Chapter 9

Hydrodynamic Simulations of the
Decay Phase: Testing Suppression
of Conduction

9.1 Introduction

Suppression of thermal conduction by turbulence plays important roles in many astro-
physical and space plasma environments. Chandran & Cowley (1998), for example, found
entangled magnetic fields in a turbulent intracluster plasma can reduce the Spitzer (1962)
conductivity by a factor of 102-103.

For solar flares, Jiang et al. (2006) reported spatial confinement and lower than expected
energy decay rate of the X-ray loop-top (LT) source during the flare decay phase observed
by RHESSI . This observation was interpreted as suppressed thermal conduction and/or
simultaneous heating, which were assumed to be produced by turbulence or plasma waves
at the LT. The same turbulence, with different strength and other properties, could also be
responsible for acceleration of particles during the impulsive phase.

Jiang et al. (2006) assumed that the plasma in the flaring loop is in a hydrostatic
state, which works well as a zeroth order approximation and made their semi-analytical
work tractable. Antiochos & Sturrock (1978), however, from their simplified analytical
derivation, found the bulk flow of the plasma could suppress thermal conduction as well,
but they did not include radiative loss in their model. Plasma flows (or convection), in
general, can carry energy from one place to another, in a way that works in parallel with
thermal conduction.

It is thus necessary to improve on previous works by Jiang et al. (2006) and Antiochos
& Sturrock (1978) by including the hydrodynamic response of the plasma, its feedback to
the conduction, and a full calculation of radiative loss. This will help shed light on energy
transport and the evolution of the flaring plasma. We will also extend the domain considered
in Jiang et al. (2006) to beneath the transition region, such that we can include all the energy
flow channels, i.e., radiative loss in the chromosphere and possible conduction flux through
there. Such a work is reported in this chapter. The numerical model and simulation result
are presented in §9.2 and §9.3, respectively. We summarize the main findings in §9.4.
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9.2 Simulation Model of Suppression of Conduction and Plasma
Heating

We use the NRL flux-tube model by Mariska et al. (1989), as described in Chapter 7. The
only difference here is that we used the abundance in the original code, i.e., helium being
6.3% of the hydrogen number density, rather than a simply pure hydrogen plasma. Ac-
cordingly, the mean ionic charge is taken as Z = 1.059 and the mean mass per particle
is p = 0.5724 in units of proton masses m,. We have adopted the suppression of con-
duction and additional heating due to turbulence from Jiang et al. (2006), with necessary
modifications due to the absence of the isobaric condition, which we describe as follows.

The electron, ion (as in Chapter 7), and combined Spitzer conductivities are

ke = 11x1079T22  k; = ke/25, (9.1)
K = ke ki =rgT?? (where kg = 1.14 x 10 S ergsem ™' s TP K~7/2), (9.2)

in which we assume T, = T; = T. The corresponding conductive heat flux is
Fepiv = kVT = kgT??VT. (9.3)

Following Jiang et al. (2006), in presence of suppression of thermal conduction, the conduc-
tive flux should be modified as (Spicer, 1979):

1 kT2
Feond = ———7—7 Fspit = % vr (9.4)
1+ Tsc /TCoul L+ 7sc /TCOUI

where

-1 T -3/ Ne —1

is the mean Coulomb collision rate of the thermal electrons carrying the heat flux, and
the mean wave scattering rate is assumed to be a Gaussian (width w) function of distance
(I = Smax — ) from the loop apex,

Tt = 1508g exp[—(I/w)?] s, (9.6)

such that the ratio of the wave scattering to Coulomb collision rate is

-1, -1 _ T \*? n -1
T /Toou = 5(s) (m (Torems) 67

where S(1) = Sp exp[—(I/w)?] and the dimensionless Sy represents the strength of suppres-
sion (and of turbulence). Note that here we dropped the isobaric assumption taken by
Jiang et al. (2006), which is not necessarily satisfied in a dynamic flare loop. Consequently
equation (9.7) here is slightly different from that given by Jiang et al.

