
Chapter 7

Modeling Impulsive Phase Solar
Flares: a Combined Hydrodynamic
and Fokker-Planck Approach

7.1 Introduction

Particle acceleration & transport and the dynamical response of the atmosphere are two
of various important processes of energization and dynamics involved in solar flares. As
mentioned earlier in Chapter 1, these two processes are in fact coupled and must be studied
together in a self-consistent way. Due to the forbidding complexity of the subject, however,
people tend to decouple the processes and study one at a time while assuming some simple
forms for the others. The past efforts, according to their focus, can be divided into two
categories: particle acceleration and/or transport and atmospheric response.

For the former, one of the main streams of study solves the Fokker-Planck equation
and and keeps track of the particle distribution function (while there have been researchers
who took the approach of Monte Carlo simulation). For example, by assuming a static
atmosphere model, particle transport (including Coulomb collision and magnetic mirror-
ing) was studied by Leach & Petrosian (1981) and was extended to the relativistic regime
(including synchrotron loss and pitch-angle scattering) by McTiernan & Petrosian (1990).
Other similar studies were performed by MacKinnon & Craig (1991), McClements (1992),
Syniavskii & Zharkova (1994), Zharkova et al. (1995). Particle acceleration by turbulence,
for instance, was investigated by Hamilton & Petrosian (1992), Miller et al. (1996), Park
et al. (1997), Petrosian & Liu (2004) in more recent years.

For the atmospheric response, although the solar atmosphere is magnetized and thus
a full magnetohydrodynamic (MHD) description is desired, a majority of efforts were put
into numerical hydrodynamic (HD) simulations assuming a fixed magnetic configuration.
Because in a low β (magnetic field dominated) environment as in the solar corona, the
plasma cannot move across the magnetic field line readily, it is reasonable to assume the
material flow follows the magnetic field, which justifies 1D (distance along the magnetic
field line) HD models. These models usually assume a simple spectrum of the accelerated
particles which are injected at the apex of the loop and the energy deposited by the particles
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at different distances along the loop is calculated in a simplified way. This energy deposition,
which drives fluid dynamics, is the input to the HD code. Such studies include Nagai &
Emslie (1984), Fisher et al. (1985a,b,c), Mariska et al. (1989), Gan & Fang (1990), and
recent works by Abbett & Hawley (1999), and Allred et al. (2005).

From a theoretical point of view, a combined treatment of particle acceleration and
transport and the atmospheric response has become progressively desired and doable, based
on advances in both directions over two decades and particularly in recent years. Miller has
made progress (Miller & Mariska, 2005) in coupling his stochastic particle acceleration code
(Miller et al., 1996) with the Naval Research Laboratory (NRL) Solar Flux Tube Model
hydrodynamic code (Mariska, Li, & Emslie 1989, hereafter MEL89). Winter & Martens
(2006) combine their Monte Carlo simulation of test particle dynamics and a similar HD
code. They inject a power-law electron beam at the apex of the loop and tracked the particle
transport and the atmospheric response processes.

From an observational point of view, new observations, particularly X-ray images and
spectra obtained by the recent RHESSI satellite and the previous Yohkoh satellite, have
posed new challenges and questions to theories. For example, we (Liu, W. et al., 2006)
reported an event of chromospheric evaporation imaged by RHESSI for the first time. As
shown in Chapter 6, during this event, HXR sources at intermediate energies (12-15 keV)
were observed to appear at the leg of the flaring loop, in contrast to the commonly observed
LT and FP sources at low and high energies, respectively. Such sources shifted from the FPs
to the LT as time progressed, and exhibited very high speeds (∼ 103 km s−1) during several
short time intervals. Surprisingly, our Neupert (1968) effect test revealed that the electron
energy power, a more physically relevant quantity, did not yield a better correlation with the
GOES SXR flux derivative than the more conventional HXR flux. To fully understand these
observations and address the apparent discrepancies, again, requires a coupled treatment
of the particle acceleration and transport and the atmospheric response processes.

An accurate treatment of this problem requires a detailed evaluation of the heating rate
by nonthermal electrons, which is a key input to flare HD simulations. Previous works in
this regard suffer from two major shortcomings. (1) The first is that the calculation of the
energy deposition is based on approximate analytical solutions (e.g., Brown, 1973a; Emslie,
1978). This can be remedied by a combined particle and HD simulation, with the inclusion
of a full Fokker-Planck treatment of the electron transport. (2) The other drawback is
the simple, non-realistic, form of the injected electron spectrum used, which was usually
assumed to be some form of power-law distribution that makes the solution analytically
tractable. Fisher et al. (1985c), for example, assumed a power-law spectrum with an index
of δ = 4 and a sharp low-energy cutoff at E1 = 20 keV (i.e., no electrons below E1). MEL89
introduced a “soft” cutoff, below which the spectrum is a power-law with a positive index
of 2. Recently, Allred et al. (2005)1 used a comparably more realistic broken power-law
electron spectrum derived from RHESSI observations (Holman et al., 2003). As we will
show later, the heating rate is sensitive to the electron spectrum and thus use of inaccurate
spectrum would make the HD result deviate from reality significantly. On the basis of the
SA model, Petrosian & Liu (2004) have provided a more realistic electron spectrum that has
a continuous form from a background thermal distribution at low energies to a nonthermal

1They also improved the heating rate calculation by adopting the technique of Hawley & Fisher (1994) to
include the variation of hydrogen ionization state and by calculating radiative transfer and XEUV heating.
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distribution at high energies. We use such an spectrum in the work described below. We
will see that the low-energy electrons play an important role in heating (via collision and
conduction) and in affecting the subsequent hydrodynamical process.

In this chapter, we present a review of the Fokker-Planck modeling and show it can be
combined with a HD simulation of the atmospheric response during the impulsive phase
(§7.2). The former component uses the unified code of particle acceleration, transport, and
bremsstrahlung radiation (Petrosian et al., 2001). The latter uses the NRL Solar Flux Tube
Model code (MEL89). We obtained the spatial distribution and temporal evolution of the
resulting HXRs and SXRs, and check them against available RHESSI observations (e.g.,
Liu, W. et al., 2006; Sui et al. 2006). Results from some model calculations are presented
in §7.3. We summarize the major findings of this chapter and draw conclusions in §7.4.

7.2 Simulation Models

7.2.1 Stochastic Acceleration Model

Here we briefly summarize the acceleration model used in this study, which was adopted
from Petrosian & Liu (2004, hereafter PL04). We focus on acceleration by waves that
propagate parallel to the background magnetic field.

The Fokker-Planck Equation

Let us rewrite the Fokker-Planck (F-P) equation that governs electron acceleration (eq. [1.1])

∂fac

∂t
=

∂

∂E

[

D(E)
∂fac

∂E

]

+
∂

∂E
{[A(E) − ĖL]fac} −

fac

Tesc(E)
+Q(E) . (7.1)

where fac ≡ fac(t, E) is the electron distribution function (in units of electrons cm−3 keV−1,
integrated over all pitch angles; the subscript “ac” denotes acceleration region, cf. the
f(E, s, µ) in the transport code), E = γ − 1 (γ being the Lorentz factor) is the electron
kinetic energy in units of mec

2 (me is the electron mass), D(E) and A(E) are the energy
diffusion and systematic acceleration coefficients, Tesc is the particle escape time, Q(E) is
the total injection flux of particles into the acceleration region that acts as source term in
the equation.

ĖL = ĖCoul + Ėsynch (7.2)

is the absolute value of the net systematic energy loss rate, which is a combination of
Coulomb loss (assuming a cold background plasma)

ĖCoul = 4πr20 ln Λcne/β , (7.3)

and synchrotron loss
Ėsynch = 4r20B

2β2γ2/9mec , (7.4)

where β = v/c, ne is the electron number density, r0 = e2/mec
2 = 2.8 × 10−13 cm is

classical electron radius, ln Λ = 20 (good for coronal conditions, Leach 1984) is the Coulomb
logarithm, and B is the background magnetic field. Note equation (7.4) is valid only for
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isotropic pitch-angle distribution, which is assumed to be the case in the acceleration region
because of strong scattering of particles by turbulence.

In order to solve the F-P equation and keep tracking the evolution of the distribution
function fac(t, E), one needs to know all the terms in the equation. Since the form of the
energy loss rates are well known and the injection flux Q(E) (say, thermal or Maxwellian
distribution) is to be assumed by specific models, the central task left is to determine the
diffusion coefficient D(E), the direct acceleration rate A(E), and the escape time Tesc, which
we describe as follows.

Dispersion Relation and Resonance Condition

In general, plasma waves can be described by their dispersion relations, and when particles
are accelerated by turbulence, the wave-particle interaction is determined by the resonance
condition.

