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ABSTRACT
[SWSHO]

Subject headings: Sun: rotation — Sun: helioseismology — Sun: interior

1. INTRODUCTION

[Importance of solar rotation in various contexts, such
as solar activity, solar evolution, as an example of general
stellar rotation evolution.]

[Surface differential rotation. Roger?]
Already an early analysis of helioseismic data on high-

degree modes by Deubner et al. (1979) showed the presence
of a increase in the angular velocity with depth in the sub-
photospheric layers. Analysis of sectoral modes by Duvall
et al. (1984) demonstrated that the interior of the Sun rotates
approximately as a solid body, wheras early data sensitive
to the latitude variation of rotation showed the presence of
a sharp gradient, the so-called tachocline, at the base of the
convection zone (e.g., Christensen-Dalsgaard & Schou 1988;
Brown et al. 1989; Dziembowski et al. 1989). Analysis
of early results of the SOI/MDI instrument on the SoHO
spacecraft (Schou et al. 1998) provided substantial details of
solar internal rotation and the first [??] helioseismic evidence
for subsurface zonal flows. Also, Eff-Darwich & Korzennik
(2013) carried out a general analysis of rotation in the solar
radiative interior.

Other investigations have focused on specific aspects of
solar rotation. Charbonneau et al. (1999) and Antia & Basu
(2011), amongst others, investigated the detailed properties
of the tachocline. Zonal flows, and their relation to the solar
magnetic activity cycle, have seen extensive investigations
(e.g., Antia & Basu 2010; Vorontsov et al. 2002; Howe et al.
2000, 2009, 2018). Corbard & Thompson (2002) and Barekat
et al. (2014) investigated the details of the near-surface shear
in rotation. Finally, Chaplin et al. (1999) carried out an
analysis aiming specifically at constraining rotation in the
solar core.

Reviews of helioseismic investigations of solar internal
rotation have been provided by, for example, Thompson et al.
(1996, 2003) and Howe (2009).

Before the first helioseismic results it was generally
assumed, based on simple arguments and early numerical
simulations (e.g. Gilman 1976), that the solar convection
zone showed ‘rotation on cylinders’, i.e., an angular velocity
depending only on the distance to the rotation axis. The
first analysis of the angular dependence of rotation within
the convection zone showed this to be wrong, with rotation
showing largely the same angular dependence as on the
surface. This behaviour can to some extent be recovered
by more complex hydrodynamical simulations of rotation
and convection (e.g., Miesch et al. 2006). Given the
likely rapid rotation of the Sun in the early phases of its
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evolution, angular momentum must have been lost, probably
through a magnetically coupled solar wind (e.g., Kawaler
1988), directly affecting the convection zone. Thus the
nearly uniform rotation in the radiative interior, and the
formation of the narrow transition in the tachocline, requires
efficient mechanisms for angular-momentum transport. This
may involve magnetic fields (e.g., Gough & McIntyre
1998; Eggenberger et al. 2019) or wave transport (Talon &
Charbonnel 2005), although the details are still far from clear.

[Brief overview (perhaps to be extended below) of
facilities and data that are available (Jesper, Rachel, Rafa,
Sylvain, ...?).]

Apart from the investigations, mentioned above, of the
variation of solar rotation with the activity cycle, the extensive
data accumulated by these facilities over the past two decades
have seen relatively little use. Thus it is clearly time to make a
comprehensive analysis to investigate the detailed properties
of solar internal rotation and its possible variations with time,
including an update of the available analysis techniques. With
this in mind, Michael J. Thompson in 2017 established a
wide-ranging collaboration to re-analyse and compare the
available data, and carry out a full analysis of the resulting
data. After Thompson’s tragic early death in October 2019
the work has been carried out by the present group. [I do find
the previous two sentences appropriate, although we need
to consider a possible conflict with making Michael first
author of the paper.]

[If separating into three(?) papers, need a few words on
this here.]

[Briefly on the contents of the present paper.]

