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ABSTRACT

Time series of the medium-l spherical-harmonic decomposition of SOHO/MDI Doppler
images were used to investigate the noise of solar-oscillation mode-coupling measure-
ments and to reveal the coupling signatures of global-scale Rossby-waves and magnetic
activity. A theoretical model of mode-coupling noise was developed starting from the
assumption that the Doppler oscillation signal obeys gaussian statistics. The measured
coupling noise was found to agree with the model noise at the level of 20%. The noise
of mode-coupling measurements obtained from MDI data turns out to be considerably
larger than that of hypothetical, ’ideal’ measurements, which could only be obtained
from observations with more coverage of the Sun’s surface than current instruments
provide. The noise analysis was carried out for a simple suboptimal mode-coupling
estimation procedure which is described in some detail. A more rigorous, maximum-
likelihood, approach to mode-coupling measurement, which generalizes a method cur-
rently used to extract global oscillation mode information, is also described and its
relationship to the simple mode-coupling analysis is discussed.
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1 INTRODUCTION

Large-scale solar mass flows and magnetic fields are not well
understood in spite of intense efforts, both observational and
theoretical. Flow patterns that have been identified in the
Sun include differential rotation, meridional circulation, con-
vection, flows connected with magnetic (sunspot) activity,
and, most recently, Rossby waves. Solar magnetic fields are
thought to be generated in the ‘tachocline’, a region of strong
shear in the differential rotation near the base of the con-
vection zone. Their organization beneath the photosphere is
thought to be influenced by turbulent flow in the outer part
of the convection zone.

This paper will focus on the problem of inferring time-
varying mass flows and time-varying aspherical structure
of magnetic origin from helioseismic measurements. Re-
cent helioseismic observations (Featherstone et al. (2006),
Greer et al. (2015), Mandal & Hanasoge (2020, hereafter
M20), Woodard (2016, hereafter W16), Nagashima et al.
(2020)) have begun to reveal the dynamics of the convec-
tion zone, but have yet to yield a consistent or compre-
hensive picture of the flows there. But it has become clear
that Rossby waves are an important component of large-
scale solar dynamics (Löptien et al. (2018), Proxauf et al.
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(2020), M20, Liang et al. (2019)). Seismic measurements of
magnetic activity, from large scales down to sunspot scales,
indicate that the effects of activity on seismic waves are
mainly confined to fairly shallow regions below the photo-
sphere (Libbrecht & Woodard 1990; Braun 1995; Fan et al.
1995; Cally et al. 2016).

Helioseismic mode-coupling analysis is a variant
of direct-modeling/statistical-waveform analysis (Woodard
2007), in which oscillation mode-coupling-strength estimates
are obtained as an intermediate step in the data analysis.
A maximum-likelihood approach was developed by Schou
(1992, hereafter S92) to obtain properties, such as frequency
and line width, of individual solar p- and f-modes from long
sequences of images of the whole solar disk. The S92 method
can easily be extended to estimate the couplings of modes
of different spherical-harmonic degree l, which are sensi-
tive to steady differential rotation and meridional circulation
(Woodard et al. 2013).

As described in Section 2.1, the S92 method can be
straightforwardly extended to deal with mode couplings
which are sensitive to arbitrary time-dependent mass flows
and aspherical magnetic patterns. The connection between
the generalized likelihood method and the mode-coupling
analysis of W16 (and of M20) is explored in Section 2.2. The
data analysis procedure of W16 is motivated and described
in Section 2.3. Following this, a quantitative comparison of
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theoretical and observed mode-coupling noise is described in
Section 3.1. A comparison with the noise of ‘ideal’ helioseis-
mic measurements is also made. Observed mode-coupling
signatures of large-scale flow and magnetic-activity patterns
are discussed in Section 3.2.

2 GLOBAL-MODE APPROACHES TO

HELIOSEISMIC DATA ANALYSIS

2.1 Maximum-likelihood methods

The S92 approach to inferring a set, x, of solar parame-
ters from a set, y, of global solar oscillation data is based
on a gaussian likelihood function L(x,y). In the S92 anal-
yses the ’y’ data are the real and imaginary parts of the
spherical-harmonic and frequency-domain (l,m, ω) repre-
sentation, ϕlmω , of a photospheric oscillation observable
(e.g., the Doppler velocity) continuously observed over the
earth-facing hemisphere of the Sun and over a long span of
time. A spherical-harmonic decomposition is appropriate for
an approximately spherical and slowly-rotating star, whose
oscillation eigenfunctions have an approximately vector-
spherical-harmonic form. In its applications to date, the
method is tailored to observation spans much longer than
the coherence times of oscillation modes of the whole Sun
and is appropriate for determining solar properties whose
time-variation over the observation span can be neglected.

Following S92, where it is assumed that the solar oscilla-
tion signal y is the realization of a gaussian distribution with
zero statistical expectation, we consider likelihood functions
of the general form

L(x,y) ∝ |E|
−1

2 exp{−y
T 1

2E
y}, (1)

where y is treated as a vector and ‘T ’ means matrix trans-
pose. We note that the likelihood function depends on the
signal only through simple ‘covariance’ products of the com-
ponents of y. E is the covariance matrix of the observed sig-
nal and |E| is the absolute value of the determinant of E.
Assembling the y covariance products into the matrix y yT ,
we note that

E = 〈y y
T 〉, (2)

with 〈..〉 denoting an average over a hypothetical ensemble
of wave fields. The likelihood function depends on the solar
parameters x through the matrix E.

