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Abstract

The accuracy of helioseismic measurement is limited by the stochastic nature
of solar oscillations. In this article I use a Gaussian statistical model of the
global seismic wave field of the Sun to investigate the noise limitations of direct-
modeling analysis of convection-zone-scale flows. The theoretical analysis of noise
is based on hypothetical data which cover the entire photosphere, including the
portions invisible from the Earth. Noise estimates are derived for measurements
of the flow-dependent couplings of global-oscillation modes and for combinations
of coupling measurements which isolate vector-spherical-harmonic components
of the flow velocity. For current helioseismic observations, which sample only a
fraction of the photosphere, the inferred detection limits are best regarded as
upper limits. The flow-velocity fields considered in this work are assumed to
be decomposable into vector-spherical-harmonic functions of degree less than
5. The problem of measuring the general velocity field is shown to be similar
enough to the well-studied problem of measuring differential rotation to permit
rough estimates of flow detection thresholds to be gleaned from past helioseismic
analysis. I estimate that, with existing and anticipated helioseismic datasets,
large-scale flow-velocity amplitudes of a few tens of m s−1 should be detectable
near the base of the convection zone.
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1. Introduction

The largest-scale mass flows in the Sun include the differential rotation (or
“angular velocity”), meridional flow, and giant-cell convection. Gradients of
the subsurface angular velocity, particularly in the tachocline layer near the
base of the convection zone, are thought to drive the magnetic dynamo. Ax-
isymmetric meridional flow, which close to the photosphere is observed as a
motion toward the heliographic poles, plays an important role in flux transport
dynamos (Sheeley, 2005; Dikpati and Gilman, 2006). The largest scales of so-
lar convection are believed to participate in transporting the Sun’s luminosity
through the convection zone and in maintaining the differential rotation. The
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most stringent observational constraints on the angular velocity are provided by

whole-Sun oscillation-frequency-splitting measurements (Thompson et al., 2003;

Howe, 2009). For other large-scale flows, the methods of local helioseismology

are used (Gizon and Birch, 2005).

Numerical simulations of convection-zone-scale flows are needed for a detailed

understanding of the dynamic and magnetic solar interior. While numerical

simulations have been able to reproduce the main features of the angular ve-

locity, they have had less success in describing meridional flow and large scales

of turbulence (Miesch, 2005). The meridional flow-velocity seen in simulations

varies more rapidly both in space and in time than the velocity pattern that has

emerged from observational analysis. Large-scale turbulent motions are seen in

the first ∼ 15 Mm below the photosphere (Hathaway et al., 2000; Featherstone

et al., 2006), though the observed motions show no distinct giant-cell scale,

unlike, say, the supergranulation scale. Turbulent motions have yet to be seen

at greater depths, but observational upper limits have been placed on the flow

speeds which are at least an order of magnitude smaller than the speeds seen in

simulations. The limits therefore pose a major challenge for theory (Hanasoge,

Duvall, and Sreenivasan, 2012; Gizon and Birch, 2012).

A rigorous noise model is crucial to the helioseismic detection of weak flows.

This article presents a theoretical derivation of the noise expected in seismic

measurements of the flow velocity on large spatial scales. The noise calculation

is predicated on direct-modeling analysis (Woodard, 2007, 2009) of ideal ob-

servations which isolate the signals of individual p- and f-mode oscillations of

the entire Sun. For conceptual clarity, the data analysis considered in the noise

derivation proceeds in stages, starting with previously-developed expressions for

the statistical expectations and covariances of the signal “covariance” data for a

Sun with weak, slowly-varying mass flows. In the first stage of the data analysis,

the coefficients which quantify the flow-dependent pairwise coupling of oscillation

modes are obtained from a simple least-squares fit to covariance data. Orthonor-

mal combinations of the estimated coupling coefficients are then computed, such

that each projected coupling is sensitive to a single spherical-harmonic- and

temporal-frequency component of either the poloidal or the toroidal part of the

flow velocity. In the final stage of the data-analysis procedure, the projected

mode-coupling data are inverted for the subsurface flow velocity. The present

article describes approximations which considerably simplify the form of the

helioseismic forward and noise models. In particular, an approximation is made

for the form of the sensitivity of the projected coupling data to the flow velocity,

appropriate for modes of large spherical-harmonic degree. In this approxima-

tion, the problems of inverting individual spherical-harmonic components of

the flow-velocity degenerate into the well-studied problem of inverting mode-

frequency-splitting coefficients for the angular velocity. The approximation there-

fore permits rough estimates of general large-scale flow-velocity measurement

noise to be inferred from studies of the angular velocity inversion problem.
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2. Basic Assumptions