We assume a fully ionized H and 4He plasma with the relative abundance of electron/proton/α-
particle = 1/0.84/0.08. The dispersion relation for parallel propagating waves in such a
plasma is:

k2

ω2
= 1 − α2

ω

[

1

ω − 1
+

(1 − 2YHe)δ

ω + δ
+

YHeδ

ω + δ/2

]

, (7.5)

where ω is the wave frequency in units of the nonrelativistic electron gyrofrequency Ωe =
(eB0)/(mec) (e is the electron charge and B0 the large-scale magnetic field), k is the
wavenumber in units of Ωe/c, YHe = 0.08 is the 4He abundance, the plasma parameter
α and the electron-to-proton mass ratio δ are given by

α = ωpe/Ωe = 3.2(ne/10
10cm−3)1/2(B0/100 G)−1 and δ = me/mp , (7.6)

where ωpi = (4πnee
2/me)

1/2 is the electron plasma frequency and mp is the proton mass.
From this dispersion relation, we have five distinct wave modes (branches): electromag-
netic wave branch (EM), electron-cyclotron branch (EC), modified proton-cyclotron branch
(PC’), 4He-cyclotron branch (HeC), and a second electromagnetic wave branch (EM’) (see
PL04, Fig. 11, for details).

Via the resonance wave-particle interaction, energy can be transferred from parti-
cles to waves and vice versa (Dung & Petrosian, 1994). For a particle with a velocity βc
and a pitch-angle cosine µ the resonance condition can be written as

ω − k||βµ =
nωi

γ
, (7.7)

where n is the harmonic number of the gyrofrequency (not particle number density), k|| is
the parallel component of the wave vector, ωi = qime/emi is the particle gyrofrequency in
units of Ωe. In our case of electron acceleration by parallel waves, k|| = k, n = −1, ωe = −1
(while ωp = me/mp = δ for protons), and the resonance condition reduces to

ω − kβµ =
1

γ
. (7.8)

It appears as a straight line in the k–ω plot, with the v = βµ being the slope and 1/γ being
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the intercept. For an electron with a given velocity and pitch angle, in order to determine
how it is accelerated by waves, one must first need to determine with which wave branch(es)
(see PL04, Fig. 11) and at what frequency (or wave number) this straight line intersect.
That is, one needs to find the roots kj and their corresponding ωj (j = 1, ..., N) of the
combined nonlinear equations (7.5) and (7.8), which is done numerically in the SA code.
Because of the complexity of the dispersion relation and the large dynamic range of the
wavenumber, it is not a trivial task to accurately find the roots. For different particles,
say, electrons and protons, their roots are located on different branches, and thus they are
accelerated at different rates (see PL04, e.g., Fig. 12 for a comparison).

Turbulence Spectrum and Fokker-Planck Coefficients

To determine how much energy a particle can gain from its interaction with waves, one also
needs to know the energy spectrum of the turbulence. Following PL04, we assume a
turbulence spectrum of a broken power-law with three indexes q, ql and qh and two critical
wavenumbers kmin and kmax,

E(k) = (q − 1)E0/kmin







(k/kmin)
ql , for k < kmin;

(k/kmin)
−q, for kmin < k < kmax;

(kmax/kmin)
−q(k/kmax)

−qh , for k > kmax,
(7.9)

where we choose ql = 2(> 0), q = 1.7 is the Kolmogorov value, and qh = 4 is a typical index
for waves subject to strong damping (Vestuto et al., 2003). The cutoff at high wavenumber
kmax is assumed to be caused by, say, thermal damping. Following Liu et al. (2006c), we
define

Ē0 ≡ (q − 1)E0k
q−1
min (7.10)

and a characteristic interaction rate τ−1
p (or its inverse, the characteristic timescale, PL04)

that is an indicator of the turbulence intensity

τ−1
p =

π

2
Ωe

( E0

B2
0/8π

)

(q − 1)kq−1
min =

π

2
Ωe

( Ē0

B2
0/8π

)

. (7.11)

Once the resonance interactions are found and the turbulence spectrum is given, one
can proceed to evaluate the Fokker-Planck coefficients:

Dab =
(µ−2 − 1)

τpγ2

N
∑

j=1

χ(kj)







µµ(1 − xj)
2, for ab = µµ;

µpxj(1 − xj), for ab = µp or pµ;
p2x2

j , for ab = pp,
(7.12)

where

χ(kj) =
E(kj)/Ē0

|βµ− βg(kj)|
and xj = µωj/βkj , (7.13)

p is the particle momentum, βg = dω/dk is the wave group velocity, and the summation
over j is for all the possible resonance interactions (the roots found above). Note the F-P
coefficients are symmetric, Dpµ = Dµp.
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Fokker-Planck Equation Coefficients and Timescales

Finally, we are ready to derive the coefficients in the Fokker-Planck equation. Let us first
define two ratios of the F-P coefficients:

R1(µ, p) =
Dpp

p2Dµµ
, R2(µ, p) =

Dpµ

pDµµ
. (7.14)

We also define the pitch-angle averaged acceleration and scattering times (PL04, cf., Liu,
S., Petrosian, & Mason 2006):

τac =
p2

D̄pp
=

2p2

∫ 1
−1 dµ(Dpp −D2

pµ/Dµµ)
=

2
∫ 1
−1 dµDµµ(R1 −R2

2)
, (7.15)

τsc =
1

2

∫ 1

−1
dµ

(1 − µ2)2

Dµµ
¿ L/v , D̄pp ≡ 1

2

∫ 1

−1
dµ(Dpp −D2

pµ/Dµµ) , (7.16)

where the factor 2 =
∫ 1
−1 dµ and L is the size of the acceleration region. Note that we

assume isotropic pitch-angle distribution here and the R2
2 term in equation 7.15 should be

dropped if isotropy is not satisfied (e.g., Liu, S., Petrosian, & Mason 2006). Accordingly,
the diffusion coefficient2 (Petrosian, 2001) and the direct acceleration rate3 can be written
as

D(E) = β2D̄pp =
β2

2

∫ 1

−1
dµ(Dpp −D2

pµ/Dµµ) (7.17)

=
β2p2

τac
=
β2p2

2

∫ 1

−1
dµDµµ(R1 −R2

2) , (7.18)

A(E) =
1

βγ2

dβγ2D(E)

dE
− d

dE
D(E) =

D(E)

E

2 − γ−2

1 + γ−1
. (7.19)

We also obtain the escape time that combines nonrelativistic and extreme relativistic cases

Tesc =
L√
2v

(

1 +

√
2L

vτsc

)

, (7.20)

and define the direct acceleration time, τa = E/A(E).

Now that all the coefficients, including D(E), A(E), and Tesc in the F-P equation have
been evaluated, the equation can be solved numerically by the Chang-Cooper method (Park
& Petrosian, 1996). In this particular study, we assume a steady state solution (the accel-
eration code is capable of solving the time-dependent F-P equation though), because the
transport code is of steady state and we need a self-consistent treatment throughout. Once

2There is a typo in eq. (12) of PL04, where E2 should be replaced with β2p2, but the calculation there
was actually correct.

3Subtracting the dD(E)/dE term results from the different ways of writing the F-P equation, see eq. (7.1)
here and eq. (10) of PL04.
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the electron spectrum, fac(E), in the acceleration region is obtained, we evaluate the es-
caping electron flux

Fesc(E) =
fac(E)

Tesc(E)
L , (7.21)

which is then passed to the transport code as an injection. We can define the ratio between
the escape flux and the LT flux (vfac):

Resc =
Fesc

vfac
=

L

vTesc
=

√
2

(

1 +

√
2L

vτsc

)−1

. (7.22)

The equivalent thick-target electron flux (Petrosian & Donaghy 1999; PL04) is calculated
by:

Fthick(E) =
βc

ĖL

∫ ∞

E

fac(E
′)

Tesc(E′)
dE′. (7.23)

7.2.2 Particle Transport and Radiation Model

The next step is to run the transport code that follows the electron distribution as the
electrons stream down the newly reconnected magnetic field line and travel through different
layers of the atmosphere. In order to run the transport code, we need the knowledge of two
things. The first is the energy and pitch-angle distribution of the injected particles, which
is given above as the escaping electron flux (assumed isotropic in the forward direction) by
the acceleration code. The second is the background density and abundance distribution
along the loop. Here we assume a fully ionized, pure hydrogen plasma,4 whose distribution
is taken from the result of the HD code (see below).