In helioseismic waveform analysis carried out thus far,
it has been assumed that flows and magnetic patterns can
be treated as small perturbations to a specified reference so-
lar model. Thus standard linear inversion procedures can be
used to investigate the perturbations, using covariance prod-
ucts of the oscillation signal as input. The general sensitivity
relation for these inversions is based on Equation 2. Wave-
form analysis has been developed to deal with perturbations,
such as turbulent convection and magnetic configurations,
which evolve within a given span of data. Such analysis is
conveniently carried out in the Fourier (e−iω t) domain. One
of the consequences of the assumed smallness of the solar
perturbations is that covariance products of signal at fre-
quencies ω and ω′ are sensitive to fourier components of the
solar perturbations of frequencies ω′ − ω or ω − ω′. (Note

that waveform analysis carried out to date uses the complex-
valued coefficients ϕlm

ω directly, i.e., without separating them
into real and imaginary parts.)

The S92 likelihood method has thus far only been
used to infer solar properties (e.g, mode frequencies) whose
time variation can be ignored on time scales shorter than
a dataset. Consequently, in these analyses only covariance
data involving signal components of the same frequency need
be considered. However, as in waveform analysis, the method
can be easily generalized to the study of time-dependent
phenomena by including covariance products of distinct fre-
quency components.

For the study of small perturbations about a specified
solar reference model, it is useful to define a set of perturba-
tion parameters ξ ≡ x− x0, where x0 are the values of the
parameters x for the reference state. We will assume that
small departures from the reference, or zeroth- order, state
are linear in the parameters ξ. To simplify things further,
we consider linear combinations, η, of the y data, chosen
so that their zeroth-order (ξ = 0) covariance matrix is the
identity matrix I. We note that, because the E matrix is sin-
gular, or at least highly ill conditioned (S92), the dimension
of η space will in practice be less than that of y space. For
general parameter values we can write

〈η η
T 〉 = I+ ǫ(ξ), (3)

where for sufficiently small perturbations ǫ should be linear
in ξ. In component form this relation is

〈ηi ηj〉 = δij + ǫij(ξ). (4)

Alternatively, we can write

〈ζ〉 = A ξ, (5)

where ζ ≡ η ηT − I are covariance data minus their zeroth-
order expectation and A = ∂ξ ǫ, the parameter-space gradi-
ent of ǫ, is the sensitivity matrix of these data. The sensi-
tivity relation can also be written in component form:

〈ζij〉 = 〈ηi ηj〉 − δij =
∑

m

Aij,m ξm, (6)

where ηi are the components of η, ξm are the components
of ξ, and Aij,m = ∂ξm ǫij are the elements of the sensitivity
matrix A.

By Bayes’ theorem the parameter probability distribu-
tion function P (ξ|η) conditioned on observations η is given
by

P (ξ|η) ∝ P (ξ)L(ξ,η), (7)

where P (ξ) is the parameter distribution function prior to
the observations. We note that, without prior information,
the problem of retrieving solar parameters from a helioseis-
mic dataset is usually ill posed. For ease of interpretation we
will attempt to represent the updated (posterior) parameter
distribution by the gaussian form

P (ξ|η) ∝ exp{−(ξ − ξ̂)T
1

2C
(ξ − ξ̂)}, (8)

which is completely defined by the posterior most-probable
parameter values ξ̂ and their covariance matrix C (the in-
verse of the so-called Fisher matrix).

To obtain approximate expressions for the posterior pa-
rameter statistics ξ̂ and C we take the logarithm of Equa-
tion 7 using the approximation 8 and expand both sides in
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powers of ξ. Keeping only the linear and quadratic terms
yields

−ξ̂
T 1

C
ξ + ξ

T 1

2C
ξ = g

T
ξ + ξ

T H

2
ξ, (9)

where g and H are the parameter space gradient and Hes-
sian matrix, evaluated at ξ = 0, of Q(ξ,η) ≡ − ln(P (ξ)) −
ln(L(ξ,η)). The symmetry of C = CT has been used in ob-
taining this result. Comparing the two sides of this equation,
while noting that H is also a symmetric matrix, leads to the
identities

1

C
= H, (10)

for the Fisher matrix, and

H ξ̂ = −g, (11)

for the most probable ξ values. We note that the accuracy
of the above result depends on the validity the gaussian ap-
proximation Equation 8.

2.2 Connection between likelihood and waveform

analysis

The gradient and Hessian, g and H, are each the sum of a
‘P ’ term and an ‘L’ term, respectively contributed by the
prior probability function and the likelihood function. Thus
Equations 10 and 11 can be rewritten

1

C
= H(P ) + H(L) (12)

and

[H(P ) + H(L)] ξ̂ = −g(P )− g(L). (13)

These equations show how the posterior estimate of ξ de-
pends on the data-dependent gradient g(L) and Hessian
H(L), for arbitrary prior information, encoded in H(P) and
g(P ).

The elements of the derivation of g(L) and H(L) are
given in S92 and will not be repeated here. For the gradient
we obtain

g(L) =
−1

2
A

T
ζ, (14)

where ζ is the vector of covariance products and A is their
parameter sensitivity matrix that were defined in the context
of Relation 5. Similarly, we find that the Hessian has the
form

H(L) =
1

2
(A+ Z)T A, (15)

where Zjk,m ≡ 2
∑

i
ζij Aik,m. By analogy with Equa-

tion 13, the most probable value, ξ̂(L), of the likelihood
function obeys H(L) ξ̂(L) = −g(L). And from Equations 14
and 15 we further obtain

(A+ Z)T A ξ̂(L) = A
T
ζ. (16)

Were it not for the data-dependent matrix Z, this rela-
tion would have the form of the adjoint equation of a lin-
ear least-squares fitting problem. Least-squares fitting was
the basis for a previous analysis of mode-coupling measure-
ment noise (Woodard 2014, hereafter W14). In principle, the
maximum-likelihood method should yield less noisy mode-
coupling measurements than the least-squares method.