As a basis for evaluating statistical uncertainty in the measurement of large-
scale solar flows, I use “statistical-waveform” direct-modeling analysis of solar
oscillation data, as described in Woodard (2009, hereafter W09). Helioseismic
statistical-waveform analyses using covariance data in the form ϕ′ϕ∗, where ϕ
and ϕ′ are frequency-wavevector components of the photospheric Doppler veloc-
ity field, have been carried out for both large portions of the solar disk, taking
spherical geometry into account, and for small patches, assuming Cartesian ge-
ometry. In contrast to the analyses which have been performed on solar data,
the version of waveform analysis considered here also uses purely power-spectral
(ϕ′ = ϕ) data.

For general helioseismic analysis of large regions of the disk, it is common to
work with the coefficients ϕ ≡ ϕℓm

ω of a spherical-harmonic (ℓ, m) and temporal-
frequency (ω) decomposition of the photospheric oscillation signal. The decom-
position of the surface wave field into spherical-harmonic components nominally
segregates the signal due to modes of different degree ℓ and azimuthal order
m, while the temporal-frequency decomposition further isolates the modes ac-
cording to radial order n. Segregation of mode signals greatly facilitates the
task of characterizing important properties, like frequency and linewidth, of
global oscillation modes. Helioseismic waveform analysis, and the closely-related
analysis of global-mode eigenfunctions Woodard et al. (2012, hereafter W12),
complement the traditional mode-frequency analysis by providing information
about the flow-dependent couplings of distinct oscillation modes.

Existing solar oscillation datasets sample only the Earth-facing portion of the
photosphere and the resulting aliasing of mode signals complicates helioseismic
analysis. This article presents a theoretical analysis of the noise of helioseismic
flow measurements by considering hypothetical observations which uniformly
sample the entire photosphere. While the primary motive for focusing on ideal
data is to reduce the complexity of the analysis without sacrificing too much
realism, additional motivation comes from the possibility that better coverage
of the photosphere will eventually be obtainable. As a further simplification, it
is assumed that, for given (ℓ, m), the ϕℓm

ω used in waveform analysis are taken
from a narrow frequency interval close to a mode frequency [ωnℓm] for some n.
This frequency selectivity, which serves to segregate the signals from modes of
different n, is not expected to significantly compromise the overall signal-to-noise
of the flow measurements, as the “inter-ridge” data which are ignored turn out
to be fairly insensitive to the flow velocity. Therefore the ϕℓm

ω can be used as
proxies for the amplitudes anℓm

ω of individual modes, defined as the coefficients
in an expansion of the wave field in global-mode eigenfunctions (e.g. W12). In
what follows, ϕα

ω will denote the signal which is mainly sensitive to the mode
α = (n, ℓ, m). It will be assumed that ϕα

ω has been scaled to the mode amplitude
aα

ω plus a background signal.
Theoretical expressions for the data expectations and covariances used in

linearized waveform inversions are given in W09. The expressions are conve-
niently separated into zeroth-order, flow-independent, parts and flow-dependent
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perturbations. In zeroth order, and in the approximation where modes are ex-
cited independently, the only non-zero data expectations are the power spectra
Pα

ω ≡ E[|ϕα
ω|2]0, which will be taken to have the form

Pα
ω = E[|aα

ω|2]0 + Bα
ω . (1)

The first term is the spectrum of the mode amplitude, while the second term
represents the spectrum of background signals. The mode-amplitude spectrum is
expected to have an approximately Lorentzian profile, as the zeroth-order mode
amplitude is

aα
ω,0 = Rα

ω xα
ω , (2)

where

Rα
ω ≈ −[2ωα(ω − ωα + i

γα

2
)]−1 (3)

is the frequency-domain response of a simple oscillator of frequency ωα and
damping rate γα to a source function xα

ω. The source function is assumed to be
“broad-band”, in the sense of being a weak function of ℓ, m, and ω.

Flows and other aspherical perturbations induce correlations between differ-
ent spectral-domain components of the seismic signal. The first-order dependence
of the data expectations on the flow velocity is approximately

δE[ϕα′

ω′ϕα ∗

ω ] = −2ωλα′

α (ω′ − ω)Rα′

ω′ E[|aα
ω|2]0 + †, (4)

where the second term, indicated by “†”, is obtained by replacing the indices
αω and α′ω′ in and complex conjugating the first term. The complex-valued
coefficient

λα′

α (ω) = −i

∫

⊙

dm ξ∗

α′ · (uω · ∇ξα), (5)

in which dm denotes an element of mass, is a measure of the strength with which
the modes α and α′ are dynamically coupled by the frequency component uω of
the flow velocity field. This work uses the same normalization convention for the
mode eigenfunctions [ξα] and the same discrete Fourier frequency convention as
W09. Since solar flows are ignored in zeroth order, the eigenfunctions to be used
in evaluating Equation (5) are those of a static, spherically-symmetric star. The
above expression for the signal covariance perturbation ignores the influence of
the flow velocity on the background contribution.