The transport code solves the fully relativistic, steady-state, F-P equation (see eq. (1)
in McTiernan & Petrosian, 1990), which includes Coulomb energy loss (no energy diffu-
sion)5 and pitch-angle diffusion, synchrotron energy loss and pitch-angle diffusion, as well
as magnetic field convergence. Following McTiernan (1989), we neglect the return current
(Syniavskii & Zharkova, 1994; Zharkova et al., 1995), which is a good approximation if the
electron flux is sufficiently small; we hope to include this effect in the future to achieve a
more self-consistent treatment. The variable6 to be solved is the electron flux spectrum
F (E, s, µ) as a function of energy E, distance s from the injection point (at the boundary

4Although this assumption is not self-consistent with the abundance assumed in the acceleration code, it
simplifies the calculation of the Coulomb logarithm (assume ln Λ = 20) which is needed for evaluating the
Coulomb loss. This assumption will only affect the normalization in the resulting electron flux as well as
the photon emission very slightly. Again, this makes room for future improvement.

5We again assume a cold background plasma here, which is a good approximation for solar flares, particu-
larly because accelerated particles lose most of their energy in the cold chromosphere. However, in principle,
particles could gain energy as well by colliding with background particles when their velocities are smaller
than those of the background ones, and thus Coulomb diffusion in energy should be included in the future
(see more discussion in Chapter 10).

6The code actually solves for F (E, s, µ)/β2 = cf(E, s, µ)A(s)/(βA0) ≡ cΦA(s)/A0, where Φ is the same
as that defined in (McTiernan & Petrosian, 1990).
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of the acceleration region), and pitch-angle cosine µ. It is evaluated as

F (E, s, µ) =
1

A0

∫

cβf(E, s, µ)dA(s) = cβf(E, s, µ)
A(s)

A0
(7.24)

where f(E, s, µ) is the density distribution function in units of electrons cm−3 keV−1sr−1

(cf. fac(E) in the acceleration code which is integrated over all pitch angles), and we
integrate the differential electron flux cβf(E, s, µ) over the cross-sectional area A(s) of the
loop and then divide it by a constant equivalent area A0. Thus F (E, s, µ) (a real physical
flux) has units of electrons s−1 cm−2 keV−1sr−1 (in the code, keV−1sr−1 is replaced with
per mec

2 per unit pitch-angle cosine). The (angle integrated) injection from the acceleration
code serves as the boundary condition at s = 0, namely,

F (E, s, µ)|s=0 = Fesc(E)/2 , (7.25)

where the factor 2 =
∫ 1
−1 dµ = cos 0−cosπ is the range of the pitch-angle cosine. During the

steady state calculation, we also set a symmetric boundary condition at the injection site,
where particles running away from the domain is reflected back to the loop with identical
energy but opposite pitch-angle cosine.

Once we know the electron distribution at all the depths, we calculate the thin-target
nonthermal bremsstrahlung radiation intensity, I(ε, s), as a function of photon energy ε
and distance s. I(ε, s), emitted by a unit length along the loop, is integrated over the loop
cross-sectional area A(s) and has units of photons s−1 cm−1 keV−1,

I(ε, s) = A0

∫ ∞

ε
dE

[

np(s)
dσ

dε

∫ 1

−1
dµF (E, s, µ)

]

, (7.26)

where np(s) is the proton number density7 (np = ne in our case) and dσ/dε is the angle-
averaged8 differential bremsstrahlung cross-section given by Koch & Motz (1959). The
looptop (LT) emission is evaluated as

ILT(ε) = A0

∫ ∞

ε
dE

[

np(0)
dσ

dε

]

cβfac(E) , (7.27)

where np(0) = np(s)|s=0 = np ,ac is the proton density and cβfac(E) is the angle-integrated
electron flux, both in the acceleration region. The equivalent footpoint (FP) photon spec-
trum is calculated by averaging the intensity below the transition region, located at distance
of s = str

IFP(ε) =
1

smax − str

∫ smax

str

I(ε, s)ds . (7.28)

Both ILT(ε) and IFP(ε) can be compared with HXR observations, say, obtained by the
Yohkoh and RHESSI satellites. If the coronal density is negligibly tenuous and if the

7In general, np should include H+ as well as protons in He++ and other ions.
8Angle-dependent radiation will be included in the future (see Chapter 10)
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chromospheric density is sufficiently high, (smax − str)IFP(ε) would approach the thick-
target spectrum

Ithick(ε) =

∫ ∞

0
I(ε,N)dN , (7.29)

where dN = npds is the column depth.

7.2.3 NRL Hydrodynamic Model

The NRL Solar Flux Tube Model (MEL89) assumes a two-fluid plasma composed of elec-
trons and ions that can only move along the magnetic field in a flux tube, due to the
line-tying condition in a low-β environment. The user-specified geometry (e.g., vertical or
semi-circular) of the tube is characterized by A(s), the cross-sectional area of the tube as
a function of distance s, and g(s), the component of the gravitational acceleration in the
direction of the magnetic field. The model solves the one-dimensional equations of mass,
momentum, and energy conservation,

∂ρ

∂t
+

1

A(s)

∂

∂s
[A(s)ρv] = 0, (7.30)

∂

∂t
(ρv) +

1

A(s)

∂

∂s
[ρv2A(s)] = ρg − ∂P

∂s
, (7.31)

∂U

∂t
+

1

A(s)

{

∂

∂s
A(s)

[

(E + P )v − κe
∂Te

∂s
− κi

∂Ti

∂s

]}

= ρvg − Lrad + S, (7.32)

∂

∂t

(

Pe

γ − 1

)

+
1

A(s)

[

∂

∂s
A(s)

(

γvPe

γ − 1
− κe

∂Te

∂s

)]

= −Lrad + S + γeq(Ti − Te), (7.33)

where ρ is the mass density, v is the fluid velocity, and P = Pe + Pi is the total pressure,
a combination of the electron pressure Pe and the ion pressure Pi, which are given by the
equations of state

Pe = nekBTe and Pi = nikBTi , (7.34)

where kB is the Boltzmann constant, ne and Te (ni and Ti) are the electron (ion) number
density and temperature, respectively. Here, the combined kinetic and thermal energy is
given by

U =
1

2
ρv2 +

P

γ − 1
, (7.35)

where γ = 5/3 is the ratio of specific heats; κe and κi are the electron and ion thermal
conductivities, respectively,

κe = 1.1 × 10−6T 5/2
e , κi = κe/25 ; (7.36)

Lrad = nenpΦ(Te) is the radiative energy loss rate (MEL89), where np is the hydrogen
number density and Φ(Te) is the optically-thin radiative loss function; S is the heating rate,

S = S0 + Se , (7.37)
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where S0 is the background heating, set to be 8.31 × 10−3 ergs s−1 cm−3 (MEL89), pre-
sumably caused by coronal heating in the quiet sun active region, and Se is heating by
nonthermal electrons, which will be provided by the Fokker-Planck transport model in this

study. γeq = 1.4 × 10−17n2
eT

−3/2
e is the rate coefficient for electron-ion temperature equili-

bration; in this particular study, we assume Te = Ti and thus the γeq(Ti−Te) term vanishes.
We also assume that the plasma consists of fully ionized hydrogen. The electron and ion
number densities, ne and ni, are then related to the mass density by

ne =
ρZ

µmp(1 + Z)
and ni = ne/Z , (7.38)

where Z = 1.0 is the mean ionic charge and µ = 0.5 (in units of proton masses mp) is the
mean mass9 per particle.

The hydrodynamic equations are solved by a finite difference scheme. The code uses
time-step splitting, in which the hydrodynamic calculation takes place first, using the Flux
Corrected Transport (FCT) method, and then the implicit part of the code takes care of
thermal conduction and radiation. Note that there is no physical or artificial viscosity in
this model, but the FCT achieves similar effects to stabilize the calculation as artificial
viscosity usually does and make conservative physical quantities actually conserved in the
meantime. Because of lacking of viscosity, hydrodynamic waves, once excited, can exist
for a long duration with little or no damping, as we will see in Chapter 9. A reflective
(or symmetric) boundary condition is imposed at both the top (loop apex) and bottom
(deep into the chromosphere) boundaries. Details of the numerical scheme and the model
parameters can be found in Mariska et al. (1982) and MEL89.

7.2.4 Combining the Particle and Hydrodynamic Codes

We now describe how we combine the flare particle code and the NRL HD code. Since
the two codes are independent and mature on their own rights, there is no need to rewrite
a whole new code that includes functionality of both. Rather, one would like to have a
wrapper that can coordinate between the two codes and have them communicate while
running independently on each side. By doing so, one can keep each code essentially intact
and self-contained. Fortunately this is possible because the communication between the
two codes could be as simple as passing back and forth a 1D array. As we noted above,
in order to determine the electron distribution at each depth, the transport code needs
the background density profile that can be provided by the HD code. On the other hand,
the HD code needs to know how much energy10 is deposited by the accelerated electrons
as a function of distance, which can be obtained from the particle transport calculation.
Then this energy deposition rate (or electron heating rate) will work as a driver for the
hydrodynamics, which will change the density distribution, which, in turn, will be fed back
to the particle code. We detail below how to implement this approach.

