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ABSTRACT
Observations have shown that active region Ñux tubes often emerge in a twisted state and that the

active region formed has magnetic helicity of the same sense as the Ñux tube that forms it. Separate
theoretical models have been developed for coronal magnetic Ðelds with helicity and for Ñux tubes with
twist. Here we present a dynamical model that connects a twisted subphotospheric Ñux tube to a force-
free coronal Ðeld. With this model it is possible to explore the emergence of a Ñux tube into the corona
and its e†ect on both the coronal Ðeld and the subphotospheric Ñux tube. In particular, the model shows
that only a fraction of the current carried by the twisted Ñux tube will pass into the corona. As a conse-
quence of this ““ mismatch, ÏÏ a torsional wave is launched downward along the Ñux tube at theAlfve� n
instant of emergence. As the Ñux tube continues to emerge, the helicity of the coronal Ðeld increases
owing to rotation of the footpoints. Our model predicts that the level of rotation will depend upon the
rapidity of Ñux emergence. After this transient period the helicity of the active region will reÑect the twist
in its parent tube.
Subject headings : MHD È Sun: activity È Sun: corona È Sun: magnetic Ðelds

1. INTRODUCTION

Measurements of the full magnetic Ðeld at the SunÏs
photosphere show that, where magnetic Ðeld enters the
corona, so does electric current. Evidence that at least some
of the measured photospheric current passes into the
corona is provided by the agreement between the shapes of
coronal Ðeld lines, inferred from X-ray or EUV images, and
model force-free Ðelds (Pevtsov, CanÐeld, & McClymont
1997). Since currents ““ store ÏÏ free magnetic energy, the
importance of coronal currents was appreciated theoreti-
cally well before such modeling or measurements were
done. This free energy may result in Ñaring in those active
regions (ARs) with sheared photospheric Ðelds and erup-
tions in those ARs with sigmoidal shapes (CanÐeld,
Hudson, & McKenzie 1999).

A common approach to modeling current-carrying
coronal Ðelds is to anchor them in a dense lower layerÈthe
photosphere. In such a model current may be generated by
vortical motion of the photosphere, with no change in the
net Ñux. Recent observations, however, show that actual
current generation is somehow related to the emergence of
new Ñux through the photosphere. Leka et al. (1996) found,
in the emergence of AR 7260, that the total vertical current
increased as the total (unsigned) Ñux did.

The prevailing picture of Ñux emergence is that an )-
shaped Ñux tube pierces the photosphere after rising from
the base of the convection zone (CZ). Dynamical models of
slender isolated Ñux tubes have successfully reproduced
many properties of observed bipolar ARs and sunspot pairs
(Spruit 1981 ; Moreno-Insertis 1986 ; Choudhuri & Gilman
1987 ; Fisher, Chou, & McClymont 1989 ; Fan, Fisher, &
McClymont 1994 ; Caligari, Moreno-Insertis, & Schu� ssler
1995). These models apply to a ““ thin ÏÏ isolated tube of Ñux
rising under its own buoyancy and impeded by aero-
dynamic drag. The Ñux tube is thin in the sense that its cross
section is much smaller than the scales of the external atmo-
sphere and is isolated in the sense that it is embedded in
completely unmagnetized plasma. The degree of quantitat-
ive agreement between model and observation suggests that
each assumption is approximately valid.

The Leka et al. observation, according to one interpreta-
tion, shows the emergence of a twisted magnetic Ñux tubeÈ
Ðeld lines within the tube twist about its axis (Longcope et
al. 1999). A dynamical model of twisted magnetic Ñux tubes
has been developed along similar lines to the models of
untwisted tubes (Longcope & Klapper 1997). Solutions of
the model equations have provided further evidence for
pretwisted Ñux tubes by Ðtting observed AR chirality
trends. A long-term study of AR Ðelds had previously
shown a slight latitude dependence in the vertical currents
at the photosphere (Pevtsov, CanÐeld, & Metcalf 1995). Dif-
ferential rotation acting on coronal Ðelds would produce
much smaller current (Longcope et al. 1999). Thin Ñux tube
simulations, however, show that CZ turbulence with kinetic
helicity will introduce twist in a rising Ñux tube (Longcope,
Fisher, & Pevtsov 1998), whose magnitude and sign agree
with observation.

For theoretical reasons it is necessary that isolated Ñux
tubes be twisted in order to maintain their integrity

1979). Two-dimensional models show that(Schu� ssler
hydrodynamic forces from the unmagnetized medium will
quickly fragment an untwisted tube. Twist introduces an
azimuthal magnetic Ðeld whose tension can counteract
these hydrodynamic forces. This theoretical argument is
evidently Ñawed in some respect since the amount of twist
required to prevent fragmentation in a rising two-
dimensional tube is at least 1 order of magnitude larger
than values inferred from vector magnetic Ðeld measure-
ments (Longcope et al. 1999). Such an observed discrepancy
might arise if the current in the rising magnetic Ñux tube
were not all passed into the corona.

In spite of the observational work discussed above, it is
not well understood how the current in a subphotospheric
Ñux tube couples to the Ðeld above it ; indeed, the matter is
the subject of controversy. According to some theories
(Melrose 1991) a twisted Ñux tube carries a net current
along its axis, like a household electrical wire. In this view a
large self-inductance would prevent the current from chang-
ing during emergence or afterward. The large self-
inductance comes from magnetic Ðeld created outside the
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Ñux tube by its current. Indeed, a simple application of
FaradayÏs law implies that the current-carrying Ñux tube
cannot be isolated in truly Ðeld-free plasma. Requiring the
Ñux tubeÏs current to remain Ðxed places signiÐcant con-
straints on coronal dynamics, with implications for solar
Ñares (Melrose 1997) and for transequatorial reconnection
(CanÐeld, Pevtsov, & McClymont 1996 ; Pevtsov 2000).
These constraints would not apply, however, if the sub-
photospheric current could leave the Ñux tube before enter-
ing the corona. This possibility has been a matter of some
debate owing to the complex nature of the magnetic Ðeld
near the photosphere.

