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1. Introduction

• Halo CMEs, the major cause of geomagnetic storms.
• Necessary conditions for forecasting the storm-effectiveness of halo CMEs.

Real angular width of plasma clouds that form halo CMEs
Propagation direction: latitude and longitude
Propagation distance

• Approaches to infer the necessary conditions.
Statistic methods: Schwenn et al., 2005 and the references therein

• A new approach: Inverse technique.

Circular cone Zhao et al., 2002; Michalek et al., 2003
Xie et al., 2004; Xue et al., 2005

Elliptic cone Zhao, 2004; Cremades el al., 2004
Ice Cream cone Zhao, 2005

• Issues to be answered:
a. What kind of halo CMEs can be inverted?
b. How to select the geometrical models given a specific halo CME?
c. Whether or not the inverted solutions for halo CMEs are unique?



2. Models and Characteristic Geometric Parameters of CMEs
Coronagraphs measure the photospheric light scattered by coronal electrons

along the line of sight. The rim of observed 2-D white-light images of CMEs
may be approximated by the projection of the boundary surface of 3-D

magnetized plasma clouds of CMEs on the plane of the sky.

Figure 1. C2 and C3 images of a limb CME showing cone-like shape with the apex of the cone
located at the center of the sun. Most of limb CMEs show radial propagation with constant

angular width, implying cone-like magnetized plasma clouds with a shell-like outline . 2-D or
3-D structure?



2.1 Circular cone-like models suggested in literature

Figure 2. The detection of halo CMEs implies that the cone-like plasma clouds of CMEs are a
3-D structure. The conical, ice cream conical and spherical conical models have been

suggested (e.g., Schwenn et al., 2005). All models here have a circular base of the cone. Both
the rim of the base and the height of ice cream part, Ri, can be expressed by four characteristic
parameters, i.e., the latitude and longitude of the central axis, β and α, the half angular width,
ω, and the distance from apex to base of the cone (the apex-base distance), Rc. Recent studies

show that the base of cone for many CMEs may be elliptic, and the shape of broad shell of
dense plasma for most of halo CMEs may be ice cream cone-like.



2.2 Elliptic cone-like models

• Coordinate systems

Coordinate Helio− Earth Cone Elliptic− Base
System XhYhZh XcYcZc XeYeZe

Xaxis Xh−West Xc || Ct.axis Xe || Xc

Y axis Yh−North Yc in XhYh Ye || Semi− axis ∼ Yc

Zaxis Zh−Earth Zc in XcZh Ze || Semi− axis ∼ Zc

The angle between Ye and Yc axes, χ, is used to characterize the tilt of
the elliptic base of a cone. The direction of the central axis of the cone in
XhYhZh system, Xc, may be expressed using latitude β (λ) and longitude
α (φ) with respect to the plane XhYh (ZhXh) and the axis Xh (Zh). The
relationship between (β, α) and (λ and φ) is











sinλ = cos β sinα

sinφ = cosβ cosα√
1−cos2 β sin

2 α

















sin β = cosλ cosφ
tanα = sinλ

cosλ sinφ









• The elliptic cone model

xe = Rc

ye = Rc tanωye cos δ (1)
ze = Rc tanωze sin δ

whereRc denote the apex-base distance, ωye and ωze the half angular widths
corresponding to the semi-axes aligned with Ye and Ze axes. δ is the angle
relative to the Ye axis, varying between 0◦ and 360◦ along the rim of the
base.

• The half-ellipsoid ice cream cone model

ye = Rc tanωye sin δ

ze = −Rc tanωze sin δ ↗ Rc tanωze sin δ (2)

xe = Rc +Ri



1 − cos2 δ − ze
2

(Rc tanωze)2





0.5

where δ runs from -90◦ to 90◦. Additional parameter, Ri (the height of the
ice cream part) is needed with respect to the elliptic cone model.



3. The shapes and measurable parameters of predicted
halo CMEs

• Transformation from the elliptic base system (XeYeZe) to the cone system
(XcYcZc)

xc = xe

yc = ye cosχ + ze sinχ, (3)
zc = −ye sinχ + ze cosχ

where xe, ye and ze are given by Exp. (1) or (2), χ denotes the tilt angle of
the elliptic base relative to Yc axis.

• Transformation from the cone system (XcYcZc) to the Helio-Earth system
(XhYhZh)
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where β and α denote the direction of central axis of the cone in XhYhZh

system.



3.1 Circular cone and half spheroid ice cream cone models

Figure 3. Four predicted halo CMEs. The red dashed ellipses and the grey elliptic areas are
obtained using the circular cone and half spheroid ice cream cone models (ωye = ωze and

χ = 0 in Exps (1) and (2)), respectively. The red solid line, h, is the distance between centers
of the solar disk and ellipse. It is the projection of the apex-base distance (Rc) on the plane of

the sky and aligned with the semi-minor axis. The front and rear half parts are symmetric
(asymmetric) for circular (half spheroid ice cream) cone models. There are four (five)

measurable parameters for the red ellipse (grey elliptic area): the semi-minor axis, semi-major
axis, the length and direction of the red between-centers line, i.e., Smn, Smj , h, and α (Si).



