
Appendix B

Techniques for Analyzing
Footpoint Asymmetries in the
2003-10-29 X10 Flare (Chapter 5)

In this appendix we describe the techniques used in Chapter 5 to analyze the footpoint
asymmetries in the 2003 October 29 X10 flare, including coalignment of images obtained
by different instruments (§B.1), a mathematical treatment of column density asymmetry
(§B.2), and an estimate of the density in the legs of the loop (§B.3).

B.1 Coalignment of Images from Different Instruments

We describe in this section the procedures that were taken to coalign images1 obtained by
different instruments shown in §5.2.3. It was assumed that images from all instruments had
accurate plate scales and roll angles were corrected for the solar P-angle, but had different
absolute origins for the x and y coordinates. RHESSI’s images are located on the Sun to
sub-arcsecond accuracy thanks to its solar limb sensing aspect system and star based roll
angle measurements (Fivian et al., 2002). Thus all other images were corrected to match
the RHESSI features using the following procedures.

(1) We first obtained an accurate coalignment of SOHO MDI with RHESSI, which is
important for our purpose to find the magnetic field strength at the HXR FPs.

(1.1) The first step is to identify specific features on the MDI map that have RHESSI
counterparts. Qiu & Gary (2003) found good spatial agreement between HXR FPs and
MDI magnetic anomaly features with an apparent sign reversal in a white-light flare. This
was interpreted as HXR-producing nonthermal electrons being responsible for heating the
lower atmosphere, which consequently altered the Ni I 6768 Å line profile that is used by
MDI to measure the magnetic field.

We selected two neighboring magnetograms at 20:41:35 and 20:42:35 UT when the mag-
netic anomaly features were most pronounced, and subtracted the former from the latter.
This running-differenced map (which we callmap0, Fig. B.1) highlights regions of the newest

1See P. Gallagher’s tutorial for coaligning images at http://hesperia.gsfc.nasa.gov/∼ptg/trace-align
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Figure B.1: Difference (gray background) between two MDI magnetograms at 20:42:35 and
20:41:35 UT, overlaid with a RHESSI 60–120 keV image at 20:42:19–20:42:51 UT (white contours
at 15%, 30%, & 80% of the maximum brightness). The MDI differenced magnetogram has been
corrected to an Earth-centered view and shifted in x and y to give the best fit to the four RHESSI
HXR sources (see text). For display purposes only, we also did the solar rotation correction to the
fiducial TRACE time of 20:50:42 UT as we did for Fig. 5.6a, and the vertical dark dashed line shows
the same general magnetic neutral line as shown there [from Liu, W. et al. 2008a].

changes, which are presumably caused by precipitation of nonthermal electrons and are ex-
pected to appear cospatial with HXR sources. As evident, there is one (three) apparent
increase (decrease) feature(s) mainly in the negative (positive) polarity (cf., Fig. 5.6), which
appear as white (dark) patches in Figure B.1. Meanwhile, we reconstructed a RHESSI image
(called map1) at 60–120 keV integrated in the interval of 20:42:19–20:42:51 UT (a multiple
of the RHESSI spin period, ∼4 s, and closest to the corresponding integration time of the
second MDI magnetogram, 20:42:20–20:42:50 UT). We found an one-to-one correspondence
between the four major HXR FP sources (Fig. B.1, contours) and the magnetic anomalies.

(1.2) The second step is to convert SOHO’s L1 view to the appearance as viewed
from an Earth orbit. In principle, for the best accuracy, one could use a routine called
mk soho map earth.pro developed by T. Metcalf in the Solar SoftWare (SSW) package,
which reads SOHO orbital data and involves complicated trigonometry and warping. Its
results, however, were unstable and introduced artificial pointing jumps. Thus, we used a
simpler, but less accurate, routine called map2earth.pro developed by D. Zarro, which only
corrects for the pixel size of the map according to different distances from the Sun to the L1
point and to the Earth. We call the resulting Earth-viewed differenced MDI magnetogram
map0, Earth.