For a given turbulence condition, the inverse of the corresponding particle acceleration
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(or heating) timescale is (Jiang et al., 2006)

_ _ B%m _
Taoh = E(va/vm)?1st =€ <m> Toc' s (9.8)
where v = B/(47p)"/? is the Alfvén velocity (B the magnetic field), vy, = (3kpT/me)"/? is
the thermal velocity of the electrons (m. the electron mass), and the coefficient ¢ depends
on the wave spectrum and wave-particle coupling (Schlickeiser, 1989). Accordingly, the
energy change (heating) rate can be written as

; B?m
= e _— e )1

& = UmTae = Umé (127TkerT) Tec (9.9)
_ § Me S B 9 9
C oo <ump> S 1 SRl W/w)lEBT), (9.10)

where we have substituted equations (9.6) and (9.8), and used Uy, = P/(y — 1) for the
thermal energy density, and P = P, + P; = (ne + n;)kgT = pkpT/pum, for the pressure.
We use this &, for the heating rate S, in equation (7.37) in the HD calculation and use £ B2
as a parameter to adjust the relative importance of heating (vs. suppression of conduction,
see discussions in §3 of Jiang et al., 2006).

9.3 Numerical Results

We have performed a simulation of four cases with model parameters summarized in Table
9.1. For each case, we used the data saved at t = 64s from a previous impulsive phase sim-
ulation as the initial state, from which we continue the calculation. A uniform background
heating of 8.31 x 103 ergss~! cm ™2 (same as that used in Chapter 7, which translates to a
total energy input rate of 2.35 x 1022 ergss—!)! was applied. On top of that, for Cases B and
C, we alternatively applied additional heating (Sh, or S.) and suppression of conduction,
respectively; for Case D, we used both additional heating and suppression, while we used
none of them for Case A.

Table 9.1: Summary of simulation cases.

Cases model €B? Sy mean energy decay n. T
(10%* ergss—1) (101%cm=3)  (10°K)

A none - - 8.07 6.16 1.48

B heating only 10 20 6.66 7.78 6.54

C suppression 0 20 7.24 4.68 7.20

D heating & suppression 10 20 6.01 4.11 15.9

Note — The mean energy decay rate is calculated for the time interval of [0,500s]. n. and T are
the values at the loop apex at t = 500 s.

! As we will see later, this amount of energy input is negligible compared with the other energy contents.
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Figure 9.1: HD evolution of various quantities for Case A: electron number density, temperature,
gas pressure, upward velocity, heating rate S., radiative loss rate L;,q (in same units as S.), and
heat conduction flux Feonq, as a function of distance from the bottom (FP) of the loop. Note that
S. = 0 in this Case and the corresponding panels are left blank intentionally for a better comparison
with the other cases.
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9.3.1 Case A: No Heating or Suppression of Conduction

Figure 9.1 shows the evolution of various HD variable as a function of distance along the
loop (from the bottom, cf., Fig. 7.3). The system starts with a hot, relatively dense corona,
heated by electrons during the preceding impulsive phase. We find the density and tem-
perature in the coronal portion of the loop decreases with time. This occurs because of
cooling in the form that heat conduction (bottom, not suppressed here) carries energy to
the transition region and the upper chromosphere where radiative loss function (second to
the bottom) peaks, and then energy is radiated away there. Note that direct radiative loss
in the upper corona is negligibly small compared with conductive cooling (also see, e.g.,
Jiang et al., 2006). As a result of cooling and reduced pressure gradient (not sufficient
to support material against gravity) in the corona, the plasma simply condenses and falls
back to the chromosphere. This can be seen from the velocity curve, which shows generally
increasing negative (downward) values. We also note that early in the decay phase (e.g.,
t = 70s), however, chromospheric evaporation (upflow) still takes place because of residual
conductive heating from the hot corona.
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Figure 9.2: Energy evolution for Case A. top: Total, thermal, kinetic, and gravitational energy,
integrated over the volume of the loop, as a function of time. bottom: Time derivative of the above
energy contents, together with the radiative loss rate.

The evolution of the energy contents, which are spatially integrated over the loop volume,
is shown in Figure 9.2 (top). The total energy monotonically decreases with time. The
thermal energy (dotted) follows the same trend and clearly dominates over the gravitational
(dot-dashed) and kinetic (dashed) energy, which stay at about the same level. The bottom
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panel shows the time derivatives of these energy contents, together with the radiative loss
rate. We find the absolute value of the total energy change rate decreases with time, which
is correlated with the radiative loss (this simply means energy conservation, see §8.2.1).