On the other hand, if one insists that subphotospheric
magnetic Ñux tubes are truly isolated (i.e., surrounded by
Ðeld free plasma), then the above FaradayÏs law argument
requires that they carry no net current. The twisted Ñux
tube in a thin Ñux tube model therefore carries current
inside, because of the twist, and an opposing return current
on its surface. In spite of this clear theoretical requirement
for a return current, photospheric measurements have never
shown an AR with an opposing current surrounding it
(Melrose 1991). It has been argued, however, that this is an
e†ect of the measurements and does not imply a lack of Ñux
conÐnement (Parker 1996).

The following work presents a model for the passage of
subphotospheric currents into the corona. For magnetic
Ðelds of active region scale, say Mm, the photosphericZ10
boundary is little more than an interface between low-b and
high-b plasma. Existing thin Ñux tube models apply to
regions of large b, where the tube may be conÐned by
plasma pressure. Force-free coronal models, on the other
hand, assume a low-b plasma completely Ðlled with mag-
netic Ðeld. The work presented here joins the two types of
model across a photospheric interface. Considering large-
scale forces and the motions they drive, we arrive at a sce-
nario for the emergence of a twisted magnetic Ñux tube.

The resulting model clariÐes several elements in the
relationship between subphotospheric and coronal cur-
rents. First of all, the surface current from a Ñux tube need
not enter the corona, nor would it be necessarily evident in
vector magnetic Ðeld measurements made of the photo-
sphere. Second, the twist observed in the photospheric Ðeld
is not always representative of the twist in the sub-
photospheric Ñux tube. During the emergence and a tran-
sient period thereafter, only a fraction of the tubeÏs current
enters the corona. With time this current mismatch dimin-
ishes, and the coronal twist increases to match the twist of
the Ñux tube.

The combined Ñux tube/AR model will be presented and
analyzed as follows. In the next section we present models
for a force-free coronal Ðeld, a thin twisted Ñux tube, and
then for the interface connecting them. The following
section, ° 3, applies the combined model to the emergence of
a twisted magnetic Ñux tube. Finally, ° 4 discusses the impli-
cations of this model for the issues described above : the
passage of current from the CZ to the corona, and the
relation of measured twist to the twist in the rising Ñux
tube.

2. THE MODEL

For simplicity, our model assumes axisymmetry for both
the Ñux tube and the active region Ðelds. Working in cylin-
drical coordinates (-, /, z) the general magnetic Ðeld can be
written in terms of a Ñux function f (-, z)

B(-, z) \ $f Â $/] -BÕ(-, z)$/ , (1)

whose contours deÐne Ñux surfaces. The magnetic Ðeld
takes the form of an isolated Ñux tube in the high-b CZ and
a more extended active region Ðeld in the low-b corona. In
our axisymmetric model the corona will be represented by
the slab [d \ z\ d while the region outside this, o z o[ d,
is the CZ (see Fig. 1). The two planes z\ ^d separating the
corona from the CZ (i.e., where b changes discontinuously)
will be called the photosphere. Each plane actually rep-
resents many scale heights of the solar atmosphere where b
changes from very large to very small. Across this boundary
we apply only integral constraints that are equivalent to
those for a thin layer of Ðnite extent. We quantify this aspect
of the model below.

In the CZ, o z o[ d, the Ñux ' is conÐned to a tube of
radius a by a slight excess in the large pressure of the
unmagnetized plasma around it. The magnetic Ðeld proÐle

is arbitrary within the tube because of the large valueB
z
(-)

of b : any radial magnetic forces are balanced by pressure
gradients. For added simplicity we will assume uniform
Ðeld strength within this cylinder,

f \ '-2/2na2 . (2)

The Ñux tubeÏs magnetic Ðeld is discussed in more detail in
° 2.2.

In the corona, o z o\ d, the plasma pressure is insufficient
to conÐne the Ñux, which therefore expands into a volume
we will call the active region. The active region consists of all
the magnetic Ñux from the Ñux tube passing between
z\ [d and z\ d. Our calculations will admit the possi-
bility of currents Ñowing within the active region Ðeld.
Outside of the active region is current-free Ñux not
anchored to the photosphere. This is the coronaÏs ““ vacuum
Ðeld,ÏÏ intended to represent the preexisting Ñux into which
the active region emerges. The active region is separated
from the vacuum Ðeld by an interface deÐned by the curve

whose location will be determined self--\-
s
(z),

consistently along with the active region Ðeld.

2.1. T he Corona
Lacking a signiÐcant contribution from the plasma pres-

sure, magnetic forces will drive the coronal plasma toward a
state of minimum magnetic energy. The magnetic energy is

E
M

\ 1
8n
P

o B o2d3x \ 1
4
P
~d

d
dz
P
0

R
- d-

A 1
-2 o$f o2] BÕ2

B
,

(3)

where a large outer radius, R? d, is introduced to make
this quantity Ðnite. We assume that this energy mini-
mization completely determines the form of the coronal
magnetic Ðeld. Severe constraints are placed on the plasma
motions by the large conductivity of the coronal plasma
unless one admits the possibility of magnetic reconnection.

It is well known that magnetic reconnection will elimi-
nate all of the aforementioned constraints except for total
helicity and total Ñux (Woltjer 1958 ; Taylor 1974). This
leaves both functions, f (-, z) and free to minimizeBÕ(-, z),
expression (3), subject only to two integral constraints and
boundary conditions. To maintain $ Æ B \ 0 the normal
component of the magnetic Ðeld must be continuous across
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FIG. 1.ÈGeometry for the Ñux tube and active region magnetic Ðelds

the photospheric boundary. This Ðxes f at z\ ^d, with the
Dirichlet boundary condition

f (-, z\ ^d)\ 4
5
6
0
0
'-2/2na2 -¹ a,
'/2n -[ a.

