
Chapter 8

Testing the Neupert Effect With
the Combined Fokker-Planck and
Hydrodynamic Codes

8.1 Energy Budget and the Neupert Effect

As shown in Chapter 6 (also Liu, W. et al., 2006), a simple test of the Neupert effect does
not yield a better correlation between the SXR derivative and the electron power than
that between the former and the HXR flux. This is not expected to be the case, but it
is not surprising either because of nonlinearity involved in the energy redistribution and
radiation processes. To further understand this question, one needs to check the energy
budget and calculate HXR and SXR radiation properly. Veronig et al. (2005) investigated
the Neupert effect using RHESSI observations and reached similar conclusion as we did.
However, they calculated the various energy contents in an approximate way. The combined
HD and particle calculation we have done here can help shed light on this question more
quantitatively.

In general, the total energy U(t) in the plasma consists of thermal energy Uth(t), kinetic
energy Uk(t), and gravitational energy Ug(t).

U(t) = Uth(t) + Uk(t) + Ug(t), (8.1)

which can be readily calculated (integrating over the loop volume) from the distribution of
density ρ (or ne and ni), temperature T , velocity v. For example,

Uth =

∫

P

γ − 1
dV =

∫

3nekTdV, (8.2)

for γ = 5/3, and ne = ni. We set the reference level (zero height) of the gravitational
potential at the bottom boundary (about 4 Mm below the transition region) and this gives
the the value of Ug about 1/3 of the total energy in the initial state (t = 0). We find in all of
our simulations that the temporal variation rate of the gravitational energy only constitutes
about 1% of that of the total energy and thus is unimportant in the energy budget (and
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150 CHAPTER 8. TESTING THE NEUPERT EFFECT

not shown in our discussion below). The time derivative of these energies,

U̇(t) = U̇th(t) + U̇k(t) + U̇g(t), (8.3)

gives the net energy gain of the system and should be balanced by the energy input (by
electrons) rate Ėe and the energy loss rate L, namely,

U̇ = Ėe − L . (8.4)

The total energy loss rate generally has two components, radiative loss (Lrad) and conductive
loss (Lcond) from the loop volume. In this particular study, the conduction flux vanishes at
both the top and bottom boundaries, where we set the symmetric boundary condition and
fix the temperature at T = 104 K, respectively, both giving rise to ∇T = 0. Therefore, the
only energy loss channel is through radiation (UV and optical),

L = Lrad + Lcond ; Lcond = 0 =⇒ L = Lrad . (8.5)

Thermal bremsstrahlung radiation at photon energy ε produced by a single temperature
(i.e., Maxwellian distribution) plasma can be calculated via (Cox 2000, p. 184; Tandberg-
Hanssen & Emslie 1988 p. 114):

ISXR = D(EM)
exp(−ε/kT )

ε
√
T

g(ε/kT ), (8.6)

in which
D = (8/πmek)

1/2 κBHZ
2 = 5.7 × 10−12Z2( cm3 s−1 K1/2),

where Z is the mean ionic charge which equals unity in our model and κBH = (8α/3)r20mec
2 =

7.9× 10−25 cm2 keV is the constant in the Bethe-Heitler bremsstrahlung cross-section (α =
1/137), EM =

∫

nenidV =
∫

n2
edV is the emission measure (assuming ne = ni), g(ε/kT ) =

(kT/ε)2/5 is the Gaunt factor (valid for temperature range T > 7 × 105 K, Li et al. 1993).
Substituting these quantities into equation (8.6), we have

ISXR =
5.7 × 10−12

ε
√
T

exp
(

− ε

kT

)

(

kT

ε

)2/5 ∫

n2
edV (photons s−1 keV−1), (8.7)

where ε is in keV, T in K, and ne in cm−3. In contrast to Uth, ISXR depends on ne and T
nonlinearly. In addition, ISXR is not a monotonic function of T (see Fig. 8.1). Differentiating
equation (8.7) gives the temperature where the maximum of ISXR is located,

∂ISXR

∂T
=
ISXR

T

(

ε

kT
− 1

10

)

=⇒ Tmax = 10ε/k, (8.8)

below (above) which ISXR increases (decreases) monotonically with T . In other words,
when a plasma is overheated and its temperature exceeds 10ε/k, its thermal radiation
will decrease with increasing temperature1. This introduces more nonlinearity into the

1However, the total bremsstrahlung radiation increases as
√
T .
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dependence of ISXR on T . In the low temperature range, T < Tmax, however, a positive
correlation (not necessarily linear though) between the thermal bremsstrahlung radiation
ISXR and the thermal energy Uth is expected. Or equivalently, their time derivatives, İSXR

and U̇th, would also exhibit a similar correlation.