3.2 Elliptic cone and half ellipsoid ice cream cone models (χ = 0)

Figure 4. Four predicted halo CMEs. The red dashed ellipses and the grey elliptic areas are
obtained using the elliptic cone and half ellipsoid ice cream cone models with χ = 0,

respectively. The red solid line, h, is the distance between centers of the solar disk and ellipse.
It is the projection of the apex-base distance (Rc) on the plane of the sky and aligned with

ANY semi-axis, minor or major. The front and rear half parts are symmetric (asymmetric) for
elliptic (half ellipsoid ice cream) cone models. There are four (five) measurable parameters for

the red ellipse (grey elliptic area): the semi-minor axis, semi-major axis, the length and
direction of the projection of the apex-base distance, i.e., Smn, Smj , h, and α (Si).



3.3 Elliptic cone and half ellipsoid ice cream cone models (χ 6= 0)

Figure 5. Four predicted halo CMEs. The red dashed ellipses and the grey elliptic areas are
obtained using the elliptic cone and half ellipsoid ice cream cone models with χ 6= 0,

respectively. The red solid line, h, is the distance between centers of the solar disk and ellipse.
It is the projection of the apex-base distance (Rc) on the plane of the sky and NOT aligned with
any semi-axis, minor or major. The front and rear half parts are symmetric (asymmetric) for
elliptic (half ellipsoid ice cream) cone models. There are five (six) measurable parameters for
the red ellipse (grey elliptic area): In addition to Smn, Smj , h, and α (Si) for the case of χ = 0,

there is a new parameter, the angle between the semi-minor axis and the local west (Xh), ψ.



4. Inverted Solutions

• To determine the necessary conditions for forecasting the geoeffectiveness of
halo CMEs, i.e., to determine the real angular width, the propagation direction
and speed, only the rear half ellipse of halo CMEs is necessary to use. In other
words, only circular or elliptic cone models are enough to invert the necessary
condition.
• In the coordinate system X ′

cY
′
cZ

′
c where Y ′

c and Z ′
c are parallel to Yc and Zh,

respectively, and X ′
c is the projection of the central axis of the cone in the plane

of the sky (XhYh), the relationship between the measurable parameters of ob-
served 2-D halo CMEs and the characteristic geometric parameters of the 3-D
CME plasma clouds can be expressed clearly.
• Circular cone model
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Here Sx′c and Sy′c denote the semi-minor and semi-major axes.
• Elliptic cone model with χ = 0
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the halo CME becomes circular if sinβ = tanωye/tanωze < 1.
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• Elliptic cone model with χ 6= 0


















































h = Rc cos β

Sx′c
cosψ = Rc tanωze (sinα sinχ+ sin β cosα cosχ)

Sy′c
sinψ = Rc tanωye (sinα cosχ− sinβ cosα sinχ)

Sx′c
sinψ = Rc tanωze (− cosα sinχ+ sin β sinα cosχ)
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The case of elliptic cone model with χ 6= 0 is more complicated than the case
of χ = 0, and the inverted solution is not unique!



5. Summary and Discussions
5.1 What kind of halo CMEs can be inverted?

• Only halo CMEs that are formed fully by Thompson scattering, the charac-
teristic geometrical parameters of cone-like CME plasma clouds can be inverted
using the measurable parameters of observed halo CMEs.

5.2 How to select models given a specific halo CME?

• The halo CMEs consist of a rear half ellipse corresponding to the rear half
rim of the cone base and a front half part corresponding to the front half rim of
the cone base or the top surface of the ice-cream part. If the front half part and
the rear half part are symmetric, the CME plasma clouds may be expressed by
the circular cone or elliptic cone models. Otherwise, the CME plasma clouds
must be expressed by ice-cream cone models, such as the half spheroid and half
ellipsoid ice cream cone models.

• The tilt angle of observed elliptic halo CMEs, ψ, i.e. the angle between the
semi-minor axis of halo CMEs and the local west direction, Xh, is determined
by the orientation of the central axis of the cone-like CMEs and the tilt of the



elliptic base of the cone. By comparing ψ with α the question of whether the
base of the cone is circular or elliptic may be determined. Therefore, by com-
paring front with rear half ellipses and comparing ψ with α, the model used to
invert the characteristic parameters can be selected (See Table for details).

5.3 The uniqueness of the inverted solution

• For Thompson scattering-formed halo CMEs, the shapes of halo CMEs
predicted using the circular cone model and half spheroid cone model provide
four parameters that are equal to the number of the chracteristic parameters of
these circular cone-like models, and the inverted solution is unique.

• The shapes of halo CMEs predicted using the elliptic cone model provide
four or five parameters depending on the tilt of the elliptic base of the cone.
Since it is less than the number of characteristic parameters of the elliptic cone,
the inverted solution is not unique. For the case of half ellipsoid cone ice cream
model, the solution is also not unique. The up-coming multi-point observations
from STEREO may finally solve the problem of uniqueness of the inverted so-
lution (See Table for details).



Parameters for Cone-like M. Parameters for Predicted Ellipse
Circular C. ω, Rc, β, α h, α, Smn, Smj

H. Sphe. C. ω, Rc, β, α, Ri h, α, Smn, Smj, Si

Elliptic C. ωye, ωze, Rc, β, α, χ = 0 h, α, Smn, Smj

ωye, ωze, Rc, β, α, χ h, α, Smn, Smj, ψ

H. Elli. C. ωye, ωze, Rc, β, α, χ = 0, Ri h, α, Smn, Smj, Si

ωye, ωze, Rc, β, α, χ, Ri h, α, Smn, Smj, Si, ψ

|ψ − α| 0 90 Other

Circular Cone Unique
Half Spheroid Cone Unique
Elliptic Cone (χ = 0) Not Unique Not Unique
Elliptic Cone Not Unique
Half Ellipsoid Cone (χ = 0) Not Unique Not Unique
Half Ellipsoid Cone Not Unique