(4)

The integral constraints on the minimization are the total
helicity and the total Ñux, neither of which can be changed
by plasma motion even during episodes of fast reconnec-
tion. Since our active region Ðeld lines cross the boundaries
at z\ ^d, it is actually the relative helicity (Berger & Field
1984 ; Finn & Antonsen 1985) that is constant. This is a
speciÐc form of the conventional magnetic helicity
/ A Æ Bd3x, which is gauge invariant even when Ñux crosses
the boundary. Inside the active region, we deÐne-\-

s
(z),

a potential (i.e., current-free) magnetic Ðeld with theB
psame normal components as B. In terms of this Ðeld, and its

vector potential the relative helicity can be written (FinnA
p
,

& Antonsen 1985 ; Berger 1999)

Har\
P

(A ] A
p
) Æ (B [ B

p
)d3x \ 4n

P
~d

d
dz
P
0

–s(z)
fBÕ d- .

(5)

The second constraint is the total toroidal Ñux in the
vacuum Ðeld,

(
v
\
P
~d

d
dz
P
–s(z)

R
BÕ d- . (6)
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The outer radius R is taken to be so large that the vacuum
Ðeld will function as a virtually inexhaustible reservoir of
Ñux. In spite of this, it is still formally necessary to impose
constraint (6) to obtain a well-deÐned minimization.

Performing the constrained variations, with Lagrange
multipliers a/8n on equation (5) and j/2 on equation (6),
yields Euler-Lagrange equations

-BÕ\ af

L
L-
A1
-

Lf
L-
B

] 1
-

L2f
Lz2 \ [aBÕ (7)

for -\-
s
(z),

-BÕ \ j

L
L-
A1
-

Lf
L-
B

] 1
-

L2f
Lz2 \ 0 (8)

for Taken together, the equations for the active-[-
s
(z).

region, equation (7), yield the linear Grad-Shafranov equa-
tion

-
L

L-
A1
-

Lf
L-
B

] L2f
Lz2 \ [a2f, -\ -

s
(z) (9)

describing a constant-a force-free Ðeld.
The energy integral must also be minimized under varia-

tions of the interface subject to the same integral con--
s
(z),

straints on helicity and Ñux. The resulting Euler-Lagrange
equation at the point of interface is

[ 1
4
C1
-

o$f o2] -BÕ2
D
–s

[ 1
2

afBÕ o–s~] 1
2

jBÕ o–s`
\ 0 ,

(10)

where is the discontinuity across the interface[ Æ ]–s(outside minus inside). Using equations (7) and (8), this can
be written in the simpler form

C
-~2 o$f o2

D
–s

[
C
BÕ2
D
–s

\ 0 . (11)

This expression is notably di†erent from the requirement of
magnetic pressure balance across the interface,

C
-~2 o$f o2

D
–s

]
C
BÕ2
D
–s

\ 0 , (12)

which follows from an unconstrained variation of equation
(3).

To be in force balance across the interface, and a
minimum energy subject to constraints, the equilibrium
must satisfy both equations (11) and (12). The combination
is equivalent to the condition that o$f o and be contin-oBÕ o
uous across Since the interface is deÐned to be the-

s
(z).

outer boundary of the Ñux from the tube, it must occur at
Thus, at the interface f (-, z) must satisfyf (-

s
, z)\ '/2n.

f (-\ -
s
, z)\ '

2n
, (13)

K Lf
L-
K
–/–s

\ 0 . (14)

Among other things this means that no surface current
Ñows along the AR/vacuum interface. While such a surface

current might be consistent with strict force balance (12), it
is not the equilibrium with minimum magnetic energy.

The boundary conditions on f (-, z) in the vacuum admit
only the trivial solution f \ '/2n. This means that the
vacuum Ðeld is purely toroidal, with

BÕ\ a'
2n

1
-

, -[ -
s
(z) . (15)

This is the Ðeld from the axial current I\ a' (cgs-emu),
Ñowing along the active region Ðeld. This net current is
another manifestation of the lack of return current at the
interface.

2.2. T he Flux Tube
In the high-b region ““ below ÏÏ the photosphere ( o z o[ d)

the Ñux tube is conÐned to radius a and assumed to have
uniform axial Ðeld strength The Ñux tube consists ofB

z
.

twisted Ðeld lines, whose azimuthal Ðeld strength can be
written in terms of the pitch q,

BÕ \ -qB
z

. (16)

Positive q deÐnes Ðeld pitched in right-handed helices,
wrapping once about the axis over the axial distance 2n/q.
We will assume that the Ðeld line pitch is uniform across the
tubeÏs proÐle, so q is independent of - (this is a natural
assumption if the twist was introduced by a motion of the
Ñux tube ; Linton, Longcope, & Fisher 1996 ; Longcope,
Fisher, & Pevtsov 1998). The uniform twist implies a
uniform axial current density whose totalJ \ 2qB

z
zü

current (in cgs-emu) is I\ 2q'. The Ñux tube is surrounded
by unmagnetized plasma and does not, therefore, carry a
net current. There is, per force, an axial surface current
Ñowing along the outside of the tube -\ a, canceling the
axial volume current from the twist (see Fig. 1).

It is worth noting that, while there is a surface current at
f \ '/2n in the CZ, the analysis of the previous section
shows such a surface current to be absent from the corona.
The di†erence stems from b : the large plasma pressure in
the CZ can balance the stresses of a surface current sheet,
while the meager plasma pressure in the corona cannot.
This means that the Ñux tubeÏs surface current cannot enter
the corona ; it must continue along the photosphere at
z\ ^d, as shown in Figure 1. This is an important feature
of the model ; however, it arises mostly from kinematic con-
siderations. We discuss more of its consequences below.

