three papers. The present
paper (Paper I) provides an overview of the investigation
and analyses the various techniques used for the seismic
investigations of solar rotation. Paper II (Garcı́a et al., in
preparation) discusses the observations of solar rotational
splittings and presents the available data that are used for the
investigation. Finally, Paper III (Howe et al., in preparation)
presents the results of the analyses of these data and discusses
the inferences that can be made on this basis of the solar
internal rotation.

The present paper provides an overview of the inversion
techniques used in the analysis of the solar data and a detailed
analysis and comparison of the properties of these techniques.
Although they have seen extensive use since their initial
development more than 20 years ago, such a comparison
has never been carried out, in part, at the time of the initial
development owing to the then large computational expense
of each application of the techniques. Thus we find it timely
to carry out this technical investigation, as a background for
the interpretation of the results obtained from the solar data.
[Brief overview of the contents of the paper].

2. EFFECTS OF ROTATION ON STELLAR OSCILLATIONS

[One might consider, instead, having this material in an
appendix, referred to in the observational section.]

The Sun is a slow rotator, and hence the effects of rotation
on its oscillation frequencies can be determined from a
perturbation analysis. To leading order in Ω (Hansen et al.
1977; Gough 1981; Brown et al. 1989)3

δνnlm = νnlm−νnl0 =
m

2π

∫ R

0

∫ π

0

Knlm(r, θ)Ω(r, θ)rdrdθ ,

(1)
where we neglected other possible departures from spherical
symmetry, such as effects of magnetic fields. Here Ω(r, θ) is
the angular velocity, as a function of distance r to the centre
and co-latitude θ, and R is the surface radius. Also, νnlm is
the cyclic frequency of a mode characterized by radial order
n, degree l and azimuthal order m, with |m| ≤ l, and the
kernelKnlm(r, θ) is determined from the eigenfunction of the
mode and the structure of the underlying solar model. It may
be shown that the kernels depend only on |m| and that they
are symmetric around the equator:

Knl−m(r, θ) = Knlm(r, θ) , Knlm(r, π−θ) = Knlm(r, θ) .
(2)

[Perhaps show a few examples of kernels.]
Rather than working in terms of the individual splittings

δνnlm it is sometimes convenient to represent the dependence
of the data on m in terms of the so-called a coefficients (see
also Schou et al. 1998):

δνnlm ≈
jmax∑
j=1

aj(n, l)P(l)
j (m) , (3)

with, typically, jmax < 2l + 1; here the P(l)
j are polynomials

of degree j satisfying

P(l)
j (l) = l ,

l∑
m=−l

P(l)
i (m)P(l)

j (m) = 0 for i 6= j . (4)

It follows from Eqs (1) and (2) that rotation is represented by
the coefficients aj with odd j.

The aj obtained from the fit in Eq. (3) to the splittings
δνnlm are linearly related to the splittings. Thus it follows
from Eq. (1) that a2s+1(n, l) is related to Ω(r, θ) through an
equation equivalent to Eq. (1), with a kernel K(a)

nls(r, θ).

3. OBSERVATION OF ROTATIONAL SPLITTINGS

[We need to consider the extent to which we shall make
the data obtained and used generally available, and how. I
strongly support an open data policy. The same of course
goes for the results of the analyses.]

[The presentation of the data of course also needs error
analysis.]

[Perhaps refer to Paper II for detailed analysis. Here we
then just need enough to define the data sets used for the
artificial data.]

4. HELIOSEISMIC INFERENCES OF SOLAR INTERNAL ROTATION

4.1. The helioseismic inverse problem
[The description below could deserve a few references

for more detail.]

3 [For information, to be removed from the paper: Brown et al. (1989)
give the first explicit expression for a general rotation law that I have
found, although the other two papers implicitly have the general idea]
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Sticky Note
As I read the rest of the paper I only see discussion of the two hounds and hares Models 1 and 2.  That is reasonable but the content here should be indicated at an early point so it is clear to the reader that real solar data is not being  used in this discussion of techniques.  The previous sections discuss solar observational data so it is reasonable to expect some real solar data will be used in the rest of the paper.
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FIG. 1.— Averaging kernels for SOLA inversion at target location (0.71R, 30.6◦) (top; see Section 4.5.1) and RLSF inversion at (0.70R, 30.0◦) (bottom; see

Section 4.4.2); the respective default inversion parameters were used. [∆r,ref = 0.06,∆θ = 0.1, µ = 3 for SOLA; λr = 0.02, λθ = 0.1 for RLSF]. The
left panels show contour plots of the kernels, with positive, zero and negative contours shown as solid, dotted and dashed lines, respectively; the orange line and
green circle [colours to be adjusted] go through the maxima of the kernels. The middle and right panels show cuts along these lines as functions of radius and
latitude respectively; here the horizontal lines mark the full widths at half maximum.

The goal of the analysis is to infer estimates Ω(r0, θ0) as
a funtion of location (r0, θ0), as well as properties of the
estimate, such as variance σ2(Ω(r0, θ0)) and the resolution of
the inversion. This is based on the relation in Eq. (1) relating
the observed splittings δνnlm to the true angular velocity,
or the corresponding relations for the odd a coefficients
a2s+1(n, l). For the observed quantities we need to take the
errors in the observations into account. Thus we write Eq. (1)
as

∆k =
2π

m
δνnlm =

∫ R

0

∫ π

0

Kk(r, θ)Ω(r, θ)rdrdθ + εk ,

(5)
where k ≡ (n, l,m), and εk corresponds to the error in
the observations, with variance σ2

k; we assume that the
individual data ∆k are uncorrelated. Evidently there is
a corresponding relation based on the a coefficients, with
k ≡ (n, l, s). Note that from the symmetry of the kernels
around the equator, Eq. (2), it follows that the observations
only provide information about the symmetric component of
rotation, Ω(s)(r, θ) = 1/2[Ω(r, θ) + Ω(r, π − θ)].

We base the following discussion of the inverse problem on
Eq. (5) but note that a fully equivalent analysis can be carried
out using data on the form of a coefficients a(nl)

2s+1, related to

the angular velocity through the kernels K(a)
nls.

In many cases the analysis involves linear operations on the
observations. It follows that the inferred angular velocity at
(r0, θ0) can be expressed as

Ω(r0, θ0) =
∑
k

ck(r0, θ0)∆k , (6)

in terms of inversion coefficients ck(r0, θ0). From Eq. (5) we
therefore obtain

Ω(r0, θ0) =

∫ R

0

∫ π

0

K(r0, θ0, r, θ)Ω(r, θ)rdrdθ+ε(r0, θ0) ,

(7)
where

K(r0, θ0, r, θ) =
∑
k

ck(r0, θ0)Kk(r, θ) (8)

is the averaging kernel, normalized such that∫ R

0

∫ π

0

K(r0, θ0, r, θ)rdrdθ = 1 . (9)

Also, ε(r0, θ0) is the error in Ω(r0, θ0), with variance

σ2(Ω(r0, θ0)) =
∑
k

c2k(r0, θ0)σ2
k . (10)
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According to Eqs (7) and (9) the inferred angular velocity
is an average of the true angular velocity weighted by K.
Thus the properties of K reflect the information contained
in the inference. Typical examples of averaging kernels are
shown in Fig. 1. As discussed in Section 4.5.1, the SOLA
technique specifically designs the averaging kernel, in many
cases resulting in a well-behaved kernel. On the other hand,
in the RLSF technique the averaging kernel is to some extent
a byproduct although, as shown, the inversion still provides a
reasonably localized average of the angular velocity. Various
measures, in addition to the target location, can be used to
characterize location of the average, such as the location of
the kernel maximum or the centre of gravity (CG). In the
case of the RLSF the definition of the latter is complicated
by the negative side lobes. [This will need more detail
for the individual techniques.] Similar issues arise in the
various measures that may be considered for the widths of
the kernels in the radial and latitude directions. Perhaps
the simplest measures are the full widths at half maximum
(FWHM), indicated in the figure.