Figure 8.1: Thermal bremsstrahlung emissivity as a function of plasma temperature at different
photon energies: ε = 1.6, 3.1, 6, 12.4 keV. The open circles mark the maxima of these curves at the
corresponding temperature of Tmax = 10ε/k.

The GOES low channel (1–8 Å , 1.6–12.4 keV) flux is usually used as the SXR emission
in Neupert effect studies. As long as kT < 16 keV (which is usually the case for solar
flares) the condition of kT < 10ε is satisfied in the entire 1–8 Å channel, so that ISXR is an
increasing function of T and we expect a positive İSXR–U̇th correlation. To check if such
an correlation is present in our five simulation cases we calculate, as shown in the following
subsections, the thermal bremsstrahlung emission at ε = 1.6 keV 2 and ε = 6 keV, which
are at the low energy end and near the middle of the 1–8 Å channel, respectively.

8.2 Case R: Reference Calculation

8.2.1 History of Energy Budget

Let us check the energy budget history of Case R, which is shown in Figure 8.2. The
total energy, thermal energy, and kinetic energy integrated over the whole loop are plotted
in panel a; their time derivatives together with the electron energy deposition power Ėe

and radiative loss rate Lrad are shown in panel b. As is evident, early on (t . 15 s) most
of the energy deposited by electrons is quickly radiated away. This is because the coronal
density is low at this time and the electron energy deposition is concentrated in the upper

2Note that continuum emission dominates over line emission in the GOES 1–8 Å channel (Culhane &
Acton, 1970) and thus thermal free-free emission at a photon energy of 1.6 keV would be a good protocol for
the GOES 1–8 Å flux. We take the low energy end (1.6 keV) because of the exponential decay (with photon
energy) of thermal free-free emission. However, if one attempts to make a direct comparison with GOES

observations, line emission must be calculated, say, using the current Chianti code, and then be added to
the continuum and integrated over the entire 1–8 Å range, which is beyond the scope of this study.
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chromosphere where radiative loss is the highest (see Fig. 7.3). As a result, only a small
fraction of electron energy is available to heat the plasma and produces a slow increase of
the total energy (Fig. 8.2b). However, as the flare evolves and chromospheric evaporation
takes place, the coronal density increases and more electron energy is deposited above the
transition region. This part of energy in turn heats and evaporates plasma more efficiently
than in the upper chromosphere. Therefore, the radiative loss rate gradually drops and its
competitor, electron energy deposition, takes over the control of the energy budget. This
effect is present in Figure 8.2b as the rapid rise of the total energy change rate at about
t = 20 s.

Figure 8.2: History of energy budget and X-ray emission for Case R. (a) Spatially integrated total
energy (U), thermal energy (Uth), and kinetic energy (Uk) of the whole loop. (b) Time derivative (U̇ ,
U̇th, and U̇k) of the above three energies (same line styles), together with the total electron energy
deposition power (Ėe, solid) and the radiative loss power (Lrad, long dashed). (c) SXR fluxes (ISXR,
solid) at photon energy of 1.6 (thin) and 6 keV (thick) and their time derivatives (İSXR, dotted). The
6 keV light curve is rescaled up by a factor of 50.