While the pitch of the Ñux tube is uniform over each cross
section, it may vary along the axis, q(z). This variation in
twist implies a radial current density

J
r
\ LBÕ

Lz
\ -B

z
Lq
Lz

. (17)

Radial current crosses the axial magnetic Ðeld giving rise to
an azimuthal force this is a magnetic torque.FÕ\ [J

r
B
z
;

While gradients in the internal plasma pressure can easily
balance radial magnetic forces, they cannot create torque.
Thus, the total torque on a section of the tube is (Longcope
& Klapper 1997)

s4
1
4n
Q

(r Â B)(B Æ nü )dS , (18)
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independent of pressure. On a short interval (z, z] dz)
the only contributions to this integral come from its end
sections

M(z)\ 12Bz
zü
P
0

a
BÕ-2 d-\ 18q(z)a4B

z
2 zü . (19)

The torque on the small tube section is therefore purely
axial,

q
z
\ LM

z
Lz

dz\ 1
8

a4B
z
2 Lq

Lz
dz . (20)

A consequence of expression (20) is that to be in equi-
librium (s\ 0) the tubeÏs twist cannot vary along its axis,
Lq/Lz\ 0. This is equivalent to a requirement that the axial
volume current I\ 2q' pass uninterrupted along the axis.
The alternative, a change in the axial volume current, means
that current must be shunted radially to join the surface
current, since $ Æ J \ 0. This shunting is the same radial
current that gives rise to the axial torque discussedq

zabove. Thus, our model permits the Ñux tubeÏs current I to
change, but doing so gives rise to torque.

A net axial torque will cause the section of the tube to
spin about its axis. We will assume the spinning motion to
be rigid (this is required for consistency with thevÕ\-u
previous assumption that q did not vary across the tube).
The angular momentum of a spinning tube section is

L
z
\
P

o-vÕ dV \ 12na4ou dz , (21)

where o is the mass density of the CZ plasma. Thus, the
torque will change the local spin rateq

z
Lu
Lt

\ vA2
Lq
Lz

, (22)

where is the speed in the CZ.vA \B
z
/(4no)1@2 Alfve� n

A second relation between q and u is provided by helicity
considerations (Longcope & Klapper 1997). The relative
helicity of the tube section is

H \ 4n dz
P
0

a
fBÕ d-\'2

2n
q dz . (23)

This quantity is constant only so long as those boundaries
through which Ðeld lines pass remain Ðxed. Rigid rotation
of the cross sections will change the helicity (Berger 1999)

dH
dt

\
Q

(B Æ nü )¿ Æ (A ] A
p
)dS \ '2

2n
Lu
Lz

dz . (24)

Setting this equal to the time derivative of expression (23)
gives an equation for the evolution of q,

Lq
Lt

\ Lu
Lz

. (25)

(We have assumed that the length of the tube section, dz,
remains constant). This and equation (22) form a set of
telegrapherÏs equations, whose solutions are leftward and
rightward propagation torsional waves (Priest 1982).Alfve� n

2.3. T he Photosphere
The goal of this work is to model the interaction of the

twisted Ñux tube with the coronal Ðeld. The corona is here
modeled as force free ; however, force-free magnetic Ðelds

always exert stresses on their boundaries. In this case the
coronal Ðeld stresses the photospheric boundaries radially
at z\ ^d. The much larger pressures at the photosphere
are capable of balancing large stresses ; however, they
cannot balance azimuthal forces or torques. The net torque
on the footpoint z\ [d can be found using expression (18)
on a dome of radius s ? a extending into the corona (see
Fig. 2a)

q
z
\ 1

2
s3
P
0

n@2
(zü Æ rü Â /ü )BÕB

r
sin h dh [ '2

8n2 q([d) .

The Ðrst term comes from the hemisphere D in the corona,
the second term from its Ñat base C located just below the
photosphere. Using equation (9) for the coronal Ðeld gives

andBÕ\ af/s sin h

q
z
\ a

2
P
0

n@2
f

Lf
Lh

dh [ '2
8n2 q([d) \ '2

16n2 [a [ 2q([d)] .

(26)

Since coronal plasma in the dome has signiÐcantly less
inertia than the CZ plasma beneath the base, there will be
little opportunity for a torque imbalance at the interface.
Setting (26) to zero, and similarly for the z\ d footpoint,
gives the requirement

q(d) \ q([d) \ 12a . (27)

This means that the entire volume current from the Ñux
tube must pass into the corona. The return current, on the
tubeÏs outer boundary, does not pass into the corona,
leaving an unneutralized current I\ a' there.

Allowing for a photospheric layer of small but Ðnite
thickness d (Fig. 2b) changes this result only slightly. The
net torque on the photospheric tube section follows from
expression (26)

q
z
\ '2

16n2 [a [ 2q([d [ d)]\ '2
8n2 *q , (28)

where *q \ a/2 [ q([d [ d) is the twist mismatch across
the photosphere. Setting this equal to the change in angular
momentum of the photospheric tube element (taken to be a
cone),

*q \ 8n2
'2

n
10

oph r4d du
dt

\ 4
5

d
vA, ph2

du
dt

, (29)

where is the average velocity in the interfacevA, ph Alfve� n
layer.

It follows from equation (22) that a disturbance of wave-
length j propagating on the tube will spin up the interface
at

du
dt

D
vA2 q
j

, (30)

where q and characterize the CZ Ñux tube. Using this invAexpression (29) gives

*q
q

D
d
j

vA2
vA, ph2 . (31)

We expect since the speed generallyvA \ vA, ph Alfve� n
decreases with increasing depth. Thus, for disturbances
much longer than the thickness of our photospheric layer
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FIG. 2.ÈHemispheric surface used to calculate the torque balance at the photosphere. Surface D is a hemisphere of radius s ? a the radius of the Ñux tube.
Surface C is a Ñat end section located below the photosphere. Cases with photospheres of (a) zero thickness and (b) Ðnite thickness d give similar results.

j ? d we Ðnd that *q > q and torque balance in expression
(27) holds to leading order.

This consideration has shown the photospheric layer to
be so thin and so light that it permits the shunting of axial
currents only for short times. Taking a photospheric layer
d \ 10 Mm thick (i.e., the region over which Ñux tubes
cannot be considered truly thin), signiÐcant torque imbal-
ances cannot last longer than hr. On timescalesd/vA ^ 3
much longer than this, those which interest us, the photo-
sphere is dynamically equivalent to a genuine interface
between the CZ and the corona. Hereinafter we return to
this simpler picture and take d \ 0.