We note that in these linear inversion methods the inversion
coefficients do not depend on the data values ∆k, only on
the weights (typically determined by the standard deviations
on the data) assigned to them, as well as obviously on the
inversion technique and possible parameters characterizing
the analysis. The same is therefore true of, for example,
the averaging kernels. [This seems obvious, but probably
deserves a check.]

[Descriptions of inversion techniques below need
enough detail to define the parameters that are quoted.]

4.2. Solar models and rotational kernels
[This may need a few words. In particular, we might

mention the uncertainties (or otherwise) associated with
the surface boundary condition and, more generally, with
the known surface errors in the modelling.]

4.3. 1.5D inversion
The expansion in Eq. (3) can be related directly to an

expansion
Ω(r, θ) =

∑
s

Ωs(r)ψ
(1)
s (x) (11)

in suitable polynomials in x = cos θ, such that kernels
Kj
nlj(r) can be found, with

2πa2j+1(n, l) =

∫ R

0

Kj
nlj(r)Ωj(r)dr (12)

(Ritzwoller & Lavely 1991); a detailed analysis of these
expansions was provided by Pijpers (1997). Equation (12)
defines one-dimensional inverse problems for the expansion
functions of Ω, which can be solved with the techniques
discussed below. This inversion technique, often known
as 1.5D inversion, saw extensive use in early investigations
of solar internal rotation. Schou et al. (1992) analysed
its resolution properties and compared them with full 2D
inversions, as considered here.

4.4. Regularized least-squares fitting
A commonly used technique is regularized least-squares

fitting (RLSF), where a parametrized representation of Ω is
adjusted to match the observations. Since the fitting problem

defined by Eq. (5) is ill-posed, with some kernels representing
very similar measures of the angular velocity, the fitting
has to be regularized. Tikhonov regularization (Tikhonov
1963) involves minimizing also the magnitude of the fit or
variations in the fit. In helioseismology this is typically done
by restricting rapidly varying components of the solution by
suppressing its second derivative (see Eq. 27 below). Other
types of regularization of the fit are discussed below.

In many cases Ω is obtained implicitly through linear
operations on the data (e.g., Christensen-Dalsgaard et al.
1990; Schou et al. 1994), which can be represented as in
Eq. (6). It follows that in these cases the result of the inversion
can be characterized by averaging kernels (Eq. 8).

4.4.1. The Schou and Howe implementation

This implementation of the RLSF (in he following SH) was
described by Schou et al. (1994). The angular velocity is
represented as a bi-linear function of r̂ and θ:

Ω(r̂, θ) =
∑
p,q

Ωpqψ
(r)
p (r̂)ψ(θ)

q (θ) , (13)

where

ψ(r)
p (r̂) = max

[
0,min

(
r̂ − r̂p−1

r̂p − r̂p−1
,
r̂ − r̂p+1

r̂p − r̂p+1

)]
, (14)

ψ(θ)
q (θ) = max

[
0,min

(
θ − θq−1

θq − θq−1
,
θ − θq+1

θq − θq+1

)]
. (15)

Here r̂p, p = 1 . . . , nr are the radial meshpoints and θq, q =
1 . . . , nθ are the meshpoints in co-latitude. The coefficients
Ωpq are determined by minimizing∑

k

σ−2
k

[
∆k −

∫ 1

0

r̂dr̂

∫ π

0

dθKk(r̂, θ)Ω(r̂, θ)

]2

+µr

∫ 1

0

dr̂

∫ π

0

dθfr(r̂, θ)

(
∂2Ω

∂r̂2

)2

+µθ

∫ 1

0

dr̂

∫ π

0

dθfθ(r̂, θ)

(
∂2Ω

∂θ2

)2

. (16)

where r̂ = r/R is the dimensionless radius. The terms
in the second derivatives of Ω serve to regularize the
solution, by suppressing rapid variations. The balance
between this regularization and the fit to the observations
is determined by the trade-off parameters µr and µθ.
Increasing these parameters makes the solution smoother and
in addition decreases the statistical error propagated from the
observations (cf. Eq. 10), at the expense of making poorer the
fit to the observations. The weight functions fr and fθ are
given by

fr(r̂, θ) = r̂ , fθ(r̂, θ) = r̂−4 . (17)

It is useful to discuss this procedure in a little more detail.
For convenience we scale the data and the kernels by σ−1

k , and
introduce the data vector d, with components dk = ∆k/σk.
Also, we introduce the vector x, with components xj =

Ωp,q, j = 1, . . . N (cf. Eq. 13). With suitable discretization
the first term in Eq. (16) can then be expressed as

M∑
k=1

(

N∑
j=1

(Akjxj − dk)2 = ‖Ax− d‖2 , (18)

Roger
Inserted Text
t
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defining the matrix A = {Akj}. Similarly, the regularization
integrals can be discretized, e.g., as

∫ 1

0

dr̂

∫ π

0

dθfr(r̂, θ)

(
∂2Ω

∂r̂2

)2

=

N∑
i=1

 N∑
j=1

Fr,ijxj

2

= ‖Frx‖2 (19)

(see also Schou et al. 1994), defining the matrix Fr, with
a similar definition of Fθ. Thus minimization of Eq. (16)
corresponds to minimizing

‖Ax− d‖2 + µr‖Frx‖2 + µθ‖Fθx‖2 , (20)

leading to(
ATA+ µrF

T
r Fr + µθF

T
θ Fθ

)
x = ATd , (21)

where ’T’ denotes the transposed matrix; this can then be
solved for the expansion coefficients x. In the Schou and
Howe implementation this is carried out using simple matrix
inversion.

An even more compact formulation can be obtained by
defining the matrix Ãkj by

Ãkj =

{
Akj for k = 1, . . .M√
µrFr,k−M j for k = M + 1, . . . ,M +N√
µθFθ,k−M−N j for k = M +N + 1, . . . ,M + 2N

(22)
and the vector d̃ by

d̃k =

{
dk for k = 1, . . .M
0 for k = M + 1, . . . ,M + 2N (23)

Then the minimization problem can be expressed simply as
the equation

Ãx = d̃ , (24)

to be solved in a minimum-norm sense, leading to

ÃTÃx = ÃTd̃ (25)

which is equivalent to Eq. (21).

4.4.2. The Antia and Basu implementation

This implementation (in the following AB) is based on
an earlier implementation described by Antia et al. (1998).
Briefly, the angular velocity Ω is represented by products of
cubic B-splines in both radial and latitude directions, with
48 knots in r and 20 in θ. The knots in r are equidistant in
acoustic radius

τ =

∫ r

0

dr

c
, (26)

where c is the adiabatic sound speed; the latitude behaviour is
described as a function of cos θ, with knots that are equidistant
in cos θ. The coefficients of the splines are determined by

minimizing4

∑
k

σ−2
k

[
∆k −

∫ 1

0

r̂dr̂

∫ 1

−1

dθKk(r̂, θ)Ω(r̂, θ)

]2

+λ2
r

∫ 1

0

dr̂

∫ 1

−1

d cos θ sin2 θr̂−1

(
∂2Ω

∂r̂2

)2

+λ2
θ

∫ 1

0

dr̂

∫ 1

−1

d cos θ sin2 θr̂−1

(
∂2Ω

∂(cos θ)2

)2

. (27)

As in Eq. (16) the trade-off parameters λr and λθ determine
the balance between the regularization and the fit to the
observations. The uncertainty in the results were determined
by boot-strapping: we used 100 realizations of the data,
adding Gaussian random noise based on the standard
deviations of the data, and inverted each set. The standard
deviation of the 100 sets provides the estimate of the error in
the solution.

The smoothing parameters were selected so as to remove
small-scale oscillations in the solution, while keeping the fit
reasonable. In the inversions reported here, default values of
these parameters are λr = 0.02 and λθ = 0.1.

