WHY ONLY THE ELLIPTICAL CONE MODEL CAN BE USED TO ACCURATELY INFER THE 3-D CHARACTERISTICS OF HALO CMES

James Mason, Xue Pu Zhao, Stanford Magnetic Group
CISM All Hands Meeting
September, 2009
The Circular Cone Model (1/2)

- Widely used to invert 3D characteristics of halo CMEs
 - Relatively simple
 - Unique solution
- Results are trusted but not necessarily valid in most situations
 - ~10% of observed halo CMEs
The Circular Cone Model (2/2)

- Assumptions
 - Radial propagation direction, as a rule
 - Exceptions [Plunkett Et al. 1997; St. Cyr et al. 2000]
 - Constant angular width (ω_y, ω_z)
 - [Webb et al. 1997; Webb and Jackson 1990]
5 Halo Parameters: Geometry
Types of Observed Halo CME

<table>
<thead>
<tr>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $</td>
<td>\psi</td>
<td>< 10^\circ$</td>
</tr>
<tr>
<td>• $SA_{xh} < Sa_{yh}$</td>
<td>• $SA_{xh} \geq Sa_{yh}$</td>
<td></td>
</tr>
</tbody>
</table>

- From 30 event table [Cremades 2005, Tbl. 3]
 - 3 Type A
 - 7 Type B
 - 20 Type C

- Circular Cone Model only works for Type A

ONLY ~10% OF ALL OBSERVED EVENTS!
Examples of 3 Types
The CC Model: Limitations (1/2)

CC MODEL MINOR AXES MUST PASS THROUGH SOLAR DISK CENTER

ONLY ~10% OF ALL OBSERVED EVENTS!
The CC Model Limitations (2/2)

3 different sets of model parameters (left column)

Identical halo parameters for given β (right column)

CC Model solutions not necessarily unique
Importance of Generalizing the Cone Model

- MHD codes for Solar Wind use Cone Model as an input/boundary parameter
- Better science
 - Johannes Kepler had to give up circles too
The Zhao Elliptic Cone (ZEC) Model (1/2)
The ZEC Model (2/2)

Assumptions & Ambiguities

- Same assumptions as CCM (Radial Propagation + constant angular width)
- Need a method to determine propagation direction (\(\beta\)-angle between \(X_c\) and \(X'_c\)) in order to uniquely solve inversion equations
 - 1 point: Associated flare location
 - 2 point: Two simultaneous images from different points in the ecliptic (STEREO)
Determination of Propagation Direction (1-point Approach)

- Specified α narrows possible (λ, ϕ) from entire plane to a line
- Point represents spatial location of associated flare
- Optimal $\beta =$ minimum distance between point and curve (after correcting B_0)
Validation of 1-point Approach

- Overlay calculated cone projection onto observed CME image
- Generally good agreement
All figures from Zhao 2008, Journal of Geophysical Research, Vol. 113