2.3 Measuring mode-coupling parameters

We now consider the application of the foregoing parameter
estimation method to the problem of determining oscilla-
tion mode coupling strengths, which are sensitive to interior
properties of interest. As a preliminary step in formulating
the statistics of realistic oscillation datasets, we first con-
sider, as in W14, the statistics of the wave field within the
entire volume of the Sun over a long span of time. Then we
go on to discuss the analysis of realistic data, which signifi-
cantly undersample the wave field.

The wave field is represented by the amplitudes ai
ω

which give the frequency dependence of the magnitude and
phase of individual normal oscillation modes of the zeroth
order model. Because of the near spherical symmetry of the
model the mode indices i are radial and spherical-harmonic
indices i = n, l,m. Since the solar differential rotation is
reasonably well known, largely from helioseismic observa-
tions, the zeroth-order model would ideally be a differen-
tially rotating one with all the effects of rotation (and per-
haps meridional circulation) on the wave field embodied in
the zeroth-order statistics of the oscillation signal, which for
the time being is the wave field. Nevertheless, as in W16
and M20, we continue to ignore the effect of differential ro-
tation on the spherical-harmonic form of the mode eigen-
functions. This neglect is probably not terribly important
for wave modes of l less than 150, an analysis of which will
be described in what follows. But deviations from spherical-
harmonic form certainly become apparent at larger l. On
the other hand, we do include the effect of rotationally split
eigenfrequencies on the zeroth-order wave-field statistics.

For ideal observations, the y data are the real and imag-
inary parts of the amplitudes ai

ω. The y-data covariance ma-
trix E can be straightforwardly constructed from the set of
second moments 〈aj

ω′ a
i
ω〉 and 〈aj

ω′ a
i∗
ω 〉 of the mode ampli-

tudes. W14 assumed that in zeroth-order the solar wave
field is the realization of a time-stationary and isotropic
random process, with the consequence that the statistics
of the mode amplitudes of different l, m, ω are mutually
independent with random phases, aside from the small cor-
relations implied by mode coupling. A further consequence is
that for fixed (n, l) the zeroth-order amplitude power den-

sity 〈|anlm
ω |

2
〉0 is the same function of ω − ωnlm at each

m, where the ωnlm are the rotationally split mode eigenfre-
quencies. (In a more realistic statistical model, the assumed
isotropy of mode excitation and damping would be broken
by the advection of turbulent wave sources by the differential
rotation.)

For the remainder of this paper, we consider couplings
only of modes of the same radial order and generally sup-
press the index n. Thus the zeroth-order wave-field statistics
of modes can be summarized by

〈al′m′

ω′ alm
ω 〉0 = 0 (17)

and

〈al′m′

ω′ alm ∗

ω 〉0 = 〈|alm
ω |2〉0 δl′l δm′m δω′ω (18)

in which ‘δ’ denotes the Kronecker symbol. The statistical
independence of distinct frequency components of the wave
field, implied by the above factor δω′ω, holds only in the limit
of long spans of data. Since physical wave fields are real val-
ued, the mode amplitudes at (l,−m,−ω) and (l,m, ω) are re-
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dundant information for spherical-harmonic eigenfunctions.
In this case we can ignore negative-frequency mode ampli-
tudes.

For a differentially-rotating reference model, it seems
likely that the δl′l factor in the last equation would have
to be modified, to include the effect of the mode driving
and damping anisotropies. (The δm′m factors, which reflect
the axisymmetric nature of the differential rotation in the
shallow subphotospheric layer where waves are emitted and
absorbed, would remain.) Alternatively, these anisotropies
could be treated as perturbations, though in this paper we
treat only time-dependent perturbations.

Time-dependent and aspherical perturbations couple
the amplitudes of different reference modes in the sense that
they produce correlation between general mode amplitudes
alm
ω and al′m′

ω′ . Thus

〈al′m′

ω′ alm ∗

ω 〉 = 〈al′m′

ω′ alm ∗

ω 〉0 + δ〈al′m′

ω′ alm ∗

ω 〉, (19)

where an isotropic form for the zeroth-order term is given by
Equation 18 and the perturbation term δ〈al′m′

ω′ alm ∗

ω 〉 quan-
tifies the correlations.

Approximate expressions for δ〈al′m′

ω+σ alm ∗

ω 〉 were given
in W16, based partly on Lavely & Ritzwoller (1992), in the
weak-coupling (Born) approximation, for various physical
perturbations. The expressions are proportional to complex-
valued coupling ‘strengths’, λl′m′

lm (ω′ − ω), which quantify
the effect of perturbations. For fixed l, l′, t, and σ, where
(t, σ) = (m′ −m,ω′ − ω), the coupling strengths can be ex-
panded in a set of orthonormal functions of m, yielding a
set of expansion coefficients bts,σ(l, l

′) which are sensitive to
individual spherical-harmonic (s, t) and frequency (σ) com-
ponents of perturbed quantities. The b coefficients could
be obtained individually from wave field data, by analogy
with the extraction of ‘a’ (frequency-splitting) coefficients
from spherical-harmonic-frequency spectra (e.g., S92). Ac-
tual data analysis is complicated by mode leakage, as de-
scribed below, and by the fact that reference eigenfunc-
tions depart more and more from their nominally spherical-
harmonic form with increasing l.