(1.3) Finally, we took the absolute values of MDI map0, Earth to make a new map called
map′0, Earth and coregister it with the corresponding RHESSI map1 by cross-correlation. The
required pointing shifts for MDI are ∆x = 4.5′′±2.0′′ and ∆y = −2.8′′±2.0′′. This practical
approach yielded the best coalignment between MDI and RHESSI, and also resolved the
inaccuracy caused by negligence of SOHO orbital data in the map2earth.pro routine. Here
we estimate the uncertainty with the 2.0′′ MDI pixel size and use error propagation with
the corresponding pixel sizes for the following coalignments with other instruments.

(2) Following a similar practice, we cross-correlated the TRACE white light image at



204 APPENDIX B. NOTES FOR ANALYZING 2003-10-29 X10 FLARE

20:49:49 UT (Fig. 5.6c) with an MDI magnetogram2 at 20:49:35 UT and found that the
TRACE image (pixel size 0.5′′) must be shifted by ∆x = 2.2′′ and ∆y = 0.0′′. Considering
the MDI offset estimated above, this translates to a required shift of ∆x = 2.2 + 4.5 =
6.7′′ ± 2.1′′ and ∆y = 0.0 − 2.8 = −2.8′′ ± 2.1′′ for TRACE to match RHESSI’s pointing.
These shifts were applied to all the TRACE images shown in Figure 5.6, assuming they
shared a common pointing that did not change during the flare.

(3) To find the correct pointing for the OSPAN Hα image (pixel size 2.2′′) at 20:42:11 UT
(Fig. 5.6b), we used the concurrent TRACE 1600 Å image (20:42:11 UT) as the reference.
Cross-correlation between the two images indicated that the former must be shifted by
∆x = −1.0′′ and ∆y = 6.6′′. Using the above relative TRACE pointing, we found the shifts
of ∆x = −1+6.7 = 5.7′′±3.0′′ and ∆y = 6.6−2.8 = 3.8′′±3.0′′ required for this Hα image.

B.2 Derivation of Footpoint HXR Fluxes Resulting from Asym-
metric Coronal Column Densities

Here we derive the numerical expressions for the HXR fluxes of the two FPs and their ratio
as a function of energy resulting from column density asymmetry addressed in §5.5.2. We
adopted the empirical expression of Leach & Petrosian (1983, their eq. (11)) for nonthermal
bremsstrahlung X-ray emission as a function of column density, which has also been used in
Chapter 6 [see eq. (6.5)]. This expression well approximates the Fokker-Planck calculation
of particle transport under the influence of Coulomb collisions that includes energy losses
and pitch-angle scattering, the latter of which was neglected in other forms of X-ray profiles
based on approximate analytical solutions (e.g., Emslie & Machado, 1987). For an injected
power-law (index δ) electron flux, the resulting fractional bremsstrahlung emission intensity
per unit dimensionless column density τ at photon energy k (in units of rest electron energy
mec

2 = 511 keV, me being the electron mass) can be written as

I0(τ, k) =
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2
− 1

)(
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gk2

)(

1 + τ
k + 1

gk2

)−δ/2

, (B.1)

where τ = N [4πr20 ln Λ] = N/[5 × 1022 cm−2] is the dimensionless column density, for the
classical electron radius r0 = e2/mec

2 = 2.8 × 10−13 cm and the Coulomb logarithm ln Λ =
20; g is a factor determined by the pitch-angle distribution of the injected electron spectrum,
which we assumed to be isotropic and thus g = 0.37 (Leach, 1984). This emission profile
is normalized to unity,

∫∞
0 I0(τ, k)dτ = 1. Integrating equation (B.1) yields the cumulative

photon emission from the injection site (τ = 0) to the transition region (τ = τtr ≡ Ntr/[5×
1022 cm−2], where Ntr =