An integration-by-parts of the right side of Equation 5 using the mass-flux
constraint ∇· (ρu) = 0, which is expected to be a good approximation for large-
scale flows, and the condition u−ω = u∗

ω for a real-valued flow velocity yields
the Hermitian property

λα∗

α′ (−ω) = λα′

α (ω). (6)

With this approximation, Equation (4) becomes

δE[ϕα′

ω′ϕα ∗

ω ] ≈ (−2ω Rα′

ω′ E[|aα
ω|2]0 + †)λα′

α (ω′ − ω). (7)
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The present analysis of error builds on earlier treatments (e.g. Gizon and
Birch, 2004; Woodard, 2007) where a Gaussian distribution was assumed for the
observed signal and the data covariances are computed in zeroth order. With
these approximations, the covariance matrix of the data, regarded as a set of
real and imaginary parts, is purely diagonal. For the variances of y ≡ ϕ′ϕ∗, one
obtains

σ2[Re(y)] = σ2[Im(y)] =
PP ′

2
, (8)

for distinct ϕ, ϕ′, supplementing the more-familiar relation

σ2(y) = P 2, (9)

for identical ϕ, ϕ′, where P ≡ E[|ϕ|2]0 and P ′ ≡ E[|ϕ′|2]0.

3. Coupling-Coefficient Estimates and Their Uncertainties

It is illuminating to conceptually divide the task of estimating subsurface flow
into two subtasks: 1) estimate the coupling coefficients [λα′

α (ω)] and their co-
variances from the signal covariance data and their covariance matrix and 2)
invert the derived coupling coefficients for the subsurface flow velocity. This
approach generalizes conventional mode-frequency analysis, which deals only
with the self-couplings [λα

α(ω = 0)].
The main goal of this section is to derive approximate expressions for coupling-

coefficient estimates and their covariances. Though it may not be optimal from
the standpoint of signal to noise, it is useful to adopt a least-squares fitting pro-
cedure, as a basis for estimating coupling coefficients. For simplicity, I consider a
hypothetical fitting in which only the coupling parameters are varied, other pa-
rameters (e.g. mode linewidth and power) on which the covariance data depend
being frozen at their true values. Error analysis based on such a consideration
will tend to overestimate the accuracy of real coupling-constant measurements,
as the problems of determining all the relevant parameters are interlinked. The
diagonal structure of the data covariance matrix and the fact that an individual
covariance datum is sensitive to precisely one coupling parameter implies that
the coupling parameters can be estimated independently of one another and that
their covariance matrix is diagonal.

Equation (7), describing data sensitivity, can be streamlined for the problem of
estimating the coupling parameter λ ≡ λα′

α (σ), using the shorthand ϕ,ϕ′,R,R′,...
to denote ϕα

ω ,ϕα′

ω′ , Rα
ω,Rα′

ω′ ,..., where ω′ = ω + σ, and by defining residual covari-
ance data yω ≡ ϕ′ϕ∗ − E[ϕ′ϕ∗]0. Thus δE[ϕ′ϕ∗] = E[yω]. The form of the
data covariance matrix, described by Equations (8) and (9), further simplifies
through the use of scaled residual data zω ≡ yω/

√
PP ′. With these definitions

and notational changes, the sensitivity to the coupling parameter becomes

E[zω] = Kω λ, (10)

where

Kω = −2(ωR′E[|a|2]0 + ω′R∗E[|a′|2]0))/
√

P ′P . (11)
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Therefore the least-squares estimate of λ is

λ̂ =
∑

ω

K∗

ω zω/
∑

ω

|Kω|2. (12)

As in earlier treatments (e.g. W09), the frequency argument [ω] in the above
expressions is confined to the grid defined by a discrete Fourier transform of
duration T and to the common interval within which ϕ and ϕ′ samples are
selected.