Our immediate interest is in probing perturbations of
much larger angular scale and longer time scale than the
scales of the waves serving as probes. Thus in what follows
we take (s, t, σ) values to be somewhat smaller in magnitude
than the magnitudes of typical (l,m, ω) or (l′,m′, ω′) com-

binations. We have ignored the perturbation of 〈al′m′

ω′ alm
ω 〉,

which by Equation 17 has no zeroth-order contribution.
Since alm

ω = (−1)m al,−m ∗

−ω (using appropriate spherical-
harmonic sign conventions) the neglected expectation value
has the same form as the perturbation terms discussed above
that are sensitive to coupling parameters bm+m′

s,ω+ω′ . Since ω

and ω′ are positive by our convention these terms are sensi-
tive to much more rapid changes than interest us here.

Because existing observations do not sample the entire
wave field, the coefficients ϕlm

ω we obtain from helioseismic
image sequences are superpositions of mode amplitudes. The
weighting of different modes is given by a leakage relation of
the form

ϕlm
ω =

∑

l′m′

Llm
l′m′al′m′

ω . (20)

Leakage in l and m is an artifact of observations that cover
only the half of the Sun’s surface visible from near the Earth.

So leakage could be reduced by future, ‘whole-sphere’ obser-
vations, obtained from multiple vantage points. On the other
hand, modes of different n contribute to each ϕlm

ω because
waves are only observable near the photosphere. Thus, even
whole-sphere observations only approximate ideal observa-
tions.

For full-disk observations the leakage matrix is dom-
inated by elements for which (l,m) and (l′,m′) differ by
small integers. The above expression is suitable for obser-
vations obtained by a spacecraft moving in a circular or-
bit about the Sun in the solar equatorial plane. The orbits
of real instruments or observatories are typically not quite
circular and are a bit inclined to the Sun’s equator. There-
fore the true leakage matrix, being time dependent, would
involve a convolution in frequency in addition to the indi-
cated transformation in wave number (l,m). This would also
be the case if there were significant gaps in the oscillation
time series. For the time being, however, we continue to use
the time-independent leakage relation 20 for the analysis of
helioseismic data.

With the help of the preceeding equation, we obtain
expressions, analogous to Equations 17, 18, and 19, for the
expectations of general covariance products. As with mode-
amplitudes, only cross-spectral (ω′ = ω) products of ϕlm

ω

have zeroth-order expectations. Therefore, for strictly time-
dependent (σ = ω′ − ω 6= 0) perturbations, δ〈ϕl′m′

ω′ ϕlm ∗

ω 〉

is just 〈ϕl′m′

ω′ ϕlm ∗

ω 〉 and is a superposition of many mode-
coupling strengths, a circumstance which complicates the
task of extracting individual b coefficients. The complication
is a further consequence of mode leakage. The problem of re-
trieving b parameters from helioseismic data is equivalent to
the problem of mapping time-varying aspherical structure
within the solar interior. Since the globally-coherent waves
we observe on the Sun’s Earth-facing hemisphere carry infor-
mation about conditions on the far hemisphere, b-coefficient
leakage is expected to be less severe than mode-amplitude
leakage. Indications of how well the changing aspherical
structure of the solar interior can be mapped using oscil-
lation data come from helioseismic imaging of the Sun’s far
hemisphere (Lindsey & Braun 2000).

Henceforth, we focus on the problem of estimating the
coupling parameters bts,σ(n, l) of modes of the same l, as well
as n, for which measurements exist (W16, M20). For insight
into the analysis of actual data we first consider how ideal
data would provide information about mode couplings. For
statistically independent mode amplitudes, the likelihood
function L for these b parameters is a product of functions
Lnl each depending on the b parameters and amplitude data
of one (n, l) multiplet. In consequence the Hessian H(L) of
− ln(L) is a sum of terms, as in Equation 15, each dependent
on the b parameters and mode amplitudes of one multiplet.
One can, as usual, improve the statistics of b measurements,
b̂ts,σ(n, l), by averaging them over ranges of n and l, though
at the expense of n and l resolution, which in solar model
terms implies a loss of depth resolution.

As discussed in W16, averaging the signed b measure-
ments over n and l will increase the detectability of solar
flows and other subsurface structures that are coherent over
great ranges of depth. Since the Hessian of n- and l-averaged
parameters is the sum of the Hessians of the multiplets in-
volved in the averaging, we expect that, with enough aver-
aging, the data-dependent (Z) terms in the Hessians can ef-
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fectively be replaced by their expectation values. Combining
the expression given in the discussion of Equation 15, with
Equation 6, we find that the Z term has no zeroth-order
expectation. Thus it is appropriate to use the least-squares
(Z = 0) form of the Hessian if only coarse depth resolution
is needed.

The W16 and M20 global mode-coupling analyses of
large-scale time-variable flows and magnetic activity are
based on suboptimally-weighted least-squares procedures in
which b coefficients are separately fitted to helioseismic co-
variance data of the appropriate mode multiplet. The esti-
mate of bts,σ(n, l) used in W16 has the form

b̂ts,σ =
∑

mω

gst,σ ∗

mω ϕm+t
ω+σ ϕm ∗

ω . (21)

An expression for the weight function gst,σ ∗

mω is given in W16
along with a precise but not entirely correct description of
the m − ω domain involved in the above summation. To
clarify matters we note that the magnitude of the weight
function is dominated by a pair of narrow ridges, centered
at ω = ωm and at ω + σ = ωm+t, for each physically mean-
ingful value of m. This structure reflects the time-dependent
nature of the coupling of mode pairs within the multiplet.
The summation domain of Equation 21 is simply the vicin-
ity of the resonant ridges. It is well to keep in mind that,
for near-Earth-based observations, ω and σ in the above ex-
pressions are synodic frequencies.