∫ str

0 n[s]ds and str are the coronal column density and distance to
the transition region),

FCorona(τtr) =

∫ τtr

0
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(
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k + 1

gk2

)1−δ/2

, (B.2)

2It would have been preferable to use an MDI white-light image, but none was recorded during the flare.
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whose complement gives the emission accumulated below the transition region, i.e., the
HXR flux of the FP,

FFP(τtr) =

∫ ∞

τtr

I0(τ, k)dτ = 1 − FCorona(τtr) =

(

1 + τtr
k + 1

gk2

)1−δ/2

. (B.3)

Note that at large photon energies (tens to hundreds of keV), FCorona(τtr) is usually much
smaller than FFP(τtr). In addition, FCorona(τtr) is distributed in a large volume in the
leg of the loop in the relatively tenuous plasma, while FFP(τtr) is concentrated at the FP
in the dense transition region and chromosphere. This results in an even smaller surface
brightness in the leg than at the FP, which may well exceed the dynamic range of HXR
telescopes (e.g., &10:1 for RHESSI). This is why leg emission is so rarely observed (Liu, W.
et al., 2006; Sui et al., 2006).

As we know, a power-law electron flux (index=δ) produces a thick-target (integrated
from τ = 0 to τ = ∞) photon spectrum of approximately a power-law, I thick = A0k

−γ ,
where γ = δ − 1 (Brown, 1971; Petrosian, 1973) for an isotropically injected electron spec-
trum, and A0 is the normalization factor [in units of photons s−1 cm−2 (511 keV)−1]. Since
I0 gives the fractional spatial photon distribution at a given energy, the physical photon
spectrum at energy k and at a depth where the overlying column density is τ can be written
as I(τ, k) = I thickI0(τ, k) = A0k

−γI0(τ, k). It follows that the X-ray flux of the FP is

IFP(τtr, k) =

∫ ∞

τtr

I(τ, k)dτ = I thickFFP(τtr) = A0k
−γ

(

1 + τtr
k + 1

gk2

)1−δ/2

, (B.4)

and the photon flux ratio of the two FPs (1 and 2),

RI =
IFP(τtr,2, k)

IFP(τtr,1, k)
=

(

1 + τtr,2
k + 1

gk2

)1−δ/2(
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k + 1

gk2

)−(1−δ/2)

. (B.5)

The above two equations were used in §5.5.2 to calculate the FP fluxes and their ratio
resulting from different coronal column densities.

B.3 Estimation of Column Densities in Loop Legs

We describe below the approach to estimate the coronal column densities Ntr in the legs of
the loop, which is defined and used in §5.5.2 as the density integrated along the loop from
the acceleration region to the transition region at the FPs. In the stochastic acceleration
model of Petrosian & Liu (2004), the LT source is the region where particle acceleration
takes place (Liu, W. et al., 2008b; Xu et al., 2008). We thus subtracted3 the estimated LT
size (i.e., the radius r of the equivalent sphere; see Fig. 5.5c) from the distances along the
loop from the LT centroid to the FP centroids obtained in §5.4.2 (i.e., li, where i=1 for
E-FP and 2 for W-FP; see Fig. 5.7c), to obtain the path lengths in the legs str, i = li − r.

3In some other models (e.g., Masuda et al., 1994), the acceleration region is assumed to be located above
the “LT” source and a distance needs to be added to li. Such a practice was not attempted here, and as we
can see from §5.5.2, will not change our conclusions.
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Here the FP centroids are assumed to be situated at negligibly small distances below the
transition region. To give the desired column densities Ntr, i, the path lengths str, i (i=1, 2)
were then multiplied by the density nleg (assumed to be uniform) in the legs of the loop,
which was estimated as follows.