The energy partition between the thermal and kinetic energy also evolves with time.
Early in the flare, because evaporation is still in its infancy, the kinetic energy of the
system is very small, and the total energy change is dominated by the variation of the
thermal energy (Figs. 8.2a and 8.2b). For example, at t = 10 s, the kinetic energy is only
8.35 × 1023 ergs changing at a rate of 1.91 × 1023 ergs s−1, compared with the values of the
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thermal energy: Uth = 3.99×1026 ergs and U̇th = 3.50×1024 ergs s−1. As evaporation grows,
the kinetic energy rises gradually, which makes the thermal energy deviates from the total
energy curve at about t = 15 s. The kinetic energy change rate reaches its maximum at
t = 28 s just before the evaporation front arrives at the loop apex. Afterwards, U̇k decreases
quickly because of the reflection of the evaporation front and part of the kinetic energy is
converted into the thermal energy due to local gas compression at the apex, which leads
to the rapid rise of the U̇th curve (Fig. 8.2b), although there is no sudden change in the
electron energy deposition at this time. This means that, on top of the electron beam
heating, gas dynamics can also change energy partition and thus can modulate the thermal
energy which would be manifested in the change of the SXR flux (see below). (This would
produce further deviation from the Neupert effect.)

Figure 8.3: Consistency test of eq. (8.4) for Case R. (a) The electron energy deposition power minus
the radiative loss (Ėe − Lrad) vs. the total energy change rate (U̇). The diagonal line corresponds
to a perfect agreement. (b) Pearson linear (dashed) and Spearman rank (solid) cross-correlation
coefficients of the two quantities shown in (a), plotted as a function of the time lag. The two
coefficients have their maxima of 0.99950 and 0.99956, respectively, at the zero lag.

It is necessary to see if energy gain and loss is actually balanced as a consistency
check of the code. In Figure 8.3a we plot the net energy input (Ėe − Lrad) vs. the total
energy change rate (U̇). Clearly, the two quantities are almost in perfect agreement. We also
cross-correlate the two and the Pearson linear (dashed) and Spearman rank3 (solid) cross-
correlation coefficients (Fig. 8.3b) have a peak value of 0.99950 and 0.99956, respectively,
indicating a very high correlation. Therefore we are assured that energy is conserved and
equation (8.4) is indeed satisfied in our simulations. We note that this correlation is actually
the “real” Neupert effect on the basis of an exact energy budget argument and we will use
it as a reference point in this study.

8.2.2 Neupert Effect Test

Let us now check if the Neupert effect is present. We plot in Figure 8.2c the spatially
integrated thermal SXR photon flux ISXR (solid, photons keV−1 s−1, at the Sun) at two
energies, 1.6 keV (thin) and 6 keV (thin, scaled by a factor of 50). We find the lower energy

3The Spearman rank correlation coefficient is an indicator of an either linear or nonlinear correlation.
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SXR light curve rises earlier and faster, and decays later and slower, than the higher energy
one. The shape of the 1.6 keV curve resembles that of the thermal energy (8.2a) because of
their close relationship due to their dependence on ne and T as noted above. It also mimics
commonly observed GOES light curves (see, e.g., Fig. 6.1 in Chapter 6). The 6 keV light
curve, however, appears comparably short in duration. This is because the 6 keV thermal
emission is more sensitive to higher temperature plasmas (peak temperature response at
60 keV) and the temperature dependence of the thermal bremsstrahlung emissivity is very
sharp in its rise portion (see Fig. 8.1). Therefore, early in the flare, when high temperature
emission measure is small, there is very little 6 keV thermal emission; similarly in the decay
phase, the 6 keV emission decreases quickly when the plasma cools off.

Figure 8.4: Neupert effect test for Case R. (a) Thermal energy change rate U̇th vs. SXR derivative
İSXR (at photon energy of ε = 1.6 keV) during the first 60 s of the flare. The solid line that connects
the symbols indicates the time evolution, starting near the lower-left corner at t = 0 s. İSXR has been
shifted back in time by 7 s to compensate its delay, as indicated by the cross-correlation analysis (see
below and text). (b) Pearson linear (dashed) and Spearman rank (solid) cross-correlation coefficients
of the two quantities shown in (a), plotted as a function of the time lag (> 0 means delay) of İSXR

relative to U̇th. The rank correlation coefficient reaches its maximum value of 0.989 at a lag of 7 s.
(c) and (d) same as (a) and (b), respectively, but for the correlation between Ėe (electron energy
deposition power) and İSXR (shifted back by 12 s).