The b̂ts,σ statistic is sensitive not only to the target bts,σ
parameter of one mode multiplet, but to other b parame-
ters, including those of other multiplets. A leakage relation,
analogous to Equation 20, for the sensitivity of b̂ts,σ to other
b parameters can be derived first by taking the expectation
value of Equation 21. The expectations 〈ϕm+t

ω+σϕ
m ∗

ω 〉 that ap-
pear on the right side of the resulting equation are then re-
placed, using Equation 20, by mode-amplitude covariances,
given by Equation 19. For non-zero σ, the latter covariances
have no zeroth-order perturbation and can be expressed in
terms of b coefficients as noted in the discussion of Equa-
tion 19. The resulting b-coefficient leakage relation serves to
define a linear inverse problem for the b parameters.

To complete the definition of the inverse problem we
need the covariance matrix of the b̂ statistics. The covariance
matrix of the real and imaginary parts of the b-parameter
estimates of a single mode multiplet is obtainable from
the covariances cov(b̂t

′

s′,σ′ , b̂ts,σ) and cov(b̂t
′

s′,σ′ , b̂t ∗s,σ), where
cov(w, z) of two complex random variables has the usual
meaning 〈wz〉−〈w〉〈z〉. These covariances involve fourth mo-
ments of the oscillation signal, which in the gaussian approx-
imation can be reduced to products of second moments, as
discussed in Appendix C of Gizon & Birch (2004). Ignoring
perturbation terms, the b covariances of interest can there-
fore be expressed as sums over products of cross spectra.
For strictly positive σ and σ′, the only non-zero b covari-
ances turn out to be

cov(b̂t
′

s′,σ, b̂
t ∗
s,σ) =

∑

m′mω

gs
′t′,σ ∗

m′ω
gst,σmω 〈ϕm′+t′

ω+σ ϕm+t ∗
ω+σ 〉〈ϕm′

∗

ω ϕm
ω 〉. (22)

3 OBSERVATIONAL ANALYSIS

3.1 Tests of the helioseismic statistical model

In W14 theoretical estimates of mode-coupling noise were
obtained for ideal data, with statistics given by Equations 17
and 18. So it is of interest to estimate the coupling mea-
surement noise of existing helioseismic data and compare
it with that of ideal measurements. One would also like to
test the noise model. For this test we compare the noise of
existing b-coefficient measurements with theoretical expec-
tations. We note that the b̂ts,σ statistic is a suboptimally-
weighted least-squares estimate of the solar parameter bts,σ
and is constructed only from covariance data which are par-
ticularly sensitive to the true parameter.

The current study uses b coefficients computed from
MDI spherical -harmonic time series (Scherrer et al. 1995;
Larson & Schou 2015) based on the algorithm more or less
as described in W16, but clarified in the above discussion of
Equation 21. Coefficients were computed for all spherical-
harmonic components of positive s and t up through s = 10
for 720-day epochs within the overall ≈ 15-year time span
of MDI observations. The b coefficients obtained from the
first 720-day epoch of MDI data were used in the initial set
of statistical tests presented below.

As a simple test of the statistical model, we compare ob-
served and theoretical b-coefficient ‘power’, for various com-
binations of n, s, and t. For this test, power is defined to
be |̂bts,σ(n, l)|

2. As noted in the discussion of Equation 21,

the b̂ts,σ(n, l) statistic has a non-zero expectation linearly
dependent on mode-coupling parameters. Due to the weak-
ness of the couplings under consideration, the expectation
value is much smaller in magnitude than the noise and
we can compute the expected value of b-coefficient power
from cov(b̂ts,σ(n, l), b̂

t ∗
s,σ(n, l)) using Equation 22. As the b̂

statistic is very noisy, many samples of |̂b|2 need to be av-
eraged to provide statistically significant comparisons with
theory. Consequently we compare observed and expected b-
coefficient power averaged over ranges of σ or l.

We begin by considering b-coefficient power obtained by
averaging over σ. The resulting power could be plotted (for
fixed n, s, and t) as a function of l. However, motivated by
the theoretical result of W14 that b-coefficient power is ide-
ally proportional to mode line width, we instead plot the
dependence on line width (i.e., the full width at half maxi-
mum power density). Figure 1 shows the width dependence
of both theoretical and observed power for a sampling of
(n,s,t) combinations. As the measurement is not optimal, it
should not be surprising that the dependence of observed
and theoretical power shows some deviation from linearity.
Following the discussion of W14, the theoretical noise power
of ideal b-coefficient measurements is γ∆ω/4π, where γ is
the mode line width and ∆ω is the frequency resolution of
the observation span, both in radians/sec. As seen in Fig-
ure 1, the observed power is considerably larger than this.
(It should be noted that b coefficients have the dimensions
of angular velocity in c.g.s units. Therefore, power has units
of radians2sec−2.)

Next we consider frequency-dependent power obtained
from l averaging. For this step, l-dependent weights, in-
versely proportional to the mode line widths, were used to
obtain averages. Examples are shown in Figure 2. The the-
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Figure 1. Line width dependence of b-coefficient power, for sev-
eral n, s, and t combinations, as discussed in Section 3.1. The solid
lines are theoretical expections and the broken lines are estimates
computed from MDI data. The dashed lines are the theoretical
expectations for ideal data. In this and other figures, b-coefficient
power is in units of radians2sec−2.

oretical curves broadly agree with the observations, though
systematic discrepancies of order 20 percent are apparent.
(We note that the σ range plotted for each t value was chosen
to target large-scale solar perturbations rotating at roughly
the solar rotation rate.)