[The FWHM in our files is calculated from the contour
at 50% of the height. The limits on latitude are
determined by lines of constant latitude that touch the
50% contour, and similarly, the limits on radius are
determined by the radius of the circles that touch the 50%
contour.]

We have used RLS inversion with iterative refinement; an
example of this, for inversions in the radial direction, was
described by Antia et al. (1996). We define the RLS inversion
by a matrix equation of the form given in Eq. (24), which
also includes the contribution from smoothing (cf. Eq. 22),
although obviously with different forms of the matrices Fr
and Fθ, defined by Eq. (27). The equation is solved using
SVD. The first solution x0 is used to calculate the residual

r0 = Ãx0 − d̃ (28)

The ith iteration takes the residual from previous iteration
to calculate the correction to the solution

Ã(δxi) = ri−1 (29)

The corrected solution and residual are respectively calculated
as

xi = xi−1 + δxi (30)

and
ri = Ã(δxi)− ri−1 (31)

to continue the iteration.
It is difficult to find an objective criterion to terminate the

iteration. In the current inversions we perform 9 iterations.
The iterative refinement effectively reduces the smoothing
parameter; a crude estimate, based on earlier experience,
corresponds to a reduction in (λr, λθ) by the square root of
the number of iterations, i.e, about a factor of 3 in this case.
Since the actual smoothing parameter is the squared value
this will translate to about a factor of 9 in the weight to the
regularization terms in Eq. (27).

4 In the original implementation by Antia et al. (1998) different weightings
were used in the regularization integrals.
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4.4.3. The Korzennik and Eff-Darwich implementation

[This section needs more details, some editing, for
consistency with the previous sections].

[Inversion used Antonio Eff-Darwich’s methods: 1
RLS/OMD (Eff-Darwich & Pérez Hernández (1997); files
solution-m1 ....) 2 Iterative Minimal Discrimination (Eff-
Darwich et al. (2010); files solution-m2....) Note that the
inversion grid for the noisy data (aka err) is different
from the noiseless case (aka noerr and flat) since the data
are noisy and thus the spatial resolution is expected to be
lower (the idea behind OMD: optimal mesh distribution).
]

The Korzennik and Eff-Darwich implementations of the
inversion procedure is based on the discretisation of the
classical rotation inversion integral as follows:

Ax = d+ ε (32)

where d is the data vector (the rotational splittings ∆ν/m), of
dimension M (the size of the data set) and x is the solution
vector to be determined at N model grid points (N �M ). A
is an M × N matrix representing the rotational kernels, and
ε corresponds to the vector containing the M observational
uncertainties.

One of the inversion techniques is a variant of the standard
Regularized Least Squares, called Optimal Mesh Distribution
(Eff-Darwich & Pérez Hernández (1997), RLS/OMD) where
the spatial distribution of the inversion grid is defined prior to
the inversion and it depends on the properties of the data set
(frequency range, degree range, uncertainties, ...).

The second technique is an iterative method based on a
Krylov sequence, (Eff-Darwich et al. 2010).

The solution from the RLS/OMD inversion, x, is defined
by,

x = (ATA− λLTL)−1d = Td (33)

where λ is a weighting coefficient and the matrix L
corresponds to the regularization function that is introduced
to remove the oscillatory component of the solution, resulting
from the ill-conditioned nature of the problem and the effect
of the noise contained in the input data solution.

In the case of the iterative method, the solution, xk, after k
iterations is given by

xk =

k−1∑
i=0

(I −ATA− αLTL)iβP
T d = Td (34)

where
P = B−1ATC−1 (35)

and I is some initial guess The diagonal matrices B and C
are calculated from the summation of columns and rows of
matrix A, respectively.

In both inversion techniques, it is possible to calculate the
solution of the problem as a linear combination T of the
data set. The averaging kernels can therefore be calculated
after applying that linear combination to the rotational kernels
Knlm(r, θ).

The choice of the optimal inversion, in both implementa-
tions, consists of finding the best trade-off between the error
propagation ||T || and the goodness of the solution in a least
squares sense, ||Ax− d||.

[The avg kernel width measure is

w2 = 1/2

∫ ∫
((x− xacog)2 + (y − yacog)2)|K(x, y)|dxdy/∫ ∫

|K(x, y)|dxdy (36)

where acog is CoG of abs(kernel)]

4.4.4. Vorontsov implementation

The technique was described by Vorontsov et al. (2002).
It is an iterative regularization with conjugate gradients in
spectral domain (defined by expansion of the solution in
2D orthogonal polynomials with weight function defined by
the prescribed data variances and sensitivity kernels). The
cost function (or solution ”merit”) M is the weighted rms
mismatch with the data, i.e. when data errors are uncorrelated
Gaussian (which we assume to be the case), the data is fitted
at the Mσ level. Regularization is achieved by terminating
the iterative descents, based on simple visual inspection of
the resulting solutions.

Iterative descents call for some initial guess to be provided.
To speed up the convergence, it may be advantageous to use
a few terms of 1.5D-inversion results (see Section 4.3). In
the experiments reported below, we do not go that far, but
implement a simple flat guess (uniform rotation) only. By its
nature, gradient descents tend to provide the result close to the
minimum-norm solution. For this reason, an iteration started
with some initial guess provides a solution which tends to be
biased towards this particular guess. This property allows, by
varying the initial guess, to address different solutions to the
inverse problem which fit data at the same accuracy level, i.e.
to address different members in the infinite family of solutions
having the same likelihood. In its current implementation,
the algorithm assumes data represented by the a2s+1 splitting
coefficients.

4.5. Optimally localized averages
A different class of techniques for analysing helioseismic

data are the Optimally Localized Averages (OLA) techniques,
originally developed in geophysics (e.g., Backus & Gilbert
1968). Here the goal is to construct averaging kernels, by
suitable choice of the inversion coefficients ck to optimize the
properties of the averaging kernel K (cf. Eq. 8). Although,
in contrast to the RLSF techniques, this does not provide a
direct fit to the observations the Ω resulting from Eq. (6) does
provide a good measure of the angular velocity according to
Eq. (7) if K is suitably localized.

4.5.1. Subtractive OLA

The most common implementation of OLA in helioseis-
mology is the so-called subtractive version, SOLA (Sub-
tractive Optimally Localized Averages Pijpers & Thompson
1992, 1994). Here the coefficients are determined such that
K(r̂0, θ0, r̂, θ) approximates a pre-defined target function,
T (r̂0, θ0, r̂, θ), by minimizing∫ 1

0

∫ π/2

0

[T (r̂0, θ0, r̂, θ)−K(r̂0, θ0, r̂, θ)]
2r̂dr̂dθ

+µ2
∑
k

ck(r̂0, θ0)2σ2
k , (37)

where for simplicity we assumed the observed splittings to be
uncorrelated, and µ is a trade-off parameter controlling the
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magnitude of the variance of Ω (cf. Eq. 10). [Still need to
check precise definition; see mail from RML, 16/11/20.] In
the implementation used here (Larsen 1998; Larsen & Hansen
1997; Larsen et al. 1998) Gaussian targets were used,

T (r̂0, θ0, r̂, θ) = A(r̂0, θ0) exp

[
− (r̂ − r̂0)2

∆r(r̂0)2
− r̂2

0(θ − θ0)2

∆2
θ

]
,

(38)
where A(r̂0, θ0) defines a suitable normalization. The width
∆r in r̂ scales with the adiabatic sound speed c,

∆r(r̂0) = ∆r,ref
c(r̂0)

c(r̂ref)
, (39)

for a suitable reference radius r̂ref ; note also that ∆θ defines
the linear width in the latitude direction. The minimization
problem defined by Eq. (37) leads to a set of linear equations
for the coefficients ck; efficient procedures for solving these
equations were discussed by Larsen & Hansen (1997).

In the inversions reported here, default values of the
parameters are ∆r,ref = 0.06,∆θ = 0.1, µ = 3.0 and
r̂ref = 0.7 [to be checked].

