
Appendix C

Energy Loss and Diffusion due to
Coulomb Collisions With Warm
Plasmas

C.1 Coulomb Loss in Warm Plasmas

In the previous SA model, the energy loss rate due to Coulomb collisions with the ambient
plasma is calculated by assuming a cold-target scenario, in which the nonthermal electron
velocity v À vth, where vth =

√

2kT/me is the thermal velocity of the background electrons.
This is a valid assumption in the high-energy regime, but it is not necessarily true for low-
energy electrons whose velocity is comparable to or even less than those of the ambient
electrons. In the latter case, the electrons may even gain energy from the ambient, rather
than lose energy as is always the case in the cold-target scenario. More general treatment
of Coulomb loss is therefore desired. Miller et al. (1996) has included such calculations in
their electron acceleration model. Emslie (2003) also considered this effect when calculating
particle transport and found that it can significantly reduce the inferred energy content of
the injected electron distribution.

Here we briefly document how we improve on this in our current SA model. Since
nonthermal electrons almost do not lose energy by collision with background protons or
heavier ions, here we restrict ourselves to electron-electron collision only. The Coulomb
energy loss rate for cold plasmas is:

Ėcold
Coul = 4πr20 ln Λcn/β , (C.1)

where r0 = e2/(mec
2) = 2.8×10−13 cm is the classical electron radius and ln Λ = 20 (Leach,

1984) is a reasonable value for solar flares. Following Miller et al. (1996, eq. (2.5a))1, we
rewrite the general Coulomb loss rate (see also Benz, 2002, eq. (2.6.28); Spitzer, 1962,
p. 128–129) as

ĖCoul = Ėcold
Coul[ψ(x) − ψ′(x)], (C.2)

1Note E in Miller et al. (1996) should be replaced with 1

2
mev

2/(mec
2), not γ − 1, to make it valid in

both non-relativistic and relativistic regimes, where mec
2 is used to make energy dimensionless. The same

notation should be taken for Miller’s eq. (2.5b); see below.
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where we redefine x = Emec
2/(kT ), which is reduced to the definition of x̃ = (v/vth)

2

of Miller et al. (1996) at non-relativistic energies. In the relativistic regime, x(∝ E) can
approach ∞, which is mathematically more convenient than x̃ that has a finite upper limit
of (c/vth)

2.

ψ(x) = P (3/2, x) =
1

Γ(3/2)

∫ x

0
t3/2−1e−tdt (C.3)

is the incomplete gamma function (see Press et al., 1992, p. 160), where Γ(a) =
∫∞
0 e−tta−1dt

is the common gamma function. Figure C.1 shows ψ(x) and ψ′(x), which approaches 1 and
0 very quickly, respectively, when x increases. Since

Figure C.1: Incomplete gamma function ψ(x) and its derivative.

P (a+ 1, x) = P (a, x) − xae−x

aΓ(a)
,

one can rewrite

ψ(x) = P (3/2, x) = P (1/2, x) − 2

√

x

π
e−x = erf(

√
x) − 2

√

x

π
e−x, (C.4)

where

erf(
√
x) =

2√
π

∫ x

0
e−t2dt (C.5)

is the error function. One can also readily obtain

ψ′(x) = 2

√

x

π
e−x. (C.6)

Substituting equations C.4 and C.6 to C.2, we have

ĖCoul = Ėcold
Coul

[

erf(
√
x) − 4

√

x

π
e−x

]

, (C.7)

in terms of more commonly used error function. The absolute value of the Coulomb loss
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Figure C.2: Absolute value of Coulomb loss rate ĖCoul (solid and dotted) calculated for a typical
background plasma condition for solar flares, T = 107 K, n = 1010 cm−3. Below the energy corre-
sponding to the sharp “spike”, ĖCoul turns to negative (dotted), meaning particle gaining energy.
The cold-plasma loss rate Ėcold

Coul (dashed) is shown for comparison.

rate is shown in Figure C.2, together with its counterpart of cold-target approximation. As
energy decreases, this Coulomb loss rate (solid line) first increases; it then decreases and
becomes negative (gaining energy). The energy at which it turns negative is very close to
(but slightly less than) the thermal energy of background electrons. As expected, the cold-
target Coulomb loss rate (dashed line) deviates from the general loss rate at low energies
but the two agree well at high energies.