9In the original model of MEL89, the plasma consists of fully ionized hydrogen and helium with the
helium assumed to be 6.3% of the hydrogen by number density, corresponding to Z = 1.059 and µ = 0.5724.
This minor difference would only affect the mass normalization here slightly.

10We neglect the momentum exchange between accelerated electrons and the background particle, which
is a valid approximation because of electron’s small mass. See Chapter 10 for a discussion on future work.
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Electron Heating Rate and Thermal Conduction

As we noted in §7.1, the heating rate is critical in HD simulations, but was not calculated
properly in previous works. Here we improve on this by calculating the electron energy loss
directly from the electron distribution obtained from the transport calculation, with two
equivalent approaches.

The electron heating rate Se (in units of ergs s−1 cm−3), as defined in the HD equations
(see eq. [7.37]), is equal to the energy deposition rate in a unit volume by fast electrons. It
can be evaluate from the energy loss rate ĖCoul (due to Coulomb collisions) as

Se(s) =

∫ Emax

Emin

dE

∫ 1

−1
f(E, s, µ)ĖCouldµ , (7.39)

where [Emin, Emax] is the range of the energy bins used, ĖCoul is given by equation (7.3), the
electron distribution function f(E, s, µ) can be obtained from the corresponding electron
flux F (E, s, µ) via equation (7.24).

Alternatively, one can calculate the (net downward) energy flux carried by the electrons

Ferg(s) =
A0

A(s)

∫ Emax

Emin

dE

[
∫ 1

0
µEF (E, s, µ)dµ−

∫ 0

−1
µEF (E, s, µ)dµ

]

, (7.40)

and differentiate it to obtain the net energy gain in a unit volume

Se(s) = dFerg(s)/ds , (7.41)

where µEF (E, s, µ) is the energy flux projected (by the factor µ) along the loop the factor
A0/A(s) accounts for the variation of the cross-sectional area. This approach is, in practice,
equivalent to the above one (eq. [7.39]), because, in the deka keV to hundreds of keV energy
range, the combination of synchrotron loss and bremsstrahlung HXRs only constitutes a
negligible fraction (. 10−4) of the total energy loss due to Coulomb collisions. We took the
second approach in our simulation, and let the transport code calculate the heating rate
and pass it to the HD code.

As to thermal conduction, we use the usual Spitzer conductivity without suppression,
unlike what we do for the decay phase (see Chapter 9). This is because, during the impulsive
phase, in addition to direct turbulence heating (believed to be present in the turbulence or
acceleration region), there is significant acceleration taking place. The energized particles
can escape and carry energy away from the acceleration region, which serves as a energy
“conduction” channel. In contrast, during the decay phase, acceleration already subsides,
and heating and suppression of conduction due to turbulence is the main energization agent.
In addition, strong turbulence during the impulsive phase might act differently from weak
turbulence in the decay phase. These arguments, however, are speculative and more in-
depth investigation is required in the future.

Code Communication Timescale

Ideally, the flare particle code and the hydrodynamic code should work interactively and
communicate at every time step during the time advance. Unfortunately, although we have a
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time-dependent acceleration code, the transport code is of steady state and it would require
extensive programming to upgrade it to a time-dependent version. However, fortunately,
under certain assumptions, the required programming work can be significantly simplified
and reasonably good accuracy can be achieved.

Our approach is to have the two codes communicate at certain intervals. Each com-
munication consists of two parts. The first part is that the HD code passes the density
profile to the flare particle code. Then the flare code runs a full steady state calculation
from acceleration of particles, to the particle transport and bremsstrahlung radiation. Then
it comes the second part of the communication, in which the flare code passes the electron
heating rate (energy deposition) to the HD code. The HD code then runs its own time-
dependent calculation until the next communication. Then two questions arise: (1) what
is the optimum timescale for the two code to communicate; (2) what heating rate function
should be provided to the HD code between adjacent communications. We address these
below.

(1) The communication timescale should not be shorter than that on which a steady
state particle transport calculation is valid. The timescale in the electron transport process
can be expressed in terms of the lifetime τe of electrons. It is determined by the energy loss
(mainly due to Coulomb collisions for nonrelativistic electrons) time in a given magnetic
loop geometry and the atmospheric condition. For a low-energy electron, the Coulomb loss
time is relatively short, but it would take relatively longer time for the electron to reach the
dense transition region where it can lose most of its energy. The opposite is true for a high-
energy electron. A combination of these factors results in the lifetime τe(E), which depends
on the electron energy E and the atmospheric structure. For example, Petrosian (1973, see
eq. (9) and Fig. 1 there) assumed a gravitationally stratified atmosphere with a scale height
of H = kT/mg, and obtained τe(E) as a function of E for nonrelativistic electrons. τe(E)
has a maximum (at some critical energy Ecr) which is (eq. (11) in Petrosian, 1973)

τe, max(H,ne) ≈ 0.07 sec

(

H

108 cm

)(

neH

1018 cm−2

)−1/4

, (7.42)

where ne is the electron number density at the injection site. For timescales greater than
τe, max, it is reasonable to assume a steady state solution for the F-P transport equation. To
be conservative, if we take the coronal temperature to be T = 106 K and the density at the
acceleration region to be ne = 1010 cm−3, we obtain τe, max = 1.5 s at Ecr = 65 keV. On the
other hand, if one assumes a constant coronal density of ne = 1010 cm−3 and an exponential
rise of density (with a scale height of H = 603 km, given T ≈ 104 K in the chromosphere)
starting at the transition region, then the required time is

te = l/v + τe,max(H,ne) . 0.1 sec

(

l

109 cm

)(

E

25 keV

)−1/2

+ 0.05 sec , (7.43)

where l is the length of the coronal portion of the loop, the electron velocity v is evaluated
with the non-relativistic approximation, and τe,max(H,ne) = 0.05 s (at Ecr = 6.5 keV) is
obtained from equation (7.42). For a loop of l = 104 km and an electron of E = 25 keV, such
a timescale is te . 0.15 s. We therefore take a conservative ∆t = 2 s as the time interval for
the two codes to communicate.
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(2) Since the ∆t = 2 s interval is much shorter than the HD response time11, between
adjacent communications, we assume that the energy deposition by nonthermal electrons
as a function of column depth Se(N) (in units of ergs s−1 cm2, where cm2 means per unit
column depth) is constant in time. This is true (i) if we neglect energy losses (synchrotron
and bremsstrahlung) other than Coulomb loss, which is valid for X-ray producing electrons
(energy range from tens of keV to hundreds of keV); and (ii) if the loop cross-sectional area
A(s) is a constant, i.e., a uniform loop. We have made the code meet these two conditions.
Then the spatial distribution of the heating rate Se(s, t) varies with time only according to
the redistribution of density and the variation of column depth as a function of distance,

Se(s, t) = Se(N)ne(s, t) . (7.44)

This means that at each time t, for a given distance s, we first identify its corresponding col-
umn depth N(s, t) =

∫ s
0 ne(s, t)ds, then use this N(s, t) to evaluate the heating rate Se(N),

and finally multiply Se(N) with the local density to convert the units from ergs s−1 cm2 to
ergs s−1 cm−1 (because Se(s)ds = Se(N)dN and dN = neds).

Summary of Communication: Task Flow Chart

Figure 7.1: Task flow chart for Particle & HD code communication

Start

?

HD initial state¾ Density ne(s)
Particle 1st run

? Heating rate Se(N)

?

HD run ∆t = 2 s¾ Density ne(s)
Particle run

6

11This can be characterized by the sound travel time, which is about 60 s in a coronal loop of 104 km long
with a temperature of T = 106 K (sound speed cs = 166 km s−1).
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Let us now summarize the communication between the two codes with the following
task flow chart. At the beginning of the simulation, the HD code passes its initial density
distribution to the particle code. Based on this density profile, the particle code runs its
first steady state calculation and returns the heating rate Se(N) as a function of column
depth N to the HD code. Now the HD code takes this heating rate and converts it to a
function of distance, Se(s), at each time step using the current density profile. While doing
so, the HD code advances a time interval of ∆t = 2 s, and then passes the updated density
distribution back to the particle code again. This finishes a full cycle of calculation and
next cycle starts over from the particle calculation again.

7.3 Simulation Result

Figure 7.2: Initial state of the flare loop for the HD simulation. Distance starts from the LT where
particles escape from the acceleration region.

Figure 7.2 shows the initial hydrostatic state of the plasma in one half of the loop
(assumed to be symmetric), which displays the electron number density, temperature, and
gas pressure vs. distance. We have a hot coronal region with T & 106 K and a transition
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region (TR) at around s = 10 Mm where T quickly drops to the chromospheric value of
104 K. The density, on the contrary, increases with distance from the tenuous (< 1010 cm−3)
coronal portion, experiences a sharp jump at the TR, and reaches close to 1015 cm−3 at the
bottom (∼ 4 Mm below the TR) of the simulation domain.