As viewed from the corona, the rigid spinning of the foot-
points will change the helicity of the active region. Applying
expression (24) to the corona

dHar
dt

\'2
2n

[u(d)[ u([d)] . (32)

Di†erential spin between the two footpoints will thereby
change the active regionÏs helicity. This will in turn change
the constraint on the force-free equilibrium, thus changing
the value of a. To simplify the model we will assume that
coronal relaxation occurs on timescales much shorter than
this helicity change. The corona will evolve quasi-statically
through a series of force-free equilibria characterized by
time-dependent a.

3. APPLICATION TO AN EMERGING FLUX TUBE

3.1. T he Coronal Solution
The evolution of the twisted Ñux tube depends on the

response of the coronal Ðelds. This response is entirely con-
tained in the expression for the active regionÏs helicity Har.The helicity depends, in turn, on the solution to the Grad-
Shafranov equation (9). Taking the limit that the Ñux tube
radius is very small, a ] 0, the solution to equation (9) can
be written in terms of a rescaled function

f (-, z)\ '
2n

F(-/d, z/d ; ad) . (33)

The rescaled function F(x, y ; c) satisÐes the same Grad-
Shafranov equation

x
L
Lx
A1
x

LF
Lx
B

] L2F
Ly2 \ [c2F , (34)

for the region inside the interface This forms a freex \x
s
(y).

surface for the solution of equation (34). The solution is
subject to the four boundary conditions

F(x \ 0, y) \ 0, I

F(x, y \ ^1)\ 1, II

F(x \ x
s
, y) \ 1, III

LF
Lx
K
x/xs

\ 0, IV .

A numerical method for solving equation (34) is presented
in the Appendix. Examples of F(x, y) at values c\ 0.5 and
c\ 1.5 are shown in Figures 3a and 3b. The outermost
contour, marks the outside of the active region.x

s
(y),

Smaller currents c result in more expansive surfaces Ax
s
.

potential Ðeld, c\ 0, would Ðll the corona entirely, x
s
\ O.

Once the dimensionless Ñux function F(x, y ; c) is found,
the active regionÏs helicity can be calculated

Har\ 4na
P
~d

d
dz
P
0

–s(z)
f 2 d-

-
\ '2

2n
h(ad) , (35)

where the dimensionless helicity function is deÐned

h(c) 4 2c
P
~1

1
dy
P
0

xs(y)
F2 dx

x
. (36)

It is shown below that the derivative of this function entirely
dictates the dynamical interaction of the Ñux tube with the
corona. Both h(c) and h@(c) are shown in Figure 3.

3.2. Emergence
The emergence of a Ñux tube into the corona will be

modeled here by increasing the footpoint separation d. The
photospheric boundaries at z\ ^d move apart ; however,
we will assume that no plasma Ñows across these moving
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FIG. 3.ÈSolution of the Grad-Shafranov equation for F(x, y). (a) Contours of F(x, y) with c\ 0.5 plotted vs. x \ -/d and y \ z/d. Contours levels shown
are F\ 0.1, 0.2, 0.3, . . . 0.9, 0.999 ; the Ðnal contour level is the numerical approximation to the interface (b) Same as (a) but with c\ 1.5. (c) Plots ofx

s
(y).

helicity h(c) (solid curve) and its derivative h@(c) (dashed curve). Triangles indicate the values of c at which F(x, y) was calculated.

planes. Flux emerging into the real corona is observed to
drain very rapidly. It is this rapid draining we wish to model
with the impenetrable surfaces z\ ^d(t). To treat the
separation more simply we adopt comoving coordinates
f\ z< d(t), for z to the right/left of the corona. The teleg-
rapherÏs equations remain unchanged in the new coordi-
nates,

Lq
Lt

\ Lu
Lf

(37)

Lu
Lt

\ vA2
Lq
Lf

, (38)

even as the separation d changes.
The point f\ 0 represents the entire corona, while the

footpoints z\ ^d are f\ 0B. Equation (27) shows that q(f)

is continuous across f\ 0 with Equationq(0)\ q0\ 12a.
(32) implies, however, that the spin rate u has a discontin-
uity across f\ 0

[u]\ dh
dt

\ 2(dq5 0] q0 d5)h@(2q0 d) . (39)

We begin with a Ñux tube in equilibrium, having uniform
twist Emergence then begins as d(t) increases fromq \ q=.
zero at t \ 0. Torsional waves resulting from thisAlfve� n
process will travel away from f\ 0. We can write the
outward traveling solution to equations (37) and (38) in
terms of a dimensionless shape function s(t) (eq. [38])

q(f, t) \ q= s(t [ o f o /vA) , (40)

u(f, t) \ vA q= sgn (f)[1[ s(t [ o f o /vA)] . (41)
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Replacing this solution into equation (39) provides an equa-
tion determining the pulse shape s(t) in terms of the emer-
gence history d(t)

ds
dt

\ [s
d5
d

] vA
h@(2q= sd)

1 [ s
d

. (42)

The entire history of the corona and the Ñux tube are
found by solving this single ordinary di†erential equation
for s(t). As a demonstration we consider poles that start
together at t \ 0 and exponentially approach a Ðnal separa-
tion over the emergence timed0 t

e
,

d(t)\ d0(1[ e~t@te) . (43)

Figure 4 shows a case of rapid emergence, t
e
\ 0.5d0/vA,

while Figure 5 shows a slow emergence Thet
e
\ 5d0/vA.

solutions s(t), the solid curves along the bottom, show the
typical behavior of the model : coronal current increases
toward a Ðnal value. The coronal equilibrium approaches
the solution with Each of the cases shownc\ 2q= d04 c=.
has c=\ 1.6.