The simple, ω-independent form of the covariance matrix of the scaled residual
data and the above expression for the coupling parameter estimate imply that
the real and imaginary parts of the coupling estimate are uncorrelated. For the
case α′ω′ 6= αω, the variances are given by

σ2[Re(λ̂)] ≈ σ2[Im(λ̂)] ≈ (2I)−1, (13)

where

I =
∑

ω

|Kω|2 ≈
∫

dω

∆ω
|Kω|2, (14)

∆ω = 2π/T being the (angular) frequency resolution of the observations. For
the power-spectral case α′ω′ = αω, λ is real and

σ2[λ̂] ≈ I−1. (15)

Large-scale flows couple only modes which differ in ℓ and m by small integers.
For concreteness, I will assume that ℓ and m differ by no more than 4. Similarly,
according to Equation (11), data sensitivity decreases with the frequency sepa-
ration of the coupled modes, for slowly-varying flows. It is therefore appropriate
to consider only couplings of modes of similar frequency. Focusing on modes of
degree greater than about 30, which are of prime interest for the convection zone,
the restriction to nearly-resonant couplings is equivalent to ignoring couplings
between modes of different radial order. A further approximation to the data
sensitivity expression can be obtained by exploiting the fact that the mode
parameters vary smoothly with ℓ and m at fixed n. By Equation (2),

E[|aα
ω |2]0 = |Rα

ω sα
ω|2, (16)

where (sα
ω)2 ≡ E[|xα

ω |2]0 is the power spectrum of the source function. Equa-
tion (11) can therefore be rewritten

Kω ≈ −2(ωR + ω′R′∗)R∗R′s2/
√

P ′P, (17)

where s′ (≡ s′α
′

ω′ ) has been set equal to s (≡ sα
ω) in accordance with assumed

broad-band nature of the source spectrum. Using Equations (1) and (16) to
replace P and P ′ in the above sensitivity equation, one obtains

|Kω|2 ≈ |2ω(R + R′∗)|2
(1 + B|Rs|−2)(1 + B|R′s|−2)

, (18)
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where the broad-band assumption has similarly been applied to the background
spectra. In obtaining this and subsequent expressions, the near equality of the
frequencies ωα, ωα′ , ω, and ω′ has been exploited.

By Equations (3) and (16) and the near equality of ω and ωα and of γ ≡ γα

and γα′ , the quantity A ≡ (s/γω)2 can be treated as a frequency-independent
parameter equal to the peak power density of the mode-amplitude spectrum
E[|aα

ω|2]. Therefore the amplitude spectra of the coupled modes can be written
approximately as

|Rs|2 = A |γωR|2 (19)

and

|R′s|2 = A |γωR′|2. (20)

In the same spirit, one obtains

2ωR ≈ −(ω − ω0 + i
γ

2
)−1 (21)

and

2ωR′ ≈ −(ω − ω′

0 + i
γ

2
)−1 (22)

from Equation (3), where ω0 ≡ ωα and ω′
0 ≡ ωα′ − σ. The last pair of equations

are conveniently rewritten as

γωR ≈ −(x + a + i)−1 (23)

and

γωR′ ≈ −(x − a + i)−1, (24)

where ω̄ ≡ (ω0 + ω′
0)/2, x ≡ 2(ω − ω̄)/γ, and a ≡ (ω′

0 − ω0)/γ. The above
equations imply that

|Rs|−2 =
(x + a)2 + 1

A
(25)

and

|R′s|−2 =
(x − a)2 + 1

A
. (26)

Applying the previous pair of equations to the right side of Equation (18)
gives

|Kω|2 ≈ (2/γ)2 (b2 − 1)2 |f1 + f2|2
g1 g2

, (27)

where b2 ≡ 1 + A/B, f1 = (x + a + i)−1, f2 = (x − a − i)−1, g1 = (x +
a)2 + b2, and g2 = (x − a)2 + b2. Hereafter, the background spectrum [B] will
be treated as a frequency-independent parameter, like A, and b is therefore a
measure of the signal-to-noise of the mode-frequency measurement (Libbrecht,
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1992). Substituting this last result into Equation (14) and recalling that x ≡
2(ω − ω̄)/γ, one obtains

I ≈ 2(b2 − 1)2

γ∆ω

∫ ∞

−∞

|f1 + f2|2
g1 g2

dx. (28)

The extension of the limits of integration to plus and minus ∞ is justifiable
on the grounds that the integral converges rapidly. Evaluation of the infinite
integral yields the expression

I−1 ≈ f(a, b)
γ∆ω

4π
, (29)

where

f(a, b) =
b(1 + b)[4a2 + (1 + b)2]

(b2 − 1)2
. (30)

This expression, obtained using the “Mathematica” computer algebra package
(Wolfram Research, Inc., 2012), agrees, for the case of vanishing background
power (corresponding to the limit of infinite b), with an independent calculation
based on contour integration. It is straightforward to verify that the expression
for the variance of the frequency measurement, obtained from Equations (15),
(29), and (30) with a = 0, is equivalent to that of Libbrecht (1992) for arbitrary
b.