From the same initial state, we have run five cases using different heating model pa-
rameters (which are summarized in Table 7.1). For each case, we use the identical loop
geometry as MEL89 (see Chapter 9). We take a linear ramp in time for the normalization
of the electron heating, with a rise of 30 s followed by a decline of another 30 s. After
the first 60 s of impulsive phase calculation, we continue the simulation well into the decay
phase until t = 90 s. We describe each of the simulation cases in the rest of this section,
focusing on the evolution of the hydrodynamics and the energy and spatial distribution of
the accelerated electrons and bremsstrahlung photons. We defer our investigation on the
energy budget and the Neupert effect test of these case to next chapter.

7.3.1 Case R: Reference Calculation

It is instructive to run the first case with the original model of MEL89 and use it as a
reference for comparing new results from our model. We use almost identical parameters as
the “Reference Calculation” case in MEL89: spectrum index δ = 6 and “knee” energy E1 =
15 keV. The only two differences are: (1) here the “peak beam flux”,12 i.e., parameter F in
equation (9) of MEL89, is 2.67× 1010 ergs cm−2 s−1, while they used 5× 1010 ergs cm−2 s−1;
(2) we assume a fully ionized hydrogen plasma while they included helium which constitutes
6.3% of hydrogen number density.

The evolution of the flaring plasma is shown in Figure 7.3. We plot electron number
density ne, temperature T , gas pressure P , upward velocity v, energy deposition rate Se,
radiative loss rate Lrad, and heat conduction flux Fcond at selected times during the first
60 s of simulation. The plasma exhibits the same general evolution as that in Figure 1 of
MEL89, which we briefly account as follows. As is evident, electron beam heating (Se),
which acts as the driver of the simulation, is concentrated in the upper chromosphere just
below the transition region and heating in the corona is negligible early in the simulation.
Heat conduction also carries energy that is deposited in the corona by nonthermal electrons
down to the upper chromosphere, but this energy flux is overwhelmed by direct beam
heating, particularly on the early stage of the flare. This localized beam heating, although
counteracted by radiative loss that appears to be co-spatial, quickly heats chromospheric
plasma, produces overpressure, and drives mass upflow. A downflow (with a velocity down
to −115 km s−1) in a narrow region of the chromosphere is also present to counterbalance
the upward moment. Such a downflow is usually observed in blueshifted SXR or EUV
line spectrum. The downward momentum produced by electron heating could be partly
responsible for photospheric seismic waves observed during major flares (Kosovichev &
Zharkova, 1998; Kosovichev, 2006).

At t = 10 s, the upflow velocity exceeds 100 km s−1 and a discontinuity or an evaporation
front13 has already developed near the transition region (see the ne panel). It travels upward

12cf., the actual energy deposition flux in Table 7.1.
13The discontinuity is not necessarily a shock if the Rankine-Hugoniot (RH) relations are not satisfied.

We have not checked the RH relations since we are not concerned with such detailed gas dynamics here.
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Figure 7.3: Evolution of electron density, temperature, pressure, upward velocity, energy deposition rate
Se, radiative loss rate Lrad (in same units as Se), and heat conduction flux Fcond for Case R.
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and reaches the loop apex at ∼ 29 s. It is then reflected back and material piles up there
due to the reflective boundary condition imposed. This reflection can be understood as
plasma flow from the other end of the loop in a symmetric loop geometry where there is no
acceleration region present in the middle of the loop; or it can be assumed to be due to the
encountering of the plasma with the acceleration region boundary where the upflow is stuck
by strong turbulence, if we assume a geometry with an acceleration region sitting near the
LT. The upflow reaches its maximum velocity of 565 km s−1 at ∼ 35 s, which is delayed by
5 s from the maximum energy deposition at t = 30 s. The strength of evaporation subsides
afterwards, but the coronal density continues to rise through the end of the simulation.

Figure 7.4: History of various quantities (electron number density, temperature, and upward ve-
locity) at 1 Mm from the LT for Case R. Each variable is normalized to its maximum, as shown in
the legend. The density curve have two sharp jumps, one followed by the other. The first jump is
due to the arrival of the evaporation front from below, and the second one comes about because of
the reflection of the front at the loop apex (coming from above).

We can also inspect the plasma evolution by following the temporal variation of a phys-
ical quantity at a position fixed in space. Figure 7.4 shows the history of electron number
density, temperature, and velocity at s = 1 Mm (in the corona) from the loop apex. As can
be seen, the density and velocity stay almost constant until ∼ 25 s when the evaporation
front arrives and produces a sudden jump. The second jump in density results from the
evaporation front reflection. In contrast, the temperature varies much smoother. It attains
its maximum of 2.11 × 107 K at t = 44 s and decreases monotonically since then because
conductive cooling overtakes beam heating at this position in the loop.

7.3.2 Case A: Fiducial Run with SA Model

We used the same parameters for acceleration as in PL04 (see their Fig. 12), i.e., τ−1
p =

70 s−1, ne = 1.5 × 1010 cm−3, B = 400 G, kBT = 1.53 keV, and the acceleration re-
gion size L = 5 × 108 cm. The peak rate of particle injection was set at Q0 = 5.73 ×
1011electrons s−1 cm−3 to provide a peak energy deposition flux of 2.56×1010 ergs s−1 cm−2

similar to that of Case R. We chose 200 energy bins uniformly spaced in the logarithmic
space that covers the range of [10−3, 103]×511 keV. There are 24 pitch-angle bins set in the
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transport code, with 12 uniform bins symmetrically spanning each half of the [0, π] range
(0 ≤ θ < π/2 and π/2 < θ ≤ π; note θ 6= π/2). We modulate the injection rate Q(t, E)
linearly in time, with a 30 s rise followed by a 30 s decay.

Figure 7.5: Evolution of E2F (E) spectra for Case A, where F (E) is the angle-integrated electron
flux. The thick dashed, dotted, and solid lines indicate the LT, escaping, and equivalent thick-target
electron flux, respectively. The thin lines (from top to bottom: solid, dotted, dashed, dot-dashed,
triple-dot–dashed, and long-dashed ) are for the spectrum at distances of s = 4, 8, 10, 11, 12, and 13
Mm from the injection site at the LT, respectively. The legend includes the current values of τ−1

p ,
the particle injection rate Q0 (in units of electrons s−1 cm−3), and the distance (str) and column
depth (τtr, in units of 5 × 1022 cm−2) from the LT to the transition region.

The E2F (E) electron flux spectrum [where F (E) = f(E)βc is the angle-integrated
electron flux] at the LT (thick dashed line) is shown in Figure 7.5. It contains a quasi-
thermal portion at low energies and a nonthermal tail at high energies, with a smooth
transition in between (PL04). It does not invoke any artificial low-energy cutoff or energy
break. This particular spectrum shape is consistent with observed HXR spectra that can
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often be fitted with an isothermal plus power-law model. Since the acceleration parameters
(e.g., τ−1

p ) are set constant in time, this spectrum does not change in shape, but does
vary in normalization. The thick dotted line indicates the electron flux escaping from the
acceleration region, which is the input to the transport code and acts as a driver to the
electron-beam heated HD evolution. We describe the plasma evolution below and defer a
discussion of the corresponding particle transport and radiation effects afterwards.

HD Evolution

Figure 7.6 shows the evolution of the plasma in the loop. As we can see, the general
evolution is similar to that of Case R, though much faster. The evaporation front reaches
the loop apex at t = 22 s (instead of 29 s in Case R), the maximum upflow velocity of
627 km s−1 is attained at t = 22 s (instead of 565 km s−1 at t = 22 s in Case R), and the
maximum coronal temperature is 2.61 K (2.11 K in Case R).

These differences are a consequence of the spatial distribution of the energy deposition
Se, which first decreases (while it increases in Case R) with distance from the LT and then
increases and peaks just below the transition region. In addition, the peak of the Se curve
in the chromosphere is relatively narrower than that in Case R, which means a comparably
smaller fraction of energy is directly deposited in the chromosphere. This is because the
electron spectrum here (Fig. 7.5) has a smooth continuous distribution including the high-
energy nonthermal regime and the low-energy quasi-thermal regime. There is a significant
portion of the total energy content that resides in low-energy electrons. These electrons give
up most of their energy to the coronal portion of the loop, resulting in significant coronal
heating. The coronal temperature thus increases rapidly and produces a relatively sharp
temperature gradient and large heat conduction flux (see panels at t = 2 s and t = 5 s).
We note that the peak of the conduction flux, which is close to the LT at the beginning
(t = 2 s), shifts downward and reaches the transition region at t = 9 s when the upflow
velocity rises sharply and exceeds 100 km s−1. In this sense, the evaporation is driven more
by conduction than by direct heating. As evaporation develops and the coronal density
increases, the coronal fraction of the energy deposition increases as well and dominates over
the chromospheric portion on the late stage.