4.5.2. Multiplicative OLA

The original form of OLA is normally denoted Multiplica-
tive OLA (MOLA) in the helioseismic community. There the
coefficidents ck are determined by minimizing∫ 1

0

∫ π/2

0

[J (r̂0, θ0, r̂, θ)[K(r̂0, θ0, r̂, θ)]
2r̂dr̂dθ

+µ2
∑
k

ck(r̂0, θ0)2σ2
k , (40)

where the weight function J is zero for (r̂, θ) = (r̂0, θ0)
and rapidly increases with distance from (r̂0, θ0). Together
with the normalization in Eq. (9) this ensures that K has the
desired property of being large near (r̂0, θ0) and suppressed
elsewhere. This type of inversion was used by Chaplin et al.
(1999) to investigate the rotation of the solar core. We do not
consider it further here.

4.6. Validation of the inversion techniques
To investigate the properties of the inversion techniques

we have analysed artificial data computed for two angular-
velocity profiles, illustrated in Fig. 2. One (Model 1) is based
on early RLSF analysis of data from the MDI instrument (the
2dRLS results in Fig. 3 of Schou et al. 1998). The second
(Model 2) was set up analytically to include specific features
that have been found to be of interest in analyses of solar
data; these include a sharp gradient at r̂ ≈ 0.695 emulating
the tachocline and a ‘jet’ at high latitudes.5 For each of
the artificial models of the angular velocity, splittings and
splitting coefficients were computed for mode sets, including
standard deviations that were obtained from solar data [to be
described briefly in Section 3]. One set, SGK6 is in terms
of individual {n, l,m} splittings, whereas the second, JS7

uses a representation in terms of up to 36 a coefficients. The
analysis is carried out both in terms of noise-free splittings
or a coefficients based directly on the assumed rotation

5 A python script to calculate this rotation law is included in the
appendix.

6 sgk model2 noerr singlets-9-6400-hmi-32x.jsBo=0.2d
7 js model2 noerr split10qr 191115.6400.36.dat

model and for the cases (SGK-N and JS-N) where Gaussian-
distributed errors with the relevant variance are added to the
data. Note that owing to the linear nature of the inversion
techniques the resulting averaging kernels and standard errors
are independent of the rotation model assumed in calculating
the artificial data, although they obviously depend on the
assumed mode set and hence differ between the JS and SGK
sets.

The goal of the inversion is obviously to infer the local
angular velocity as reliably [not the best word] as possible.
This is affected by two issues: the errors in the observations
and the finite resolution of the inversion. The variance
of the inferred angular velocity can be calculated with
Eq. (10).8. The resolution of the inversion is characterized
by the averaging kernels (see Eq. 7). Various measures can
be used the determine the resolution; here we generally focus
on the full widths w(FWHM)

r and w(FWHM)
θ of the averaging

kernels in the radial and latitude direction (see also Fig. 1).
The effect of the finite resolution on the inferences can be
illustrated from analyses of noise-free data, by considering

δΩ(r0, θ0) = Ωmod(r0, θ0)− Ω(r0, θ0) , (41)

where Ωmod is the rotation model used to compute the
artificial data. This obviously depends on the assumed
rotation model; we recall that Model 1 is based on an inferred
solar rotation rate, while Model 2 explicitly includes sharp
features such as a tachocline. We also note that for noise-
free data, ε(r0, θ0) = 0 in Eq. (7), such that this equation
may serve as a ‘sanity check’ on the results of the inversion,
by comparing the direct result of the inversion (particularly
for the RLSF inversions, where the averaging kernels are not
integral to the inversion process) with the result of computing
the integral. We have found that this is satisfied to satisfactory
precision for the cases where the test is relevant.

An important issue is the location to which the inferred
rotation rate can be assigned. Given the integral nature of
the avaraging kernel, a natural measure of its location (apart
from the target location) is the centre of gravity (CG) of the
averaging kernel, defined by

r̂CG(r̂0, θ0) =

∫ 1

0

∫ π

0

r̂K(r̂0, θ0, r̂, θ)r̂dr̂dθ

θCG(r0, θ0) =

∫ 1

0

∫ π

0

θK(r̂0, θ0, r̂, θ)r̂dr̂dθ . (42)

For the RLSF inversions discussed one may show [I assume;
a reference would be good] that the CG coincides with
the target location, and hence for simplicity we generally
identify the inversion properties with the target location.
[This is obviously not the case for targets close to the
equator, where the CG should be determined from a single
lobe of the kernel, following the separation that I have
discussed in a separate note. This could be discussed in an
Appendix. This also needs some further testing However,
the target location would probably still be a good measure
of location.]

For optimally localized inversions, on the other hand, the
CG is close to the target location only in cases where it is
possible to construct well-localized averaging kernels, with

8 A related issue that we ignore here [at least for now] is the strong
correlation between neighbouring points in the inversion; see, for example
[a few relevant references]
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FIG. 2.— Artificial rotation profiles. Left: Model 1; right: Model 2. These models, set up by A. G. Kosovichev, were used also in the hare and hounds exercises
in Schou et al. (1998).

the techniques discussed in Section 4.5. Here a measure of
the region where the solution can be trusted is provided by the
distance between the target location (r̂0, θ0) and the location
of the centre of gravity,

∆CG = [(r̂CG − r̂0)2 + r̂2
0(θCG − θ0)2]1/2 , (43)

such that only the part of the inferred angular velocity for
which ∆CG ≤ ∆

(max)
CG is considered. [This criterion

may need to be revised to include information about the
FWHM. We shall have to see to what extent we use
something like this!]

5. RESULTS

[ The selection of results and format of comparison are
very much up for discussion].

As a reference for the inverse analyses we first consider
results for RLSF inversion using the Schou & Howe technique
(see Section 4.4.1) as applied to noise-free JS data in the form

of a coefficients. This is then compared with the use of SGK
individual splittings and with the results of other inversion
techniques. Finally, we consider the more realistic case of
artificial data including random noise. As a general issue, it
is obviously of interest to investigate the dependence of the
inversion results on the relevant inversion parameters, with
a view towards selecting the optimal parameters for a given
situation.

Although the analysis is most simply carried out in terms of
co-latitude θ, we find it most natural to present the latitudinal
behaviour of the results in terms of latitude ϑ = π/2 − θ,
generally expressed in degrees.

5.1. RLSF analysis using SH implementation
Figure 3 illustrates results of inversions of noise-free data

for Models 1 and 2. As shown in the left-hand panels, the
results generally capture the behaviour of the models down
to a radius of r̂ ≈ 0.3, after which they diverge. In general,
RLSF inversion with second-derivate smoothing results in a
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FIG. 3.— SH RLSF inversions of noise-free JS a coefficients, against target radius; trade-off parameters (µr, µθ) = (3× 10−6, 10−4) were used. Top panel:
Model 1; bottom panel: Model 2. In the left-hand panels the dotted lines show the rotation rate Ωmod/2π in the model and the solid lines show the inferred
Ω/2π; the dashed lines show the inferred value ±σ(Ω/2π). The right-hand panels show δΩ = (Ωmod − Ω)/2π, similarly indicating the standard deviation.
The inversion results have been cut off for r̂ < 0.2. [This may be somewhat under-regularized; the final choice of µr, µθ will be made later].

linear behaviour of the solution in regions of the Sun where
the data provide little constraint. This is emphasized in the
right-hand panels, which show the difference between the
true and inferred angular velocity. Despite the use of noise-
free data this has considerable variability. To understand the
properties of the differences it is instructive to consider the
simpler case of one dimensional inversion as a function of r̂,
with an averaging kernel K(r̂0, r̂), with maximum at r̂ = r̂0.
Using the equivalent to Eq. (7) with zero ε, and making a
Taylor expansion of Ω in the integral, we obtain

Ω(r̂0)− Ω(r̂0) ≈ Ω(r̂0)−∫ 1

0

[
Ω(r̂0) + (r̂ − r̂0)

dΩ

dr̂
+

1

2
(r̂ − r̂0)2 d2Ω

dr̂2

]
K(r̂0, r̂)dr̂

≈ −1

2

∫ 1

0

(r̂ − r̂0)2 d2Ω

dr̂2
K(r̂0, r̂)dr̂ , (44)

given the normalization of K and assuming, as is often the
case, that K is roughly symmetrical around r̂0. Thus δΩ
is dominated by the second derivative of Ω and hence, in
the case of the artificial data, quite sensitive to small local
irregularities, as found for Model 1. For Model 2 the sharp
variation around the tachocline dominates.