4. Inverting for Individual Spherical-Harmonic-Frequency

Components of the Flow Velocity

Further insight is obtained by considering a spherical-harmonic representation of
the flow velocity field. Following Lavely and Ritzwoller (1992, hereafter LR92),
uω = uω(r, θ, φ) can be decomposed into poloidal [P] and toroidal [T] harmonics,
given by

Pt
s,ω = r̂ut

s,ω(r)Y t
s (θ, φ) + vt

s,ω(r)[θ̂∂θ + φ̂
∂φ

sinθ
)]Y t

s (θ, φ) (31)

and

Tt
s,ω = −wt

s,ω(r)r̂ × [θ̂∂θ + φ̂
∂φ

sinθ
)]Y t

s (θ, φ) (32)

where r, θ, φ are spherical-polar coordinates, (r̂, θ̂, φ̂) are the corresponding
unit vectors, and Y t

s are the scalar spherical harmonic functions of degree s and
order t. Equation (C31) of LR92 can be rewritten in the form

λnℓ′m′

nℓm (σ) =
∑

s

bnℓℓ′

st,σ (−1)m′

(

ℓ′ s ℓ
−m′ t m

) √
2s + 1, (33)
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where

(

ℓ′ s ℓ
−m′ t m

)

are Wigner 3−j symbols (Edmonds, 1960) and t = m′−m.

According to Equations (C31-C34) of LR92, the measurable coefficients bnℓℓ′

st,σ

depend only on the radial profiles ut
s,σ(r), vt

s,σ(r), and wt
s,σ(r) of the flow, with

a linear sensitivity of the form

bnℓℓ′

st,σ =

∫

(Ku ut
s,σ + Kv vt

s,σ + Kw wt
s,σ)dr, (34)

where the kernels Ku(r), Kv(r), Kw(r) depend on n, ℓ, ℓ′, and s, but not on t
or σ.

For fixed n, ℓ, ℓ′, t, and σ and with m′ = m+ t, Equation (33) can be written
more concisely as

λm =
∑

s

bs γs
m, (35)

where

λm ≡ λnℓ′m′

nℓm (σ), (36)

bs ≡ bnℓℓ′

st,σ , (37)

and

γs
m ≡ (−1)m′

(

ℓ′ s ℓ
−m′ t m

) √
2s + 1. (38)

Note that γs
m and λm are defined only for m such that |m| ≤ ℓ and |m + t| ≤ ℓ′.

For each s, the γs
m are the components of a vector and, by the orthogonality

property of the 3 − j (Equation 3.7.8 of Edmonds, 1960), the vectors form an
orthonormal set. Therefore the b-coefficients are just the projections of the vector
[λm] of couplings onto the γs

m:

bs =
∑

m

γs
m λm. (39)

Aside from normalization, these equations generalize the familiar a-coefficient ex-
pansion of the m-dependence of the eigenfrequencies due to differential rotation
(Schou et al., 1998).

The analogous projection of the coupling data [λ̂m] onto the orthonormal set

yields estimates, b̂s, of the b-coefficients, which by Equation (34) are each sensi-
tive to precisely one spherical-harmonic component of the flow velocity. The form
of the covariance matrix of the projected coupling data follows straightforwardly
from that of the coupling data. It can be argued that the covariance matrix of the
λ̂m is approximately proportional to the identity matrix, as follows. The frequen-
cies ω0 and ω′

0, in Equations (21) and (22), are respectively equal to ωnℓm and
ωnℓ′,m+t+σ and γ = γnℓm. Since the (approximately linear) dependence of ωnℓm

on m, due mainly to solar differential rotation, varies slowly with ℓ, the frequency
difference ω′

0 − ω0 is very insensitive to m. Similarly ignoring the m-dependent
contribution to the observed mode linewidth (due mainly to solar activity),
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one finds that the a-parameter of Equation (29), defined to be (ω′
0 − ω0)/γ,

is approximately independent of m. The b-parameter of Equation (29) depends
on the ratio of the peak power density [A] of the mode amplitude spectrum and
the background power parameter [B]. The peak power parameter is observed to
be approximately independent of m. In the interest of simplicity and because the
signal-to-noise ratio is fairly high for the bulk of the observed solar oscillations,
I ignore the m-dependence of the background power [B]. Thus in ideal data,

the covariance matrix of the data [λ̂m], expressions for which were developed
in the preceeding section, should indeed approximate the identity matrix times
an m-independent factor. It then follows, because the b̂s are λ̂m projected onto
an orthonormal set of vectors, that their covariance matrix is also the identity
matrix times same the scale factor, namely

σ2[Re(b̂s)] ≈ σ2[Re(λ̂m)], (40)

where, by the preceeding argument, m is any value of the azimuthal order for
which λm is defined.