2. EFFECTS OF ROTATION ON STELLAR OSCILLATIONS

[One might consider, instead, having this material in an
appendix, referred to in the observational section.]

The Sun is a slow rotator, and hence the effects of rotation
on its oscillation frequencies can be determined from a
perturbation analysis. To leading order in Ω (Hansen et al.
1977; Gough 1981; Brown et al. 1989)1

δνnlm = νnlm−νnl0 =
m

2π

∫ R

0

∫ π

0

Knlm(r, θ)Ω(r, θ)rdrdθ ,

(1)
where we neglected other possible departures from spherical
symmetry, such as effects of magnetic fields. Here Ω(r, θ) is
the angular velocity, as a function of distance r to the centre
and co-latitude θ, and R is the surface radius. Also, νnlm is

1 [For information, to be removed from the paper: Brown et al. (1989)
give the first explicit expression for a general rotation law that I have
found, although the other two papers implicitly have the general idea]
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the cyclic frequency of a mode characterized by radial order
n, degree l and azimuthal order m, with |m| ≤ l, and the
kernelKnlm(r, θ) is determined from the eigenfunction of the
mode and the structure of the underlying solar model. It may
be shown that the kernels depend only on |m| and that they
are symmetric around the equator:

Knl−m(r, θ) = Knlm(r, θ) , Knlm(r, π−θ) = Knlm(r, θ) .
(2)

[Perhaps show a few examples of kernels.]
Rather than working in terms of the individual splittings

δνnlm it is sometimes convenient to represent the dependence
of the data on m in terms of the so-called a coefficients (see
also Schou et al. 1998):

δνnlm ≈
jmax∑
j=1

aj(n, l)P(l)
j (m) , (3)

with, typically, jmax < 2l + 1; here the P(l)
j are polynomials

of degree j satisfying

P(l)
j (l) = l ,

l∑
m=−l

P(l)
i (m)P(l)

j (m) = 0 for i 6= j . (4)

It follows from Eqs (1) and (2) that rotation is represented by
the coefficients aj with odd j.

The aj obtained from the fit in Eq. (3) to the splittings
δνnlm are linearly related to the splittings. Thus it follows
from Eq. (1) that a2s+1(n, l) is related to Ω(r, θ) through an
equation equivalent to Eq. (1), with a kernel K(a)

nls(r, θ).
[I guess that we do not need to go into the use of

expansions of Ω?]

3. OBSERVATION OF ROTATIONAL SPLITTINGS

[We need to consider the extent to which we shall make
the data obtained and used generally available, and how. I
strongly support an open data policy. The same of course
goes for the results of the analyses.]

[The presentation of the data of course also needs error
analysis.]

[Perhaps refer to Paper II for detailed analysis. Here we
then just need enough to define the data set(s) used for the
artificial data.]

4. HELIOSEISMIC INFERENCES OF SOLAR INTERNAL ROTATION

[The description below could deserve a few references
for more detail.]

The goal of the analysis is to infer estimates Ω(r0, θ0) as
a funtion of location (r0, θ0), as well as properties of the
estimate, such as variance σ2(Ω(r0, θ0)) and the resolution of
the inversion. This is based on the relation in Eq. (1) relating
the observed splittings δνnlm to the true angular velocity,
or the corresponding relations for the odd a coefficients
a2s+1(n, l). For the observed quantities we need to take the
errors in the observations into account. Thus we write Eq. (1)
as

∆k =
2π

m
δνnlm =

∫ R

0

∫ π

0

Kk(r, θ)Ω(r, θ)rdrdθ + εk ,

(5)
where k ≡ (n, l,m), and εk corresponds to the error
in the observations, with variance σ2

k. Evidently there is
a corresponding relation based on the a coefficients, with

k ≡ (n, l, s). Note that from the symmetry of the kernels
around the equator, Eq. (2), it follows that the observations
only provide information about the symmetric component of
rotation, Ω(s)(r, θ) = 1/2[Ω(r, θ) + Ω(r, π − θ)].

