Subject Index

4He abundance, 112

RHESSI
- design and capabilities, 4
- dynamic range, 17, 42, 59, 62, 87, 201
- imaging algorithms, 11
 - CLEAN, 26, 57, 58, 88, 189, 191
 - PIXON, 13, 18, 36, 40, 94, 189, 192
- visibility forward-fitting, 39
- imaging spectroscopy, 11, 27, 42, 59, 189, 190, 195, see X-rays, spectroscopy for results
- background, 190
- data analysis flow chart, 187
- detector selection, 190
- energy bins, 11
- error/uncertainties, 191
- integration time, 11
- pulse pileup, 198
- pulse pileup, 9, 30, 59, 60, 62, 86, 92, 196
detector livetime, 194, 197, 199
- simulation tools, 200
- spatial resolution, 29, 36, 57, 88, 190
- spectroscopy, 192, see X-rays, spectroscopy for results
- spectral fitting, 27, 42, 59, 97, 194

Acceleration of particles, 1
- DC electric field, 2, 52, 72
- shock, 2, 52
- stochastic, viii, 2, 4, 8, 18, 30, 31, 46, 48–52, 72, 82, 100, 108, 110, 111, 189, 205
- schematic of, 3

Acceleration region, 3, 48, 54, 67, 74, 111, 114, 119, 120, 125, 148, 205, 206
- spatial extent, 51

Auroras, 186
- numerical simulation, 148, 186
- on extrasolar planet, 186

Bremsstrahlung, 132, see X-rays for diagnostics
- angle-dependent, 185
- cross-section, 116
- spatial distribution (profile), 104, 105, 133, 137, 204, 206, 207
- spectra, 13, 31, 43, 44, 46, 60, 99, 106, 189, 194
- photon spectrum, 131, 136
- relativistic beaming, 80
- thermal, 46–49, 78, 95, 98, 108, 132, 150, 151, 154, 177, 206
- emissivity, 151
- spatial distribution (profile), 176, 177
- spectra, 13, 27, 43, 44, 60, 99, 106, 189, 190, 194, 196
- thick-target, 76, 117, 205
equivalent electron flux, 115
thin-target, 116
- yield, 98, 100, 139, 148

Chromospheric evaporation, 2, 37, 49, 60, 85, 139, 144, 147, see also Flare (individual), 2003-11-13 M1.7
dependence on electron spectrum, 148
- Doppler shifts, 86
driven by
 - collisional heating, 110, 123
 - conduction, 127, 145
evaporation front, 123, 125, 127, 130, 132
- hydrodynamic simulation, 85, 109
- imaging, 86, 93, 96, 97
- loop density resulting from, 107, 131
- Neupert effect, see Neupert effect
- upflow velocity, 93, 103, 139, 144

Chromospheric oscillation, 171

Column density/depth, 47, 70, 75, 79, 121
- asymmetry, 75, 78, 83
dimensionless, 76, 104, 204
effective, 75, 79

Conduction, 46, 48, 49
- electron conductivity, 117
- ion conductivity, 117
- Spitzer, 119
- suppression of, 100, 166
- simulation model, 167, 173
- simulation results, 168, 175, 179