The simplicity of the sensitivity function and the covariance matrix of the
b-data implies that the task of inverting ideal data for a general flow can be sep-
arated into inversions for individual spherical-harmonic-frequency components.
I now consider in some detail the problem of obtaining either Pt

s,σ or Tt
s,σ from

observed b-coefficients. The problem of estimating the internal angular velocity
has, of course, been studied in great detail (Thompson et al., 2003; Howe, 2009).
Of particular interest are the so-called 1.5-dimensional inversions, which use the
conventional a-coefficient parameterization of the mode-frequency splittings to
constrain steady, north-south-symmetric differential rotation (e.g. Schou et al.,
1998). Specifically, the as(n, ℓ) coefficients, which are proportional to bnℓℓ

s0,0, yield
the profiles ws ≡ w0

s,0, for odd s. W12 indicated how “generalized” a-coefficients,

which are basically the bnℓℓ′

s0,0 coefficients, also constrain the ws profiles and, in
addition, the vs ≡ v0

s,0 profiles of steady, axisymmetric meridional flow. By
Equation (34), the data available at a particular n and ℓ to constrain a specific
flow component, either Pt

s,σ or Tt
s,σ, are bq ≡ bnℓℓ′

st,σ , with ℓ′ = ℓ + q. The bq

are defined only for q obeying the inequality |q| ≤ s and the conditions that
s + q must be even (odd) for poloidal (toroidal) components (Equations (118)
and (121) of LR92). For the case t = σ = 0 of steady, axisymmetric flow, q

is further restricted to being non-negative, as b̂−q and b̂q, being related in this
case by complex conjugation (as a consequence of their definition in terms of
cross-covariance), are redundant data.

Simple dimensional analysis suggests that, for s ≤ 4, poloidal flows deep in the
convection zone satisfying the mass-flux constraint are dominated by horizontal
motions (see also Chatterjee and Antia (2009)). Accordingly, the remainder of
the article will ignore oscillations of degree greater than 4 and will focus on the
problem of estimating only the horizontal flow velocity. (By ignoring the radial
velocity component one of course underestimates the detectability of a flow.) For
oscillation modes of ℓ >> s, which are of prime interest in probing the convection
zone, the sensitivity kernels Kv and Kw for a given n and ℓ (Equation (34))
are approximately proportional to one another. Useful, high-ℓ expressions for
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these kernels, which do not depend on t or σ, can be gleaned from treatments
of the effects of steady axisymmetric flows on the mode eigenfunctions. From
Appendix A of Vorontsov (2011), for instance, and the foregoing discussion of
the b-coefficients, one obtains the asymptotic expressions

Kw(r) = f(s, q)Knℓ(r) (41)

and

Kv(r) = ig(s, q)Knℓ(r), (42)

where

rKnℓ(r) =
(−1)l

√
2π

ℓ3/2 ρ(r)r2 [U2
nℓ(r) + ℓ(ℓ + 1)V 2

nℓ(r)], (43)

with ρ denoting the solar mass density profile and Unℓ and Vnℓ the radial and
horizontal amplitudes of the oscillation eigenfunctions. For odd s + q,

f(s, q) = (−1)
s+q−1

2
(s − q)!! (s + q)!!
√

(s − q)!(s + q)!
, (44)

and g(s, q) is zero while, for even s + q,

g(s, q) = (−1)
s+q

2 q
(s − q − 1)!! (s + q − 1)!!