To test the statistical model more fully, we estimate
the covariances cov(b̂′, b̂∗) and cov(b̂′, b̂) of the observed co-

efficients b ≡ bts,σ(n, l) and b′ ≡ bt
′

s′,σ+δσ(n, l), as a func-
tion of frequency lag δσ = σ′ − σ, for general s, t, s′, t′

values. For this exercise, it is convenient to work with di-
mensionless b coefficients, β, defined for arbitrary indices by

β̂ = b̂/

√

〈|̂b|2〉. Using the above shorthand notation, we note

that the discussion of Equation 22 implies that cov(β̂′, β̂) is
expected to vanish for all frequency lags δσ, while cov(β̂′, β̂∗)
is also expected to vanish except at zero lag. The theoreti-
cal values of general covariances cov(β̂′, β̂∗) at zero lag were
not computed for this study. But the β coefficients are nor-
malized so that the covariance in question is unity for the
cases s′, t′ = s, t. For ideal data, this covariance is the only
non-zero one, but mode leakage is expected to introduce
analogous leakage between b measurements, as noted in the
discussion of Equation 21.

Figure 3 shows cross-covariance functions cov(β̂′, β̂) and
cov(β̂′, β̂∗) derived from MDI data averaged over the ob-
served l range for s = 5, t = 3, and n = 6 for several
s′, t′ combinations. Excepting the real parts of cov(β̂′, β̂∗)
at zero-lag, all the correlation functions vanish, aside from
what appear to be small random fluctuations, as expected.
For the (s′, t′) = (s, t) (power spectral) case, the value of the
dominant peak is reasonably close to the theoretical value
unity, while the dominant peaks for the non-spectral cases

Figure 2. Frequency dependence of l-averaged b-coefficient
power, for a few n, s, and t combinations, as described in Sec-
tion 3.1. As in Figure 1, frequency is given in µHz and the solid
and broken lines are respectively theoretical expections and ob-
servations.

are somewhat smaller than unity, as one might expect from
a leakage effect.

Figure 4 shows measured β cross covariance functions
for two additional combinations of s′ and t′. Unlike the func-
tions shown in Figure 3, the functions shown here do not
contain strong peaks, illustrating the general weakness of
the cross talk between perturbations of opposite reflection
symmetry across the solar equator. The cov(β̂′, β̂∗) covari-
ance functions displayed here do show possibly significant,
though small, deviations from theoretical expections, in the
form of troughs at the second harmonic of the fundamental
frequency of the 720-day span of the analyzed time series.
This period is of course suspiciously close to the inverse of
Earth’s orbital period. The discussion of the leakage matrix
(defined by Equation 20) suggests that such anomalies could
be a consequence of our having ignored the inclination of the
solar rotation axis to the ecliptic axis and the non circularity
of the Earth’s orbit in modeling mode leakage.

The cross covariance functions shown thus far involve b
coefficients of odd s. These coefficients are ideally sensitive
to components of the Sun’s large-scale toroidal velocity field
(Lavely & Ritzwoller 1992; Hanasoge et al. 2017). In con-
trast, the curves shown in Figure 5 are measurements of the
cross talk between b coefficients of even and odd s and the
latter are mainly sensitive to magnetic activity. As expected
for spherical-harmonic functions of opposite reflection sym-
metry, these covariances are again fairly weak, indicating
that the helioseismic problems of characterizing magnetic
and velocity information are highly decoupled in spite of
mode leakage.

A cross-covariance analysis analogous to the preceeding
ones was also performed by interchanging the roles of l and
σ. The conclusion of the analysis (not shown) is that the
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Figure 3. Cross-covariance functions involving the dimensionless
b coefficients, β, at s = 5, t = 3, and for various combinations of
s′ and t′. The solid lines in each panel are the real parts of the
function cov(β̂′, β̂∗), while the imaginary part of the function to-
gether with the real and imaginary parts of the function cov(b̂′, b̂)
are shown as dashed lines. The unit of the frequency axis is the
inverse of 720 days.

Figure 4. Covariance functions of the type shown in Figure 3,
for two combinations of s′ and t′. The solid and dashed curves
are respectively the real and imaginary parts of cov(β̂′, β̂∗), while
the dotted curves represent the cov(β̂′, β̂) function. Note that the
vertical scale here differs from that of Figure 3.

Figure 5. Covariance functions illustrating velocity-magnetic
crosstalk, as described in the text. The plotting conventions here
are identical to those of Figure 3

b coefficients of mode multiplets of different l are uncorre-
lated. The lack of correlation (i.e., the absence of leakage) in
l is expected for ideal data but has no obvious explanation
for real data. It should be interesting to see if the result is
consistent with the statistical model, but the relevant cal-
culations have yet to be carried out. An alternative way of
confirming the statistical independence of b measurements
of different l is to compute the power of the observed b co-
efficients summed over l. More precisely, we define ζts,σ(n)
to be βt

s,σ(n, l) summed over the observed l range and di-
vided by the square root of the number of samples. If the
samples are independent, the expected value of the power
|ζts,σ(n)|

2 is unity. The top panel of Figure 6 shows the ob-
served cross-covariance function cov(ζts,σ+δσ(n), ζ

t ∗
s,σ(n)), av-

eraged over the observed range of n, s, and t. As expected,
the curve is dominated by a peak at zero lag of unit magni-
tude. Also shown in this panel is the auto-covariance func-
tion cov(ζts,σ+δσ(n), ζ

t
s,σ(n)), whose expectation value van-

ishes according to the noise model. The bottom panel of the
same figure also shows the measured auto-covariance func-
tion cov(|ζts,σ+δσ(n)|

2, |ζts,σ(n)|
2) averaged over indices. A

predominant peak at zero lag is again expected, confirming
once again the statistical independence of the wave field at
different frequencies. The theoretical value of the power at
zero frequency lag is not yet available for comparison.