C.2 Coulomb Diffusion in Warm Plasmas

Similarly, Coulomb collision also contributes to diffusion in energy. In general, one can split
the diffusion coefficient D(E) into two parts:

D(E) = Dturb(E) +DCoul(E), (C.8)

where Dturb(E) and DCoul(E) are contributions by turbulence and by Coulomb collisions,
respectively. At low energies, energy diffusion due to Coulomb collisions becomes important,
while at high energies, diffusion would be dominated by the contribution from turbulence.
However, the DCoul(E) term was not included in the previous SA mode.

Following Miller et al. (1996, eq. (2.5b))2, we rewrite the Coulomb diffusion coefficient
(see also Spitzer, 1962, p. 132)

DCoul(E) = Ėcold
Coul

(

kT

mec2

)

ψ(x) = Ėcold
Coul

(

kT

mec2

)[

erf(
√
x) − 2

√

x

π
e−x

]

. (C.9)

2Note D(E) in eq. (C.10) here is equivalent to DC(E)/2 in eq. (2.5b) of Miller et al. (1996).
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C.3 Implementation of Coulomb Loss and Diffusion

The Fokker-Planck equation in some early works (Miller et al., 1996; Petrosian & Liu, 2004)
was written as,

∂f

∂t
=

∂2

∂E2
[D(E)f ] − ∂

∂E
{[A1(E) − ĖL1]f} −

f

Tesc(E)
+Q(E) , (C.10)

in a way which is slightly different from that of equation (1.1) used here. By substituting
equation (C.8) one can rewrite this equation as

∂f

∂t
=

∂

∂E

[

D
∂f

∂E

]

− ∂

∂E

{[(

A1 −
dDturb

dE

)

−
(

ĖL1 +
dDCoul

dE

)]

f

}

− f

Tesc
+Q, (C.11)

which can be directly compared with equation (1.1). We then identify the following rela-
tionship between the two ways of writing the Fokker-Planck equation:

A = A1 −
dDturb

dE
, 3 (C.12)

ĖL = ĖL1 +
dDCoul

dE
= Ėeff

Coul + Ėsynch, (C.13)

where we substitute equation (C.13) and define the effective Coulomb loss rate

Ėeff
Coul = ĖCoul +

dDCoul

dE
. (C.14)

We must modify the energy loss rate accordingly using the above two equations, when we
include Coulomb diffusion using equations (C.9) and (C.8).

Let us now derive dDCoul/dE and Ėeff
Coul. Using equation (C.9), we have

dDCoul

dE
= DCoul

d

dE
lnDCoul = DCoul

[

d

dE
ln Ėcold

Coul +
d

dE
lnψ(x)

]

, (C.15)

in which by equation (C.1) and E = γ − 1 we note

d

dE
ln Ėcold

Coul = −d lnβ

dE
= − 1

β

dβ

dγ
= − 1

β2γ3
= − 1

γ(γ2 − 1)
= − 1

γ(γ + 1)E
,

and by x = Emec
2/kT we have

d

dE
lnψ(x) =

ψ′(x)

ψ(x)

dx

dE
=
ψ′(x)

ψ(x)

mec
2

kT
.

Plugging the above two expressions to equation (C.15) and noting equation (C.9), we obtain

dDCoul

dE
= Ėcold

Coul

[

ψ′(x) − ψ(x)

x

1

γ(γ + 1)

]

, (C.16)

3This notation conversion has already been taken care of in the code properly.
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and, by using equation (C.2), the effective Coulomb loss rate

Ėeff
Coul = ĖCoul +

dDCoul

dE
= Ėcold

Coulψ(x)

[

1 − 1

x

1

γ(γ + 1)

]

= Ėcold
Coul

[

erf(
√
x) − 2

√

x

π
e−x

] [

1 − 1

x

1

γ(γ + 1)

]

. (C.17)

Figure C.3: Energy loss and diffusion rates due Coulomb collisions. Top: Coulomb energy loss rate
ĖCoul, diffusion coefficient DCoul(E) and its derivative dDCoul/dE, and effective Coulomb energy
loss rate Ėeff

Coul = ĖCoul + dDCoul/dE. DCoul(E) is in units of (mc2)2 s−1 and the others are in units
of mc2 s−1. Bottom: same as the top panel but for the absolute values plotted in a logarithmic scale.