√

(s − q)!(s + q)!
(45)

and f(s, q) is zero.
Therefore, as an approximation, the bq can be regarded as independent mea-

surements of
∫

Knℓ(r) vt
s,σ(r) dr, for even s + q, and of

∫

Knℓ(r)wt
s,σ(r) dr, for

odd s + q, from which vt
s,σ(r) and wt

s,σ(r) can be obtained using standard one-
dimensional inversion procedures. From Equations (31) and (32), and ignoring
radial motion, follows that a single spherical-harmonic-frequency component of
the flow contributes |ṽt

s,σ(r)|2 + |w̃t
s,σ(r)|2 to the mean-square velocity at radius

r, where

(ṽt
s,σ, w̃t

s,σ) =

√

s(s + 1)

2π
(vt

s,σ, wt
s,σ) (46)

unless t = σ = 0, in which case

(ṽt
s,σ, w̃t

s,σ) =

√

s(s + 1)

4π
(vt

s,σ , wt
s,σ). (47)

The rescaled velocity profiles are truer measures of the flow velocity and the bq-
coefficients can be treated as constraints on

∫

Knℓ(r) ṽt
s,σ(r) dr (

∫

Knℓ(r) ṽt
s,σ(r) dr),

for even (odd) s + q.
The toroidal kernel Kw is a purely real function of r and the poloidal kernels

Ku, Kv are purely imaginary. Consequently, the real or imaginary part of each
velocity profile affects only one part, either real or imaginary, of the bq. And,
since the real and imaginary parts of these data are uncorrelated, the inversions
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for the real and imaginary velocity profiles can be performed independently.
Letting ηq denote either the real or imaginary part of bq and

ξ ≡
∫

Knℓ(r) θ(r) dr, (48)

where θ(r) is the part of ṽt
s,σ(r) or w̃t

s,σ(r) on which ηq depends, one finds that

ηq ≈ Gqξ, (49)

where Gq is computable from Equations (34) and (41) through (48). A suitable
datum for a one-dimensional inversion for θ(r) would thus be the conventional
least-squares estimate of ξ, namely

ξ̂ =
∑

q

Gq

σq
ŷq/

∑

q

G2
q

σ2
q

, (50)

with standard deviation

σξ = [
∑

q

(Gq/σq)
2]−1/2, (51)

where σq is the standard deviation of ηq (see discussion of Equation (40)), ŷq ≡
η̂q/σq, and sums over q are carried out over the allowed range as discussed above.

Since helioseismic inversions typically use data in which oscillations dominate
the observed signal, it is illuminating to consider the problem of flow detectability
in the approximation where the background component of the oscillation signal
is ignored. Although the “no-background” approximation naturally leads to an
underestimate of flow-measurement noise, it has the advantage of yielding the
simple expression

σ2
ξ =

σ2
nℓ

2π
, where σ2

nℓ ≡
γnℓ∆ω

4π
, (52)

for the variance in ξ̂, where γnℓ is the damping rate of modes of order n and
degree ℓ and ∆ω is the frequency resolution of the observations, as in Equa-
tion (29). The preceeding relation can be verified by direct calculation using
Equation (51) and previous results.

In the no-background and high-ℓ approximations, the sensitivity and standard
deviation of the ξ-data depend only on n and ℓ and are therefore the same for all
flow components [θ(r)]. This circumstance suggests that what has been learned
about the statistics of the angular velocity measurement can be immediately
applied to other components of the large-scale flow velocity. A number of studies
suggest that the differential rotation can be measured with a standard deviation
σθ ∼ 1 − 2 m s−1 near the base of the convection zone (e.g. Schou et al., 1998),
and of course much more accurately near the surface, with 11 years of seismic
data. Similar levels of measurement accuracy also appear to be attainable for ax-
isymmetric meridional flow (e.g. Braun and Birch, 2008) and, by implication, for
any of the profiles θ(r) of large-scale flow, with datasets of solar-cycle duration.

SOLA: ms.tex; 15 January 2013; 14:48; p. 12



Large-Scale Solar Flow Detectability

It may be worth noting that the detectability of general flow components can
be increased beyond these estimates by demanding less depth resolution than is
conventionally demanded for the angular velocity.

Finally, I consider the integrated large-scale flow-velocity power, which may be
possible to detect even if individual velocity components are below the threshold
of detectability. If θ̂(r) is an unbiased estimate of θ(r), obtained for example

from an inversion, then θ̂2(r) is a (biased) estimate of the contribution of θ(r)
to the mean-square flow velocity at radius r. Suppressing the argument r, the
expected value of θ̂2 is θ2 + σ2

θ and one might reasonably suppose σθ2 , the
threshold for detecting power in one flow “channel”, to be approximately

√
2σ2

θ ,

as would be the case if θ̂ were normally distributed. By combining the power
estimates of N uncorrelated channels, the uncertainty in the mean power per
channel becomes approximately

√

2/N σ2
θ . Thus the detection threshold for root-

mean-square integrated velocity power is roughly (2N)1/4 σθ. The number of
independent flow channels should be the number of spherical-harmonic functions
used to characterize the angular dependence of the flow times the number of
frequency channels used to characterize the time dependence. Concentrating
on the degree range 1 ≤ s ≤ 4, for deep convection, yields 24 independent
functions. The number of frequency channels should be roughly the duration of
the observations divided by the characteristic time scale of the flow. With an
11-year database and a characteristic time of about one month (the estimated
turnover time of the largest convective eddies), N ∼ 2500 and large-scale flows
with a root-mean-square integrated velocity power of a few tens of m s−1 may
ultimately be detectable deep in the convection zone.