3.2 Global-mode-coupling signatures of

large-scale flows and magnetic activity

Having concentrated on noise in the previous Section, we
now give a brief overview of the observable signatures of
large-scale flow velocities and of magnetic activity. For the
analysis of noise we ignored the contribution of these signa-
tures to the statistics of individual b-coefficient estimates
on the grounds that the contributions are much smaller
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Figure 6. The top panel shows the observed cross-covariance
function cov(ζt

s,σ+δσ
(n), ζt ∗s,σ(n)), averaged over the observed

range of n, s, and t. Also shown in this panel is the auto-covariance
function cov(ζt

s,σ+δσ
(n) ζts,σ(n)), whose real and imaginary parts

are shown as solid and dashed curves, respectively. The bottom
panel shows the measured (positive-valued) auto-covariance func-
tion cov(|ζt

s,σ+δσ
(n)|2, |ζts,σ(n)|

2) averaged over indices.

than the noise. As noted in W16, the signal-to-noise ratio
of the b-coefficient signatures of large-scale flows and so-
lar activity can be improved by averaging or smoothing the
n and l dependence of the signed coefficient measurements
(−1)l b̂ts,σ(n, l), yielding coefficients ξ̂ts,σ. The s−t−σ power
spectrum |ξts,σ|

2 also contains a substantial noise contribu-
tion, though the statistical uncertainty of this contribution
decreases with increasing volumes of solar data. The noise
contribution to |ξts,σ|

2 was estimated from |ηt
s,σ|

2, where ηt
s,σ

is formed in a similar way to ξts,σ, from unsigned b coeffi-
cients. The η coefficients are essentially pure noise because
the coupling sensitivity of the b coefficients changes rapidly
with l. (Alternatively, the noise contribution could be com-
puted theoretically, following the discussion of Equation 22.)

To display the mode-coupling signatures of solar per-
turbations, the entire ≈ 15-year span of MDI spherical-
harmonic time series was divided into eight high-duty-cycle,
minimally overlapping 720-day series, and from each sub-
series b-coefficients were computed according to Equation 21.
Coupling coefficients were computed for all positive t for
each s between 1 and 10 inclusive and for narrow s- and
t-dependent σ ranges chosen to track rotating solar veloc-
ity and magnetic features. The computation was carried out
for all (n, l) multiplets in the angular wavenumber and fre-
quency ranges 30 < l < 150 and 1.5 < ν(mHz) < 3.5.

The odd-s b coefficients are sensitive to toroidal flows,
while the even-s coefficients are sensitive to magnetic activ-
ity. As indicated in Section 3.1, there is relatively little leak-
age between the velocity and magnetic coefficients. For the
present flow analysis the ξts,σ coefficients are simple averages
of the signed b coefficients over ranges of l0 ≡ 3 l/ν(mHz).

(We note that p modes of the same l0 have depth sensitivity
to perturbations of large depth range similar to p modes of
degree l0 and frequency 3mHz.) The results described be-
low focus on the l0 range 150 through 250. Power spectra
|ξts,σ|

2 were computed for each of the 720-day epochs and
then averaged over the eight chosen MDI epochs, yielding a
time-averaged s− t− σ spectrum.

The time-averaged spectra confirm the findings of
Löptien et al. (2018) that much of the large-scale flow ve-
locity power, attributed by W16 to turbulent convection, is
in fact due to Rossby wave motions. Thus far, only sectoral
(s = t) Rossby modes have been identified in the Sun. Fig-
ure 7 shows time-averaged sectoral frequency spectra |ξtt,σ|

2.
The frequency scale of the plots has been translated so that
patterns rotating at the nominal sidereal equatorial rate of
453.1 nHz would show up at zero frequency. With the full
set of MDI data, the sectoral Rossby-mode peaks are statis-
tically very significant and their frequencies are consistent
with the Loptien et al. measurements, which agree with the
approximate theoretical dispersion relation

ω = −2tΩ/[s(s+ 1)], (23)

of modes of a star rotating rigidly at sidereal rate Ω. The
frequencies ω pertain to the frame corotating with the star.
The solar Rossby-mode observations are consistent with the
above-quoted sidereal rate. (We note that the s = 1 mode
frequency falls outside the range of the present analysis.)

With hindsight, we see that Rossby-modes can be iden-
tified in mode-coupling measurements based on only two
years of helioseismic data (M20). We see that, away from the
Rossby peaks, the power |ξ̂ts,σ|

2 tends to agree with the esti-
mated noise power |ξts,σ|

2. The total (frequency-integrated)
power of individual Rossby peaks, when ξ-coefficient power
is converted to absolute velocity power according to Equa-
tion 12 of W16, is in rough agreement with the meter-per-
second mode velocity amplitudes inferred by other observers
(Löptien et al. (2018), M20).

For each observed t value, the s = t+ 2 mode-coupling
spectra also show a peak at the frequency of the s = t
Rossby-mode. This leakage could be a manifestation of the
non-spherical-harmonic (symmetry-breaking) nature of the
Rossby modes (as detailed in Proxauf et al. (2020)), but to
some extent must also be a consequence of observational
leakage (e.g., Figure 3). The latter leakage needs to be bet-
ter quantified. Due to approximate symmetries about the
solar equator (on the one hand, of the solar angular veloc-
ity, and on the other, of observational sensitivity) leakage
of odd-s sectoral Rossby-modes into even-t spectra is ex-
pected to be small. Nevertheless, there are suggestions in
the even-t spectra of approximately corotating, presumably
non-Rossby-wave, velocity features.