We note that there are some fluctuations in the gravitational and kinetic (smaller ab-
solute amplitudes) energy, which are more pronounced in the bottom panel of Figure 9.2.
The absolute value of the thermal energy change rate (< 0) also show, on top of its gen-
eral decreasing trend, some modulations that seem to be anti-correlated with those of the
gravitational and kinetic energy. We interpret this as conversion of energy among different
forms in the plasma (also see Chapter 8).
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Figure 9.3: Same as Fig. 9.2, but for the corona (left) and chromosphere (right) only.

To see this point clearly and identify the source of the fluctuations, we plot the same
energy budget history for the corona (left) and for the chromosphere (right) separately in
Figure 9.3 in which we used the position where 7' = 1 x 10" K as the boundary between
the two regions. For the corona portion (Fig. 9.3), the thermal energy and the total energy
curves almost overlap each other, and they simply show a featureless monotonic decay;
so does the gravitational energy. Only the kinetic energy exhibits some fluctuations, but
without a simple pattern. For the chromosphere (Fig. 9.3, right, note logarithmic scale),
in contrast, the total energy initially decrease slightly and then stays almost constant and
the fraction of the thermal energy is smaller than that in the corona. The fluctuations
and the anti-correlation of the gravitational and thermal energy are evident. This results
from the chromospheric oscillation (Mariska et al., 1982), which can be seen from the
top panel of Figure 9.1, where the height of the transition region rises and drops back and
forth. (This can be more clearly seen in a movie, not shown). The alternative rarefaction
and compression of the chromospheric material performs energy conversion between the two
forms: thermal and gravitational energy. We note that the kinetic energy (Fig. 9.3, upper
right) shows larger relative amplitudes and, particularly, a ~2 times higher frequency than
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the gravitational energy. The kinetic energy reaches its minimum when the gravitational
energy reaches its maximum or minimum. This is because the chromosphere oscillates
like a loaded? spring in the vertical direction and each cycle in the gravitational energy
variation includes two cycles of acceleration and deceleration, resulting two cycles in the
kinetic energy curve.

9.3.2 Case B: Heating Only
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Figure 9.4: Same as Fig. 9.1, but for Case B.

In this Case, we applied additional heating in the corona. The spatial distribution of

2Most of the loading is provided by cooling and condensation in the overlying layers in this simulation
(Mariska et al., 1982), simply because material falls back from the corona and thus pushes chromosphere
downward.
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the heating is of a Gaussian shape which peaks at the loop apex (see Fig. 9.4, row 5). The
evolution of the HD variable is shown in Figure 9.4, which is very similar to Figure 9.1 for
Case A, except that here the coronal density, temperature, and pressure decay slightly more
slowly due to heating. Note that the temperature still distributes more or less uniformly in
the corona despite more heating at the LT. The downflow (due to condensation) velocity
is lower than that in Case A too. The conduction flux stays higher because of higher
temperature here. The history of the energy budget (not shown) is also very similar to that
of Case A (Fig. 9.2).

9.3.3 Case C: Suppression of Conduction Only
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Figure 9.5: Same as Fig. 9.1, but for Case C.

Here instead of applying additional heating, we suppress the conduction with a Gaussian
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profile. Compared with Case A, the heat conduction flux (Fig. 9.5) varies more dramatically
from the LT to the FP. At t = 70s, for example, F.onq increases by nearly three orders of
magnitude from the loop apex to near the transition region, as opposed to the variation of
about one order of magnitude in Case A. As a result, the temperature slope in the corona
is larger here (because there is more suppression in the LT than near the FP). The overall
temperature decay, as expected, is delayed, compared with Case A. The energy budget is
very similar to that of Case D (see below, Fig. 9.7) and thus is not shown here. A new
feature caused by suppression of conduction here is the traveling waves (see the velocity in

CHAPTER 9. HYDRODYNAMIC SIMULATION OF THE DECAY PHASE

Fig. 9.5) in the corona, for which we defer our discussion to next section.

9.3.4 Case D: Heating and Suppression of Conduction
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Figure 9.6: Same as Fig. 9.1, but for Case D.
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Now we combine heating and suppression of conduction used above together in Case
D. As can be seen in Figure 9.6, the overall evolution is similar to that of Case C, except
even more delayed decay here. The energy history is plotted in Figure 9.7 (left). The
constant heating rate is shown as the long dashed line, which in addition to the suppression
of conduction, counteracts the energy decay.