5.1.1. Dependence on the trade-off parameters

Important characteristics of the inversion are provided by
the properties of the averaging kernels and the standard
deviation. Examples are illustrated in Fig. 4 and Table 1, at
four different target radii and latitudes (r̂0, ϑ0). The kernel
radial width and the standard deviation show substantial
variation with changing target radii. At r̂0 = 0.69 there is
a similar sensitivity to µθ, while for the larger r̂ the properties
change relatively little with µθ.

To obtain a more comprehensive overview of the depen-
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FIG. 4.— Kernel cuts for SH RLSF inversions against target radius (left) and latitude (right), at target locations (radius, latitude) marked above the panels, with
trade-off (µr, µθ) in legends; the inversions used JS a coefficients. The cuts go through the kernel maxima (see also Fig. 1). Note the changes in abscissa range
for r̂0 = 0.95 and 0.99. [Again, the choice of cases to show will/may be changed]. [Could extend to include contour plots of narrowest kernels].
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TABLE 1
SH RLSF INVERSION PROPERTIES WITH JS DATA

µr µθ r0 ϑ0 σ/2π w
(FWHM)
r w

(FWHM)
θ

(deg.) (nHz) (deg.)
1.0×10−6 1.0×10−6 0.69 30.0 2.818 0.0576 6.72
3.0×10−5 1.0×10−6 0.69 30.0 1.376 0.0904 6.44
1.0×10−6 3.0×10−5 0.69 30.0 1.678 0.0560 9.68

1.0×10−6 1.0×10−6 0.90 30.0 0.854 0.0244 5.96
3.0×10−5 1.0×10−6 0.90 30.0 0.322 0.0387 5.97
1.0×10−6 3.0×10−5 0.90 30.0 0.776 0.0245 6.11

1.0×10−6 1.0×10−6 0.95 30.0 0.465 0.0156 5.98
3.0×10−5 1.0×10−6 0.95 30.0 0.173 0.0261 5.96
1.0×10−6 3.0×10−5 0.95 30.0 0.451 0.0156 6.02

1.0×10−6 1.0×10−6 0.99 30.0 0.087 0.0060 5.86
3.0×10−5 1.0×10−6 0.99 30.0 0.059 0.0078 5.76
1.0×10−6 3.0×10−5 0.99 30.0 0.080 0.0060 5.86

NOTE. — Properties of RLSF inversions using the SH implementation and JS data on a coefficients, for the cases illustrated in Fig. 4. Here r̂0 and ϑ0 are the
target radius and latitude, σ/2π is the standard deviation of the inferred rotation rate, and w(FWHM)

r and w(FWHM)
θ are the full widths at half maximum of the

kernels in the radial and latitude directions.
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FIG. 5.— Full widths at half maximum as a function of trade-off parameters for SH RLSF inversions of JS a coefficients. The left-hand panels show the width
w

(FWHM)
r of radial cuts through the kernel maxima, the central panels the angular widthw(FWHM)

θ of latitude cuts, and the right-hand panels the corresponding

linear width r̂w(FWHM)
θ . Target locations are indicated in the header of the left-hand panels. [.../projects/rotinv18/paper 1/figures/fwhmcont sh rls.py]

dence of the inversion properties on the inversion parameters
we have carried out analyses on full grids of trade-off
parameters and target locations. The grid in trade-off
parameters covers

µr = [10−7, 3× 10−7, 10−6, 3× 10−6, 10−5, 3× 10−5]

and

µθ = [10−6, 3× 10−6, 10−5, . . . , 3× 10−2, 10−1]

for a total of 66 combinations. Results have been stored for
target radii

r̂0 = [0.482, 0.594, 0.692, 0.799, 0.843, 0.896, 0.947, 0.991] ,

and target latitudes

ϑ0 = [74.99◦, 59.98◦, 45.02◦, 30.01◦, 15.00◦, 7.49◦, 0.◦] ,

corresponding to selected points in the solution mesh.
The properties of the kernel widths are illustrated in Fig. 5,
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showing contour plots of w(FWHM)
r and w(FWHM)

θ over the
full ranges of µr and µθ. In the case of the latitude width, both
the angular extent w(FWHM)

θ and the linear extent r̂w(FWHM)
θ

are shown. It is evident, and probably not surprising, that
w

(FWHM)
r andw(FWHM)

θ depend, respectively, predominantly
on µr and µθ. Also, the latitude resolution, measured by
r̂w

(FWHM)
θ , is typically somewhat poorer than the radial

resolution given by w(FWHM)
r .

As mentioned above, the standard deviation σ(Ω(r̂0, θ0))
(cf. Eq. 10) provides a measure of the statistical error
in the inferred rotation rate, while δΩ(r̂0, θ0), defined in
Eq. (41), as evaluated for noise-free data measures what might
be regarded as the systematic error arising from the finite
resolution of the inversion. These quantities are shown as
functions of µr and µθ in Figs 6 and 7 for selected target
locations and artificial data based on Model 1 and Model 2,
respectively. As noted above, σ does not depend on the
rotation rate and hence is the same in both figures. As
expected, it decreases smoothly with increasing µr and µθ;
also, σ is substantially smaller at r̂0 = 0.90 than at r̂0 =
0.69. On the other hand, δΩ clearly depends on the detailed
behaviour of the variation of the solution (see also Eq. 44).
For Model 1 this is reflected in rather large and variable δΩ
for (r̂0, ϑ0) = (0.69, 60◦) and (0.9, 60◦). In the latter case,
δΩ depends primarily on µθ, perhaps reflecting the relatively
strong variation of Ω with ϑ. For Model 2, relatively large
values of δΩ are found at (r̂0, ϑ0) = (0.69, 30◦), probably
associated with the tachocline.

Although not statistically justified, combining σ and δΩ
in quadrature does provide some indication of the overall
properties of the inversions, as functions of µr and µθ. This
is shown in the right-hand columns of Figs 6 and 7. It is clear
that in many, but not all, cases the result is dominated by σ.
It is interesting that Model 1 shows a stronger effect of δΩ,
probably as a result of the somewhat less smooth behaviour
visible in Fig. 2.

[As before, the specific choice of target locations
can easily be extended or modified. Also, we should
think about other and/or better ways to illustrate the
behaviour of (σ, δΩ, w

(FWHM)
r , w

(FWHM)
θ ) in the data-cube

in (µr, µθ, r̂0, ϑ0).]
It is clear from Eq. (16) that µr and µθ enter in the inversion

as global parameters.9 Thus, although Figs 5 – 7 provide
interesting local information about the inversion properties,
an informed choice of inversion parameters requires a more
global measure of the properties. Here we consider averages
〈δΩ〉 and 〈σ〉, defined by, e.g.,

〈δΩ〉2(ϑ0) = (1− r̂cut)
−1

∫ 1

r̂cut

δΩ2(r̂0, ϑ0)dr̂0 , (45)

where r̂cut = 0.4 was selected to exclude the inner
region where the present data provide little information.
Figures 8 and 9 show 〈δΩ〉(ϑ0) and 〈σ〉(ϑ0) for a range of
target latitudes, for Models 1 and 2, respectively. [Should
follow with more discussion of the results, including some
conclusions on the selection of (µr, µθ).]