In many cases the analysis involves linear operations on the
observations. It follows that the inferred angular velocity at
(r0, θ0) can be expressed as

Ω(r0, θ0) =
∑
k

ck(r0, θ0)∆k , (6)

in terms of inversion coefficients ck(r0, θ0). From Eq. (5) we
therefore obtain

Ω(r0, θ0) =

∫ R

0

∫ π

0

K(r0, θ0, r, θ)Ω(r, θ)rdrdθ+ε(r0, θ0) ,

(7)
where

K(r0, θ0, r, θ) =
∑
k

ck(r0, θ0)Kk(r, θ) (8)

is the averaging kernel, normalized such that∫ R

0

∫ π

0

K(r0, θ0, r, θ)drdθ = 1 . (9)

Also, ε(r0, θ0) is the error in Ω(r0, θ0), with variance

σ2(Ω(r0, θ0)) =
∑
k

c2k(r0, θ0)σ2
k . (10)

According to Eqs (7) and (9) the inferred angular velocity
is an average of the true angular velocity weighted by K.
Thus the properties of K reflect the information contained
in the inference. Typical examples of averaging kernels are
shown in Fig. 1. As discussed in Section 4.4.1, the SOLA
technique specifically designs the averaging kernel, in many
cases resulting in a well-behaved kernel. On the other hand,
in the RLSF technique the averaging kernel is to some extent
a byproduct although, as shown, the inversion still provides a
reasonably localized average of the angular velocity. Various
measures, in addition to the target location, can be used to
characterize location of the average, such as the location of
the kernel maximum or the centre of gravity (CG). In the
case of the RLSF the definition of the latter is complicated
by the negative side lobes. [This will need more detail
for the individual techniques.] Similar issues arise in the
various measures that may be considered for the widths of
the kernels in the radial and latitude directions. Perhaps the
simplest measure is the full width at half maximum (FWHM),
indicated in the figure.

We note that in these linear inversion methods the inversion
coefficients do not depend on the data values ∆k, only on
the weights (typically determined by the standard deviations
on the data) assigned to them, as well as obviously on the
inversion technique and possible parameters characterizing
the analysis. The same is therefore true of, for example,
the averaging kernels. [This seems obvious, but probably
deserves a check.]

[Descriptions of inversion techniques below need
enough detail to define the parameters that are quoted.]

4.1. Solar models and rotational kernels
[This may need a few words. In particular, we might

mention the uncertainties (or otherwise) associated with
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FIG. 1.— Averaging kernels for SOLA inversion at target location (0.71R, 30.6◦) (top; see Section 4.4.1) and RLSF inversion at (0.70R, 30.0◦) (bottom; see

Section 4.3.1); the respective default inversion parameters were used. The left panels show contour plots of the kernels, the orange line and green circle [colours,
linestyles to be adjusted] go through the maxima of the kernels, and the middle and right panels show cuts along these lines as functions of radius and latitude
respectively; here the horizontal line marks the full width at half maximum.

the surface boundary condition and, more generally, with
the known surface errors in the modelling.]

4.2. 1.5D inversion
The expansion in Eq. (3) can be related directly to an

expansion
Ω(r, θ) =

∑
s

Ωs(r)ψ
(1)
s (x) (11)

in suitable polynomials in x = cos θ, such that kernels
Kj
nlj(r) can be found, with

2πa2j+1(n, l) =

∫ R

0

Kj
nlj(r)Ωj(r)dr (12)

(Ritzwoller & Lavely 1991); a detailed analysis of these
expansions was provided by Pijpers (1997). Equation (12)
defines one-dimensional inverse problems for the expansion
functions of Ω, which can be solved with the techniques
discussed below. This inversion technique, often known
as 1.5D inversion, saw extensive use in early investigations
of solar internal rotation. Schou et al. (1992) analysed
its resolution properties and compared them with full 2D
inversions, as considered here.

