
SYSTEMATICS (S. Vorontsov)

My approach to hunting for systematics in tabulated rotational splittings can hardly be more
straightforward or waterproof. For a particular degree s of the rotational splitting coefficient as,
s = 1, 3, 5, . . ., I am just plotting the as-values for all the multiplets versus the position of the in-
ner turning point. Due to high-frequency asymptotic properties of solar p modes, the results shall
collapse close to a single curve. Slight deviations from this common behaviour can be caused by
regions of rapid variation of the rotational velocity with depth on a scale short compared with radial
wavelength (e.g. base of the convection zone), or by its sharp variation very near the surface, in a
thin layer spanned by the (frequency-dependent) upper turning points.

In the a1 to a9 plots which you can see, I compare Tim and Jesper’s (Stanford) results (on the
left) with those obtained by Sylvain (on the right) from the same data and with using the same
(Jesper’s) leakage matrix. Horizontal axis is dimensionless acoustic radius of the inner turning point
(one can use anything which varies monotonically with (l+1/2)/ν). The base of the convection zone
is at about t1 = 0.4. To make them comparable with as, Sylvain’s ”CG-coefficients” need proper
rescaling. To bring an equivalent to as, his CG-coefficient of degree s has to be multiplied with
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Here, n!! designates the product of all positive integers of the same parity up to and including n
(e.g., 5!! = 1× 3× 5). This recipe came from my calculation, based on Sylvain’s explanation of how

he defines his CG-coefficients. The scaling coefficient which is needed to get a1 is (3/2)1/2. Note
that this recipe is not applicable to rescaling even coefficients.

To address more multiplets, I am using 360d data sets. To reduce random errors, I am averaging
consecutive data sets. Simple arythmetic (i.e. unweighted) average is implemented, to address mean
solar rotation over the entire time interval. To avoid bias, only those modes which are present in all
the consecutive data sets are taken into account. First 11 of the MDI ”Medium-l” (vw) 360d data
sets were used in the average (the idea was to address solar rotation averaged over the activity cycle).
The results are shown by the panels of the upper row. For HMI full-disc (fd) velocity measurements
(panels in the middle row), 6 first 360d data slots were averaged (Tim has already tabulated the 7th,
but I only see 6 in Sylvain’s data files). In each figure, a single panel of the bottom row shows the
result obtained with Sylvain’s analysis of 22 consecutive GONG 360d data sets (it is hard to believe
that we already have two solar cycles covered by the GONG measurements...). I am displaying
the results of symmetric fits only (rotational splittings are not influenced much by accounting for
asymmetry). Stanford data is that obtained with polynomial fits of degree 18. As Sylvain limits his
polynomial approximation by degree 9, I am only addressing the rotational splitting coefficients up
to and including a9.

In all the plots, red points correspond to multiplets with centroid frequencies below 2mHz, green—
with frequencies between 2 and 3mHz, blue is for frequencies above 3mHz. Shown in black are a1, a3
and a5 calculated directly from a rotating solar model with internal rotation specified by a result
of one of my old rotational inversions, targeted at measuring the internal rotation at solar activity
minimum. The synthetic coefficients (black) are shown for all the modes which are present in the
corresponding observational average (shown in colour; and for these modes only).

What do we see? Look at MDI vw data first. Stanford results: obvious and perfectly measurable
systematics (higher-frequency ends of fitted p-mode ridges show up as regular repetitive ”horns”),
changing sign between consecutive a-coefficients, with magnitude of up to 2nHz or even higher. Any
decent rotational inversion will reject this measurement: there is no regular solution which could fit
the data with any sensible likelyhood (I do not draw errorbars, but magnitude of random errors can
well be judged from the random scatter on the plots). Sylvain’s result is apparently free (or almost
free) of this problem. Another advantage of the Sylvain’s result is significantly better coverage of
lower-frequency multiplets.

Now HMI fd. Stanford result: detectable systematics have gone! (or almost gone, there are some
signatures probably left in a7 and a9). Random scatter of the plotted averages is smaller than that
of Sylvain’s, which indicates smaller random errors in splitting measurements. A closer look at plots



with Sylvain’s results reveal some signatures of systematics. On the other hand, the amount of
lower-frequency multiplets which were fitted successfully by Sylvain is significantly bigger (as with
MDI data). I would refrain from judging which one of the two data sets can provide better absolute
measurement of the internal solar rotation.

In measuring ”torsional oscillations”, one obviously has to address the results of both the techniques,
as it is reasonable to believe that systematics are largely time-independent and will thus cancel when
taking the splitting differences.

Addressing the origin of the striking differences which arise when the same input data is analyzed
with Stanford and Sylvain’s techniques may help to improve both.