To improve the visibility of corotating features, ‘de-
rotated’ time-averaged spectra of velocity features were aver-
aged over odd s and even t. The resulting composite, shown
in the bottom panel of Figure 8, contains a statistically sig-
nificant peak due to approximately corotating velocity pat-
terns. Corotating velocity power was previously detected by
Liang et al. (2019) at low t, where it was noted that possi-
ble contributors to this power include turbulent motions and
motions connected with active regions. Interestingly, the sec-
toral spectra (Figure 7), in which the Rossby-mode peaks
are prominent, seem to be deficient in corotating velocity
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Figure 7. Large-scale velocity power |ξts,σ |
2 averaged over the

≈ 15-year span of MDI observations, dominated by Rossby-mode
peaks, as described in the text. For comparison, the dashed curve
is the analogous average of the estimated noise power |ηts,σ |

2,
described in Section 3.2. In this Figure ‘P14’ denotes b-coefficient
power times 1014. The frequency scales of this and the remaining
plots have been translated to simulate observations obtained in a
corotating frame.

power. We also note that, when the foregoing analysis of
large-scale velocity power is repeated with p modes of lower
l0, the signal-to-noise ratio of the inferred velocity features
(both Rossby-modes and corotating features) is much less
than for the cases shown.

The presence of Rossby-mode oscillations complicates
the detection of other large-scale flows, such as convection.
According to Equation 23 the Rossby-mode peaks may be
difficult to distinguish from (toroidal) convective contribu-
tions for s greater than about 10, as convective patterns
are expected to be roughly corotating. Although we can-
not rule out ‘contamination’ by non-sectoral Rossby waves,
one might look for convective patterns in non-sectoral com-
ponents of the flow velocity. Yet another way to discrim-
inate Rossby waves from convection might be to examine
the degree of correlation between the inferred flow veloc-
ity at different depths, as velocity patterns with a cellular
structure would be expected to show less vertical coherence
than a global wave mode. Whether current data are of suf-
ficiently high signal-to-noise to distinguish different kinds
of flow patterns is not clear, however. On the other hand,
convective flows, unlike Rossby waves, are expected to have
a poloidal, as well as a toroidal, component. Detection of
poloidal flows (which include meridional flow) requires us to
measure the couplings of p modes of distinct l. For instance,
mode couplings of l differing by odd integers are sensitive
to poloidal velocity patterns of odd s (Lavely & Ritzwoller
(1992), Appendix C). These couplings are also sensitive to
toroidal patterns, but since the latter are of even s, poloidal
and toroidal patterns are in principle distinguishable.

Figure 8. Composites of de-rotated large-scale mode-coupling
power spectra, as described in the text. The bottom panel shows
velocity features, while the top panel shows magnetic-activity fea-
tures. The dashed curves are noise power analogous to the dashed
curves of Figure 7. Note the difference between the vertical scales
of the top and bottom panels.

The top panel of Figure 8 shows a composite of time-
averaged magnetic (even-s) mode-coupling spectra, com-
puted in an analogous way to the velocity spectra, but using
spectra of both odd and even t. The position of the mag-
netic peak is consistent with well-known observations that
solar activity rotates slightly faster than the nominal rota-
tion rate. The excess speed of magnetic features over the
speed estimated from line-of-sight velocity and seismic mea-
surements may be a consequence of magnetic features emerg-
ing from deeper, faster-rotating layers in the Sun (Snodgrass
1983, 1984; Gilman et al. 1989). For the magnetic analy-
sis the ξ coefficients are simple averages based on p modes
within a given frequency range. For Figure 8, the range used
was 2.5 to 3.5 mHz. For the range 1.5 to 2.5 mHz, the power
in the magnetic peak (not plotted) is about a factor of 10
smaller than the power of the peak shown.

4 DISCUSSION AND OUTLOOK

As indicated in Figures 1 and 2, the statistical model approx-
imately reproduces the observed mode-coupling noise power.
However the mismatch between theory and observation is
statistically significant and deserves investigation. Possible
reasons for the mismatch include systematic errors in the
model (e.g., error in the fitted p-mode parameters and/or
error in the assumed leakage matrix) or model incomplete-
ness. The present analysis ignored background contributions
to the solar oscillation signal, though these contributions are
unlikely to be significant except at fairly low oscillation fre-
quencies. The assumption of gaussian wave statistics could,
and probably should, be questioned. (In theory the statis-
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tics of the solar oscillations should reflect the statistics of
the turbulence which drives them.) However, it seems that
the problem of testing the gaussian assumption is a difficult
one as it is tied to the problem of validating data model
parameters.

More rigorous analysis of helioseismic data may help
to bridge the significant gap between the noise of MDI
mode-coupling measurements and that of ideal measure-
ments (Figure 1). To exploit existing data sets more fully,
we want to go beyond the simple b̂ analysis and in the di-
rection of the likelihood method sketched in Section 2. This
would involve a weighting of covariance data based on their
zeroth-order expectation values and ‘unfreezing’ many pa-
rameters whose uncertainty is implicitly neglected in the
simple approach. The b parameters that describe the cou-
plings of modes of different l are implicitly assumed to be
zero in the simple approach. But they are of interest in them-
selves and would be included in a more complete analysis.
We would also like to model p- and f-mode data at higher
l, to sample closer to the surface. At sufficiently high l it
becomes necessary to model the effect of differential rota-
tion on mode eigenfunctions. It may also be necessary to
compute model couplings using these eigenfunctions.
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