4.3. Regularized least-squares fitting

A commonly used technique is regularized least-squares
fitting (RLSF), where a parametrized representation of Ω is
adjusted to match the observations. Since the fitting problem
defined by Eq. (5) is ill-posed, with some kernels representing
very similar measures of the angular velocity, the fitting
has to be regularized. Tikhonov regularization (Tikhonov
1963) involves minimizing also the magnitude of the fit or
variations in the fit. In helioseismology this is typically done
by restricting rapidly varying components of the solution by
suppressing its second derivative (see Eq. 14 below). Other
types of regularization of the fit are discussed below.

In many cases Ω is obtained implicitly through linear
operations on the data (e.g., Christensen-Dalsgaard et al.
1990; Schou et al. 1994), which can be represented as in
Eq. (6). It follows that in these cases the result of the inversion
can be characterized by averaging kernels (Eq. 8).

[A little on the implementation, control of errors and
resolution. A few examples of results, in particular
averaging kernels suitably presented]

4.3.1. The Antia and Basu implementation

Here the odd-order splitting coefficients a2s+1 are anal-
ysed. This is done simultaneously in the latitudinal and
radial directions. Details of the implementation are described
by Antia et al. (1998). Briefly, the angular velocity Ω is
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represented by products of cubic B-splines in both radial and
latitude directions, with 48 knots in r and 20 in θ. The knots
in r are equidistant in acoustic radius

τ =

∫ r

0

dr

c
, (13)

where c is the adiabatic sound speed; the latitude behaviour is
described as a function of cos θ, with knots that are equidistant
in this quantity. The coefficients of the splines are determined
by minimizing∑

k

σ−2
k

[
∆k −

∫ 1

0

dr̂

∫ 1

−1

d cos θKk(r̂, θ)Ω(r̂, θ)

]2

+λr

∫ 1

0

dr̂

∫ 1

−1

d cos θr̂−1

(
∂2Ω

∂r̂2

)2

+λθ

∫ 1

0

dr̂

∫ 1

−1

d cos θ sin2 θ

(
∂2Ω

∂(cos θ)2

)2

, (14)

where r̂ = r/R is the dimensionless radius. The terms
in the second derivatives of Ω serve to regularize the
solution, by suppressing rapid variations. The balance
between this regularization and the fit to the observations
is determined by the trade-off parameters λr and λθ.
Increasing these parameters makes the solution smoother and
in addition decreases the statistical error propagated from the
observations (cf. Eq. 10), at the expense of making poorer the
fit to the observations.

In the inversions reported here, default values of the
parameters are λr = 0.02 and λθ = 0.1.

[Check that the following still applies to the results
shown: The smoothing parameters are selected to be the
one that removes small-scale oscillations in the solution,
while keeping the χ2 of the fit reasonable. The uncertainty
in the results are determined by boot-strapping; we have
used 100 realizations of the data and inverted each set; the
smoothing parameter was also changed randomly. The
standard deviation of the 100 sets is our estimate of the
error in the solution. Unlike the case of a simple error-
propagation exercise, this allows us to take into account
uncertainties caused by uncertainties in the smoothing
parameter. The errors have been smoothed in (r, theta)
by applying a running mean in two steps: first a running
mean in 2d using 21 nearest points is used in the interior.
After that a 15 point running mean only along radius
is applied. The inversions are calculated on a grid with
spacing of 2 degree in latitude and 0.005 Rsun in radius.]

4.3.2. The Korzennik and Eff-Darwich implementation

Inversion used Antonio Eff-Darwich’s methods:
1 RLS/OMD (Eff-Darwich & Pérez Hernández (1997); files

solution-m1 ....) 2 Iterative Minimal Discrimination (Eff-
Darwich et al. (2010); files solution-m2....)

Note that the inversion grid for the noisy data (aka err) is
different from the noiseless case (aka noerr and flat) since the
data are noisy and thus the spatial resolution is expected to be
lower (the idea behind OMD: optimal mesh distribution).