T 3 o T T T T ]
Energy: total E| \\
thermal E| 1.0000 -

kinetic — - - —
gravit, —-—-—-— |

Energy (107 ergs

Energy: total Energy: total

thermal thermal
kinetic — — — —
gravit, —-—-—-—

N Kinetic — - - — 4
- : rovit.

heating — — —

e
=}

|
o
n

Energy rates (10% ergs/s)

. . . . . . . . . .
100 200 300 400 500 100 200 300 400 500
Time (sec) Time (sec)

Figure 9.7: Same as Fig. 9.3, but for the whole loop (left) and the corona portion (right) of Case
D, with the additional quantity, heating rate, plotted as the long-dashed line in the bottom panels.

Another difference here, compared with Figure 9.2 for Case A, is the short-period fluc-
tuations in the thermal energy change rate (dotted, bottom panel). Such fluctuations are
superimposed on the existing long-period (~ 200 s) fluctuations caused by the chromo-
spheric oscillation. Again, we plot the energy contents in the corona and the chromosphere
separately, and we find the chromosphere (not shown) has a similar energy evolution as
in Case A. However, the corona behaves quite differently, as can be seen in Figure 9.7
(right). The above mentioned short-period fluctuations are present in the velocity (dashed,
top right), the thermal (and total) energy change rate, as well as the radiative loss (bottom
right). These fluctuations are caused by the traveling waves, which results in alternative
compression (heating) and rarefaction (cooling) of the plasma. Such waves can also be seen
in the velocity curves in Figure 9.6. The same effects are present in Case C, but not in Case
B. We suggest the imposed suppression of conduction is responsible for the growth of such
waves,> for which the strong disturbance to the fluid during the turbulent impulsive phase
could be the seeds.

We also note that the lifetime of the traveling waves here may be exaggerated, because
there is no viscosity included in this model. Such an approximation is good for the impul-
sive phase since the contribution of viscosity to the momentum and energy equations are

3Note there are similar coronal waves in Cases A and B, but they are of much smaller amplitudes and
do not produce noticeable effects as in Cases C and D.
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overwhelmed by the other more dramatic agents (e.g., electron heating). However, during
the slow (on timescales of 10 times longer than that of the impulsive phase) evolution of

the decay phase, viscosity may play a role, particularly in damping the waves.

9.3.5 Comparing Cases A-D
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Figure 9.8: Comparison of temperature, density squared n?, and thermal bremsstrahlung emission
(at 6 keV) profiles among Cases A-D at selected times. Each of the temperature and emission profiles
are normalized to its individual maximum. Each column is of the same time. The dotted horizontal
lines in the top and bottom rows mark the 50% levels.

We now compare the four simulation cases more directly. Figure 9.8 shows the normal-
ized temperature (top) and thermal bremsstrahlung emission (bottom, at 6 keV) profiles,
together with the density squared n. (middle) at selected times for all the cases. In gen-
eral, the curves of Cases A and B form one group (called Group 1), and those of Cases C
and D form another (Group 2), exhibiting the expected shapes due to different conduction
suppression and/or heating imposed.
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Case B has a temperature profile very close to that of Case A, despite its localized
heating near the LT. This is because heat conduction (without suppression) is so efficient
(Jiang et al., 2006) that the energy addition by localized heating is quickly conducted
away from the LT and this makes the coronal temperature close to a uniform distribution.
Cases C and D have a more confined high temperature region near the LT, due to their
suppressed conduction. They also have a lower coronal density because their higher coronal
temperature requires less material to produce sufficient pressure.

The thermal emission profiles, in general, follow the shape of the corresponding temper-
ature profiles. Cases C and D have narrower emission profiles, same as their temperature
profiles, particularly early during the decay phase. This is consistent with that found by
Jiang et al. (2006). At some other times (e.g., t = 360 s), this pattern does not always hold.
This is because thermal emission (eq. [8.7]) is an increasing function of both T (nonlinear)
and n? (or emission measure, linear). In our simulation, 7" increases with distance (from FP
to LT), while n2 behaves oppositely. The interplay of these two quantities determines the
resulting thermal emission profile. It is thus not surprising that the emission profile does
not necessarily follow the shape of the corresponding temperature curve exactly. Some-
times, a hump* (not shown) in the thermal emission can be produced and it shifts back and
forth along the loop, which is due to the enhanced local density and temperature by travel-
ing waves (see discussions above). These new features were not present in the hydrostatic
solutions of Jiang et al. (2006).