5.1.2. Dependence on input data

9 Some local control could be obtained by changing the choice of weight
functions fr and fθ .

It is clearly of interest to investigate the dependence of the
inversion results on the representation of the input data. A
global overview is provided in Fig. 10, comparing results
obtained using the JS a coefficients and the SGK individual
splittings, at fixed (µr, µθ). Converting the splittings into a
coefficients in itself corresponds to a form of regularization,
and hence it is not surprising that the standard deviations
σ (left-hand panel) are larger in the SGK than in the JS
case. It is perhaps less obvious that the same is true of
the radial full width at half maxixum w

(FWHM)
r (middle

panel). Here the gap in the points marks the transition
from r̂0 = 0.947 to 0.991. For the latitudinal full width
at half maximum w

(FWHM)
θ , the results are more complex.

For w(FWHM)
θ > 10◦ there is again a tendency for larger

values for SGK, whereas for narrower kernels the JS results
essentially hit a lower limit, while the SGK results still
decrease. The latter effect is in fact obvious: by combining
the splittings into a coefficients we reduce the latitudinal
information contained in the data, and hence the ability to
localize the kernels in latitude. [ The present JS results were
obtained directly from Tim and Jesper’s fits. Thus we
should consider using instead a coefficients obtained from
the SGK splittings; that is on the way. The cases filtered
out were generally at low µr, high µθ and rather small
r̂0. Part of the problem seems to be with the treatment
of kernels overlapping the equator, which will require
improved consistent treatment, probably by separating
the lobes. ]

The difference between the two results for the two datasets
is further illustrated in Fig. 11 and Table 2. For (µr, µθ) =
(10−6, 10−5) the kernels obtained with the SGK splittings at
r̂0 = 0.95 and r̂0 = 0.9 are substantially narrower in latitude
than when the JS a coefficients are used, and the latitudinal
sidelobes are strongly suppressed; the widths are similar at
r̂0 = 0.69. [Multiplying µr and µθ by 10 gives similar
results, so perhaps we need to increase them even further.]
In all cases, σ is substantially larger for the SGK than for the
JS data, as expected from Fig. 10.
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FIG. 6.— Standard deviation σ/2π, difference δΩ/2π between original and inferred rotation rate (cf. Eq. 41) and the two combined in quadrature, as a
function of trade-off parameters for SH RLSF inversions of noise-free JS a coefficients based on Model 1. Target locations are indicated in the headers of the
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FIG. 7.— As Fig. 6, but for Model 2. [.../projects/rotinv18/paper 1/figures/delomcont sh rls.py]
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FIG. 8.— SH RLSF inversions of noise-free JS a coefficients for Model 1, showing root-mean-square integrals 〈σ〉(ϑ0) and 〈δΩ〉(ϑ0) (cf. Eq. 45) of the
standard deviation and the rotation-rate difference, and their combination in quatdrature. Target latitudes ϑ0 are shown in the headers of the left-hand panels.
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FIG. 9.— As Fig. 8, but for Model 2. [.../projects/rotinv18/paper 1/figures/delomcont sh rls rms.py]
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TABLE 2
COMPARISONS OF SH RLSF INVERSION WITH JS AND SGK DATA

JS SGK
r0 ϑ0 µr µθ σ/2π w

(FWHM)
r w

(FWHM)
θ µr µθ σ/2π w

(FWHM)
r w

(FWHM)
θ

(deg.) (nHz) (deg.) (nHz) (deg.)
0.95 45.0 1.0×10−6 1.0×10−5 0.484 0.0171 6.06 1.0×10−6 1.0×10−5 1.082 0.0240 2.44
0.90 45.0 1.0×10−6 1.0×10−5 0.874 0.0267 6.08 1.0×10−6 1.0×10−5 1.398 0.0362 3.53
0.69 45.0 1.0×10−6 1.0×10−5 2.134 0.0615 8.78 1.0×10−6 1.0×10−5 2.463 0.0707 9.93
0.95 45.0 1.0×10−5 1.0×10−4 0.239 0.0244 6.06 1.0×10−5 1.0×10−4 0.439 0.0313 3.00
0.90 45.0 1.0×10−5 1.0×10−4 0.418 0.0365 6.25 1.0×10−5 1.0×10−4 0.583 0.0452 4.83
0.69 45.0 1.0×10−5 1.0×10−4 0.908 0.0784 11.42 1.0×10−5 1.0×10−4 1.066 0.0914 12.87

NOTE. — Comparisons of RLSF inversions with the SH implementation between using the JS data on a coefficients and the SGK individual splittings, for the
cases illustrated in Fig. 11. See note to Table 1.
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FIG. 11.— SH RLSF inversions, illustrated by kernel cuts against target radius and latitude through the kernel maxima, comparing inversions of the JS
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[.../projects/rotinv18/paper 1/figures/kernels sh rls js-sgk.py]
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[.../projects/rotinv18/paper 1/figures/comp sel sh ab.py]

5.2. RLSF analysis using the AB implementation
5.2.1. Comparing AB and SH

When considering inversion procedures with different
implementation of the regularization, there is probably no
unique optimal way to compare their results. Here we choose
to compare the results at fixed standard deviation σ and radial
FWHMw

(FWHM)
r . Specifically, for each set (λr, λθ) of trade-

off parameters for AB and each shared target location the goal
is to find a set (µr, µθ) of SH parameters, such that the SH σ

and w(FWHM)
r match the AB results. The procedure used to

achieve this is presented in the Appendix. For the SH results
we use the grid presented in Section 5.1.2. Both SH and AB
results use the JS dataset.

The success of this matching, as applied to the currently
available AB results, is illustrated in Fig. 12; quantita-
tively, a match was obtained in 103 of the 378 cases
[(λr, λθ), (r̂0, ϑ0)] available, although covering all possible
(λr, λθ). In the top panel the slightly vertically shifted points
illustrate the target radii for which the fits were successful. As
shown in the bottom panel, the fits essentially cover the entire
(µr, µθ) region.
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FIG. 13.— The ratio between the latitudinal FWHMw
(FWHM)
θ for the SH

and AB analysis, matching the standard deviation σ and the radial FWHM
w

(FWHM)
r between the two cases. To illustrate the dependence on the

target location the top panel is colour-coded with the target radius and the
bottom panel with the target latitude. The horizontal dotted line shows unity.
[.../projects/rotinv18/paper 1/figures/comp fit fwhmthet sh ab.py]

Having fixed σ and w(FWHM)
r between the two methods we

can compare the resulting latitudinal FWHM w
(FWHM)
θ , as

done in Fig. 13. Strikingly, here the SH widths are larger, by
typically a factor two, than the AB results. This is illustrated
in more detail by the examples shown in Table 3 and Fig. 14.
In the first two cases w(FWHM)

θ is very substantially larger
for the fitted SH kernels than for the AB kernel. In the last
case, on the other hand, the latitude widths are comparable,
in accordance with Fig. 13, which indicates that the ratio
tends to be close to unity for high-latitude kernels close to
the surface. [All this of course needs to be discussed and
understood(?)].
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TABLE 3
FITTING SH RESULTS TO AB KERNEL PROPERTIES

Case µr/λr µθ/λθ r0 ϑ0 σ/2π w
(FWHM)
r w

(FWHM)
θ µ

(fit)
r µ

(fit)
θ

AB 1.0×10−3 5.0×10−3 0.60 0.0 1.221 0.0662 4.05 2.0×10−6 1.8×10−3

SH 1.0×10−6 1.0×10−3 0.59 0.0 1.563 0.0613 23.23
SH 1.0×10−6 3.0×10−3 0.59 0.0 1.345 0.0605 28.10
SH 3.0×10−6 1.0×10−3 0.59 0.0 1.170 0.0699 21.99
SH 3.0×10−6 3.0×10−3 0.59 0.0 0.996 0.0690 26.63