During the initial phase of emergence the Ñux tubeÏs twist
is suppressed by a fraction

s(0)\ 1
1 ] h@(0)d5(0)/vA

. (44)

This suppression factor can be signiÐcantly smaller than
unity in a rapid emergence where as it is in Figure 4.d5 ? vA,
After emergence is complete, the Ñux tube returns tod5 \ 0,
its initial twist as s ^ 1 [ e~t@q, where the character-q \ q=istic relaxation time is

q4
d0 h@(c=)

vA
. (45)

The relaxation time is roughly the time a tor-qA 4 d0/vA,
sional wave below the photosphere takes to travelAlfve� n
the separation distance For cm s~1 andd0. vA \ 105
d \ 1010 cm, the characteristic relaxation time is roughly 1
day. The actual relaxation time q is longer than by aqAfactor which is D6 in Figure 4.h@(c=),

Contours for F(x, y) from three successive times are
shown in Figures as insets (a), (b), and (c) of Figures 4 and 5.

FIG. 4.ÈRapid emergence of a Ñux tube. Emergence time is and Ðnal twist is The solution s(t) is shown as a solid curvet
e
\ 0.5d0/vA, c= \ 2q= d0\ 1.6.

and separation as a dashed curve along the bottom. Top: Coronal equilibria F(x, y) are shown at times (a) t \ 0.22, (b) 2.55, and (c) 6.97. The locationsd(t)/d0of these snapshots in the time history are shown by vertical dotted lines. The propagating twist pulse q(z) is shown along each of the Ñux tubes in the
snapshots.
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FIG. 5.ÈSlow emergence of a Ñux tube. Same format as Fig. 4 except that t
e
\ 5d0/vA.

These show the equilibrium pinching toward the axis as the
coronal current (i.e., a) increases. Initially, the decreasing
radius is compensated for by an increasing separation d(t).

Evolution of the coronal Ðeld launches torsional Alfve� n
pulses upward (v[ 0) and downward (v\ 0) along the Ñux
tube. The upward propagating pulse is shown in insets (a),
(b), and (c). The pulses are a rarefaction in twist q(z) from its
equilibrium value The pair of twist rarefactions carry aq=.
helicity deÐcit

*H \ '2
2n
P
~=

=
[q= [ q(f)]df . (46)

Using the deÐnition of s(t), equation (40) and its governing
equation, equation (42), gives the helicity deÐcit

*H \ 2'2q= vA
2n

P
0

=
[1[ s(t)]dt \ '2

2n
h(c=)\ Har (47)

as t ] O. Thus, the helicity deÐcit in the pulses equals the
helicity added to the coronal magnetic Ðelds. As the Ñux
emerges into the corona, helicity is extracted from the Ñux
tubes. This extraction creates rarefaction pulses, which pro-
pagate along the Ñux tube.

4. DISCUSSION

4.1. Current Paths
The foregoing model provides a picture, shown schemati-

cally in Figure 6, of how the current from a twisted Ñux tube
passes into the corona after emergence. Recall that the Ñux
tube carries a volume current on its Ðeld linesI0\ 2'q=and an equal return current along its surface. The initial
twist suppression, equation (44), indicates that only a frac-
tion s(0) of the tubeÏs volume current passes immediately
into the corona [for clarity Fig. 6 depicts a case where
s(0)\ 0, corresponding to instantaneous emergence : d5 \
O]. The remaining fraction, 1[ s(0), of the volume current
is radially shunted to the tubeÏs surface (see Fig. 6a) instead
of passing into the corona. The torque from this shunting
initiates a plasma rotation, which, along with the twist sup-
pression, forms a torsional pulse propagating awayAlfve� n
from the emergence. The fraction of current shunted, and
thus the amplitude of the pulse, depends on the rate of
emergence relative to the twist relaxation time qA \ d0/vA.

During emergence, the coronal magnetic Ðeld is increas-
ingly twisted by the rotation of its footpoints. The increased
coronal twist means that the current entering the corona
will increase and the current radially shunted will decrease.
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FIG. 6.ÈCurrent paths within a torsional wave propagating from the corona along a twisted Ñux tube. The pulse, a twist rarefaction, is launchedAlfve� n
from the current-free (a \ 0) corona (a). Within the pulse the current is zero (q \ 0) and the plasma is spinning (u[ 0). Radial currents appear at the leading
and trailing edges of the pulse.

In the Ðnal state the entire volume current of the Ñux tube,
will pass into the corona and no current will be shunted.I0,The tubeÏs return current will pass from the surface of the

tube onto the layer just beneath the corona known as the
merging height (Gabriel 1976). Thus, in our model the Ðnal
current observed in the active region is equal to the volume
current in the twisted Ñux tube. We Ðnd that current within
a Ñux tube can cross Ðeld lines but only temporarily.

The introduction mentioned a discrepancy between
theory and observations of AR twist ; we hoped to explain
this discrepancy using our model. The amount of twist
observed in AR Ðelds (at the photosphere) is about 1 order
of magnitude smaller than two-dimensional theory
demands for the integrity of the rising Ñux tube (Longcope
et al. 1999). The present model of emergence does predict a
discrepancy of this kind, twist in the coronal Ðeld that is
smaller than that of the rising tube, even by 1 order of
magnitude in cases of rapid emergence. This discrepancy is,
however, a temporary state of a†airs, and the coronal twist
should increase to the tubeÏs value within a few days of
emergence. The observational data is a survey of ARs
(Pevtsov et al. 1995), which probably measures the asymp-
totic twist rather than the transient low value. Thus, the
emergence model cannot explain the discrepancy and
another explanation must be sought.

4.2. Dynamical Evolution
The simplest observable prediction of this model is that

coronal twist will appear to increase for a period (about 1qAday) after Ñux emergence. Furthermore, this twist increase
will accompany a rotation of the footpoints driven by mag-
netic forces in the twisted Ñux tube. The amount by which

the coronal current increases depends on the rapidity of the
Ñux emergence. Rapid emergence will result in coronal
magnetic Ñux that is initially quite untwisted. It is expected
that these cases will provide the best opportunity to observe
the later rise in coronal twist accompanied by photospheric
rotation.