The avg kernel width measure is

w2 = 1/2

∫ ∫
((x− xacog)2 + (y − yacog)2)|K(x, y)|dxdy/∫ ∫

|K(x, y)|dxdy (15)

where acog is CoG of abs(kernel)

4.3.3. Vorontsov implementation

Technique which I use now is the same as before
(see Vorontsov et al. 2002). It is iterative regularization
with conjugate gradients in spectral domain (defined by
expansion of the solution in 2D orthogonal polynomials with
weight function defined by the prescribed data variances and
sensitivity kernels). The cost function (or solution ”merit”) M
is weighted rms mismatch with the data, i.e. when data errors
are uncorrelated Gaussian (which we assume to be the case),
the data is fitted at Mσ level. Regularization is achieved
by terminating the iterative descents, based on simple visual
inspection of the resulted solutions.

Iterative descents call for some initial guess to be provided.
To speed up the convergence, it may be advantageous to use
a few terms of 1.5D-inversion results (see Section 4.2). In
the experiments reported below, we do not go that far, but
implement a simple flat guess (uniform rotation) only. By its
nature, gradient descents tend to provide the result close to
the minimum-norm solution. For this reason, iteration started
with some initial guess provides a solution which tends to be
biased towards this particular guess. This property allows, by
varying the initial guess, to address different solutions to the
inverse problem which fit data at the same accuracy level, i.e.
to address different members in the infinite family of solutions
having the same likelihood. In its current implementation,
my algorithm only works with data represented by the a2s+1

splitting coefficients.

4.4. Optimally localized averages
A different class of techniques for analysing helioseismic

data are the Optimally Localized Averages (OLA) techniques,
originally developed in geophysics (e.g., Backus & Gilbert
1968). Here the goal is to construct averaging kernels, by
suitable choice of the inversion coefficients ck to optimize the
properties of the averaging kernel K (cf. Eq. 8). Although,
in contrast to the RLSF techniques, this does not provide a
direct fit to the observations the Ω resulting from Eq. (6) does
provide a good measure of the angular velocity according to
Eq. (7) if K is suitably localized.

4.4.1. Subtractive OLA

The most common implementation of OLA in helioseis-
mology is the so-called subtractive version, SOLA (Pijpers &
Thompson 1992, 1994). Here the coefficients are determined
such that K(r̂0, θ0, r̂, θ) approximates a pre-defined target
function, T (r̂0, θ0, r̂, θ), by minimizing∫ 1

0

∫ π/2

0

[T (r̂0, θ0, r̂, θ)−K(r̂0, θ0, r̂, θ)]
2r̂dr̂dθ

+µ2
∑
k

ck(r̂0, θ0)2σ2
k , (16)

where for simplicity we assumed the observed splittings to be
uncorrelated, and µ is a trade-off parameter controlling the
magnitude of the variance of Ω (cf. Eq. 10). [Still need to
check precise definition; see mail from RML, 16/11/20.] In
the implementation used here (Larsen 1998; Larsen & Hansen
1997; Larsen et al. 1998) Gaussian targets were used,

T (r̂0, θ0, r̂, θ) = A(r̂0, θ0) exp

[
− (r̂ − r̂0)2

∆r(r̂0)2
− r̂20(θ − θ0)2

∆2
θ

]
,

(17)
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where A(r̂0, θ0) defines a suitable normalization. The width
∆r in r̂ scales with the adiabatic sound speed c,

∆r(r̂0) = ∆r,ref
c(r̂0)

c(r̂ref)
, (18)

for a suitable reference radius r̂ref ; note also that ∆θ defines
the linear width in the latitude direction. The minimization
problem defined by Eq. (16) leads to a set of linear equations
for the coefficients ck; efficient procedures for solving these
equations were discussed by Larsen & Hansen (1997).

In the inversions reported here, default values of the
parameters are ∆r,ref = 0.06,∆θ = 0.1 and µ = 3.0.