In contrast, the spectrum adopted in MEL89 is a power-law (δ = 6) with a low-energy
cutoff at E1 = 15 keV below which the electron spectrum has a positive index of 2. This
spectrum has its peak at 15 keV and electrons of this energy are stopped in the chromosphere
where they lose most of their energy, where the radiative loss (which acts like a sink in the
energy transfer) is most efficient. This means that a significant part of energy deposited by
beaming electrons is quickly radiated away (also see Fig. 8.2 and text there) in situ in the
upper chromosphere and a smaller fraction of energy is available to evaporate chromospheric
material than in Case A. Note that the conductively driven scenario in Case A has energy
input into the transition region and produces evaporation, which occurs slightly above the
radiatively-efficient layer in the upper chromosphere. This makes conductively-driven evap-
oration more efficient and results in higher upflow velocity and higher coronal temperature
and density, as can also be seen in Figure 7.19.
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Figure 7.6: HD evolution of various quantities for Case A, similar to Fig. 7.3.
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Figure 7.7: Evolution of electron flux vs. depth at different energies for Case A. From top to bottom,
the curves correspond to electron energies of 3.1, 6.1, 12.3, 24.5, 48.8, 97.4, and 294.1 keV, respectively.
The steps in the region of negative distance denote the average electron flux (fac(E)βc) in the acceleration
region, one half of whose length is shown here.
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Evolution of Electron Distribution

Figure 7.5 shows the evolution of electron flux spectrum at different locations in the loop.
The thick solid line represents the equivalent thick-target electron flux (see eq. [7.23]). As
expected, it appears to be much harder than the LT flux in the 10–1000 keV range. The
broken gray-scale lines (from top to bottom) are for spectra at s = 4, 8, 10, 11, 12, and
13 Mm from the LT injection site. Early into the flare (t = 2 s), the transition region is
located at s = 9.97 Mm and its column depth τ = 1.22×10−4 (in units of 5×1022 cm−2). At
this time, the top two gray-scale lines (solid and dotted) indicate spectra in the corona, which
are very similar to the escape flux because of small column depths from the injection site.
The other four gray-scale lines are spectra below the transition region, which, as expected,
become harder with an increasing deficit of low-energy electrons as column depth increases.
This is because only high-energy electrons can penetrate deep into the chromosphere.

In this simulation case, because the LT spectrum shape does not change with time (so
does the escape flux and thick-target flux), the spectrum at a particular column depth should
also remain constant in shape and only vary in normalization. However, as time progresses,
evaporation takes place and the height of the transition region drops, while the coronal
density increases. This causes variations with time of the column depth (and the electron
spectrum) at each position in space. This is just what we see here. At t = 56 s, for example,
the transition region shifts down to s = 12.4 Mm at a column depth of τ = 2.02× 10−3. In
the lower-right panel of Figure 7.5, only one chromospheric spectrum is left, and the other
(coronal) spectra are very alike because they are exposed in the corona and their column
depths are very close.

We can also check the electron flux distribution vs. distance at different energies,
which is shown in Figure 7.7. We also display the flux in the acceleration region (LT)
for comparison as the region of negative distance. In general, the electron flux decreases
with distance from the injection site. The slope of these curves is steeper for low energy
electrons than that for high-energy electrons because low-energy electrons lose energy faster
(due to the 1/β dependence of Coulomb loss rate). The flux drops much steeper in the
chromosphere (than in the corona) because of its high density and thus large column depth
per unit distance. This produces a break in the curve around the transition region and
wherever a sharp density change occurs. At t = 16 s, for example, a break near s = 5 Mm is
obvious for electron energies of 3.1 and 6.1 keV. This is actually where the evaporation front
is located. At t = 22 s, because the evaporation front already reaches the apex of the loop
and the density in the whole loop has increased significantly, the electron flux distribution
is much steeper than before in the whole coronal portion. Similar evaporation signatures
are present throughout the duration of the flare (see the right column of Fig. 7.7).

Evolution of Bremsstrahlung Radiation

Figure 7.8 shows the bremsstrahlung photon spectra at different depths that are produced
by the accelerated electrons discussed above (see the corresponding Fig. 7.5). Likewise, the
LT photon spectrum (thick dashed) also shows a thermal-like component in the low-energy
range. It hardens in the intermediate energy range and softens again to the high-energy
end. The FP spectrum (thick solid) is much harder (than the LT spectrum), and in the
range from tens of keV to a few hundred keV, it mimics the commonly observed power-law
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FP spectrum. As distance increases, the spectrum (thin lines) becomes harder because the
electron spectrum has the same trend of variation.

Figure 7.8: Evolution of νFν photon spectra at different locations for Case A. The spectrum is
of photons emitted by a unit length of the loop, integrated over the loop cross-sectional area. The
thick dashed line indicates the LT spectrum, and the thick solid line is the averaged spectrum below
the transition region, which is analogous to observed FP spectra. The thin lines, same as those in
Fig. 7.5, are for distances s = 4, 8, 10, 11, 12, and 13 Mm from the LT.

Note that, at t = 2s, the two coronal spectra (thin solid and dotted, close to the LT
spectrum in shape) are lower than the first chromospheric spectrum (thin dashed) at all
energies. This is because early in the course of the flare, the coronal density is low and thus
the bremsstrahlung production there is at a low level too. As evaporation develops and the
coronal density increases, the photon spectrum in the upper-corona portion (s ≤ 8 Mm) of
the loop becomes harder because the electron spectrum there hardens. At the same time, as
more and more volume of the loop turns into the corona (since the transition region drops),
some locations previously buried in the chromosphere are now exposed in the corona. These
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locations have lower (than before) column depth and thus softer electron spectrum, which
produces softer photons spectrum as well. This can be seen from the evolution of the three
spectra at s= 10, 11, and 12 Mm in Fig. 7.8. At t = 56 s, all the thin-lined spectra (except
the long-dashed line) are from coronal locations and they appear alike in both shape and
normalization simply because the density differences among these locations are now much
smaller than before.

The spatial distribution of the photon emission at different energies (same as in
Fig. 7.7) is plotted in Figure 7.9. On the early stage of the flare evolution, low-energy
emission comes primarily from the LT, while high energy emission is concentrated below
the transition region. Because the bremsstrahlung radiation is proportional to the product
of the electron spectrum and the local proton density, the photon emission profile can
reveal more details of the density distribution than the electron flux profile (Fig. 7.7). As
is evident, the emission profile follows the density features (including the evaporation front
and the density spike at the transition region, see Fig. 7.6) very well. As the flare develops
and evaporation continues, more and more emission comes from the coronal portion of the
loop. At low energies, the emission drops with distance much steeper than before in the
corona due to the dramatic density increase there. At intermediate energies, we find a
temporal transition from FP-dominated emission to LT-dominated emission. At very high
energies, such a change is not present because even the high density corona is still more
or less transparent for high energy electrons. However, the retreat of the transition region
down to chromospheric heights is visible in all the emission profiles.

We should bear in mind that all the emission features described here are not necessarily
observable given the current technology and spatial resolution of the active space missions.
However, it is worth trying to make a comparison with observations. As shown in Chapter
6, in the 2003 November 13 flare, we identified an XR emission feature that shifts from
the FP toward the LT with time. In this simulation case, we also find the bremsstrahlung
XR emission tracks the evaporation front. At low energies, e.g., E = 3 keV, there is a
local brightness enhancement at the evaporation front due to the sharp jump of density and
thus increased bremsstrahlung productivity. Such a local brightness blob can exceeds the
FP intensity (spatially integrated and averaged) and is comparable to the LT intensity. In
principle, this blob could be imaged by RHESSI and could be responsible for the observed
moving source. Note that at high energies, although the evaporation front is also visible
in the HXR emission profile, its intensity is dwarfed by the FP emission and thus is not
observable due to limited dynamic ranges of the instruments (e.g., 10 for RHESSI ). On the
other hand, thermal emission from the heated and evaporated plasma could also contribute
to low energy X-rays, and such contributions could be comparable at certain energies. Of
course, as photon energy increases, the thermal emission drops quickly due to its exponential
decay with energy; and thus thermal contribution at high energies are negligible compared
with nonthermal emission. At what photon energy thermal and nonthermal emissions are
comparable? Answers to this question depends on the electron spectrum, as well as the
density and temperature distribution of the thermal plasma. It would be interesting to check
the relative importance of thermal vs. nonthermal emission and their spatial distribution,
with different model parameters. Unfortunately, such a study would be beyond the scope
of the current investigation.
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Figure 7.9: Evolution of photon emission vs. depth at different photon energies of Case A. As in
Fig. 7.7, the energies are 3.1, 6.1, 12.3, 24.5, 48.8, 97.4, and 294.1 keV.
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7.3.3 Case B: Variable Electron Spectrum

This is the second simulation case using the combine particle and HD code. In addition
to the time modulation of the spectrum normalization, we vary the acceleration rate τ−1

p

linearly with time, in the same triangular pattern. This means that the electron spectrum
experiences a soft-hard-soft variation, as is commonly observed in solar flares (Grigis &
Benz, 2004), and can be seen here.