To get more detailed timing information, we took the time derivatives of the two SXR
fluxes, following the common practice for Neupert effect studies. The result is shown as
the dotted lines (thin: 1.6 keV, thick: 6 keV) in Figure 8.2c. By visual comparison with
the electron energy deposition power (Ėe) and the thermal energy change rate (U̇th) in
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Figure 8.2b, we find that these curves resemble each other in one way or another. They
all roughly show a triangular shape. Particularly, the İSXR curves even follow U̇th in some
detail. For example, İSXR at both energies exhibits a rapid rise at about t = 29 s when an
abrupt increase in U̇th occurs (due to gas dynamics, see above). However, such a detailed
change is not present in the Ėe curve, which is equivalent to the HXR flux here4. Therefore,
if one attempts to look for the Neupert effect by comparing the SXR derivative and the
HXR flux (as people usually do), such a subtle correlation could be missing in HXRs. In
this sense, a more physical Neupert effect would be the relationship between the thermal
energy change rate and the SXR derivative.

Figure 8.5: Same as Fig. 8.4 (Case R), but for photon energy ε = 6keV. İSXR in (c) is shifted back
by 8 s to compensate its delay.

We have carried out statistical analysis and checked the correlations between these var-
ious variables more quantitatively. We first cross-correlated the SXR derivative İSXR at
1.6 keV with the thermal energy change rate U̇th and with the electron energy deposition
power Ėe, the correlation coefficients of which are shown in Figures 8.4b and 8.4d, respec-
tively. For İSXR and U̇th, the linear correlation coefficient has a peak value of 0.868 at a
lag of 5 s, and the rank correlation peaks (max = 0.989) at a lag of 7 s, both indicating
a significant correlation and a delay of İSXR relative to U̇th. Such a delay is also visible in

4For Case R only, the HXR flux could not be readily calculated without running the transport and
radiation code for the assumed power-law electron spectrum. Here, we use Ėe as a protocol for the HXR
flux since they are proportional to each other (because the electron spectrum remains constant in time and
the bremsstrahlung yield is thus a constant as well).
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Figures 8.3b and 8.3c, say, by comparing the rise portion and the peak position of the cor-
responding curves. Since their physical relationship is nonlinear per se as discussed above,
we believe the rank correlation can describe the connection between İSXR and U̇th more
generally than the linear correlation, although the two correlations give us different per-
spectives when looking at the same phenomenon. We thus use the delay indicated by the
rank correlation to shift İSXR back in time and plot U̇th vs. İSXR in Figure 8.4a. We find
these two quantities indeed have a strong correlation since their data points in the scatter
plot very much distribute along a straight line. In contrast, for İSXR and Ėe, the linear
(rank) correlation coefficients reaches its maximum of 0.724 (0.993) at a lag of 11 s (12 s).
This indicates a weaker linear correlation (although a slightly stronger rank correlation),
compared with the correlation for İSXR and U̇th. It also reveals a longer delay, which could
be ascribed to the fact that the rise portion of U̇th itself actually delays relative to the
energy deposition rate, Ėe, (Fig. 8.3b) because of the strong radiative loss at early times as
noted before.

Figure 8.6: Same as Fig. 8.2, but for Case A, with the HXR power of all ≥20 keV photons in (a).

We also repeated the above analysis for SXR emission at photon energy of 6 keV for
comparison. The result is shown in Figure 8.5. In general, we find a weaker correlation
and a shorter delay (see Table 8.1). The shorter delay (despite its actual delay in the rise
portion) is due to the rapid decrease of the 6 keV light curve during its decay, which mimics
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the same trend in the Ėe and U̇th curves (Fig. 8.2). However, it is noted that the 1.6 and
6 keV derivatives both peak at about the same time, t = 40 s. As we will show below, this
is a particular feature of this Case. It is interesting to see that the curves in Figures 8.5a
and 8.5c both show a crossed loop-like shape, reminiscence of that in Figure 6.12e.

8.3 Cases A-D: Combined HD & Particle Calculation

For comparison, we did the same analysis as above for the other four cases, which we
describe as follows. The only new quantity is the HXR (E > 20 keV) flux calculated from
our radiation code, which we will use here in place of the electron energy deposition power
for cross-correlating with the SXR derivative.

8.3.1 Case A: Fiducial Run with SA Model

Figure 8.7: Same as Fig. 8.4 but for Case A and the ≥20 keV HXR emission power (IHXR) (rather
than the electron energy deposition power). SXR derivatives in (a) and (c) are shifted back in time
by 10 and 12 s, respectively, according to their delays indicated by the peak of the Pearson rank
correlation coefficient shown in (b) and (d).