Coronal mass ejections (CMEs), 1, 24, 56
- Coulomb collision, 52, 74, 75, 78, 80, 109, 167, 204
- energy diffusion, 115, 210
- energy loss, 2, 4, 8, 111, 115, 119, 120, 130
effective Coulomb loss rate, 211, 212
to cold targets, 208
to warm targets, 184, 208–210
pitch-angle scattering/diffusion, see Electron, pitch angle
Coulomb logarithm, 98, 111, 115, 204
Current helicity, 56, 72
Current sheet, 2, 33, 34, 82
Currents, vertical, 72
Electron
classical radius, 111
ergy distribution, 76, 126, 135, 204, 207
high-energy cutoff, 72, 194
low-energy cutoff, 45, 80, 98, 99, 102, 110, 126, 127, 144, 145, 183, 194
nonthermal, 36, 46, 49, 67, 94, 104, 110, 118, 126, 144, 202, 203, 208
thermal (Maxwellian), 50, 110, 112, 144, 167, 214
ergy flux, 103, 144
gyrofrequency, 72, 112
umber flux, 115, 119
angle-integrated, 116, 126
equivalent thick-target flux, 115, 130
escaping from acceleration region, 115, 127, 139, 146, 147
precipitating to footpoints, 74, 80
spatial distribution, 129, 134
spectrum, see energy distribution
pitch angle
distribution, 74–76, 80, 112, 114, 115, 204
scattering/diffusion, 4, 74, 75, 77–79, 109, 204
plasma frequency, 72, 112
power, 103
runaway, 51
stopping distance/column density, 75, 104
Energy contents, 149, 151, 152
conversion of, 171
gravitational, 149, 170, 171
kinetic, 149, 153, 164, 171, 172
thermal, 149, 151, 153, 154, 165, 168, 170, 171
Neupert effect, see Neupert effect
variation rate, 155, 162, 165, 175
Flare
gamma-ray, 56
microflares, 23
phases
decay, 12, 20, 22, 34, 44, 87, 100, 101, 103, 119, 123, 154, 166, 175–177
statistics, 18
correction for selection biases, 20
imaging spectroscopy, 18
size distribution, 20
two-ribbon, 2, 56
white-light, 1, 2, 56, 62, 70
Flare (individual)
2002-04-30 M1.4, 33
double coronal source, 34
magnetic reconnection site, 47
2002-08-03 X1.0 (multiple loops), 14, 16, 17
2002-09-20 M1.8 (single loop), 12
imaging spectroscopy, 13
2003-10-29 X10, 53
footpoint unshearing motions, correlations, asymmetries, see Footpoint sources
2003-11-03 X3.9, 23
correlated motions of loop-top and footpoint sources, 25
2003-11-13 M1.7, 85
chromospheric evaporation, 91, 93, 96, 97, 106
Neupert effect, 98
Fokker-Planck
equation, 4, 111, 211
equation coefficients, 114
acceleration, 114
diffusion, 114
numerical code, 6, 110, 111
Footpoint sources, 8, 12, 13, 89, 202
asymmetries, 73
acceleration-induced anisotropy, 80
column density, 75
energy dependence, 82
magnetic mirroring, 74
non-uniform target ionization, 79
photospheric albedo, 80
relativistic beaming, 80
correlations, 66
images, 26, 29, 57
magnetic field, 70, 202
motion, 26, 65
approaching, 64
relative, 25, 64
separation, 25, 64
unshearing, 62, 65
pulse pileup, 200
shear angle, 64
spectra, 13, 60, 76
spectral index, 13, 18, 28, 60, 67, 68, 77
thick-target, see Bremsstrahlung

Gamma-rays, 2, 23, 70, 100

Hα emission, 2, 53, 63, 86, 204
Helioseismic (Sunquake) signals, 56, 62, 123
Hydrodynamics
 equations, 117
 simulation, 85, 108
 collisional heating rate, 119, 121
 temporal evolution, 127

Iron
 abundance, 59, 194, 196
 X-ray line emission, 60, 194

Loop-top sources, 8, 12, 13, 52
 altitude
 ascent, 25, 28, 40
 descent, 25, 28, 40, 66
 energy dependence, 28, 29, 38
 emission measure, 45, 49, 61
 images, 26, 29, 57, 89
 motion, 26, 40, 65
 pulse pileup, 200
 spectra, 13, 43, 60
 spectral index, 18, 28, 43
 temperature, 13, 45, 49, 61
 thin-target, see Bremsstrahlung

Magnetic field
 chromospheric, 56
 coronal, 72
 extrapolation
 force-free, 72
 potential, 56
 magnetogram
 line-of-sight, 56
 photospheric, 56
 vector, 56, 72
 shear, 64

Magnetic free energy, 56, 66
Magnetic mirroring, 4, 13, 74, 78, 109
 asymmetric, 74, 78, 79, 83
 pitch-angle distribution asymmetry, 80
 return current asymmetry, 80
 loss cone, 74

trapping, see Trapping of particles
Magnetic reconnection, 1, 51, 56
 geometry, 1, 23
 model of solar flares, 1, 23
 outflow, 2, 33, 34
 rate, 27, 71, 72, 101
 schematic of, 3
 site/region, 2, 32, 33, 46–48, 50, 75
 motion, 2, 25, 66, 87