Figure 7.10 shows the evolution of the electron spectra at different depths. Clearly,
at the beginning (t = 0 s) when there is very little acceleration (τ−1

p = 2.33 s−1), the spectra
at all the depths look similar to the injected thermal distribution (not shown) which has
a sharp exponential cutoff. Note that some electron spectra at large depths are too small
to appear in the plot due to the extreme softness of the spectrum and the resulting sharp
decrease of electron flux with distance. As time proceeds and the acceleration rate increases,
the spectrum becomes harder and harder, particularly in the energy range of [10, 103] keV.
At t = 30 s, the thick-target flux exhibits a hump with a positive slope. Meanwhile, the
quasi-thermal component at the low-energy end is present all the time. After the peak
time of 30 s, spectrum softening takes place and the spectrum shape returns to that of the
quasi-thermal one in the end. The corresponding photon spectra (Fig. 7.11) show the same
trend of soft-hard-soft variation. Other spectrum (of both electrons and photons) variations
(such as those due to chromospheric evaporation) are similar to those of Case A.

Figure 7.12 shows the evolution of the electron flux (left) and photon intensity (right)
vs. distance at different energies, which is similar to that of Figures 7.7 and 7.9, respec-
tively. One of the main differences is that electron spectrum here is soft on the early and
late stages, and consequently the plot spans a wide range on the vertical scale.

Another spectrum feature that makes Case B different from Case A is the escaping
electron flux. As we can see from Figure 7.10, on the early and late stages of the flare when
the acceleration rate is low, the escape flux (thick dotted) and the LT flux (thick dashed)
are almost identical above ∼ 10 keV; below such an energy, their difference increases with
decreasing energy. Around the acceleration rate peak time (similar in Case A), such an
critical energy shifts to > 103 keV. This is because the escape flux is inversely proportional
(eq. [7.21]) to the escape timescale, Tesc, which depends on the scattering timescale τsc
through equation (7.20). From equations (7.22), (7.16), and (7.12), we see the escape-to-LT
electron flux ratio Resc

14 is a decreasing function of the acceleration rate τ−1
p . When τ−1

p is
low and the scattering timescale τsc is large, at a given energy, Resc would be relatively large.
Because of this, there are relatively more electrons that escape the acceleration region and
deposit their energy into the loop in Case B than in Case A, since here τ−1

p has a triangular
time profile with its peak value equal to that of Case A (which is constant in time there).
We find the mean energy deposition flux here is 9.8 × 1010 ergs s−1 cm−2, while in Case A
it is 8.3 × 1010 ergs s−1 cm−2 (also see Table 7.1). Since this case has a larger energy input
rate, we would expect stronger chromospheric evaporation here, which we discuss below.

Let us now check the corresponding HD evolution, which is shown in Figure 7.13 At
the very beginning, because very little acceleration takes place and the spectrum is very soft,
the energy deposition curve drops sharply (cf., Case A) with depth into the chromosphere.

14The functional (vs. E) form of Resc(E) would depends on that of Tesc(E) or τsc(E). See Figs. 11 and
12 in PL04.
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Figure 7.10: Same as Fig. 7.5 (electron spectra at different depths), but for Case B. Note that at
t = 0 s, some spectra at large depths (s > 10Mm) are too small to be shown.
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Figure 7.11: Same as Fig. 7.8 (evolution of photon spectra at different depths), but for Case B.
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Figure 7.12: Evolution of electron (left) and photon (right) fluxes vs. distance at different energies
(same as Figs. 7.7 & 7.9) for Case B. Time goes from top to bottom (note different vertical scales).
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Figure 7.13: HD evolution of various quantities for Case B.
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As noted earlier, low-energy electrons are more efficient at heating the corona and we would
expect that the softer spectrum, on top of the larger escaping electron flux discussed above,
will generally result in stronger coronal heating. This is just the case in this run, which
shows a faster evolution and more dramatic evaporation than Case A. At t = 7 s (vs. 9 s in
Case A), the peak conduction has already reached the transition region and upflow velocity
has become greater than 100 km s−1. At t = 20 s (cf., 22 s in Case A) the evaporation front
is reflected at the loop apex and at the same time the upflow attains its maximum velocity
of 718 km s−1 (cf., 627 km s−1 at t = 32 s in Case A). This case has also the highest values
of maximum downflow velocity, maximum coronal temperature and density out of the five
cases under study (see Table 7.1).

7.3.4 Case C: Harder Electron Spectrum

In this case, we set τ−1
p = 100 s−1, which means higher rate of acceleration, and we would

expect harder electron spectrum than Case A (τ−1
p = 70 s−1). This is true as can be seen

from the electron and photon spectra shown in Figure 7.14. Compared with Case A, the
electron (left) flux also decreases with distance slightly slower and the photon (right) distri-
bution shows relatively more emission coming from below the transition region than in the
corona (see Fig. 7.15). The normalization of HXR emission15 is also much higher than that
of Case A, again, because the harder electron spectrum here has a higher bremsstrahlung
yield (see, e.g., Fig. 6.11).

Another effect of the larger acceleration rate is the relatively smaller flux of escaping
electrons that enters the loop. Although there are more electrons in the high-energy portion
of the spectrum (thus more energy content there), most of the energy is still contained in
the low-energy electrons because of the steepness of the spectrum). Therefore, the addition
of energy due to more accelerated high-energy particles is relatively small, and it loses to
its competing factor, i.e., the smaller escape flux, which produces a smaller overall energy
flux input to the loop than Case A.

We note from Figure 7.16 that the energy deposition rate decreases slower with distance
in the corona and beyond the transition region, particularly in the late phase of the flare,
than that in Case A. This is due to the harder spectrum we have here, which produces
slightly less coronal heating and more chromospheric heating. In addition, the relatively
smaller escaping electron flux here results in less energy flux. For the same reasons discussed
above, as opposed to Case B, we would also expect slightly weaker evaporation and slower
evolution of the plasma, which is the case (see Table 7.1 and Figs. 7.19 and 7.16). For exam-
ple, the maximum coronal temperature and density are 2.48× 107 K and 7.84× 1010 cm−3,
respectively, which is on the order of 10% lower than those in Case A. MEL89 reached a
qualitatively similar conclusion by using a harder (δ = 4, vs. 6) power-law spectrum.

7.3.5 Case D: Smaller Normalization

In the last case, we used smaller normalization of Q0 = 5.73 × 1010particles s−1 cm−3,
which is about one order of magnitude smaller than the fiducial Case (A). This change is

15The spatially integrated HXR light curve and its normalization can be seen in Fig. 8.11 of next chapter
too.
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Figure 7.14: Evolution of electron (left) and photon (right) spectra at different depths for Case C.
Time goes from top to bottom (similar to Figs. 7.5 and 7.8).
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Figure 7.15: Evolution of electron (left) and photon (right) fluxes at different energies for Case C
(similar to Figs. 7.7 and 7.9).
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Figure 7.16: HD evolution of various quantities for Case C.
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Figure 7.17: HD evolution of various quantities for Case D.
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similar to those adopted in earlier HD simulations (see, e.g., Fisher et al., 1985c). The
electron and photon spectra and spatial distribution are shown in Figure 7.18, which, as
expected, all show similar shape as in Case A, but with a smaller normalization. As to the
hydrodynamics, we would accordingly expect much weaker evaporation and slower and less
dramatic HD evolution, as can be seen from Figure 7.17.

Figure 7.18: Electron & photon spectrum and flux spatial distributions for Case D at the peak
injection time.

We note that, in this simulation case, we have a very low peak energy deposition flux
of 2.58 × 109 ergs cm−2 s−1, while the maximum upflow velocity is at a moderate value
of 303 km s−1. Fisher et al. (1985c), however, reported that the evaporation velocity is
sensitive to the energy flux carried by nonthermal electrons, and they found an energy flux
F < 3× 1010 ergs cm−2 s−1 results in a gentle evaporation (v < 100 km s−1). This difference
is because Fisher et al. (1985c) considered a power-law electron spectrum with a sharp low-
energy cutoff of 20 keV (cf., 15 keV of MEL89), while our model has a continuous electron
distribution extending from the thermal background at low energies to the nonthermal tail
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at high energies. For the same reason noted above, low-energy electrons are more efficient
in evaporating the chromospheric plasma via conduction. Consequently, although Case D
has a low energy flux, it can produce a moderately high evaporation velocity, because a
significant portion of this energy flux resides in low-energy particles. In addition, Fisher
et al. (1985c) used an index of δ = 4 for the power-law electron spectrum, which is somewhat
hard and thus less effective in evaporating chromospheric material than a softer electron
population. We also note that Milligan et al. (2006), in supporting the result of Fisher
et al. (1985c) from their joint EUV Doppler and HXR observations, also used a power-law
electron spectrum with a cutoff energy.