For Case A, the energy budget history is shown in Figure 8.6. We find that the
overall evolution of the energies is similar to that of Case R (Fig. 8.6). However, we do
see three major differences, the first of which is relatively small importance of the radiative
loss here, particularly during the rise phase of the flare. This is because, as we discussed
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earlier, the electron spectrum contains a quasi-thermal component at low energies and this
produces relatively more energy deposition in the corona than in the upper chromosphere
where radiative loss is most efficient. As a result, less energy is available for radiative loss
and more energy is left to evaporate the chromospheric plasma. The second difference is
that the 6 keV light curve starts its rise earlier than in Case R, because the preferential
coronal heating here (vs. more chromospheric heating in Case R) produces relatively higher
emission measure at high temperatures from which the 6 keV emission is more productive.
The 6 keV light curve also peaks earlier than the 1.6 keV one by about 5 s, as opposed to their
concurrence in Case R. For the same reason, we have stronger chromospheric evaporation,
and thus higher coronal temperature and density here, resulting in a higher SXR flux with a
maximum of 4.57 (vs. 2.83 in Case R) ×1030photons keV−1 s−1 at 1.6 keV. The third major
difference is that Case A has a faster evolution and the evaporation front reaches the loop
apex earlier at t = 22 s (vs 29 s in Case R). The associated compressional heating produces
a sudden jump at this time in the thermal energy change rate, as well as in the two SXR
derivative curves.

Figure 8.8: Same as Figure 8.7 for Case A but at a photon energy of 6 keV.

We also cross-correlated the SXR derivative with the thermal energy change rate U̇th and
the HXR energy flux IHXR. The resulting correlation coefficients for the 1.6 keV photon
energy are shown in Figure 8.7 We find a weaker linear correlation5 for both U̇th and

5This may have to do with stronger evaporation and more dramatic evolution in this Case, and thus more
nonlinear phenomena are invoked.
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IHXR with İSXR, compared with that in Case R (Fig. 8.4), and the peak linear correlation
coefficients are 0.731 and 0.687, respectively.

The Pearson rank correlation, however, are very close to that of Case R, and the correla-
tion coefficient for IHXR is even higher (see Fig. 8.7c and Table 8.1). This is not surprising,
since a linear correlation between these quantities are actually not expected, as we discussed
earlier, and their nonlinear correlation seems more likely. In contrast, the correlations for
6 keV photon energy (Fig. 8.8, cf. Fig. 8.5) are somewhat better than those of Case R
(see Table 8.1). This might be due to the stronger coronal heating here that favors higher
photon energy thermal emission. The shorter (than that in Case R) delay of the 6 keV
derivative relative to the HXR flux, which was mentioned above, is also evident from the
lag corresponding to the peak (linear or rank) correlation coefficient.

8.3.2 Case B: Variable Electron Spectrum

Figure 8.9: Same as Fig. 8.6, but for Case B.

Case B has a particular electron spectrum that experiences a soft-hard-soft variation.
The energy budget history is shown in Figure 8.9. Compared with Case A, one of the
main differences is the shape of the energy deposition rate, which appears to be warped
and slightly higher than the linear one in Case A. This results in somewhat higher heating
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rate and faster evaporation (see Table 7.1). Another difference is the shape of the HXR
light curve which differs quite a bit from the triangular one in Case A. This is due to the
soft-hard-soft variation of the electron spectrum, which modulates the bremsstrahlung yield
and thus HXR flux on top of the triangular normalization variation. We also show the cross-
correlation result for the 1.6 keV SXR in Figure 8.10. As can be seen, the linear correlation
is somewhat weaker than that of Case A, especially for the HXR flux (see Fig. 8.10c; note
logarithm scale). However, the rank correlation coefficients are similar to that of Case A.

Figure 8.10: Same as Fig. 8.7 but for Case B (at 1.6 keV). SXR derivatives in (a) and (c) are
shifted back by 13 and 15 s, respectively, to account for their delays indicated in (b) and (d).