Figures 9.9a and 9.9b show the history of density squared n? and temperature, respec-
tively, at the loop apex. Again, we see that Group 1 (Cases A and B) has similar values of
n2, and so do Group 2 (Cases C and D) whose values are less than that of Case A by up
to a factor of four. Group 1 have an increasing density at early times before its decreasing
phase, while the density of Group 2 has a generally decreasing trend. This happens because
in Group 1 chromospheric evaporation continues to bring material to the corona early into
the decay phase, as can be seen in the large upward velocity values in Figures 9.1 and 9.4.
Group 2, on the other hand, has a higher coronal temperature due to suppression and thus
a higher LT pressure (see Figs. 9.5 and 9.6) that produces a downward pressure gradient
force to counteracts the evaporation upflow. This results in lower upflow velocities and
decreasing (and lower) LT densities in Group 2.

As to the temperature, from Case A to D, we generally have increasing values at a
given time, except on the very late stage when the curves of Cases B and C cross each
other. This is expected because we have increasing suppression and/or heating applied.
For example, Case D combines these effects of Cases B and C together, so it has the highest
LT temperature. After ¢ ~ 500 s, its LT temperature even slightly increases. This comes
about because of the decreasing LT density and constant continuous heating and suppression
of conduction.

Figures 9.9¢ and 9.9d show the spatially integrated total energy and thermal XR emission
flux. They also exhibit similar patterns as the LT temperature. As is evident, the n2, T,
and XR emission curves of Group 2 all show similar fluctuations, which are caused by the
traveling waves mentioned above.

We note that the average energy decay rate (Fig. 9.9¢) of Case D (with combined

“The bright feature in X-rays moving along the loop is similar to the TRACE observation of the bright
EUV blob that travels back and forth from one end of the loop to the other (Ryutova & Shine, 2006).
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Figure 9.9: Comparison of decay of various quantities for Cases A-D. (a) and (b) Evolution of
density squared n? and temperature, respectively, at the loop apex. (c¢) and (d) Total energy and
thermal bremsstrahlung (at 6 keV) intensity Isxgr, respectively, both integrated over the volume of
the whole loop.
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suppression and heating) is about 3/4 of that of Case A. Such a difference is much less than
that of Jiang et al. (2006, see Fig. 13 there), with otherwise comparable parameters. This
is because they assumed hydrostatic solutions and the calculation was restricted to the hot,
coronal portion of the loop, so radiative loss is small. Therefore, the only effective energy loss
channel in their model is through conduction to transfer energy to the FPs. Contrastingly,
here, we have plasma flow and traveling HD waves that act as another energy carrier. The
energy input from the LT can be carried by plasma down to the transition region and the
chromosphere and then be efficiently radiated away there.

9.4 Summary and Discussion

We have performed a HD simulation for the decay phase of solar flares, by inclusion of the
fluid dynamics calculation and the chromosphere in the computational domain. This work
improves on the previous work by Jiang et al. (2006) who assumed a hydrostatic condition
and that by Antiochos & Sturrock (1978) who neglected radiative loss. In general, our
result confirms the conclusions by Jiang et al. (2006):

1. Heating at/near the LT alone is not able to confine the LT source in a small region as
seen in SXRs, although it could be invoked to explain observed energy decay rates.

2. Suppression of conduction localized near the LT is needed to produce a narrow tem-
perature profile and thus a compact SXR source near the LT.

3. A combined heating and suppression of conduction is suggested to be present and to
be localized near the LT region. Such a coexistence can explain both the reduced
energy decay rates and spatially confined LT source.

Our calculation has also uncovered some new information not present in Jiang et al. (2006):

1. Different density profiles can modify the thermal XR emission profiles based on the
corresponding temperature profile. Even in the presence of a compact temperature
profile, a somewhat broad XR emission profile could be produced due to the interplay
of the density and temperature distributions.

2. Plasma flow and/or waves can carry energy away from the hot LT region, and thus
counteract the effects of heating and suppression of conduction. Therefore, an even
larger factor of suppression would be required to explain the XR observations.

In this simple simulation study, the parameter space has not been fully explored. The
width w for the Gaussian suppression profile, for example, is important in determining the
effects of suppression, and in particular, the existence/growth of the traveling HD waves.
The radiative loss calculation can also be improved, say, using the newly released CHIANTI
package. We look forward to a future modeling development to carry out such tasks.