AB 2.0×10−3 1.0×10−2 0.70 30.0 0.976 0.0582 7.42 1.8×10−6 4.1×10−4

SH 1.0×10−6 3.0×10−4 0.69 30.0 1.185 0.0541 14.11
SH 1.0×10−6 1.0×10−3 0.69 30.0 0.994 0.0532 17.37
SH 3.0×10−6 3.0×10−4 0.69 30.0 0.900 0.0619 13.37
SH 3.0×10−6 1.0×10−3 0.69 30.0 0.750 0.0606 16.44

AB 5.0×10−3 1.0×10−1 0.90 75.0 1.196 0.0324 11.60 1.9×10−7 1.2×10−3

SH 1.0×10−7 1.0×10−3 0.90 75.0 1.400 0.0302 10.25
SH 1.0×10−7 3.0×10−3 0.90 75.0 1.238 0.0294 12.03
SH 3.0×10−7 1.0×10−3 0.90 75.0 1.074 0.0342 9.81
SH 3.0×10−7 3.0×10−3 0.90 75.0 0.938 0.0334 11.55

NOTE. — Results of fitting the SH grid of trade-off parameters (µr, µθ) to selected AB results, using the procedure described in Section A. The lines marked
’AB’ show the properties of the AB results for the trade-off parameters (λr, λθ) in columns 2 and 3. The last two columns show the interpolated (µ

(fit)
r , µ

(fit)
θ )

obtained by fitting the AB σ and w(FWHM)
r . The lines marked ’SH’ show SH results for the four points in the SH grid surrounding (µ

(fit)
r , µ

(fit)
θ ). The kernels

are illustrated in Fig. 3.
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5.3. SOLA inversions
[The following needs to be reworked, in the light of the

RLSF results.]
Figure 15 shows results of applying the SOLA technique

to Model 1. The left-hand panel, comparing the original and
inferred rotation rate, clearly shows the smoothing of sharper
features that is induced by the averaging kernel (cf. Eq. 8);
this is particularly evident for the tachocline at latitude 60◦

and the ‘jet’ at latitude 75◦. These features are also evident in
the difference plot in the right-hand panel.

The dependence of the SOLA results on the parameters
characterizing the inversion is illustrated in Fig. 17, in terms
of root-mean-square averages of the difference between the
inferred and original rotation rate and its standard deviation,
the average taken over a region restricted by the difference
between the target and centre-of-gravity locations. The
left-hand column shows the decrease in standard deviation
with increasing trade-off parameter µ, with a strong effect
on 〈Ω〉rms at higher latitude, whereas the effect is limited
for latitude 45◦ and below. Increasing the widths of the
target kernels substantially decreases the standard deviation
and, in the case of ∆r,ref , systematically increases 〈Ω〉rms.
Interestingly, ∆θ has little effect on 〈Ω〉rms at low latitude,
[and the non-monotonic behaviour at 75◦ surely deserves
further study.]

[Perhaps some focus on results for the tachocline,
including perhaps characterization of location and width.]

6. DISCUSSION

[This is perhaps where we discuss the properties of the
solutions.]

[Advantages and disadvantages of different methods.
Characterize them (here or above) also in terms of
averaging kernels.]

[Ability to resolve the tachocline.]

7. CONCLUSIONS

[SWSHS]

Funding for the Stellar Astrophysics Centre is provided by
The Danish National Research Foundation (Grant DNRF106)
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FIG. 15.— [SOLA inversion, ∆r,ref = 0.06, ∆θ = 0.1, µ = 3, against target radius, ∆
(max)
CG = 0.05. Data without errors.] [Top panel: Model 1, data

sgk model1 noerr singlets-9-6400-hmi-32x. Bottom panel: Model 2, data sgk model2 noerr singlets-9-6400-hmi-32x.jsBo=0.2d] In the left-hand panel
the dotted lines show the rotation rate Ωmod/2π in the model and the solid lines show the inferred Ω/2π; the dashed lines show the inferred value ±σ(Ω/2π).
The right-hand panel shows δω/2π = (Ωmod − Ω)/2π, similarly indicating the standard deviation.
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FIG. 16.— [Results of RLSF inversion (Antia and Basu), λr = 0.02, λθ = 0.1, against target radius, ∆
(max)
CG = 0.05. Data including errors.]

In the left-hand panel the dotted lines show the rotation rate Ωmod/2π in the model and the solid lines show the inferred Ω/2π; the dashed lines show
the inferred value ±σ(Ω/2π). The right-hand panel shows δΩ = (Ωmod − Ω)/2π, similarly indicating the standard deviation. [Top: Model 1, data
js model1 err split10qr 191115.6400.36, bottom: Model 2, data js model1 err split10qr 191115.6400.36]
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FIG. 17.— Dependence of SOLA inversions on the inversion parameters. The top row shows the root-mean-square difference between the inferred and model
rotation rate, and the bottom row shows the rms standard deviation of the inference. In both cases, the mean is taken over the part of the solution where
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on ∆θ , for µ = 3 and ∆r,ref = 0.02. [data from sgk model1 noerr singlets-9-6400-hmi-32x, no errors.] [Rachel: this is based on the set of inversions that
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APPENDIX

COMPARISON OF INVERSION RESULTS FOR DIFFERENT
DATA OR PROCEDURES

The inversion procedures described in Section 4 are charac-
terized by various parameters, in the case of RLSF inversions
the two weights (e.g., (µr, µθ)) on the regularization integrals.
Given that these parameters are implemented in somewhat
different ways in the different techniques, this complicates a
coherent comparison of the inversion results. Even for a given
procedure, similar issues arise in the comparison of results for
different representations of the input data (cf. Section 5.1.2).
Here we describe the procedures that have been employed in
such comparisons.

For this purpose we characterize the inversions by the
standard deviation σ and the full widths at half maximum
w

(FWHM)
r and w(FWHM)

θ in the radial and latitude directions.
The goal must be to obtain parameters for the two considered
cases, case 1 and 2, say, such that these quantities as far
as possible agree. Various metrics could be used for this,
given that with the two RLSF parameters a complete match
cannot in general be achieved. [Of course the situation
is in principle different for the three parameters of the
SOLA inversion; we shall see how this works out]. Here
we choose to determine pararameters for case 1 such that σ
and w(FWHM)

r match the values for case 2.
The procedure is illustrated in Fig. A, using for case 1 the

SH procedure, for which an full and rather extensive grid is
available, and for case 2 the AB procedure, in both cases using
the JS dataset, applied to the point (r̂0, ϑ0) = (0.7, 30◦),
and with the inversion parameters (λr, λθ) = (0.002, 0.02)
for the AB procedure. [At some point we should address
that the target points are not identical, even though it
hardly matters]. In the top panel, for each µr in the grid
we determine µθ through linear interpolation such that the
standard deviations agree, σ1(µr, µθ) = σ2(λr, λθ). Thus
effectively this corresponds to the σ = σ2 contour in the
(µr, µθ) plane. We also determine the corresponding values
w

(FWHM)
r |1 and w

(FWHM)
θ |1 of the FWHM in the radial

and latitude directions, as shown in the middle and bottom
panels. Given this, we can then finally, by linear interpolation,
determine the values (µ

(fit)
r , µ

(fit)
θ ) (which in general will not

be part of the grid) as illustrated in the middle panel, such that

σ1(µ(fit)
r , µ

(fit)
θ ) = σ2(λr, λθ) ,

w(FWHM)
r |1(µ(fit

r ), µ
(fit)
θ ) = w(FWHM)

r |2(λr, λθ) . (A1)

In addition, we determine other corresponding results for
case 1 including, as illustrated in the bottom panel, the
FWHM in latitude. As discussed in more detail in
Section 5.2.1 it is striking that the resulting SH w

(FWHM)
θ in

many cases is substantially larger than the corresponding AB
value.