8.3.3 Case C: Harder Electron Spectrum

Case C has a harder electron spectrum compared with Case A because of its relatively
shorter acceleration timescale (τp = 100 s−1 vs. 70 s−1). The history of the energy budget
(Fig. 8.11) and the cross-correlations (Fig. 8.12) are similar to those of Case A, although
its electron spectrum is much harder than that in Case A. The main difference is in the
normalization of the HXR flux (see Fig. 8.11a) which is about 28 times higher than that
of Case A, simply because of harder electron spectrum results in a higher bremsstrahlung
yield (see Fig. 6.11) and thus higher HXR emission.

8.3.4 Case D: Smaller Normalization

Case D has an energy input rate 10 times smaller than that of Case A and thus the flare
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Figure 8.11: Same as Fig. 8.6, but for Case C.

Figure 8.12: Same as Fig. 8.7 but for Case C (at 1.6 keV). SXR derivatives in (a) and (c) are
shifted back by 10 and 12 s, respectively, to make up for their delays.



162 CHAPTER 8. TESTING THE NEUPERT EFFECT

is weaker by an order of magnitude, as can be seen from the various quantities shown in
Figure 8.13. The overall energy evolution appears similar to Cases A-C, except that the
evaporation front arrives at the loop apex late (t = 39 s, well into the decline phase). At
this time, the kinetic energy change rate (U̇k) shows the largest continuous drop (with
a range of ∆U̇k/U̇max = 0.33, normalized by the peak energy input rate U̇max, cf., e.g.,
0.16 for Case A) among all the five cases, partly because this drop coincides with the

Figure 8.13: Same as Fig. 8.6, but for Case D. Note that the 6 keV SXR light curve in (c) is rescaled
by a factor of 300 (cf. 50 in the other four cases) due to the softness of the thermal spectrum in this
case of weak evaporation.

decrease of the energy input rate and that of the other cases takes place during the rise
phase. In exchange of the decrease in U̇k, the thermal energy change rate still attains a net
gain, despite the decrease of the total energy change rate. This rise produces a dramatic
increase in SXR flux derivatives at both the 1.6 and 6 keV, which even dwarfs the first peak
produced at the time of the maximum total energy input rate. The relative height of the
two peaks on the U̇th curve (Fig. 8.13), however, does the opposite, although the timing of
the two peaks agrees with that of the SXR derivative pulses. We attribute this, again, to
the nonlinearity of the contribution of density and temperature to thermal bremsstrahlung
emission, and particularly to the sensitive dependence on temperature, i.e., the sharp rise
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at low temperatures below the maximum of the emissivity curve (see Fig. 8.1). The cross-
correlation result is shown in Figure 8.14. Clearly, we find a correlation much weaker the
other cases for both the thermal energy change rate and the HXR flux, which can also be
seen from the coefficients tallied in Table 8.1.

Figure 8.14: Same as Fig. 8.7 but for Case D (at 1.6 keV). SXR derivatives in (a) and (c) are
shifted back by 3 and 10 s, respectively.

8.4 Summary and Discussion

We have performed a test of the Neupert effect for five simulation cases described in Chap-
ter 7, using our SA model and the NRL HD flux tube model. We followed the temporal
evolution of various energies (thermal, kinetic, and total), the electron energy deposition
power, and the radiative loss, together with thermal and nonthermal bremsstrahlung radi-
ation, spatially integrated over the whole flare volume. We then checked the temporal and
statistical correlation between the SXR derivative (İSXR) and the HXR flux (IHXR), and
between İSXR and the thermal energy change rate (U̇th). The statistical correlation analysis
for all the five cases is summarized in table 8.1 and we itemize our results as follows.

1. We find that a correlation exists between İSXR and U̇th, as well as between İSXR

and IHXR. The latter correlation is in agreement with the empirical Neupert effect
observed in some (but not all) flares.
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Table 8.1: Neupert effect test of simulation cases (ε = 1.6, 6 keV).

ε Case Pearson Linear Correlation Spearman Rank Correlation

(keV) U̇th: coef, lag (s); IHXR: coef, lag U̇th: coef, lag; IHXR: coef, lag

1.6 R 0.868 5 0.724 11 0.989 7 0.993 12
A 0.731 7 0.687 10 0.985 10 0.996 12
B 0.683 9 0.427 13 0.980 13 0.985 15
C 0.738 7 0.699 9 0.975 10 0.991 12
D 0.744 2 0.656 9 0.850 3 0.857 10

6 R 0.804 1 0.688 7 0.889 0 0.909 8
A 0.876 0 0.812 2 0.916 1 0.920 4
B 0.890 0 0.624 7 0.923 2 0.933 5
C 0.875 0 0.815 2 0.907 1 0.910 3
D 0.696 0 0.589 3 0.854 0 0.833 5

NOTE — For case R, the electron energy deposition rate is used as a protocol for the HXR flux (not
available) to calculate the correlation with the SXR derivative.