7.3.6 Comparing The Cases: A Summary

Table 7.1: Summary of simulation cases.
Cases τ−1

p Q0 Fmax F̄ vmax tvmax
vmin tv>100 tapex Tmax nmax

( s−1) ( km s−1) (s) ( km s−1) (s) (s) (107 K) (1010 cm−3)
R δ = 6 — 2.54 8.58 565 35 -115 10 29 2.11 6.96

E1 = 15 keV
A 70, const 57.3 2.56 8.30 627 32 -113 9 22 2.61 8.82
B peak=70 57.3 2.54 9.80 718 20 -194 7 20 2.65 9.84
C 100, const 57.3 2.21 7.20 601 35 -153 9 23 2.48 7.84
D 70, const 5.73 0.258 0.853 303 43 -90.3 22 39 1.20 1.93

NOTE — τ−1
p is set as a constant except for Case B in which τ−1

p varies linearly with time and its peak value
is 70; Q0 (in 1010 s−1 cm−3): peak value of injected number of electrons; Fmax (in 1010 ergs s−1 cm−2) and F̄
(in 109 ergs s−1 cm−2): peak and mean energy deposition flux integrated over the whole loop; vmax and tvmax

:
maximum upflow velocity and time at which it is reached; vmin: maximum downflow velocity, appearing in the upper
chromosphere; tv>100 and tapex: time at which the upflow velocity exceeds 100 km s−1 (usually when the conduction
front reaches the transition region) and the density jump (evaporation front) reaches the apex of the loop, respectively;
Tmax and nmax: maximum coronal temperature and density.

We now summarize the comparison among the five cases, particularly of their HD re-
sponse. The key parameters are listed in Table 7.1. The first two parameters that we care
about are the maximum and mean electron energy deposition fluxes (Fmax and F̄ ), because
they determine, to some extent, the consequent HD evolution. As we can see, in terms of
these two parameters, Cases R and A–C are very close, while Case D stands alone as a
dwarf (also in terms of all the other parameters). Let us now take a close look at the group
of Cases R and A–C, using Case A as the fiducial point.

Case R has a similar value of Fmax as Case A (and even a slightly higher F̄ ). However,
its HD evolution is less dramatic. Its maximum upflow velocity of vmax = 565 km s−1 is
much lower than the 627 km s−1 value of Case A; it takes longer (at t = 29 s) for the
evaporation front to reach the loop apex, as opposed to the 22 s of Case A; the maximum
coronal temperature of Tmax = 2.11 × 107 K and maximum coronal density of nmax =
6.96 × 1010 cm−3 are lower (by tens of percent) than those of Case A. By these criteria,
Case R is also the extreme case of weak evaporation among the whole group of Cases R and
A–C. Such a difference, as we elaborated earlier, mainly comes from the different electron
spectrum, a power-law with a low-energy cutoff, that Case R assumes, while all the other
cases take a continuous spectrum that extends to the low-energy quasi-thermal component.
Another contribution to the different HD evolution is that Case R uses the approximate
analytical solutions for the heating rate (e.g., Emslie, 1978), while we performed more
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rigorous Fokker-Planck calculation for the other cases.

Figure 7.19: Comparison of history of various quantities (electron number density, temperature,
gas pressure, and upward velocity) at 1 Mm from the LT for the five cases. Note that each of the
density and pressure curve general includes two sharp jumps, which are caused by the arrival of the
evaporation front, similar to that shown in Fig. 7.4.

Case B, in contrast, is another extreme in the group of Cases R and A–C. It has a
very similar maximum energy flux, compared with Case A, but it has a mean energy flux
about 18% higher (also the highest in the group), because Case B has a softer (except at
the peak energy input time t = 30 s) electron spectrum and thus a higher escaping electron
flux than Case A. Consequently, this case has the strongest evaporation, with a maximum
upflow velocity of 718 km s−1, coronal Tmax = 2.65 × 107 K and nmax = 9.84 × 1010 cm−3,
all being the highest in the group. This is also because the softer electron spectrum here
has relatively more low-energy electrons, who contribute more to heating the corona than
heating the chromosphere. This generally results in a higher coronal temperature and more
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dramatic chromospheric evaporation, for the reason discussed earlier.
Case C, on the other hand, has a harder electron spectrum (τ−1

p = 100 s−1) and some-
what smaller energy input rates (Fmax and F̄ are smaller than those of Case A by ∼ 13%).
The harder electron spectrum generally results in more direct chromospheric heating than
coronal heating, and it is less efficient in evaporating plasmas due to the competing radia-
tive loss (see earlier discussions). Consequently, the resulting coronal Tmax = 2.48 × 107 K
is 5% lower and nmax = 7.84×1010 cm−3 is 11% lower, and the maximum upflow velocity of
vmax = 601 km s−1 is 4% smaller than that of Case A. We also note Case R has a somewhat
larger downflow velocity (vmin = −153 km s−1) than Case A (vmin = −113 km s−1), which
is due to more in situ direct chromospheric heating by its harder electron spectrum.

We can appreciate some of the above differences among the simulation cases from a
different angle. Figure 7.19 shows the history of the electron number density ne, temperature
T , gas pressure P , and upward velocity v at s = 1 Mm (in the corona) from the loop apex for
all the five cases. As can be seen, Case D (dot-dashed) is an outlier and the curves of other
cases (the group of Cases R and A–C) more or less cluster together. Among this group,
Case R (long-dashed) is much smaller in the values and its response is significantly delayed
compared with the other three. Its temperature, in particular, increases more slowly and
the maximum value is much less than Cases A–C, whose differences in temperature are
much smaller. This indicates much weaker coronal heating in Case R, as mentioned before.

7.4 Summary and Discussion

We have performed a combined simulation of nonthermal particles using the unified F lare code
(of particle acceleration, transport, and radiation) and of the hydrodynamic response of the
atmosphere using the NRL HD code. We summarize our results as follows.

1. We have demonstrated that a combined simulation of particles and HD response is
possible and have engineered the two codes to work together. This accomplishment
marks a significant advance in computational high-energy solar physics in general and
provides a powerful simulation tool to improve our understanding of solar flares in
particular.

2. We have shown that using the more realistic electron spectrum from the SA model
affects the spatial distribution of energy deposition and thus influences the HD evolu-
tion. The quasi-thermal component in the electron spectrum produces more coronal
heating than previous models, which have a low-energy cutoff (e.g., E1 = 15 keV) in
the power-law distribution and thus have more direct chromospheric heating. Because
of the cospatial radiative loss in the upper chromosphere, direct chromospheric heat-
ing results in a significant portion of the energy being radiated away and less energy
left available to evaporate the plasma. In this sense, our new model generally drives
chromospheric evaporation more efficiently.

3. The change of the acceleration rate (τ−1
p ) affects the accelerated electron spectrum,

as well as the escaping electron spectrum, and thus modifies the consequent HD
evolution. In general, a higher acceleration rate produces a harder electron spectrum
but smaller escaping electron flux, because stronger turbulence scatters particles more
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and traps them longer in the acceleration region. These two factors add together
to produce less coronal heating (although relatively more chromospheric heating).
Therefore, for the same reason mentioned above, this results in a comparably weaker
chromospheric evaporation for a harder electron spectrum.

4. For the reasons noted above, the overall energy input rate is only one indicator, to
some extent, of the agent for HD energetics. A smaller energy deposition flux (e.g.,
the F̄ value, Case A vs. Case R) does not necessarily yield a slower HD evolution
or a weaker chromospheric evaporation. Therefore, detailed energy deposition by
electrons, particularly its spatial distribution affects the resulting HD response.

5. Variation in the electron spectrum influences the HD response and bremsstrahlung
emission in different ways. A harder electron spectrum can produce HXRs more
effectively due to its higher bremsstrahlung yield, but does not necessarily produce
more heating (e.g., Case C). Therefore, HXRs alone should not be used as an indicator
of the electron energy input rate or subsequent plasma heating. This will be addressed
in detail regarding the Neupert effect in next chapter.

This simulation experiment has just been started. However, it opens a door to a vast
area of applications to many other research areas where particle acceleration and transport
and plasma flows are present, such as stellar flares and flares near the black holes and
on the accretion disks. For example, We (Liu, W. & Airapetian, 2008) have proposed to
apply this technique to simulate auroral processes on Jupiter-like planets around red giants.
There is plenty of room for future improvement in both numerics and physics, which will
be discussed in the Chapter 10.