Figure C.3 shows the energy loss or diffusion rates calculated for the same background
plasma condition as in Figure C.2. As can be seen, with decreasing energy, the Coulomb
energy loss rate ĖCoul changes its sign from positive to negative at about the energy of
the background electron thermal energy, while the Coulomb diffusion derivative dDCoul/dE
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does the opposite. The addition of the two gives the effective Coulomb loss rate τ eff
Coul, which

is mainly dominated by ĖCoul except at low energies. The energy at which τ eff
Coul flips its

sign is slightly (by a half decade) lower than that of ĖCoul.

Figure C.4: Coulomb loss and diffusion timescales: τCoul, τD′

Coul
, τ eff

Coul(= [1/τCoul + 1/τD′

Coul
]−1),

and τDCoul
(see text for definitions), corresponding to the rates plotted in Fig. C.3. Note the spikes

indicate infinite time and are located at the energy where the corresponding rate changes its sign
(i.e., the rate equals zero). See the top panel of Fig. C.3 for their signs.

It is convenient to define various timescales based on the above obtained coefficients:

τ cold
Coul = E/Ėcold

Coul = (γ − 1)β(4πr2
0 ln Λcn)−1, (C.18)

τCoul = E/|ĖCoul| = τ cold
Coul|ψ(x) − ψ′(x)|−1, (C.19)

τ eff
Coul = E/|Ėeff

Coul| = τ cold
Coul

∣

∣

∣

∣

1 − 1

x

1

γ(γ + 1)

∣

∣

∣

∣

−1

/|ψ(x)|, (C.20)

τD′

Coul
=

E

|dDCoul/dE| = τ cold
Coul

∣

∣

∣

∣

ψ′(x) − ψ(x)

x

1

γ(γ + 1)

∣

∣

∣

∣

−1

, (C.21)

τDCoul
= E2/DCoul = E2[Ėcold

Coul(kT/mec
2)ψ(x)]−1 = τ cold

Coulx/ψ(x), (C.22)

Figure C.4 shows these timescales, which is proportional to the inverse of the bottom panel
of Figure C.3. We note that above ∼ 10 keV (about 10 times higher than the thermal
energy of background electrons), both Coulomb diffusion time and the dDCoul/dE time are
sufficiently large that Coulomb diffusion can be neglected in the Fokker-Planck calculation,
as the previous SA model does.
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C.4 Thermalization Test of Injected Distribution

We have tested the implementation of the new Coulomb loss and diffusion. We turned
off acceleration by turbulence, but left Coulomb loss and diffusion on in the code. We
injected a narrow Gaussian (δ-function like) distribution of electrons with a mean energy
of 1 keV into a background plasma of Maxwellian distribution with a temperature of 1 keV
and a density of ne = 1.5 × 1010 cm−3. We then calculated the time-dependent spectrum
of these electrons. Figure C.5 shows the evolution of the electron distribution in separate
time intervals (left: 0–0.01 s, middle: 0.01–0.1 s, right: 0.1-1 s). The injected Gaussian
(black) and the background Maxwellian (gray) distribution are plotted in all the panels
as a reference. As can be seen, the distribution quickly thermalizes and approaches the
background Maxwellian distribution (overlapping with the final distribution at t = 1 s).
From Figure C.4, we note that the Coulomb diffusion timescale τDCoul

is about 0.1 s at
E = 1 keV in a plasma of ne = 1 × 1010 cm−3 (similar to the density here). The duration
of 1 s in this calculation is thus about 10 times longer than the diffusion timescale, which
allows sufficient time for the thermalization to happen.

Figure C.5: Test against thermal distribution for injected Gaussian distribution when Coulomb
diffusion is included. The injected narrow Gaussian (black) and the background Maxwellian (gray
scale) distributions are fixed in each panel as a reference. The other curves (black, evenly spaced in
time) in each panel show the temporal evolution on different stages left: 0–0.01 s, middle: 0.01–0.1 s,
right: 0.1-1 s [Courtesy of William East].