Neupert effect, 2, 36, 85, 98, 165
 energy budget, see Energy contents
 temporal correlation, 104
 test of, 98, 100, 108, 149, 153

Non-uniform target ionization, 79

Opacity minimum, 56

Plasma waves, 94, see also Turbulence
 dispersion relation, 112
 modes, 112
 wave-particle resonance interaction, 3, 112

Proton
 acceleration, 185
 momentum, 185

Radiative loss, 48, 117, 123, 150, 152, 158, 166, 170, 171, 179
 spatial distribution, 124, 127
 wavelength dependence, 165

Radio emission, 1, 24
 double coronal source, 34
 footpoint asymmetry, 54
 microwave images, 56
 zebra pattern, 94

Return current, 80, 115

Separatrix, 72

Shearing flows, photospheric, 56, 66

Software packages
 CHIANTI, 59, 179, 194
 OSPEX, 22, 59, 192–196
 Solar SoftWare (SSW), x, 187, 192, 194, 203
 SPEX, 190

Solar energetic particles (SEPs), 56, 70
 3He rich events, 3

Space instruments
 ACE, 3, 56
 CGRO, 4
 GOES, 24, 35, 55, 56, 86, 87, 97, 99, 100, 102, 151, 154
SXI, 189
Hinode, 84
Hinotori, 4, 5, 85
ISEE-3, 4
OSO-5 & -7, 4
RHESSI, see RHESSI
SDO, 84
SMM, 4, 5, 86
SOHO, 24, 86, 189, 203
CDS, 104
EIT, 38, 90
LASCO, 24
MDI, 26, 38, 56, 63, 70, 90, 202
SUMER, 34
TRACE, 10, 11, 15, 16, 62–64, 177, 189, 203
Yohkoh, 3–5, 8, 19, 54, 85, 110, 116
BCS, 86
HXT, 54, 78, 82
SXT, 86
Synchrotron
 energy loss, 111
 pitch-angle diffusion, 115
Transition region, 2, 68, 75, 79, 84, 116, 120, 123, 127, 130, 132, 139, 149, 152, 170, 171, 179, 205, 207
Trapping of particles, 206
 by magnetic mirroring, 52, 53, 84
 by turbulence, 3, 52, 148
Turbulence, 2, 49, 100, 108, 125, 210, see also
 Plasma waves
 cascade, 3
 level, 31, 46, 50, 51, 72, 147, 167
 particle acceleration by, 109
 particle scattering by, 80, 112
 plasma heating by, 119, 165–167
 resonance interaction, see Plasma waves
 spatial distribution, 31, 48, 51
 spectrum, 4, 49, 113
 suppression of conduction by, see Conduction
 trapping, see Trapping of particles
X-ray sources (spatially resolved)
 centroids
 energy dependence, 28, 29, 38, 41, 96
 temporal evolution, 26, 28, 40, 41, 65
 light curves, 14, 17, 41, 68
 spatial gradient of spectral hardness, 46
 spectra, 43, see also Loop-top/Footpoint sources
 nonthermal, see Bremsstrahlung
 thermal, see Bremsstrahlung
 types
 coronal (above loop-top), 33, 36, 49
 footpoint, see Footpoint sources
 leg, 89, 90
 loop-top, see Loop-top sources
 X-rays
 albedo, 80
 nonthermal, see Bremsstrahlung
 observing instruments, 4
 spectral evolution
 soft-hard-hard(er) (SHH), 67, 79
 soft-hard-soft (SHS), 20, 67, 69, 71, 79, 98, 104, 134, 159
 spectroscopy
 imaging, 13, 18, 28, 43, 60, see RHESSI,
 imaging spectroscopy for technicalities
 spatially integrated, 28, 43, 60, 99, 106, 199
 thermal, see Bremsstrahlung
 thick-target, see Bremsstrahlung
 thin-target, see Bremsstrahlung