Whether this procedure is even possible in a specific case
obviously depends on whether σ2 and w(FWHM)

r |2 fall within
the respective ranges of the case 1 grid. This depends both
on the target location and the choice of parameters for case 2.
We discuss this in Section 5.2.1.
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Eff-Darwich, A., & Pérez Hernández, F. 1997, A&AS, 125, 391,

doi: 10.1051/aas:1997229 4.4.3, 4.4.3
Eggenberger, P., Buldgen, G., & Salmon, S. J. A. J. 2019, A&A, 626, L1,

doi: 10.1051/0004-6361/201935509 1
Elsworth, Y., Howe, R., Isaak, G. R., et al. 1995, Nature, 376, 669,

doi: 10.1038/376669a0 1
Garcı́a, R. A., Mathur, S., Ballot, J., et al. 2008, Sol. Phys., 251, 119,

doi: 10.1007/s11207-008-9144-5 1
Garcı́a, R. A., Turck-Chièze, S., Jiménez-Reyes, S. J., et al. 2007, Science,

316, 1591, doi: 10.1126/science.1140598 1
Garcı́a, R. A., Corbard, T., Chaplin, W. J., et al. 2004, Sol. Phys., 220, 269,

doi: 10.1023/B:SOLA.0000031395.90891.ce 1
Gilman, P. A. 1976, in Basic Mechanisms of Solar Activity, ed. V. Bumba &

J. Kleczek, Vol. 71, 207 1
Gough, D. O. 1981, MNRAS, 196, 731,

doi: 10.1093/mnras/196.3.731 2
Gough, D. O., & McIntyre, M. E. 1998, Nature, 394, 755,

doi: 10.1038/29472 1
Hansen, C. J., Cox, J. P., & van Horn, H. M. 1977, ApJ, 217, 151,

doi: 10.1086/155564 2
Howard, R. 1976, ApJ, 210, L159, doi: 10.1086/182328 1
—. 1983, Sol. Phys., 82, 437, doi: 10.1007/BF00145582 1
—. 1984, ARA&A, 22, 131,

doi: 10.1146/annurev.aa.22.090184.001023 1

Howard, R., & Harvey, J. 1970, Sol. Phys., 12, 23,
doi: 10.1007/BF02276562 1

Howard, R., & Labonte, B. J. 1980, ApJ, 239, L33 1
Howe, R. 2009, Living Reviews in Solar Physics, 6, 1,

doi: 10.12942/lrsp-2009-1 1
Howe, R., Christensen-Dalsgaard, J., Hill, F., et al. 2009, ApJ, 701, L87,

doi: 10.1088/0004-637X/701/2/L87 1
—. 2000, ApJ, 533, L163, doi: 10.1086/312623 1
Howe, R., Hill, F., Komm, R., et al. 2018, ApJ, 862, L5,

doi: 10.3847/2041-8213/aad1ed 1
Jimenez, A., Perez Hernandez, F., Claret, A., et al. 1994, ApJ, 435, 874,

doi: 10.1086/174868 1
Kawaler, S. D. 1988, ApJ, 333, 236, doi: 10.1086/166740 1
Kosovichev, A. G., & Schou, J. 1997, ApJ, 482, L207,

doi: 10.1086/310708 1
Labonte, B. J., & Howard, R. 1981, Sol. Phys., 73, 3,

doi: 10.1007/BF00153139 1
—. 1982a, Sol. Phys., 75, 161, doi: 10.1007/BF00153469 1
—. 1982b, Sol. Phys., 80, 373, doi: 10.1007/BF00147983 1
Larsen, R. M. 1998, PhD thesis, Aarhus University 4.5.1
Larsen, R. M., Christensen-Dalsgaard, J., Kosovichev, A. G., & Schou, J.

1998, in ESA Special Publication, Vol. 418, Structure and Dynamics of
the Interior of the Sun and Sun-like Stars, ed. S. Korzennik, 813 4.5.1

Larsen, R. M., & Hansen, P. C. 1997, A&AS, 121, 587,
doi: 10.1051/aas:1997129 4.5.1, 4.5.1

Larson, T. P., & Schou, J. 2018, Sol. Phys., 293, 29,
doi: 10.1007/s11207-017-1201-5 1

Mathur, S., Eff-Darwich, A., Garcı́a, R. A., & Turck-Chièze, S. 2008, A&A,
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CODE FOR COMPUTING MODEL 2

def rot1(r,theta):
nr=r.shape[0]
nt=theta.shape[0]
rr=np.zeros((nt,nr))
tt=np.zeros((nt,nr))
for i in range(nt):

rr[i,:]=r
for j in range(nr):

tt[:,j]=theta
ct=np.cos(tt)
ct2=ct**2
om=rot0(rr,tt)
dr1=0.05
r1=0.252-0.04*(0.5-ct2)
om1=rot0(r1-dr1/2,tt)
om2=rot0(r1+dr1/2,tt)
dr2=0.05
r2=0.695+0.03*(0.5-ct2**2)
om3=rot0(r2-dr2/2,tt)
om4=rot0(r2+dr2/2,tt)
for i in range(nt):

for j in range(nr):
if r1[i,j]-dr1/2 <= rr[i,j] <= r1[i,j]+dr1/2:

om[i,j]=om1[i,j]+(om2[i,j]-om1[i,j])/2.* \
(1+np.sin(np.pi*(rr[i,j]-r1[i,j])/dr1))

if r2[i,j]-dr2/2 <= rr[i,j] <= r2[i,j]+dr2/2:
om[i,j]=om3[i,j]+(om4[i,j]-om3[i,j])/2.* \

(1+np.sin(np.pi*(rr[i,j]-r2[i,j])/dr2))
[dr3, r3, r4] = [0.02, 0.99, 1]
rr3=r3+0*rr
rr4=r4+0*rr
ct1=np.cos(8.*tt)
om5=rot0(rr3,tt)
om6=rot0(rr4,tt)*0.98
for i in range(nt):

for j in range(nr):
if(r3-dr3/2 <= rr[i,j] <= r4):

om[i,j]=om5[i,j]+(om6[i,j]-om5[i,j])/2.* \
(1+np.sin(np.pi*(rr[i,j]-r3)/dr3))

if(r3 <= rr[i,j] <= r4):
om[i,j]+=1.5*(0.5-ct1[i,j]**2)

x=np.abs(r*np.sin(tt))
y=np.abs(r*np.cos(tt))
[x0, y0, dx, dy, a] = [0.2, 0.9, 0.1, 0.05, 20]
om+=a*np.exp(-(x-x0)**2/dx**2)*np.exp(-(y-y0)**2/dy**2)
return om

def rot0(rr,tt):
(nt,nr)=rr.shape
ct=np.cos(tt)
ct2=ct**2
ct1=np.cos(5.*tt)
om1=420.+20*(0.5-ct2)
[om2, om3, om4, om5, om6] = [450., 430., 445., 460., 475.]
r1=0.252-0.04*(0.5-ct2)
om=om4+0*rr
r2=0.695+0.03*(0.5-ct2**2)
r20=0.695+0.07*(0.5-ct1**2)*(rr-r1)/(r2-r1)
r3=0.99
a=(om6-om5)/(np.sqrt(r3)-np.sqrt(r2))
c=om5-a*np.sqrt(r2)
z=rr*np.sin(tt)+1.e-6
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r4=1
for i in range(nt):

for j in range(nr):
if rr[i,j] <= r1[i,j]:

om[i,j]=om1[i,j]+(om2-om1[i,j])/r1[i,j]*rr[i,j]
if r1[i,j] <= rr[i,j] <= r2[i,j]:

om[i,j]=om3+(om4-om3)/(r20[i,j]-r1[i,j])**4* \
(rr[i,j]-r1[i,j])**4

if r2[i,j] <= rr[i,j] <= r4:
om[i,j]=a[i,j]*np.sqrt(z[i,j])+c[i,j]

return om

nn=501
om=np.zeros((nn,nn))
r=np.linspace(0.,1.,nn)
theta=np.linspace(0.,1.,int((nn-1)/2)+1)*np.pi/2
theta_deg=90.-theta*180./np.pi

oms=rot1(r,theta)
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