The coronal Ðeld will change in response to both the AR
emergence and the twist of its footpoints. Emergence natu-
rally leads to an expansion of the AR magnetic Ðeld, while
twisting introduces Ðeld-aligned currents that tend to pinch
the Ðeld. In slow emergence, e.g., Figure 4, the Ðrst e†ect is
prevalent and the active region appears to expand through-
out. In rapid emergence, Figure 5, the pinching leads to
contraction after the regionÏs initial expansion.

In addition to the observable coronal evolution, a twist
rarefaction pulse will propagate downward along the Ñux
tube. The source of this rarefaction is the initial helicity
deÐcit in the coronal magnetic Ðeld. Because the plasma
drains from it, the coronal Ðeld is initially stripped of its
magnetic helicity. The process of adding helicity to the
coronal Ðeld creates a deÐcit in the Ñux tube ; this deÐcit
propagates downward as a torsional pulse. SuchAlfve� n
transport of magnetic helicity into the solar interior might
have important consequences for the operation of the solar
dynamo (Boozer 1993).

4.3. L imitations of the Model
This model is a very crude attempt to join the physics of

the convection zone to the physics of the corona. It sim-
pliÐes the physics of each regime in order to do so. The
coronal magnetic Ðeld is taken to be fully characterized by
its magnetic helicity and the twist a at its footpoints. The
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relationship of these quantities is contained in the function
h(a). The subphotospheric Ñux tube serves as a conduit for
torsional waves. The emerging Ñux tube transfersAlfve� n
helicity into the corona until the footpoint twist,
q(d)\ q([d), matches that of the tube.

While the axisymmetric active region we have used is
quite unrealistic, it provides a case where h(a) may be calcu-
lated. Treating more complicated, three-dimensional active
region geometries requires the solution of a free-boundary
problem for a constant-a equilibrium, anchored to discrete
Ñux sources and embedded in a potential background. Cal-
culations of this type, which have recently become possible
(Chou & Low 1994 ; Lothian & Browning 1995), can be
characterized by new functions h(a). We expect that the
general nature of all such functions will be similar to our
cylindrical case ; h(a) begins at zero and increases monotoni-
cally. The most natural scale of variation in h is d~1, the
inverse footpoint separation.

The dynamics of the Ñux tube is modeled by the teleg-
rapherÏs equations, (22) and (25). These were derived here
for straight Ñux tubes ; however, the same equations obtain
for general axial geometries (Longcope & Klapper 1997).
The most signiÐcant complication from a more realistic
geometry will come from the variation in along the axis.vAWave propagation through variable media is, however, well
understood, and such a generalization would not be compli-

cated. Abrupt changes in would obviously reÑect somevAportion of the torsional wave back toward the photosphere,
while more gradual variation would generate a low-level
reÑected component. This might add interesting observable
features to the ARÏs evolution and even provide some
insight into the magnetic Ðeld strength inside the CZ. In
spite of this, we do not expect that the e†ect will change the
basic conclusions of our model.

The AR model and Ñux tube model are connected across
an interface representing the photosphere. Rather than
focus on the intricate details of this layer, we have applied
global constraints across the layer. We have also shown
that this process works for layers of Ðnite thickness as well
as for genuine boundaries. In particular, torque about the
tubeÏs axis must match across the photosphere since it
comes only from magnetic twist and cannot be balanced by
pressure gradients. The simplicity of this result was aided by
axisymmetry ; however, torque is a far more general concept
and should apply to Ñux tubes with more complex internal
geometry. We thus expect the general nature of this connec-
tion to apply to general magnetic Ðelds.

We thank the anonymous referee for a helpful suggestion
on the manuscript. This material is based upon work sup-
ported by the National Science Foundation under grant
ATM 97-33424 and by NASA under grant NAG5-6110.

APPENDIX

THE CORONAL FIELD

The response of the coronal magnetic Ðeld is characterized in terms of the rescaled Ñux function, F(x, y), which solves
equation (34)

x
L
Lx
A1
x

LF
Lx
B

] L2F
Ly2 \ [c2F , (34)

inside the interface The function is subject to the boundary conditionsx \x
s
(y).

F(x \ 0, y) \ 0, I

F(x, y \ ^1)\ 1, II

F(x \ x
s
, y) \ 1, III

LF
Lx
K
x/xs

\ 0, IV .

While equation (34) appears linear in F(x, y), boundary conditions III and IV introduce nonlinearity owing to their depen-
dence on the solution. For present purposes it is most important to establish that equation (34) has a unique solution for each
value c. The basic results of this paper depend on the existence and general properties of the rescaled helicity function h(c).

We have used two di†erent numerical techniques to solve the free-boundary problem. The functions F(x, y) produced by
these very di†erent techniques agree over most of the domain. Most importantly, the rescaled helicity functions,

h(c) 4 2c
P
~1

1
dy
P
0

xs(y)
F2 dx

x
, (A1)

from each technique agree very closely. We used the more robust of these techniques (relaxation) for the Ðgures in the paper.
The second technique was developed primarily as a check on the Ðrst.

A1. FINITE DIFFERENCE SOLUTION BY RELAXATION

The simplest and most robust technique is based on a method by Wolfson, Vekstein, & Priest (1994). The di†erential
operator from equation (34) is approximated by centered di†erences on a uniform spatial grid (x

i
, y

j
)

D
ij
F4

2x
i

(*x)2
AF

i`1,j[ F
i, j

x
i`1 ] x

i
[ F

i,j [ F
i~1,j

x
i
] x

i~1

B
] F

i,j`1[ 2F
i,j ] F

i,j~1
(*y)2 . (A2)
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At the boundaries, and we set and As long as itx0\ 0, x
Nx

\R, y0\[y2, y
Ny

\ 1, F0,j \ 0, F
Nx,j\ 1, F

i,0\F
i,2, F

i,Ny
\ 1.

remains outside the interface the speciÐc location of the outer radius R is irrelevant. Values of in the grid interior arex
s
, F

i,jrelaxed according to

F
i,jn`1 \F

i,jn [ h{D
i,jFn ] g(F

i,jn )F
i,jn | , (A3)

where the function g(F)

g(F)\

4

5

6

0
0
c2 , F¹ 1 [ 2df

c2
(1[ df ) [ F

df
, 1[ 2df \ F¹ 1 [ df

0 , 1 [ df \ F

(A4)

divides the AR from the vacuum at the approximate interface where F\ 1 [ 1.5df ^ 1. Its speciÐc form decreases to zero over
a predeÐned thickness typically chosen to be df\ 10~3. The parameter h is chosen to optimize convergence to a solution. To
further aid convergence, a solution found on a course grid, say Nx \ Ny \ 16, is then interpolated onto a Ðner grid. This is
then relaxed and interpolated, and relaxed again. The solutions shown, and those used to calculate h(c), were found on
Nx \ Ny \ 64 grids.