The density of the LT source nLT inferred in §5.2.2 (see Fig. 5.5d) provides our first guess
for the leg density nleg as assumed by Falewicz & Siarkowski (2007). The relative brightness
of nonthermal bremsstrahlung emission the leg and FP provides another important clue.
This is because, for the same reason of collisional losses mentioned in §5.5.2, the ratio
of the leg to FP brightness, particularly at low energies, is an increasing function of the
leg density. This predicted ratio cannot exceed the observed LT-to-FP brightness ratio,
because the LT source is where the maximum loop brightness is located, and it includes
additional contributions from thermal emission, piled-up photons, and/or electrons trapped
in the acceleration region (Petrosian & Liu, 2004). This imposes an upper limit for the leg
density nleg.

Figure B.2: (a) Density vs./ distance s along the loop for different values of the scaling factor fleg,
which is applied to the LT density nLT = 1.2× 1011 cm−3 to give the leg density nleg = flegnLT (see
text). The distance starts at the injection from the acceleration region, and the transition region is
located at s = 46 Mm. (b) Nonthermal emission profiles as seen by RHESSI at selected energies.
These are produced by a power-law electron flux (index δ = 4.96) injected into the loop with the
density profile shown in (a) for the case of fleg = 0.5. The humps on the right are the FP emission.
(c) Observed ratio of the LT-to-FP maximum brightness (asterisk) as a function of energy, overlaid
with the modeled leg-to-FP ratio (lines) for different density profiles shown in (a). Above ∼50 keV
the abnormal increase of the observed ratio with energy is unreal due to increasing noise at higher
energies.

To estimate this upper limit for nleg, we selected the second last long integration interval
(20:54:40–20:56:40 UT) shown in Figure 5.8d when the loop column density has become
large late in the flare and yet the HXR flux is not too low to give sufficient count statistics
for images. (1) From images at different energies we obtained the observed ratio of the
maximum brightness of the LT source to that of the dimmer W-FP source, which is a
decreasing function of energy as shown in Figure B.2c. (2) The next step was to calculate



B.3. ESTIMATION OF COLUMN DENSITIES IN LOOP LEGS 207

the modeled leg to FP brightness ratio: (a) We assumed a piecewise density profile n(s)
consisting of an l2 long leg with a uniform density of nleg = flegnLT (where fleg is a scaling
factor to be determined), a jump to 1013 cm−3 at the transition region (s = l2), and an
exponential increase with a scale height of 0.6 Mm (given by an assumed temperature of
104 K) in the chromosphere (see Fig. B.2a). (b) Assuming a power-law electron flux with a
spectral index of δ injected at the upper end of the leg (s = 0), the modeled nonthermal HXR
profile was given by n(s)I0(τ, k; δ), where I0 is defined by equation (B.1). Here we have
used the values of l2 = 46 Mm, nLT = 1.2×1011 cm−3, and δ = 4.96 from the observation at
20:54:40–20:56:40 UT. (c) The modeled emission profile was then convolved with a Gaussian
of FWHM=9.8′′ corresponding to the CLEAN beam size used for detectors 3–9. A sample
of the emission profiles is shown in Figure B.2b. (d) From the resulting profile, the modeled
ratio of the leg-to-FP maximum brightnesses was obtained and compared with the observed
ratio (see, e.g., Fig. B.2c). (3) To find the upper limit for the scaling factor fleg, we started
with fleg = 1 and iterated the above steps (a)–(d) with decreasing values at a step of 0.05,
until the modeled ratio best fits the the observed ratio as a function of energy in a least-
squares sense. This gave us fleg, max = 0.5, which was then used for the upper limits of
the leg density nleg, max = fleg, maxnLT and column densities Ntr, i = nleg, max(li − r) shown
in Figure 5.8e throughout the flare. This scaling means that the average density in the
legs must be smaller than the estimated LT density. Another possibility is that the LT
density inferred is an overestimate due to an underestimate of the volume, because of the
choice of the 50% contour level (see §5.2.2) which may be too high, or because of the lack
of knowledge of the source size in the third dimension along the line of sight.