5. Discussion and Summary

A theoretical analysis of the noise in helioseismic waveform measurements of
large-scale solar subsurface mass flows was presented in the preceeding sections.
For conceptual ease, the waveform procedure on which the noise analysis was
based proceeds by analogy with global-mode frequency-splitting analysis. In the
first step, estimates of the flow-dependent couplings of global oscillation modes of
the same radial order were obtained from covariance data by least-squares fitting.
Included in the couplings are the frequency splittings themselves, obtained from
the power-spectral subset of the data. Orthonormal combinations, referred to
here as “b”-coefficients, of the measured mode couplings are then computed. In
the case of frequency splittings, the projected couplings are proportional to the
conventional a-coefficients. The projected coupling coefficients are each sensitive
to precisely one spherical-harmonic-frequency component of either the toroidal
or poloidal part of the flow velocity. As in the analysis of frequency-splitting
measurements, this separability permits the Pt

s,σ and Tt
s,σ to be inverted for

independently.
Section 2 summarizes the noise model of the raw covariance data. The model

is based on the assumption that the uncertainty in the purely seismic (as opposed
to background) component of the nominally seismic signal reflects mainly uncer-
tainty in the source of the seismic waves. It should be noted that if additional,
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more-direct measurements of the wave source could be made, then the prospects
of detecting deep flows would undoubtedly improve. In Section 3, the covariance
matrix of the mode-coupling measurements was shown to be approximately diag-
onal and an analytical expression was derived for the measurement variance. As
discussed earlier, the analysis underestimates the coupling measurement noise
because it ignores error in the mode-parameter measurements. The projected
coupling data were defined in Section 4 and their covariance matrix was shown
to have an approximately diagonal form. It was then shown, using a high-ℓ
approximation for data sensitivity, that the b-data can be compressed into a
set of n- and ℓ-dependent ξ-data more analogous to the a-coefficients used in
frequency-splitting analysis. This circumstance enables insights gained from the
analysis of angular-velocity measurements to be applied to general large-scale
flows.

To avoid undue complication, the noise analysis treated flows as small per-
turbations about a static solar model. (Note that helioseismic waveform analysis
considered here assumes the Born approximation.) One might, however, be
concerned about the adequacy of the present treatment of noise for modes of
high-degree, for which the non-linearity in the eigenfunction dependence on the
angular velocity cannot be neglected (e.g. Vorontsov, 2011; W12). To improve the
convergence of the Born series one might instead perturb about a differentially-
rotating reference model. In fact it can be shown that the present treatment is
adequate, provided that the flow velocity, the eigenfunctions and their ampli-
tudes, and related observables are interpreted in terms of a rotating model. In
particular, the key expression (Equation (5)) for coupling-coefficient sensitivity
retains its validity. Furthermore, little accuracy is lost if the eigenfunctions of
the static reference model are substituted in the sensitivity expression for those
of the rotating model. The justification for this replacement is that, for typical
(ℓ, m) values, the latitude dependence of the integrand in Equation (5) is the
sum of a part which oscillates rapidly about zero, whose form reflects the precise
latitudinal nodal structure of the eigenfunctions, and a relatively smooth enve-
lope. At sufficiently high ℓ, the latitudinal remapping of nodal structure implied
by differential rotation can drastically alter the oscillating part. The integral,
however, is dominated by the envelope.

There are a number of ways in which the treatment of noise could be improved.
From the standpoint of analyzing actual data, the biggest shortcoming of the
analysis is that it ignores leakage effects due to the grossly uneven photospheric
sampling of contemporary datasets. Spatial leakage greatly complicates the flow
measurement problem, particularly because it spoils the separability of the in-
version problem, on which the present analysis is based. Nevertheless, the flow
measurement problem can at least be addressed with standard linear-inversion
techniques. Other assumptions and approximations made in the present noise
analysis, e.g. the neglect of uncertainty in mode parameters, can be relaxed
within the framework of linear inverse theory and in fact the framework appears
to be sufficiently general for dealing with not-so-large-scale flows. It would also
be of interest to investigate the basic assumption about the Gaussianity of the
wave field. Such studies might best be carried out using numerical simulations
of wave propagation.
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