A2. SERIES SOLUTION

The general solution to equation (34) can be written

F(x, y ; c)\ x
P
0

=
J1(kx)

cosh (yJk2[ c2)
cosh (Jk2[ c2)

dk ] x ;
n/0

=
b
n

cos (yk
n
)J1(xJk

n
2[ c2) , (A5)

where The coefficients are arbitrary and will be real if and imaginary otherwise. The expressionk
n
\ n(n] 12). b

n
k
n
[c

satisÐes boundary conditions I and II for all choices of The free surface is deÐned by condition III, and the coefficientsb
n
. x

s
b
nmust be chosen to satisfy condition IV at this interface.

An approximate solution is found by truncating the series at N terms and treating the coefficients asb1, b2, . . . b
Nunknowns. Boundary conditions III and IV are satisÐed at N axial points lying inside the boundaries y \ 0 andy1, y2, . . . y

Ny \ 1. At each axial point the interface location is found by solving the nonlinear equationy
i
,

F(x
i,s, y

i
) \ 1 (A6)

for The radial derivatives at these points constitute N functions of the N unknowns,x
i,s. b

j
,

'
i
(b

j
) \
K LF
Lx
K
xi,s,yi

\ 0 . (A7)

An N-dimensional Newton-Raphson method is used to solve these equations for (Press et al. 1986).b
jThis method has the advantage of treating the exact interface F\ 1 rather than the approximation F\ 1 [ 1.5df. The

interface found this way is slightly outside the approximation from relaxation. Nevertheless, the values of helicity h(c) found
both ways agree to within less than 1%.

REFERENCES
Berger, M. A. 1999, in Magnetic Helicity in Space and Laboratory

Plasmas, ed. M. R. Brown, R. C. CanÐeld, & A. A. Pevtsov (Geophys.
Monogr. 111 ; Washington, DC: AGU), 1

Berger, M. A., & Field, G. B. 1984, J. Fluid Mech., 147, 133
Boozer, A. H. 1993, Phys. Fluids B, 5, 2271
Caligari, P., Moreno-Insertis, F., & M. 1995, ApJ, 441, 886Schu� ssler,
CanÐeld, R. C., Hudson, H. S., & McKenzie, D. E. 1999, Geophys. Res.

Lett., 26, 627
CanÐeld, R. C., Pevtsov, A. A., & McClymont, A. N. 1996, in ASP Conf.

Ser. 111, Magnetic Reconnection in the Solar Atmosphere, ed. R. D.
Bentley & J. T. Mariska (San Francisco : ASP), 341

Chou, Y. P., & Low, B. C. 1994, Sol. Phys., 153, 255
Choudhuri, A. R., & Gilman, P. A. 1987, ApJ, 316, 788
Fan, Y., Fisher, G. H., & McClymont, A. N. 1994, ApJ, 436, 907
Finn, J., & Antonsen, T. M., Jr. 1985, Comments Plasma Phys. Controlled

Fusion, 9, 111
Fisher, G. H., Chou, D.-Y., & McClymont, A. N. 1989, in Solar System

Plasma Physics, ed. J. H. Waite, J. L. Burch, & R. L. Moore (Geophys.
Monogr. 54 ; Washington, DC: AGU), 47

Gabriel, A. H. 1976, Philos. Trans. R. Soc. London, A, 281, 339
Leka, K. D., CanÐeld, R. C., McClymont, A. N., & van Driel-Gesztelyi, L.

1996, ApJ, 462, 547
Linton, M. G., Longcope, D. W., & Fisher, G. H. 1996, ApJ, 469, 954
Longcope, D. W., Fisher, G. H., & Pevtsov, A. A. 1998, ApJ, 507, 417

Longcope, D. W., & Klapper, I. 1997, ApJ, 488, 443
Longcope, D. W., Linton, M. G., Pevtsov, A. A., Fisher, G. H., & Klapper,

I. 1999, in Magnetic Helicity in Space and Laboratory Plasmas, ed.
M. R. Brown, R. C. CanÐeld, & A. A. Pevtsov (Geophys. Monogr. 111 ;
Washington, DC: AGU), 93

Lothian, R. M., & Browning, P. K. 1995, Sol. Phys., 161, 289
Melrose, D. B. 1991, ApJ, 381, 306
ÈÈÈ. 1997, ApJ, 486, 521
Moreno-Insertis, F. 1986, A&A, 166, 291
Parker, E. N. 1996, ApJ, 471, 485
Pevtsov, A. A. 2000, ApJ, 531, 553
Pevtsov, A. A., CanÐeld, R. C., & McClymont, A. N. 1997, ApJ, 481, 973
Pevtsov, A. A., CanÐeld, R. C., & Metcalf, T. R. 1995, ApJ, 440, L109
Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1986,

Numerical Recipes : The Art of ScientiÐc Computing, (Cambridge : Cam-
bridge Univ. Press)

Priest, E. R. 1982, Solar Magnetohydrodynamics (Geophys. Astrophys.
Monogr. 21 ; Dordrecht : Reidel)

M. 1979, A&A, 71, 79Schu� ssler,
Spruit, H. C. 1981, A&A, 98, 155
Taylor, J. B. 1974, Phys. Rev. Lett., 33, 1139
Wolfson, R., Vekstein, G. E., & Priest, E. R. 1994, ApJ, 428, 345
Woltjer, L. 1958, Proc. Natl. Acad. Sci., 44, 489