2. The resulting Spearman rank (linear or nonlinear) correlation coefficients are generally
greater than the Pearson (linear) correlation coefficients. When the linear correlation
breaks down, the nonlinear correlation still holds (see, e.g., Case B). This is expected
since the correlation is essentially nonlinear due to the nonlinearity involved in the
radiation (thermal and nonthermal bremsstrahlung) processes.

3. IHXR and U̇th both yield comparable nonlinear correlations with İSXR, while U̇th is
relatively better correlated with İSXR linearly.

4. For the rank correlation, the 6 keV SXR has a smaller coefficient in each case than
the 1.6 keV one. For the linear correlation, on the other hand, three (Cases A, B, &
C) out of the five cases have a stronger correlation in the 1.6 keV category.

5. For the five cases, the cross-correlation analysis indicates that the 1.6 keV SXR deriva-
tive is delayed relative to the thermal energy change and the HXR flux. The delay
from IHXR is longer than that from U̇th by several seconds, this is because U̇th itself
actually lags from IHXR due to the interplay of the energy input and radiative loss,
as well as the variation of energy (between thermal and kinetic) partition.

6. The 6 keV SXR exhibits a similar pattern as the 1.6 keV one, but it yields a relatively
shorter delay in each category. This is because the 6 keV thermal emission is sensitive
to higher temperature plasmas and thus it decays faster as the loop cools, while the
1.6 keV emission lasts longer and then decays more slowly after the impulsive phase.

7. In terms of timing of more subtle features (e.g., spikes in the curves), U̇th generally
matches İSXR, while IHXR does not.

8. In a smaller flare (Case D), all the correlations are much weaker compared with the
other flares. This is because a relatively larger fraction of the total energy variation
comes from the kinetic energy in this case.

From these findings, we can conclude that, in terms of timing (concurrence and shorter
delay) and both linear and nonlinear correlations, the SXR flux is better correlated with
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the thermal energy than with the commonly used HXR flux. Many processes, such as gas
dynamics, can change the thermal energy in various ways, and signatures of such changes
can appear in the SXR radiation, but not in HXRs. This is because thermal SXRs are more
directly related to the thermal energy as they are both a function of plasma temperature
and density. However, it should be noted that their correlation is not necessarily linear. The
reason is that the thermal energy is linearly proportional to ne and T , while the thermal
bremsstrahlung emissivity is a nonlinear function of ne and T (see eq. [8.7]).

There seems to be a bias for the Neupert effect in the solar physics community that a
simple energy argument supports the empirical Neupert effect and a common practice of
studying this is to plot the time history of the HXR flux together with the SXR derivative.
We point out that a simple linear correlation between İSXR and IHXR is not expected, even
for purely nonthermal electron heated flare models. As we already noted in Chapter 6,
there are several reasons why linearity could break down here. (1) İSXR is not proportional
to the electron energy input power, but rather closely related (not proportional either) to
the thermal energy change rate U̇th. (2) The HXR flux is proportional to the electron
energy deposition power with a factor of the bremsstrahlung yield, which is not a constant
in time but varies with the electron spectrum in a nonlinear way. The energy deposition
power also depends on the electron spectrum, but in a different way. (3) The total energy
gain is a result of electron energy input power minus radiative loss rate and most of the
radiative loss resides in UV and optical (not SXR) wavelengths. (4) The total energy gain is
redistributed (partitioned) to different energy forms, i.e., thermal, kinetic, and gravitational
energies. Clearly, through this long chain of energy transform, a linear correlation between
the SXR derivative and the HXR flux is not expected to be the case. The existence of the
Neupert effect in a particular flare supports the purely electron-heating model, but not vice
versa. Further deviation from such a correlation will occur when other processes, such as
direct heating by turbulence (rather than electrons) is present.