4.4.2. Multiplicative OLA

The original form of OLA is normally denoted Multiplica-
tive OLA (MOLA) in the helioseismic community. There the
coefficidents ck are determined by minimizing∫ 1

0

∫ π/2

0

[J (r̂0, θ0, r̂, θ)[K(r̂0, θ0, r̂, θ)]
2r̂dr̂dθ

+µ2
∑
k

ck(r̂0, θ0)2σ2
k , (19)

where the weight function J is zero for (r̂, θ) = (r̂0, θ0)
and rapidly increasing with distance from (r̂0, θ0). Together
with the normalization in Eq. (9) this ensures that K has the
desired property of being large near (r̂0, θ0) and suppressed
elsewhere. This type of inversion was used by Chaplin et al.
(1999) to investigate the rotation of the solar core. We do not
consider it further here.

[Challenges of computational effort? Probably no
longer relevant.]

4.5. Validation of the inversion techniques
To investigate the properties of the inversion techniques

we have analysed artificial data computed for two angular-
velocity profiles, illustrated in Fig. 2. One (Model 1) is
based on an early analysis of data from the MDI instrument
[Rachel; did you make the analysis and can you identify
where it may have been published?] The second (Model 2)
was set up analytically to include specific features, such as
the tachocline and a ‘jet’ at high latitudes [Sasha: perhaps
it would be useful to quote the expressions used in
an appendix.] Given the angular velocity, splittings and
splitting coefficients were computed for mode sets, including
standard deviations that were obtained from solar data [to be
described, partly in Section 3]. The analyses considered
both the original splittings and splittings including Gaussian
random errors, based on the observed standard deviations.

[A little on the dataset used for the test.]
[Describe metrics used to validate the analyses.]
As a measure of the region where the solution can be trusted

we generally use the distance between the target location
(r̂0, θ0) and the location (r̂CG, θCG) of the centre of gravity

[Calculation of CG to be defined above, probably]:

∆CG = [(r̂CG − r̂0)2 + r̂20(θCG − θ0)2]1/2 , (20)

such that only the part of the inferred angular velocity for
which ∆CG ≤ ∆

(max)
CG is considered.

5. RESULTS

[Comparison of the properties of the RLSF and OLA
techniques – advantages and disadvantages.]

[We probably need to present results for several
independent analyses. This can be done in terms
of the ‘usual’ plots (either 2D or lines at different
latitudes or both). It would be good if one could distill
results in numerical form that could be compared more
quantitatively.]

Figure 3 shows results of applying the SOLA technique to
Model 1. The left-hand panel, comparing the original and
inferred rotation rate, clearly shows the smoothing of sharper
features that is induced by the averaging kernel (cf. Eq. 8);
this is particularly evident for the tachocline at latitude 60◦

and the ‘jet’ at latitude 75◦. These features are also evident in
the difference plot in the right-hand panel.

The dependence of the SOLA results on the parameters
characterizing the inversion is illustrated in Fig. 5, in terms
of root-mean-square averages of the difference between the
inferred and original rotation rate and its standard deviation,
the average taken over a region restricted by the difference
between the target and centre-of-gravity locations. The
left-hand column shows the decrease in standard deviation
with increasing trade-off parameter µ, with a strong effect
on 〈Ω〉rms at higher latitude, whereas the effect is limited
for latitude 45◦ and below. Increasing the widths of the
target kernels substantially decreases the standard deviation
and, in the case of ∆r,ref , systematically increases 〈Ω〉rms.
Interestingly, ∆θ has little effect on 〈Ω〉rms at low latitude,
[and the non-monotonic behaviour at 75◦ surely deserves
further study.]

[Perhaps some focus on results for the tachocline,
including perhaps characterization of location and width.]

6. DISCUSSION

[This is perhaps where we discuss the properties of the
solutions.]

[Advantages and disadvantages of different methods.
Characterize them (here or above) also in terms of
averaging kernels.]

[Ability to resolve the tachocline.]

7. CONCLUSIONS

[SWSHS]

Funding for the Stellar Astrophysics Centre is provided
by The Danish National Research Foundation (Grant
DNRF106).
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FIG. 2.— [Artificial rotation profiles. Left: Model 1; right: Model 2.]
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